
 1

Mars: A MapReduce Framework on Graphics Processors

Bingsheng He Wenbin Fang Naga K. Govindaraju
#
 Qiong Luo Tuyong Wang

*

Hong Kong Univ. of Sci. & Tech.

{saven, benfaung, luo}@cse.ust.hk

#
Microsoft Corp.

nagag@microsoft.com

*
Sina Corp.

tuyong@staff.sina.com.cn

Abstract

We design and implement Mars, a MapReduce

framework, on graphics processors (GPUs).

MapReduce is a distributed programming framework

originally proposed by Google for the ease of

development of web search applications on a large

number of CPUs. Compared with commodity CPUs,

GPUs have an order of magnitude higher computation

power and memory bandwidth, but are harder to

program since their architectures are designed as a

special-purpose co-processor and their programming

interfaces are typically for graphics applications. As

the first attempt to harness GPU's power for

MapReduce, we developed Mars on an NVIDIA G80

GPU, which contains hundreds of processors, and

evaluated it in comparison with Phoenix, the state-of-

the-art MapReduce framework on multi-core

processors. Mars hides the programming complexity of

the GPU behind the simple and familiar MapReduce

interface. It is up to 16 times faster than its CPU-based

counterpart for six common web applications on a

quad-core machine. Additionally, we integrated Mars

with Phoenix to perform co-processing between the

GPU and the CPU for further performance

improvement.

1. Introduction
Search engines and other web server applications

routinely perform analysis tasks on data they collect

from the Web. Due to the time criticalness and the vast

amount of the data, high performance is essential for

these tasks [8]. For instance, www.sina.com.cn deploys

tens of high-end Dell servers to compute web stats such

as the top 10 hottest web pages from its web logs every

hour. Furthermore, the complexity of these tasks and

the heterogeneity of available computing resources

makes it desirable to provide a generic framework for

developers to implement these tasks correctly,

efficiently, and easily.

The MapReduce framework is a successful model to

support such data analysis applications [8][27]. It was

originally proposed by Google for the ease of

development of web search applications on a large

number of CPUs. This framework provides two basic

primitives (1) a map function to process input

key/value pairs and to generate intermediate key/value

pairs, and (2) a reduce function to merge all

intermediate pairs associated with the same key. With

this framework, developers implement their application

logic using these two primitives, and the data

processing tasks are automatically distributed and

performed on multiple machines [8] or a multi-core

CPU [23]. Thus, this framework reduces the burden on

the developers so that they can exploit the parallelism

without worrying about the details of the underlying

computing resources. Encouraged by the success of the

CPU-based MapReduce frameworks, we develop Mars,

a MapReduce framework on graphics processors, or

GPUs.

GPUs have recently been utilized in various

domains, including high-performance computing [22].

They can be regarded as massively parallel processors

with 10x faster computation and 10x higher memory

bandwidth than CPUs [1]. Several GPGPU (General-

Purpose computing on GPUs) languages, such as AMD

CTM [2] and NVIDIA CUDA [20], are introduced so

that the developer can write code running on the GPU

without the knowledge of the graphics APIs (e.g.,

DirectX [4] or OpenGL [21]). However, the developer

needs to be familiar with the GPU architecture to fully

exploit the computation power of the GPU.

Unfortunately, GPU architectural details are highly

vendor-specific and usually insufficient compared with

those about CPUs. Moreover, the lack of high-level

programming abstractions in many of the non-graphics

APIs limits the scalability and portability of programs

on new architectures. All these factors make the GPU

programming a difficult task in general and more so for

complex tasks such as web data analysis. Therefore, we

study how to provide a MapReduce framework on the

GPU so that the developer can easily write programs on

the GPU to achieve high performance.

Compared with CPUs, the hardware architecture of

GPUs differs significantly. For instance, current GPUs

provide parallel lower-clocked execution capabilities

on over a hundred SIMD (Single Instruction Multiple

Data) processors whereas current CPUs offer out-of-

 2

order execution capabilities on a much smaller number

of cores. Moreover, GPU cache sizes are 10x smaller

than CPU cache sizes. Due to the architectural

differences, we identify the following three challenges

in implementing the MapReduce framework on the

GPU. First, the synchronization overhead in the run-

time system of the framework must be low so that the

system can scale to hundreds of processors. Second, a

fine-grained load balancing scheme is required on the

GPU to exploit its massive thread parallelism. Third,

the core tasks of MapReduce, including string

processing, file manipulation and concurrent reads and

writes, are unconventional to GPUs and must be

handled efficiently.

With these challenges in mind, we design and

implement Mars, our MapReduce framework on the

GPU. Specifically, we develop a small set of APIs

(Application Programming Interfaces) to facilitate

programmers to define their application logic. These

APIs have a low synchronization overhead, and are

flexible to support variable-sized data types such as

strings. Since GPUs currently have no built-in support

for strings, we have developed an efficient string

library for our framework. In the runtime system, the

tasks are uniformly assigned to the threads. Each thread

is responsible for a Map or a Reduce task with a small

number of key/value pairs as input. Since the number of

threads on the GPU is much larger than that on the

CPU, the workload among threads on the GPU is

distributed at a finer grain than that on the CPU.

Furthermore, we have developed a lock-free scheme to

manage the concurrent writes among different threads

in the MapReduce framework.

We have implemented our MapReduce framework

on a machine with an NVIDIA GeForce 8800 GPU

(G80) and an Intel quad-core CPU. We implemented

six common computation tasks in web applications

using our framework and Phoenix [23], the state-of-the-

art MapReduce framework on multi-core CPUs. Our

case studies cover web searching, web document

processing and web log analysis. For these six

applications, the size of the source code written by the

developer based on Mars is comparable to that on

Phoenix. Moreover, our results indicate that our

optimizations greatly improve the overall performance

of these applications, and Mars achieves a 1.5-16 times

performance improvement over Phoenix. Additionally,

we have integrated Mars with Phoenix to utilize both

the CPU and the GPU for further performance

improvement.

