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Abstract 
 

We design and implement Mars, a MapReduce 

framework, on graphics processors (GPUs). 

MapReduce is a distributed programming framework 

originally proposed by Google for the ease of 

development of web search applications on a large 

number of CPUs. Compared with commodity CPUs, 

GPUs have an order of magnitude higher computation 

power and memory bandwidth, but are harder to 

program since their architectures are designed as a 

special-purpose co-processor and their programming 

interfaces are typically for graphics applications.  As 

the first attempt to harness GPU's power for 

MapReduce, we developed Mars on an NVIDIA G80 

GPU, which contains hundreds of processors, and 

evaluated it in comparison with Phoenix, the state-of-

the-art MapReduce framework on multi-core 

processors. Mars hides the programming complexity of 

the GPU behind the simple and familiar MapReduce 

interface. It is up to 16 times faster than its CPU-based 

counterpart for six common web applications on a 

quad-core machine. Additionally, we integrated Mars 

with Phoenix to perform co-processing between the 

GPU and the CPU for further performance 

improvement. 

 

1. Introduction 
Search engines and other web server applications 

routinely perform analysis tasks on data they collect 

from the Web. Due to the time criticalness and the vast 

amount of the data, high performance is essential for 

these tasks [8]. For instance, www.sina.com.cn deploys 

tens of high-end Dell servers to compute web stats such 

as the top 10 hottest web pages from its web logs every 

hour. Furthermore, the complexity of these tasks and 

the heterogeneity of available computing resources 

makes it desirable to provide a generic framework for 

developers to implement these tasks correctly, 

efficiently, and easily.  

The MapReduce framework is a successful model to 

support such data analysis applications [8][27]. It was 

originally proposed by Google for the ease of 

development of web search applications on a large 

number of CPUs.  This framework provides two basic 

primitives (1) a map function to process input 

key/value pairs and to generate intermediate key/value 

pairs, and (2) a reduce function to merge all 

intermediate pairs associated with the same key. With 

this framework, developers implement their application 

logic using these two primitives, and the data 

processing tasks are automatically distributed and 

performed on multiple machines [8] or a multi-core 

CPU [23].  Thus, this framework reduces the burden on 

the developers so that they can exploit the parallelism 

without worrying about the details of the underlying 

computing resources. Encouraged by the success of the 

CPU-based MapReduce frameworks, we develop Mars, 

a MapReduce framework on graphics processors, or 

GPUs.  

GPUs have recently been utilized in various 

domains, including high-performance computing [22]. 

They can be regarded as massively parallel processors 

with 10x faster computation and 10x higher memory 

bandwidth than CPUs [1]. Several GPGPU (General-

Purpose computing on GPUs) languages, such as AMD 

CTM [2] and NVIDIA CUDA [20], are introduced so 

that the developer can write code running on the GPU 

without the knowledge of the graphics APIs (e.g., 

DirectX [4] or OpenGL [21]). However, the developer 

needs to be familiar with the GPU architecture to fully 

exploit the computation power of the GPU. 

Unfortunately, GPU architectural details are highly 

vendor-specific and usually insufficient compared with 

those about CPUs. Moreover, the lack of high-level 

programming abstractions in many of the non-graphics 

APIs limits the scalability and portability of programs 

on new architectures. All these factors make the GPU 

programming a difficult task in general and more so for 

complex tasks such as web data analysis. Therefore, we 

study how to provide a MapReduce framework on the 

GPU so that the developer can easily write programs on 

the GPU to achieve high performance.  

Compared with CPUs, the hardware architecture of 

GPUs differs significantly. For instance, current GPUs 

provide parallel lower-clocked execution capabilities 

on over a hundred SIMD (Single Instruction Multiple 

Data) processors whereas current CPUs offer out-of-
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order execution capabilities on a much smaller number 

of cores. Moreover, GPU cache sizes are 10x smaller 

than CPU cache sizes. Due to the architectural 

differences, we identify the following three challenges 

in implementing the MapReduce framework on the 

GPU.  First, the synchronization overhead in the run-

time system of the framework must be low so that the 

system can scale to hundreds of processors.  Second, a 

fine-grained load balancing scheme is required on the 

GPU to exploit its massive thread parallelism. Third, 

the core tasks of MapReduce, including string 

processing, file manipulation and concurrent reads and 

writes, are unconventional to GPUs and must be 

handled efficiently.  