Organization: The rest of the paper is organized as

follows. We give a brief overview of the GPU and prior

work on the GPU and the MapReduce framework in

Section 2. We present our design and implementation

of Mars in Section 3. In Section 4, we evaluate Mars in

comparison with Phoenix using the six web

applications. Finally, we conclude in Section 5.

2. Preliminary and Related Work
In this section, we introduce the GPU architecture and

discuss the related work on the GPU, and review the

MapReduce framework.

2.1. Graphics Processors (GPUs)

GPUs are widely available as commodity

components in modern machines. Their high

computation power and rapidly increasing

programmability make them an attractive platform for

general-purpose computation. Currently, they are used

as co-processors for the CPU [1]. The programming

languages include graphics APIs such as OpenGL [21]

and DirectX [4], and GPGPU languages such as

NVIDIA CUDA [20], AMD CTM [2], Brook [5] and

Accelerator [26]. With these APIs, programmers write

two kinds of code, the kernel code and the host code.

The kernel code is executed in parallel on the GPU.

The host code running on the CPU controls the data

transfer between the GPU and the main memory, and

starts kernels on the GPU. Current co-processing

frameworks provide the flexibility of executing the host

code and other CPU processes simultaneously. It is

desirable to schedule the tasks between the CPU and

the GPU to fully exploit their computation power.

Device memory

P1 P2 Pn

Multiprocessor 1

GPU

CPU

Main

memory

P1 P2 Pn

Multiprocessor P

Figure 1. The GPU architecture model. This model is

applicable to AMD’s CTM [2] and NVIDIA’s CUDA [20].

The GPU architecture model is illustrated in Figure

1. The GPU consists of many SIMD multi-processors

and a large amount of device memory. At any given

clock cycle, each processor of a multiprocessor

executes the same instruction, but operates on different

data. The device memory has high bandwidth and high

access latency. For example, the device memory of the

NVIDIA G80 has a bandwidth of 86 GB/sec and

latency of around 200 cycles. Moreover, the GPU

device memory communicates with the main memory,

and cannot directly perform the disk I/O.

The threads on each multiprocessor are organized

into thread groups. The thread groups are dynamically

scheduled on the multiprocessors. Threads within a

 3

thread group share the computation resources such as

registers on a multiprocessor. A thread group is divided

into multiple schedule units. Given a kernel program,

the occupancy of the GPU is the ratio of active

schedule units to the maximum number of schedule

units supported on the GPU. A higher occupancy

indicates that the computation resources of the GPU are

better utilized.

The GPU thread is different from the CPU thread. It

has low context-switch and low creation time as

compared to CPU’s.

The GPU has a hardware feature called coalesced

access to exploit the spatial locality of memory

accesses among threads. When the addresses of the

memory accesses of the multiple threads in a thread

group are consecutive, these memory accesses are

grouped into one.

2.2. GPGPU (General-Purpose computing on GPUs)

GPUs have been recently used for various

applications such as matrix operations [18], FFT

computation [17], embedded system design [10],

bioinformatics [19] and database applications [13][14].

For additional information on the state-of-the-art

GPGPU techniques, we refer the reader to a recent

survey by Owens et al. [22]. Most of the existing work

adapts or redesigns a specific algorithm on the GPU. In

contrast, we focus on developing a generic framework

for the ease of the GPU programming.

We now briefly survey the techniques of developing

GPGPU primitives, which are building blocks for other

applications. Govindaraju et al. [13] presented novel

GPU-based algorithms for the bitonic sort. Sengupta et

al. [24] proposed the segmented scan primitive, which

is applied to the quick sort, the sparse matrix vector

multiplication and so on. He et al. [15] proposed a

multi-pass scheme to improve the scatter and the gather

operations, and used the optimized primitives to

implement the radix sort, hash searches and so on. He

et al. [16] further developed a small set of primitives

such as map and split for relational databases. These

GPU-based primitives improve the programmability of

the GPU and reduce the complexity of the GPU

programming. However, even with the primitives,

developers need to be familiar with the GPU

architecture to write the code that is not covered by

primitives, or to tune the primitives. For example,

tuning the multi-pass scatter and gather requires the

knowledge of the memory bandwidth of the GPU [15].

In addition to single-GPU techniques, GPUs are

getting more involved in distributed computing projects

such as Folding@home [11] and Seti@home [25].

These projects develop their data analysis tasks on

large volume of scientific data such as protein using the

computation power of multiple CPUs and GPUs. On

the other hand, Fan et al. [9] developed a parallel flow

simulation on a GPU cluster. Davis et al. [7]

accelerated the force modeling and simulation using the

GPU cluster. Goddeke et al. [12] explores the system

integration and power consumption of a GPU cluster of

over 160 nodes. As the tasks become more

complicated, there lacks high-level programming

abstractions to facilitate developing these data analysis

applications on the GPU.

Different from the existing GPGPU computation,

this study aims at developing a general framework that

hides the GPU details from developers so that they can

develop their applications correctly, efficiently and

easily. Meanwhile, our framework provides the run-

time mechanism for the high parallelism and the

memory optimizations for a high performance.

2.3. MapReduce

The MapReduce framework is based on two

functional programming primitives, which are defined

as follows.

The map function applies on every input key/value

pair (k1,v1) and outputs a list of intermediate key/value

pairs (k2,v2). The reduce function applies to all

intermediate values associated with the same

intermediate key and produces a list of output values.

Programmers define the application logic using these

two primitives. The parallel execution of these two

tasks is managed by the system runtime. The following

pseudo code illustrates a program based on the

MapReduce framework. This program counts the

number of occurrences of each word in a collection of

documents [8]. The programmer needs to define two

APIs, Map and Reduce, using other two APIs

provided in the MapReduce framework,

EmitIntermediate and Emit, respectively.

Map: (k1, v1)� (k2, v2)*.