With these challenges in mind, we design and 

implement Mars, our MapReduce framework on the 

GPU. Specifically, we develop a small set of APIs 

(Application Programming Interfaces) to facilitate 

programmers to define their application logic. These 

APIs have a low synchronization overhead, and are 

flexible to support variable-sized data types such as 

strings. Since GPUs currently have no built-in support 

for strings, we have developed an efficient string 

library for our framework. In the runtime system, the 

tasks are uniformly assigned to the threads. Each thread 

is responsible for a Map or a Reduce task with a small 

number of key/value pairs as input. Since the number of 

threads on the GPU is much larger than that on the 

CPU, the workload among threads on the GPU is 

distributed at a finer grain than that on the CPU. 

Furthermore, we have developed a lock-free scheme to 

manage the concurrent writes among different threads 

in the MapReduce framework.  

We have implemented our MapReduce framework 

on a machine with an NVIDIA GeForce 8800 GPU 

(G80) and an Intel quad-core CPU. We implemented 

six common computation tasks in web applications 

using our framework and Phoenix [23], the state-of-the-

art MapReduce framework on multi-core CPUs. Our 

case studies cover web searching, web document 

processing and web log analysis. For these six 

applications, the size of the source code written by the 

developer based on Mars is comparable to that on 

Phoenix. Moreover, our results indicate that our 

optimizations greatly improve the overall performance 

of these applications, and Mars achieves a 1.5-16 times 

performance improvement over Phoenix.  Additionally, 

we have integrated Mars with Phoenix to utilize both 

the CPU and the GPU for further performance 

improvement. 

Organization: The rest of the paper is organized as 

follows. We give a brief overview of the GPU and prior 

work on the GPU and the MapReduce framework in 

Section 2. We present our design and implementation 

of Mars in Section 3. In Section 4, we evaluate Mars in 

comparison with Phoenix using the six web 

applications. Finally, we conclude in Section 5. 

2. Preliminary and Related Work 
In this section, we introduce the GPU architecture and 

discuss the related work on the GPU, and review the 

MapReduce framework.  

2.1. Graphics Processors (GPUs) 

GPUs are widely available as commodity 

components in modern machines. Their high 

computation power and rapidly increasing 

programmability make them an attractive platform for 

general-purpose computation. Currently, they are used 

as co-processors for the CPU [1]. The programming 

languages include graphics APIs such as OpenGL [21] 

and DirectX [4], and GPGPU languages such as 

NVIDIA CUDA [20], AMD CTM [2], Brook [5] and 

Accelerator [26].  With these APIs, programmers write 

two kinds of code, the kernel code and the host code. 

The kernel code is executed in parallel on the GPU. 

The host code running on the CPU controls the data 

transfer between the GPU and the main memory, and 

starts kernels on the GPU. Current co-processing 

frameworks provide the flexibility of executing the host 

code and other CPU processes simultaneously. It is 

desirable to schedule the tasks between the CPU and 

the GPU to fully exploit their computation power.  
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Figure 1. The GPU architecture model. This model is 

applicable to AMD’s CTM [2] and NVIDIA’s CUDA [20]. 

The GPU architecture model is illustrated in Figure 

1. The GPU consists of many SIMD multi-processors 

and a large amount of device memory. At any given 

clock cycle, each processor of a multiprocessor 

executes the same instruction, but operates on different 

data. The device memory has high bandwidth and high 

access latency. For example, the device memory of the 

NVIDIA G80 has a bandwidth of 86 GB/sec and 

latency of around 200 cycles.  Moreover, the GPU 

device memory communicates with the main memory, 

and cannot directly perform the disk I/O.  

The threads on each multiprocessor are organized 

into thread groups. The thread groups are dynamically 

scheduled on the multiprocessors. Threads within a 
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thread group share the computation resources such as 

registers on a multiprocessor. A thread group is divided 

into multiple schedule units. Given a kernel program, 

the occupancy of the GPU is the ratio of active 

schedule units to the maximum number of schedule 

units supported on the GPU. A higher occupancy 

indicates that the computation resources of the GPU are 

better utilized.  