Reduce: (k2, v2*)�v3*.

// the input is a document.

// the intermediate output: key=word; value=1.

Map(void *input) {

for each word w in input;

 EmitIntermediate(w, 1);

}

// input: key=word, the value list consisting of 1s.

// output: key=word; value=occurrences.

Reduce(String key, Iterator values) {

int result = 0;

for each v in values

 result += v;

Emit(w, result);

}

 4

Since the MapReduce framework was proposed by

Google [8], it has been applied to various domains such

as data mining, machine learning, and bioinformatics.

Additionally, there have been several implementations

and extensions of the MapReduce framework. Hadoop

[3] is an open-source MapReduce implementation like

google. Phoenix [23] is an efficient implementation on

the multi-core CPU. Chu et al. [6] applied the

MapReduce framework to ten machine learning

algorithms on the multi-core CPU. Yang et al. [27]

introduced the merge operation into the MapReduce

framework for relational databases. The existing work

focuses on the parallelism of multiple CPUs or multiple

cores within a single CPU. To the best of our

knowledge, this is the first implementation of the

MapReduce framework on the GPU, which is a

massively thread parallel processor. Since GPU is a

commodity component on the modern machine, our

framework complements these existing frameworks.

Specifically, we have integrated our GPU-based

framework with the CPU-based framework to utilize

both the CPU and the GPU.

3. Design and Implementation
In this section, we present our design and

implementation for Mars. Mars exploits the massive

thread parallelism within the GPU. The programmer is

required to define a small set of APIs that are similar to

those in the CPU-based MapReduce framework. The

rest of implementation details such as the GPU runtime

are hidden by our framework.

3.1. Design Goals

Our design is guided by the following goals:

1) Ease of programming. Programming with

graphics APIs requires a lot of effort from the

developer to generate the correct code. In

contrast, ease of programming encourages

developers to use the GPU for computation

processing. Additionally, our framework must

support variable-sized types such as strings

on the GPU, because processing of variable-

sized types is common in the MapReduce

programs such as the web applications.

2) Performance. Our goal is to develop a

MapReduce framework on the GPU that

achieves a performance that is comparable to

or better than the state-of-the-art CPU

counterparts.

3) Flexibility. Our framework must provide

interfaces to allow developers to define their

application logic, and to specify the runtime

parameters for performance tuning.

4) Portability. Our goal is to present an

intermediate runtime that maps the programs

onto the underlying hardware. The programs

written using the MapReduce framework

require few or no changes.

3.2. System Workflow and Configuration

Input

Data
Split

Map

(Thread 1)

Map

(Thread P)

Reduce

(Thread 1)

Reduce

(Thread Q)

Sort MergeSplit
Output

Data

Figure 2. The basic flow of Mars on the GPU. The

framework consists of two stages, Map and Reduce.

Algorithm 1: Mars, the MapReduce framework on the GPU.

Parameters:

dirInput The pointer to the directory index <key offset,

key size, value offset, value size> for each

input key/value pair.

keyInput The pointer to the data array for the input keys.

valInput The pointer to the data array for the input

values.

dirInter The pointer to the directory index <key offset,

key size, value offset, value size> for each

intermediate key/value pair.

keyInter The pointer to the data array for the

intermediate keys.

valInter The pointer to the data array for the

intermediate values.

dirOutput The pointer to the directory index <key offset,

key size, value offset, value size> for each

output key/value pair.

keyOutput The pointer to the data array for the output

keys.

valOutput The pointer to the data array for the output

values.

(1) Prepare input key/value pairs in the main memory and

generate three arrays, dirInput, keyInput and valInput.

(2) Initialize the parameters in the run-time configuration.

(3) Copy the three input arrays from the main memory to

the GPU device memory.

(4) Start the Map stage on the GPU and generate

intermediate key/value results: dirInter, keyInter, and

valInter.

(5) If noSort is F, sort the intermediate result.

(6) If noReduce is F, start the Reduce stage on the GPU

and generate the final result: dirOutput, keyOutput,

and valOutput. Otherwise, we copy dirInter, keyInter,

and valInter to dirOutput, keyOutput, and valOutput,

respectively.

(7) Copy the result, dirOutput, keyOutput, and valOutput,

from the GPU device memory to the main memory.

 5

The basic flow of Mars is shown in Figure 2. It is

designed based on our many-core architecture model.

Algorithm 1 describes the flow in more detail.

Similar to the CPU-based MapReduce framework,

Mars has two stages, Map and Reduce. In the Map

stage, a split operator divides the input data into

multiple chunks such that the number of chunks is

equal to the number of threads. Thus, a GPU thread is

responsible with only one chunk. The runtime

parameters for the Map including the number of thread

groups and the number of threads per thread group are

determined according to the occupancy of the GPU.

This thread configuration can also be specified by the

programmer. We discuss the thread configuration in

more detail in Section 3.4. After the Map stage is

finished, we sort the intermediate key/value pairs so

that the pairs with the same key are stored

consecutively.

In the Reduce stage, the split divides the sorted

intermediate key/value pairs into multiple chunks. The

number of chunks is equal to the number of threads.

The thread configuration is set in a similar way to that

for the Map. Each chunk is assigned to a GPU thread.

Note that the key/value pairs with the same key are

assigned to the same chunk. Additionally, the thread

with a larger thread ID is assigned with a chunk

consisting of key/value pairs of larger keys. This

ensures that the output of the Reduce stage is sorted by

the key.

Table 1. The configuration parameters of Mars.

Parameter Description Default

noReduce Whether a reduce stage is required (If

it is required, noReduce=F; otherwise,

noReduce=T).

F

noSort Whether a sort stage is required (If it is

required, noSort=F; otherwise,

noSort=T).

F

tgMap Number of thread groups in the Map

stage.

128

tMap Number of thread per thread group in

the Map stage.

128

tgReduce Number of thread groups in the

Reduce stage.

128

tReduce Number of thread per thread group in

the Reduce stage.