The GPU thread is different from the CPU thread. It 

has low context-switch and low creation time as 

compared to CPU’s.  

The GPU has a hardware feature called coalesced 

access to exploit the spatial locality of memory 

accesses among threads. When the addresses of the 

memory accesses of the multiple threads in a thread 

group are consecutive, these memory accesses are 

grouped into one.  

2.2. GPGPU (General-Purpose computing on GPUs) 

GPUs have been recently used for various 

applications such as matrix operations [18], FFT 

computation [17], embedded system design [10], 

bioinformatics [19] and database applications [13][14]. 

For additional information on the state-of-the-art 

GPGPU techniques, we refer the reader to a recent 

survey by Owens et al. [22]. Most of the existing work 

adapts or redesigns a specific algorithm on the GPU. In 

contrast, we focus on developing a generic framework 

for the ease of the GPU programming.  

We now briefly survey the techniques of developing 

GPGPU primitives, which are building blocks for other 

applications. Govindaraju et al. [13] presented novel 

GPU-based algorithms for the bitonic sort. Sengupta et 

al. [24] proposed the segmented scan primitive, which 

is applied to the quick sort, the sparse matrix vector 

multiplication and so on. He et al. [15] proposed a 

multi-pass scheme to improve the scatter and the gather 

operations, and used the optimized primitives to 

implement the radix sort, hash searches and so on. He 

et al. [16] further developed a small set of primitives 

such as map and split for relational databases.  These 

GPU-based primitives improve the programmability of 

the GPU and reduce the complexity of the GPU 

programming. However, even with the primitives, 

developers need to be familiar with the GPU 

architecture to write the code that is not covered by 

primitives, or to tune the primitives. For example, 

tuning the multi-pass scatter and gather requires the 

knowledge of the memory bandwidth of the GPU [15].  

In addition to single-GPU techniques, GPUs are 

getting more involved in distributed computing projects 

such as Folding@home [11] and Seti@home [25]. 

These projects develop their data analysis tasks on 

large volume of scientific data such as protein using the 

computation power of multiple CPUs and GPUs. On 

the other hand, Fan et al. [9] developed a parallel flow 

simulation on a GPU cluster. Davis et al. [7] 

accelerated the force modeling and simulation using the 

GPU cluster. Goddeke et al. [12] explores the system 

integration and power consumption of a GPU cluster of 

over 160 nodes. As the tasks become more 

complicated, there lacks high-level programming 

abstractions to facilitate developing these data analysis 

applications on the GPU.  

Different from the existing GPGPU computation, 

this study aims at developing a general framework that 

hides the GPU details from developers so that they can 

develop their applications correctly, efficiently and 

easily. Meanwhile, our framework provides the run-

time mechanism for the high parallelism and the 

memory optimizations for a high performance.  

2.3. MapReduce 

The MapReduce framework is based on two 

functional programming primitives, which are defined 

as follows.  

 

The map function applies on every input key/value 

pair (k1,v1) and outputs a list of intermediate key/value 

pairs (k2,v2). The reduce function applies to all 

intermediate values associated with the same 

intermediate key and produces a list of output values. 

Programmers define the application logic using these 

two primitives. The parallel execution of these two 

tasks is managed by the system runtime. The following 

pseudo code illustrates a program based on the 

MapReduce framework. This program counts the 

number of occurrences of each word in a collection of 

documents [8]. The programmer needs to define two 

APIs, Map and Reduce, using other two APIs 

provided in the MapReduce framework, 

EmitIntermediate and Emit, respectively.  

 

Map: (k1, v1)� (k2, v2)*. 

Reduce: (k2, v2*)�v3*. 

// the input is a document. 

// the intermediate output: key=word; value=1. 

Map(void *input) { 

for each word w in input; 

     EmitIntermediate(w, 1); 

} 

// input: key=word, the value list consisting of 1s. 

// output: key=word; value=occurrences. 

Reduce(String key, Iterator values) { 

int result = 0; 

for each v in values 

      result += v; 

Emit(w, result); 

} 
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Since the MapReduce framework was proposed by 

Google [8], it has been applied to various domains such 

as data mining, machine learning, and bioinformatics. 