128

Table 1 summarizes the parameters and their default

values in the configuration of Mars. These parameters

are similar to those in the existing CPU-based

MapReduce framework [23]. All these parameter

values can be specified by the developer for

performance tuning. Through exposing these

parameters to the developer, Mars provides flexibility

to specify whether the sort and the Reduce stage in the

framework are required, and to specify the thread

configuration for the performance tuning.

The main data structure in Mars is array. Since

dynamic memory allocation on the device memory is

not supported on the GPU, we allocate the space on the

device memory for the input data as well as the result

output before executing the kernel program.

Since the size of the output from the Map and the

Reduce are unknown, there are two challenges for

buffer management in emitting the results from the Map

and the Reduce. The first one is that the GPU lacks

incremental memory allocation on the device memory

during the kernel execution. The second one is that

write conflicts occur when multiple threads write

results to the shared output region in the device

memory. Most GPUs do not provide hardware-

supported atomic operations. To address these two

challenges, we design a two-step output scheme. The

first step computes the size of results generated by each

thread. Based on these sizes, we can compute the write

positions of each thread. The second step outputs the

results to the device memory. Our scheme is similar to

the previous scheme of result output of relational joins

[16]. The major difference is that we need to handle the

output for both the key and the value in the

MapReduce.

Since the output scheme for the Map is similar to

that for the Reduce, we present the scheme for the Map

only.

First, each Map task outputs two counts, the total

size of keys and the total size of values generated by

the Map task. Based on these counts of all map tasks,

we compute a prefix sum on these counts to get an

array of write locations, each of which is the start

location in the device memory for the corresponding

map to write. Through the prefix sum, we also know the

buffer size for the intermediate result.

Second, each Map task outputs the intermediate

key/value pairs to the intermediate buffers. The start

write location for the map task is determined in the first

step. Since each map has its deterministic positions to

write to, the write conflicts are avoided.

3.3. APIs

Similar to the existing MapReduce frameworks such

as Hadoop [3] and Phoenix [23], Mars provides a small

set of APIs for the developers. These APIs are

implemented with C/C++. Developers do not require

any knowledge of graphics rendering APIs or the

system runtime handling the massive threading

parallelism in our MapReduce framework.

 6

Table 2. The API functions in our MapReduce framework.

APIs of user-defined functions Optional
void MAP_COUNT(void *key, void *val, size_t keySize, size_t valSize)

Counts the size of output results (in bytes) generated by the map function.
no

void MAP(void *key, void val, size_t keySize, size_t valSize)

The map function. Each map task executes this function on the key/value pair.
no

void REDUCE_COUNT(void* key, void* vals, size_t keySize, size_t valCount)

Counts the size of output results (in bytes) generated by the reduce function.
yes

void REDUCE(void* key, void* vals, size_t keySize, size_t valCount)

The reduce function. Each reduce task executes this function on the key/value pairs with the same key.
yes

int compare(const void *d_a, int len_a, const void *d_b, int len_b)

User-defined function comparing two keys.
yes

APIs of functions provided by runtime Optional
void EMIT_INTERMEDIATE_COUNT(size_t keySize, size_t valSize);

Used in MAP_COUNT to emit the key size and the value size of an intermediate result.
yes

void EMIT_INTERMEDIATE(void* key, void* val, size_t keySize, size_t valSize);

Used in MAP to emit an intermediate result.
yes

void EMIT_COUNT(size_t keySize, size_t valSize);

Used in RECORD_COUNT to emit the key size and the value size of a final result.
yes

void EMIT(void *key, void* val, size_t keySize, size_t valSize);

Used in REDUCE to emit a final result.
yes

void GET_VAL(void *vals, int index);

Used in REDUCE to get a value of a given key in its value list.
yes

Spec_t* GetDefaultConfiguration(char *logFileName)

Gets a default runtime configuration.
no

void AddMapInputRecord(Configuration_t* conf, void* key, void* val, size_t
keySize, size_t valSize);

Adds a key/value pair to the map input structure in the main memory.

no

void MapReduce(Configuration_t * conf);

Starts the main MapReduce procedure.
no

void FinishMapReduce();

Postprocessing such as logging when MapReduce is done.
no

Table 2 shows the complete list of our APIs.

Similar to Phoenix [23], Mars has two kinds of APIs,

APIs of user-defined functions and APIs of functions

provided by the runtime. The developer calls the APIs

of functions provided by the runtime to run the entire

MapReduce framework on the input data. Additionally,

the emit functions provided in Mars enable the

programmer to output the intermediate/final results.

The main feature of Mars is simplicity, which shares

the wisdom of the existing MapReduce frameworks. To

use the framework, the developer needs to write code

for the five APIs of user-defined functions at most.

These APIs are similar to those in the CPU-based

MapReduce framework. In each of these APIs, we use

void* type so that the developer can manipulate strings

and other complex data types conveniently on the GPU.

Additionally, the developer can define the application

logic such as the key comparison in Mars.

The two-step design in the buffer management

results in the difference in the APIs between the

existing CPU-based MapReduce implementation and

our GPU-based implementation. Existing CPU-based

MapReduce implementations typically have four major

APIs include Map, Reduce, EmitIntermediate

and Emit. In contrast, we have defined two APIs on

the GPU to implement the functionality of each of the

four CPU-based APIs. One is to count the size of

results. The other one is to output the results.

The following pseudo code illustrates the Map for

implementing the word count application using Mars.

For each word in the document, i.e., the key, the

MAP_COUNT function emits a pair of the total length of

the words and the size of the counts (an integer). In the

MAP function, for each word, the function emits the

intermediate results of the word and the count of one

corresponding to the MAP_COUNT.