Additionally, there have been several implementations 

and extensions of the MapReduce framework. Hadoop 

[3] is an open-source MapReduce implementation like 

google. Phoenix [23] is an efficient implementation on 

the multi-core CPU. Chu et al. [6] applied the 

MapReduce framework to ten machine learning 

algorithms on the multi-core CPU. Yang et al. [27] 

introduced the merge operation into the MapReduce 

framework for relational databases. The existing work 

focuses on the parallelism of multiple CPUs or multiple 

cores within a single CPU. To the best of our 

knowledge, this is the first implementation of the 

MapReduce framework on the GPU, which is a 

massively thread parallel processor. Since GPU is a 

commodity component on the modern machine, our 

framework complements these existing frameworks. 

Specifically, we have integrated our GPU-based 

framework with the CPU-based framework to utilize 

both the CPU and the GPU. 

 

3. Design and Implementation 
In this section, we present our design and 

implementation for Mars. Mars exploits the massive 

thread parallelism within the GPU. The programmer is 

required to define a small set of APIs that are similar to 

those in the CPU-based MapReduce framework. The 

rest of implementation details such as the GPU runtime 

are hidden by our framework.   

3.1. Design Goals 

Our design is guided by the following goals: 

1) Ease of programming. Programming with 

graphics APIs requires a lot of effort from the 

developer to generate the correct code. In 

contrast, ease of programming encourages 

developers to use the GPU for computation 

processing. Additionally, our framework must 

support variable-sized types such as strings 

on the GPU, because processing of variable-

sized types is common in the MapReduce 

programs such as the web applications.  

2) Performance. Our goal is to develop a 

MapReduce framework on the GPU that 

achieves a performance that is comparable to 

or better than the state-of-the-art CPU 

counterparts.  

3) Flexibility. Our framework must provide 

interfaces to allow developers to define their 

application logic, and to specify the runtime 

parameters for performance tuning.  

4) Portability. Our goal is to present an 

intermediate runtime that maps the programs 

onto the underlying hardware. The programs 

written using the MapReduce framework 

require few or no changes. 

3.2. System Workflow and Configuration 

Input 

Data
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Reduce
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Reduce

(Thread Q)

Sort MergeSplit
Output 

Data

 
Figure 2. The basic flow of Mars on the GPU. The 

framework consists of two stages, Map and Reduce.  

Algorithm 1: Mars, the MapReduce framework on the GPU. 

Parameters: 

dirInput The pointer to the directory index <key offset, 

key   size, value offset, value size> for each 

input key/value pair. 

keyInput The pointer to the data array for the input keys. 

valInput The pointer to the data array for the input 

values. 

dirInter The pointer to the directory index <key offset, 

key size, value offset, value size> for each 

intermediate key/value pair. 

keyInter The pointer to the data array for the 

intermediate keys. 

valInter The pointer to the data array for the 

intermediate values. 

dirOutput The pointer to the directory index <key offset, 

key size, value offset, value size> for each 

output key/value pair. 

keyOutput The pointer to the data array for the output 

keys. 

valOutput The pointer to the data array for the output 

values. 

(1) Prepare input key/value pairs in the main memory and 

generate three arrays, dirInput, keyInput and valInput.  

(2) Initialize the parameters in the run-time configuration. 

(3) Copy the three input arrays from the main memory to 

the GPU device memory. 

(4) Start the Map stage on the GPU and generate 

intermediate key/value results: dirInter, keyInter, and 

valInter.  

(5) If noSort is F, sort the intermediate result.  

(6) If noReduce is F, start the Reduce stage on the GPU 

and generate the final result: dirOutput, keyOutput, 

and valOutput. Otherwise, we copy dirInter, keyInter, 

and valInter to dirOutput, keyOutput, and valOutput, 

respectively.  

(7) Copy the result, dirOutput, keyOutput, and valOutput, 

from the GPU device memory to the main memory.  
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The basic flow of Mars is shown in Figure 2. It is 

designed based on our many-core architecture model. 

Algorithm 1 describes the flow in more detail. 

Similar to the CPU-based MapReduce framework, 

Mars has two stages, Map and Reduce. In the Map 

stage, a split operator divides the input data into 

multiple chunks such that the number of chunks is 

equal to the number of threads. Thus, a GPU thread is 

responsible with only one chunk. The runtime 

parameters for the Map including the number of thread 

groups and the number of threads per thread group are 

determined according to the occupancy of the GPU. 

This thread configuration can also be specified by the 

programmer. We discuss the thread configuration in 

more detail in Section 3.4. After the Map stage is 

finished, we sort the intermediate key/value pairs so 

that the pairs with the same key are stored 

consecutively.  

In the Reduce stage, the split divides the sorted 

intermediate key/value pairs into multiple chunks. The 

number of chunks is equal to the number of threads. 

The thread configuration is set in a similar way to that 

for the Map.  Each chunk is assigned to a GPU thread. 

Note that the key/value pairs with the same key are 

assigned to the same chunk. Additionally, the thread 

with a larger thread ID is assigned with a chunk 

consisting of key/value pairs of larger keys. This 

ensures that the output of the Reduce stage is sorted by 

the key.  

Table 1. The configuration parameters of Mars. 

Parameter Description Default 

noReduce Whether a reduce stage is required (If 

it is required, noReduce=F; otherwise, 

noReduce=T).   

F 

noSort Whether a sort stage is required (If it is 

required, noSort=F; otherwise, 

noSort=T).   

F 

tgMap Number of thread groups in the Map 

stage.  

128 

tMap Number of thread per thread group in 

the Map stage. 

128 

tgReduce Number of thread groups in the 

Reduce stage.  

128 

tReduce Number of thread per thread group in 

the Reduce stage. 

128 

Table 1 summarizes the parameters and their default 

values in the configuration of Mars. These parameters 

are similar to those in the existing CPU-based 

MapReduce framework [23]. All these parameter 

values can be specified by the developer for 

performance tuning. Through exposing these 

parameters to the developer, Mars provides flexibility 

to specify whether the sort and the Reduce stage in the 

framework are required, and to specify the thread 

configuration for the performance tuning. 

The main data structure in Mars is array. Since 

dynamic memory allocation on the device memory is 

not supported on the GPU, we allocate the space on the 

device memory for the input data as well as the result 

output before executing the kernel program.  

Since the size of the output from the Map and the 

Reduce are unknown, there are two challenges for 

buffer management in emitting the results from the Map 

and the Reduce. The first one is that the GPU lacks 

incremental memory allocation on the device memory 

during the kernel execution. The second one is that 

write conflicts occur when multiple threads write 

results to the shared output region in the device 

memory. Most GPUs do not provide hardware-

supported atomic operations. To address these two 

challenges, we design a two-step output scheme. The 

first step computes the size of results generated by each 

thread. Based on these sizes, we can compute the write 

positions of each thread. The second step outputs the 

results to the device memory. Our scheme is similar to 

the previous scheme of result output of relational joins 

[16]. The major difference is that we need to handle the 

output for both the key and the value in the 

MapReduce.   

Since the output scheme for the Map is similar to 

that for the Reduce, we present the scheme for the Map 

only.  

First, each Map task outputs two counts, the total 

size of keys and the total size of values generated by 

the Map task.  Based on these counts of all map tasks, 

we compute a prefix sum on these counts to get an 

array of write locations, each of which is the start 

location in the device memory for the corresponding 

map to write. Through the prefix sum, we also know the 

buffer size for the intermediate result.  

Second, each Map task outputs the intermediate 

key/value pairs to the intermediate buffers. The start 

write location for the map task is determined in the first 

step. Since each map has its deterministic positions to 

write to, the write conflicts are avoided. 

3.3. APIs 

Similar to the existing MapReduce frameworks such 

as Hadoop [3] and Phoenix [23], Mars provides a small 

set of APIs for the developers. These APIs are 

implemented with C/C++. Developers do not require 

any knowledge of graphics rendering APIs or the 

system runtime handling the massive threading 

parallelism in our MapReduce framework.  
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Table 2. The API functions in our MapReduce framework.  