//the Map of implement word count using Mars

//the key is the document

MAP_COUNT(key, val, keySize, valSize){

 for each word w in key

 interKeySize+= sizeof(w);

 interValSize+= sizeof(int);

 EMIT_INTERMIDIATE_COUNT(interKeySize, interValSize);

}

MAP (key, val, keySize, valSize) {

 for each word w in key

 EMIT_INTERMIDIATE (w, 1);

}

 7

3.4. Implementation Techniques

Thread parallelism. The number of thread groups

and the number of threads per thread group is related to

multiple co-related factors including, (1) the hardware

configuration such as the number of multiprocessors

and the on-chip computation resources such as the

number of registers on each multiprocessor, (2) the

computation characteristics of the Map and the Reduce

task, e.g., it is memory- or computation-intensive. If a

task is memory-intensive and suffers from memory

stalls of fetching data from the device memory, a larger

number of threads can be used to hide the memory

stalls. Since the cost of the Map and the Reduce

function is unknown, it is difficult to find the optimal

setting for the thread configuration.

We set the number of threads per thread group and

the number of thread groups based on the occupancy of

the GPU. After the kernel code is compiled, we obtain

the computation resources such as the number of

registers that each thread requires for executing the

kernel code. Based on this compilation information and

the total computation resources on the GPU, we set the

number of threads per thread group and the number of

thread groups to achieve a high occupancy at run time.

In practice, we set the number of thread groups to be

128, and the number of threads per thread group to 128,

which is sufficient for a high occupancy.

Coalesced accesses. We utilize the hardware

feature of coalesced accesses to improve the

performance of the Map and the Reduce. Since the

optimization to the Map is similar to that to the Reduce,

we use the Map as an example. The directory index and

the key/value pair are stored consecutively in arrays.

Thus, we assign the key/value pairs to each thread

according to the coalesced access pattern. Suppose

there are T threads in total and the number of key/value

pairs is N in the Map stage. Thread i processes the

(kTi ⋅+)th (k=0,.., N/T) key/value pair. Due to the

SIMD nature of the GPU, the memory addresses of the

memory accesses from a thread group are consecutive

and these accesses are coalesced into one. With the

coalesced access, the memory bandwidth utilization is

improved.

Accesses using built-in vectors. Accessing the data

value can be costly, because the data values are often of

different sizes and the accesses to these values is hardly

coalesced. Fortunately, GPU supports build-in vector

types such as char4 and int4. Reading with the

build-in vector types fetches the entire vector in a

single memory request. Compared with reading with

char or int, the number of memory requests is

greatly reduced and the memory performance is

improved.

Handling variable-sized types. The variable-size

types are supported in our MapReduce framework. The

directory index for key/value pairs stores the

indirection information, i.e., offsets and lengths. The

value is fetched according to the offset and the length.

If two tuples need to be swapped, we swap the two

tuples in the directory index without modifying their

values. To further improve the GPU programmability,

we develop libraries for the common type processing in

the MapReduce framework on the GPU. Specifically,

we develop a string manipulation library on the GPU.

The APIs in the library are consistent with those in

C/C++ library on the CPU. Moreover, we access the

string data using the built-in vector type to optimize the

memory accesses in the string library.

Sort. We use bitonic sort [13] on the GPU. Sort is

performed on the results of the Map. Nevertheless, we

do not always need the results with the key in the strict

ascending/decreasing order as long as the results with

the same key value are stored consecutively. In that

case, we can use the hashing technique that hashes the

key into a 32-bit integer. When we compare two

records, we first compare their hash values. Only when

their hash values are the same, we need to fetch their

keys and perform comparison on them. Given a good

hash function, the probability of comparing the key

values is low. Thus, the cost of the sorting algorithm

can be reduced. This technique is implemented as an

option in the user-defined compare function.

File manipulation. Currently, the GPU cannot

directly fetch data from the hard disk to the device

memory. Thus, we perform the file manipulation with

the assistance of the CPU in three phases. First, we

perform the file I/O on the CPU and load the file data

into a buffer in the main memory. To reduce the I/O

stall, we use multi-threading to perform the I/O task.

Second, we use the API, AddMapInputRecord,

provided in Mars to prepare the input key/value pairs

from the buffer in the main memory. Finally, the input

key/value pairs are copied from the main memory to the

device memory.

4. Evaluation
In this section, we evaluate our GPU-based MapReduce

framework in comparison with its CPU-based

counterpart.

4.1. Experimental Setup

Our experiments were performed on a PC is with a

G80 GPU and a recently-released Intel Core2Duo

Quad-Core processor running Linux Fedora 7.0. The

hard drive is 160G SATA magnetic hard disk. The

hardware configuration of the PC is shown in Table 3.

The GPU uses a PCI-EXPRESS bus to transfer data

 8

between the main memory and the device memory with

a theoretical bandwidth of 4 GB/s. The GPU and the

CPU have a theoretical bandwidth of 86.4 GB/s and

10.4 GB/s, respectively. Based on our measurements,

for scans, the G80 achieves a memory bandwidth of

around 69.2 GB/s whereas the quad-core CPU has 5.6

GB/s.

Table 3. Hardware configuration

 GPU CPU
Processors 1350MHz × 8 × 16 2.4 GHz × 4

Data cache (shared

memory)

16KB × 16 L1: 32KB × 4,

L2: 4096KB × 2

Cache latency (cycle) 2 L1: 2 , L2: 8

DRAM (MB) 768 2048

DRAM latency (cycle) 200 300

Bus width (bit) 384 64

Memory clock (GHz) 1.8 1.3

To evaluate the efficiency of our framework, we

compared our framework with Phoenix [23], the state-

of-the-art MapReduce framework on the multi-core

processor. Phoenix uses Pthreads to implement the

runtime of the MapReduce framework on the multi-

core processor. In our experiment, the number of cores

used in Phoenix is set to four, i.e., the number of cores

in our machine.

We implemented our GPU-based MapReduce using

CUDA [20], which is a GPGPU programming

framework for recent NVIDIA GPUs. It exposes a

general-purpose, massively multi-threaded parallel

computing architecture and provides a programming

environment similar to multi-threaded C/C++. We run

each experiment five times and report the average

value.