APIs of user-defined functions Optional 
void MAP_COUNT(void *key, void *val, size_t keySize, size_t valSize) 

Counts the size of output results (in bytes) generated by the map function. 
no 

void MAP(void *key, void val, size_t keySize, size_t valSize) 

The map function. Each map task executes this function on the key/value pair. 
no 

void REDUCE_COUNT(void* key, void* vals, size_t keySize, size_t valCount) 

Counts the size of output results (in bytes) generated by the reduce function. 
yes 

void REDUCE(void* key, void* vals, size_t keySize, size_t valCount) 

The reduce function. Each reduce task executes this function on the key/value pairs with the same key. 
yes 

int compare(const void *d_a, int len_a, const void *d_b, int len_b) 

User-defined function comparing two keys. 
yes 

APIs of functions provided by runtime Optional 
void EMIT_INTERMEDIATE_COUNT(size_t keySize, size_t valSize); 

Used in MAP_COUNT to emit the key size and the value size of an intermediate result. 
yes 

void EMIT_INTERMEDIATE(void* key, void* val, size_t keySize, size_t valSize); 

Used in MAP to emit an intermediate result. 
yes 

void EMIT_COUNT(size_t keySize, size_t valSize); 

Used in RECORD_COUNT to emit the key size and the value size of a final result. 
yes 

void EMIT(void *key, void* val, size_t keySize, size_t valSize); 

Used in REDUCE to emit a final result. 
yes 

void GET_VAL(void *vals, int index); 

Used in REDUCE to get a value of a given key in its value list. 
yes 

Spec_t* GetDefaultConfiguration(char *logFileName) 

Gets a default runtime configuration. 
no 

void AddMapInputRecord(Configuration_t* conf, void* key,  void* val,  size_t 
keySize,   size_t valSize); 

Adds a key/value pair to the map input structure in the main memory. 

no 

void MapReduce(Configuration_t * conf); 

Starts the main MapReduce procedure. 
no 

void FinishMapReduce(); 

Postprocessing such as logging when MapReduce is done.  
no 

Table 2 shows the complete list of our APIs.  

Similar to Phoenix [23], Mars has two kinds of APIs, 

APIs of user-defined functions and APIs of functions 

provided by the runtime. The developer calls the APIs 

of functions provided by the runtime to run the entire 

MapReduce framework on the input data. Additionally, 

the emit functions provided in Mars enable the 

programmer to output the intermediate/final results. 

The main feature of Mars is simplicity, which shares 

the wisdom of the existing MapReduce frameworks. To 

use the framework, the developer needs to write code 

for the five APIs of user-defined functions at most. 

These APIs are similar to those in the CPU-based 

MapReduce framework. In each of these APIs, we use 

void* type so that the developer can manipulate strings 

and other complex data types conveniently on the GPU. 

Additionally, the developer can define the application 

logic such as the key comparison in Mars.  

The two-step design in the buffer management 

results in the difference in the APIs between the 

existing CPU-based MapReduce implementation and 

our GPU-based implementation.  Existing CPU-based 

MapReduce implementations typically have four major 

APIs include Map, Reduce, EmitIntermediate 

and Emit. In contrast, we have defined two APIs on 

the GPU to implement the functionality of each of the 

four CPU-based APIs. One is to count the size of 

results. The other one is to output the results. 

The following pseudo code illustrates the Map for 

implementing the word count application using Mars. 

For each word in the document, i.e., the key, the 

MAP_COUNT function emits a pair of the total length of 

the words and the size of the counts (an integer).  In the 

MAP function, for each word, the function emits the 

intermediate results of the word and the count of one 

corresponding to the MAP_COUNT.  

 

//the Map of implement word count using Mars 

//the key is the document 

MAP_COUNT(key, val, keySize, valSize){ 

   for each word w in key 

          interKeySize+= sizeof(w); 

          interValSize+= sizeof(int); 

   EMIT_INTERMIDIATE_COUNT(interKeySize, interValSize); 

} 

MAP (key, val, keySize, valSize) { 

  for each word w in key 

        EMIT_INTERMIDIATE (w, 1); 

} 
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3.4. Implementation Techniques  

Thread parallelism. The number of thread groups 

and the number of threads per thread group is related to 

multiple co-related factors including, (1) the hardware 

configuration such as the number of multiprocessors 

and the on-chip computation resources such as the 

number of registers on each multiprocessor, (2) the 

computation characteristics of the Map and the Reduce 

task, e.g., it is memory- or computation-intensive. If a 

task is memory-intensive and suffers from memory 

stalls of fetching data from the device memory, a larger 

number of threads can be used to hide the memory 

stalls. Since the cost of the Map and the Reduce 

function is unknown, it is difficult to find the optimal 

setting for the thread configuration.  

We set the number of threads per thread group and 

the number of thread groups based on the occupancy of 

the GPU. After the kernel code is compiled, we obtain 

the computation resources such as the number of 

registers that each thread requires for executing the 

kernel code. Based on this compilation information and 

the total computation resources on the GPU, we set the 

number of threads per thread group and the number of 

thread groups to achieve a high occupancy at run time.  

In practice, we set the number of thread groups to be 

128, and the number of threads per thread group to 128, 

which is sufficient for a high occupancy.  

Coalesced accesses.  We utilize the hardware 

feature of coalesced accesses to improve the 

performance of the Map and the Reduce. Since the 

optimization to the Map is similar to that to the Reduce, 

we use the Map as an example. The directory index and 

the key/value pair are stored consecutively in arrays. 

Thus, we assign the key/value pairs to each thread 

according to the coalesced access pattern. Suppose 

there are T threads in total and the number of key/value 

pairs is N in the Map stage. Thread i processes the 

( kTi ⋅+ )th (k=0,.., N/T ) key/value pair. Due to the 

SIMD nature of the GPU, the memory addresses of the 

memory accesses from a thread group are consecutive 

and these accesses are coalesced into one. With the 

coalesced access, the memory bandwidth utilization is 

improved.  

Accesses using built-in vectors. Accessing the data 

value can be costly, because the data values are often of 

different sizes and the accesses to these values is hardly 

coalesced. Fortunately, GPU supports build-in vector 

types such as char4 and int4. Reading with the 

build-in vector types fetches the entire vector in a 

single memory request. Compared with reading with 

char or int, the number of memory requests is 

greatly reduced and the memory performance is 

improved.  

Handling variable-sized types. The variable-size 

types are supported in our MapReduce framework. The 

directory index for key/value pairs stores the 

indirection information, i.e., offsets and lengths. The 

value is fetched according to the offset and the length. 

If two tuples need to be swapped, we swap the two 

tuples in the directory index without modifying their 

values.  To further improve the GPU programmability, 

we develop libraries for the common type processing in 

the MapReduce framework on the GPU. Specifically, 

we develop a string manipulation library on the GPU. 

The APIs in the library are consistent with those in 

C/C++ library on the CPU. Moreover, we access the 

string data using the built-in vector type to optimize the 

memory accesses in the string library.  

Sort. We use bitonic sort [13] on the GPU. Sort is 

performed on the results of the Map. Nevertheless, we 

do not always need the results with the key in the strict 

ascending/decreasing order as long as the results with 

the same key value are stored consecutively. In that 

case, we can use the hashing technique that hashes the 

key into a 32-bit integer. When we compare two 

records, we first compare their hash values. Only when 

their hash values are the same, we need to fetch their 

keys and perform comparison on them. Given a good 

hash function, the probability of comparing the key 

values is low. Thus, the cost of the sorting algorithm 

can be reduced. This technique is implemented as an 

option in the user-defined compare function.  

File manipulation. Currently, the GPU cannot 

directly fetch data from the hard disk to the device 

memory. Thus, we perform the file manipulation with 

the assistance of the CPU in three phases. First, we 

perform the file I/O on the CPU and load the file data 

into a buffer in the main memory. To reduce the I/O 

stall, we use multi-threading to perform the I/O task. 

Second, we use the API, AddMapInputRecord, 

provided in Mars to prepare the input key/value pairs 

from the buffer in the main memory. Finally, the input 

key/value pairs are copied from the main memory to the 

device memory.  

4. Evaluation 
In this section, we evaluate our GPU-based MapReduce 

framework in comparison with its CPU-based 

counterpart.  

4.1. Experimental Setup 

Our experiments were performed on a PC is with a 

G80 GPU and a recently-released Intel Core2Duo 

Quad-Core processor running Linux Fedora 7.0. The 

hard drive is 160G SATA magnetic hard disk. The 

hardware configuration of the PC is shown in Table 3. 