Applications. We have implemented six applications

for web data analysis as benchmarks for the

MapReduce framework. They represent core

computations for different kinds of web data analysis

such as web document searching (String Match and

Inverted Index), web document processing (Similarity

Score and Matrix Multiplication) and web log analysis

(Page View Count and Page View Rank). The first two

and the fourth applications are those used in the

experiments of Phoenix [23]. The other applications

such as data mining in the experiments of Phoenix are

not used, because we focus on web data analysis

applications. The third and the fourth ones are common

tasks in the web search [28]. The last two are the daily

routines for analyzing the statistics on the web page

accesses in www.sina.com.cn.

Table 4 shows the description and the data sets used

in our experiment for each application. We used three

datasets for each application (S, M, and L) to test

scalability issues on the MapReduce framework. The

data set sizes are comparable to those in the

experiments of Phoenix [23]. The web pages are

crawled from the Web. The values in the matrix or the

vector are randomly generated float numbers. The web

log entries are randomly generated simulating the

random accesses to the web pages. We varied other

characteristics such as the number of URLs and the

access frequency distribution and obtained similar

results. All these input data are stored in the hard disk.

Table 4. Application description.

App. Description Data sets
String Match Find the position of a

string in a file.

S: 32MB, M: 64

MB, L: 128 MB

Inverted Index Build inverted index for

links in HTML files.

S: 16MB, M: 32

MB, L: 64MB

Similarity

Score

Compute the pair-wise

similarity score for a set

of documents.

#doc: S: 512, M:

1024, L: 2048.

#feature dimension:

128.

Matrix

Multiplication

Multiply two matrices. #dimension: S: 512,

M: 1024, L: 2048

Page View

Count

Count the page view

number of each URL in

the web log.

S: 32MB, M: 64

MB, L: 96 MB

Page View

Rank

Find the top-10 hot

pages in the web log.

S: 32MB, M: 64

MB, L: 96 MB

We briefly describe how these applications are

implemented using the MapReduce framework.

String Match (SM): String match is used as exact

matching for a string in an input file. Each Map

searches one line in the input file to check whether the

target string is in the line. For each string it finds, it

emits an intermediate pair of the string as the key and

the position as the value. No Reduce stage is required.

Inverted Index (II): It scans a set of HTML files

and extracts the positions for all links. Each Map

processes one line of HTML files. For each link it

finds, it outputs an intermediate pair with the link as the

key and the position as the value. No Reduce stage is

required.

Similarity Score (SS): It is used in web document

clustering. The characteristics of a document are

represented as a feature vector. Given two document

features, a and b , the similarity score between these two

documents is defined to be
|b||a|

ba

⋅

⋅

. This application

computes the pair-wise similarity score for a set of

documents. Each Map computes the similarity score for

two documents. It outputs the intermediate pair of the

score as the key and the pair of the two document IDs

as the value. No Reduce stage is required.

Matrix Multiplication (MM): Matrix

multiplication is widely applicable to analyze the

relationship of two documents. Given two matrices M

and N, each Map computes multiplication for a row

 9

from M and a column from N. It outputs the pair of the

row ID and the column ID as the key and the

corresponding result as the value. No Reduce stage is

required.

Page View Count (PVC): It obtains the number of

distinct page views from the web logs. Each entry in the

web log is represented as <URL, IP, Cookie>, where

URL is the URL of the accessed page; IP is the IP

address that accesses the page; Cookie is the cookie

information generated when the page is accessed. This

application has two executions of MapReduce. The first

one removes the duplicate entries in the web logs. The

second one counts the number of page views. In the

first MapReduce, each Map takes the pair of an entry as

the key and the size of the entry as value. The sort is to

eliminate the redundancy in the web log. Specifically, if

more than one log entries have the same information,

we keep only one of them. The first MapReduce

outputs the result pair of the log entry as key and the

size of the line as value. The second MapReduce

processes the key/value pairs generated from the first

MapReduce. The Map outputs the URL as the key and

the IP as the value. The Reduce computes the number

of IPs for each URL.

Page View Rank (PVR): With the output of the

Page View Count, the Map in Page View Rank takes

the pair of the page access count as the key and the

URL as the value, and obtains the top ten URLs that are

most frequently accessed. No Reduce stage is required.

In summary, these applications have different

characteristics. As for the computation, MM and SS are

more computation intensive than other applications. As

for the number of occurrences of MapReduce, PVC has

two whereas other applications have one. PVC has the

Reduce stage, while others do not.

Finally, we show the size of the source code written

by the developer using Mars and Phoenix in Table 5.

The code size is measured in number of source code

lines. In general, the application with Mars has a

similar code size as that with Phoenix. Programming

with Mars uses our own string manipulation library

while programming with Phoenix uses the standard

string library in C/C++. The code in user-defined

functions in Mars is simpler than that in Phoenix,

because each Map or Reduce task in Mars handles

fewer tuples than that in Phoenix. Thus, the code size

by the developer with Mars can be smaller than that

with Phoenix.

Table 5. The size of the source code in user-defined

functions using Mars and Phoenix.

 II SM SS MM PVC PVR
Phoenix 365 250 196 317 292 166
Mars 375 173 258 235 276 152

4.2. Results on String Library

0

0.1

0.2

0.3

0.4

0.5

0.6

strcpy strcat strcmp strchr strstr memset

E
la
p
se
d
 t
im
e
(s
ec
)

CPU

GPU (non-opt)

GPU(opt)

Figure 3. Performance comparison of the string libraries

in C/C++ and Mars.

Figure 3 shows the performance comparison of the

string libraries in C/C++ and Mars, denoted as “CPU”

and “GPU”, respectively. The number of string

operations is 8 million. The average string length is 16.

The string operations are performed using multiple

threads on the CPU. The measurements on the GPU

with accessing data using char4 and char are

denoted as “opt” and “non-opt”, respectively. We

define the speedup to be the ratio of the execution time

on the CPU to that on the GPU. The optimized GPU

implementation achieves 2-9X speedup over the CPU

implementation.

String manipulations in the library have different

performance comparison between the CPU and the

GPU. For the memory intensive ones such as strcpy,

strcat, and memset, the non-optimized GPU

implementation can be slower than the CPU

implementation. In contrast, the optimized GPU

implementation is much faster than the CPU

implementation with a speedup of 2.8-6.8X. For other

three comparison-based APIs, i.e., strcmp, strchr,

and strstr, the difference between the optimized and

the un-optimized GPU implementation is small,

because only part of the string is accessed.

4.3. Results on MapReduce

Figure 4 shows the performance speedup of the

optimized Mars over Phoenix with the data set size

varied. Overall, Mars is around 1.5-16X faster than

Phoenix when the data set is large. The speedup varies

for applications with different computation

characteristics. For computation-intensive applications

such as SS and MM, Mars is over 4X faster than

Phoenix. For memory-intensive applications such as II

and SM, Mars is slightly faster than Phoenix. These

applications are simple in the computation. Thus, they

achieve a smaller performance speedup using the GPU.

 10

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

SM II SS MM PVC PVR

S
p
ee
d
u
p

S

M

L

Figure 4. Performance speedup between Phoenix and the

optimized Mars with the data size varied.

We next investigate the time breakdown of each

application. We divide the total execution time of a

GPU-based application into four components including

the time for file I/O, the Map stage, the sort after the

map and the reduce stage. Note, the measurement of the

Map stage includes the time for copying the input data

into the device memory, and the measurement of the

Reduce includes the time for copying the result back to

the main memory. The I/O time is dominant for SM and

II, and the computation time is insignificant compared

with the I/O time. Advanced I/O mechanisms such as

using a disk array can greatly improve the overall

performance for these two applications. In contrast, the

total time of Map, Sort and Reduce is dormant for the

other four applications. When the Sort step is required

for the applications such as SS, PVC and PVR, the Sort

time is a large part of the total execution time.

Improving the sorting performance will greatly improve

the overall performance of those applications.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SM II SS MM PVC PVR

T
im
e
b
re
ak
d
o
w
n
 (
%
)

IO

Map

Sort

Redue

Figure 5. The time breakdown of Mars on the six

applications with the large data set.

In the following, we present the results for the

performance impact of the hashing, the coalesced

accesses and using built-in vector type. We study these

three optimization techniques separately. Since we

obtain similar results for different data sizes, we present

the results for the large data sets only.

1.43

4.15

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

II PVC

S
p
e
ed
u
p

Figure 6. Performance speedup with hashing in Mars. The

hashing technique improves the overall performance by

1.4-4.1X.

Figure 6 shows performance speedup of the hashing

technique for II and PVC on the GPU. We define the

performance speedup of an optimization technique to

be the ratio of the elapsed time without the optimization

technique to that with the optimization technique. The

results for the other four applications are now shown,

because the hashing technique is not used in those

applications. To separate the performance impact of the

hashing technique from the other two optimization

techniques, we measured these numbers without using

built-in vector or coalesced access. The hashing

technique improves the overall performance by 1.4-

4.1X. The performance improvement of the hashing

technique on PVC is larger than that on II, because

PVC has two MapReduce and the hashing technique is

used more frequently.

1.45

2.11

1.84

2.12

1.32
1.21

0.00

0.50

1.00

1.50

2.00

2.50

SM II SS MM PVC PVR

S
p
ee
d
u
p

Figure 7. Performance speedup of coalesced accesses in

Mars. The coalesced access improves the overall

performance by 1.2-2.1X.

Figure 7 shows the performance speedup of

coalesced accesses on the six applications. Note that

these measurements are obtained with hashing but

without using built-in vector. The coalesced access

improves the memory bandwidth utilization, which

yields a performance speedup of 1.2-2.1X.

 11

1.22 1.18 1.17

2.15

1.65

1.09

0.00

0.50

1.00

1.50

2.00

2.50

SM II SS MM PVC PVR

S
p
ee
d
u
p

Figure 8. Performance speedup of accessing data with

built-in vector types in Mars.

Figure 8 shows the performance speedup of

accessing data with built-in vector types on the GPU.

The measurement is with both hashing and coalesced

access optimizations. Using built-in vector type

reduces the number of memory requests and improves

the bandwidth utilization. It improves the overall

performance by 1.09-2.15X. The performance speedup

depends on the size of the data accessed in a Map or

Reduce task. For instance, the performance speedup for

MM and PVC is high, because each Map in MM and

PVC requires fetching long integer vectors or a web log

entry, and the built-in vector greatly helps. In contrast,

the speedup for the other applications is small, because

fetching data using built-in vector type is not frequent.

Note, the sort algorithm with the hashing technique has

a low probability of fetching the original data. Thus, the

performance impact of using built-in vector type is little

for the applications such as PVR.

4.4. Results on Co-Processing on CPU and GPU

Figure 9 shows the performance speedup of co-

processing on both the CPU and the GPU over

processing on the GPU only. We used the large data

set. The key/value pairs are assigned to Phoenix on the

CPU and Mars on the GPU according to the speedup

between Phoenix and Mars. Overall, the co-processing

utilizes the computation power of both the CPU and the

GPU, and yields a considerable performance

improvement over using the GPU only. The

performance speedup of co-processing mainly depends

on the performance comparison between the CPU

processing and the GPU processing. For example, the

performance improvement on the SS is small, because

the CPU processing of Phoenix is much slower than the

GPU processing of Mars on SS. Thus, adding the CPU

computation makes insignificant performance

improvement on SS. In contrast, the co-processing

scheme further reduces the execution time for other

applications by scheduling the tasks among the CPU

and the GPU.

1.16
1.26

1.04

1.46 1.43
1.38

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

SM II SS MM PVC PVR

S
p
ee
d
u
p

Figure 9. Performance speedup of co-processing on the

CPU and the GPU over processing on the GPU only.

5. Conclusion
Graphics processors have emerged as a commodity

platform for parallel computation. However, the

developer requires the knowledge of the GPU

architecture and much effort in tuning the performance.

Such difficulty is even more for complex and

performance-centric tasks such as web data analysis.

Since MapReduce has been successful in easing the

development of web data analysis tasks, we propose a

GPU-based MapReduce for these applications. With

the GPU-based framework, the developer writes their

code using the simple and familiar MapReduce

interfaces. The runtime on the GPU is completely

hidden from the developer by our framework.

Moreover, our MapReduce framework yields up to 16

times performance improvement over the state-of-the-

art CPU-based framework.

Finally, it is an interesting future direction to extend

our MapReduce framework to other application

domains such as data mining. We are also interested in

integrating Mars into the existing MapReduce

implementations such as Hadoop so that the

MapReduce framework can take the advantage of the

parallelism among different machines as well as the

parallelism within each machine. The code and

documentation of our framework can be found at

http://www.cse.ust.hk/gpuqp/.

6. Reference
[1] A. Ailamaki, N. Govindaraju, S. Harizopoulos

and D. Manocha. Query co-processing on

commodity processors. VLDB, 2006.

[2] AMD CTM,

http://ati.amd.com/products/streamprocessor/.

[3] Apache. Hadoop.

http://lucene.apache.org/hadoop/, 2006.

[4] D. Blythe. The Direct3D 10 system. SIGGRAPH

2006.

[5] I. Buck, T. Foley, D. Horn, J. Sugerman, K.

Fatahalian, M. Houston and P. Hanrahan. Brook

 12

for GPUs: Stream Computing on Graphics

Hardware. SIGGRAPH, 2004.

[6] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Y.

Ng and K. Olukotun. Map-Reduce for machine

learning on multicore. Neural Information

Processing Systems, 2007.

[7] D. Davis, R. Lucas, G. Wagenbreth and J. Tran

and J. Moore. A GPU-enhanced cluster for

accelerated FMS. High Performance Computing

Modernization Program Users' Group Conference,

2007.

[8] J. Dean and S. Ghemawat. MapReduce:

Simplified Data Processing on Large Clusters.

OSDI, 2004.

[9] Z. Fan, F. Qiu, A. Kaufman and S. Y. Stover.

GPU cluster for high performance computing.

ACM/IEEE SuperComputing, 2004.

[10] J. Feng, S. Chakraborty, B. Schmidt, W. Liu, U.

D. Bordoloi. Fast Schedulability Analysis Using

Commodity Graphics Hardware. Proc. of the 13th

IEEE International Conference on Embedded and

Real-Time Computing Systems and Applications,

2007.

[11] Folding@home, http://www.scei.co.jp/folding.

[12] D. Göddeke, R. Strzodka, J. M. Yusof, P.

McCormick, S. Buijssen, M. Grajewski and S.

Turek. Exploring weak scalability for FEM

calculations on a GPU-enhanced cluster. Parallel

Computing 33:10-11. pp. 685-699. 2007.

[13] N. Govindaraju, J. Gray, R. Kumar and D.

Manocha. GPUTeraSort: high performance

graphics coprocessor sorting for large database

management. SIGMOD, 2006.

[14] A. Gress and G. Zachmann. GPU-ABiSort:

Optimal Parallel Sorting on Stream Architectures.

Proc. 20th IEEE Int'l Parallel and Distributed

Processing Symposium (IPDPS), 2006.

[15] B. He, N. Govindaraju, Q. Luo and B. Smith.

Efficient gather and scatter operations on graphics

processors. ACM/IEEE Supercomputing, 2007.

[16] B. He, K. Yang, R. Fang, M. Lu, N. K.

Govindaraju, Q. Luo, and P. V. Sander. Relational

joins on graphics processors. Technical Report

HKUST-CS07-06, HKUST, Mar 2007.

[17] D. Horn. Lib GPU FFT, http://sourceforge.net/

projects/gpufft/. 2006.

[18] E. Larsen and D. McAllister. Fast matrix

multiplies using graphics hardware. ACM/IEEE

Supercomputing, 2001.

[19] W. Liu, B. Schmidt,G. Voss, and W. Wittig.

Streaming algorithms for biological sequence

alignment on GPUs. IEEE Transactions on

Parallel and Distributed Systems, vol. 18, no. 9,

pp. 1270-1281, Sept., 2007.

[20] NVIDIA CUDA (Compute Unified Device

Architecture),

http://developer.nvidia.com/object/cuda.html.

[21] OpenGL, http://www.opengl.org/.

[22] J. D. Owens, D. Luebke, N. Govindaraju, M.

Harris, J. Krüger, A. E. Lefohn and T. J. Purcell.

A survey of general-purpose computation on

graphics hardware. Computer Graphics Forum,

Volume 26, 2007.

[23] C. Ranger, R. Raghuraman, A. Penmetsa, G.

Bradski, C. Kozyrakis. Evaluating MapReduce for

Multi-core and Multiprocessor Systems.

Symposium on High Performance Computer

Architecture (HPCA), 2007.

[24] S. Sengupta, M. Harris, Y. Zhang, J. D. Owens.

Scan primitives for GPU computing. ACM

SIGGRAPH/EUROGRAPHICS conference on

Graphics hardware, 2007.

[25] SETI@home, http://setiathome.berkeley.edu/.

[26] D. Tarditi, S. Puri and J. Oglesby. Accelerator:

using data parallelism to program GPUs for

general-purpose uses. ASPLOS, 2006.

[27] H. Yang, A. Dasdan, R. Hsiao, and D. S. Parker.

Map-Reduce-Merge: Simplified Relational Data

Processing on Large Clusters. SIGMOD, 2007.

[28] R. Yates, B. Neto. Modern information retrieval.

Addison Wesley, 1st edition, 1999.