The GPU uses a PCI-EXPRESS bus to transfer data 
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between the main memory and the device memory with 

a theoretical bandwidth of 4 GB/s.  The GPU and the 

CPU have a theoretical bandwidth of 86.4 GB/s and 

10.4 GB/s, respectively. Based on our measurements, 

for scans, the G80 achieves a memory bandwidth of 

around 69.2 GB/s whereas the quad-core CPU has 5.6 

GB/s. 

Table 3. Hardware configuration 

 GPU CPU 
Processors 1350MHz × 8 × 16 2.4 GHz × 4 

Data cache (shared 

memory) 

16KB × 16  L1: 32KB × 4, 

L2: 4096KB × 2 

Cache latency (cycle) 2 L1: 2 , L2: 8  

DRAM (MB) 768 2048 

DRAM latency (cycle) 200 300 

Bus width (bit) 384  64  

Memory clock (GHz) 1.8 1.3  

To evaluate the efficiency of our framework, we 

compared our framework with Phoenix [23], the state-

of-the-art MapReduce framework on the multi-core 

processor.  Phoenix uses Pthreads to implement the 

runtime of the MapReduce framework on the multi-

core processor. In our experiment, the number of cores 

used in Phoenix is set to four, i.e., the number of cores 

in our machine.  

We implemented our GPU-based MapReduce using 

CUDA [20], which is a GPGPU programming 

framework for recent NVIDIA GPUs. It exposes a 

general-purpose, massively multi-threaded parallel 

computing architecture and provides a programming 

environment similar to multi-threaded C/C++. We run 

each experiment five times and report the average 

value.  

Applications. We have implemented six applications 

for web data analysis as benchmarks for the 

MapReduce framework. They represent core 

computations for different kinds of web data analysis 

such as web document searching (String Match and 

Inverted Index), web document processing (Similarity 

Score and Matrix Multiplication) and web log analysis 

(Page View Count and Page View Rank). The first two 

and the fourth applications are those used in the 

experiments of Phoenix [23]. The other applications 

such as data mining in the experiments of Phoenix are 

not used, because we focus on web data analysis 

applications. The third and the fourth ones are common 

tasks in the web search [28]. The last two are the daily 

routines for analyzing the statistics on the web page 

accesses in www.sina.com.cn.    

Table 4 shows the description and the data sets used 

in our experiment for each application. We used three 

datasets for each application (S, M, and L) to test 

scalability issues on the MapReduce framework. The 

data set sizes are comparable to those in the 

experiments of Phoenix [23]. The web pages are 

crawled from the Web. The values in the matrix or the 

vector are randomly generated float numbers. The web 

log entries are randomly generated simulating the 

random accesses to the web pages.  We varied other 

characteristics such as the number of URLs and the 

access frequency distribution and obtained similar 

results. All these input data are stored in the hard disk.  

Table 4. Application description.  

App. Description Data sets 
String Match Find the position of a 

string in a file. 

S: 32MB, M: 64 

MB, L: 128 MB 

Inverted Index Build inverted index for 

links in HTML files. 

S: 16MB, M: 32 

MB, L: 64MB 

Similarity 

Score 

Compute the pair-wise 

similarity score for a set 

of documents.  

#doc: S: 512, M: 

1024, L: 2048. 

#feature dimension: 

128.  

Matrix 

Multiplication 

Multiply two matrices. #dimension: S: 512, 

M: 1024, L: 2048 

Page View 

Count 

Count the page view 

number of each URL in 

the web log. 

S: 32MB, M: 64 

MB, L: 96 MB 

Page View 

Rank 

Find the top-10 hot 

pages in the web log. 

S: 32MB, M: 64 

MB, L: 96 MB 

 

We briefly describe how these applications are 

implemented using the MapReduce framework.  

String Match (SM): String match is used as exact 

matching for a string in an input file. Each Map 

searches one line in the input file to check whether the 

target string is in the line. For each string it finds, it 

emits an intermediate pair of the string as the key and 

the position as the value. No Reduce stage is required. 

Inverted Index (II): It scans a set of HTML files 

and extracts the positions for all links. Each Map 

processes one line of HTML files. For each link it 

finds, it outputs an intermediate pair with the link as the 

key and the position as the value. No Reduce stage is 

required. 

Similarity Score (SS): It is used in web document 

clustering. The characteristics of a document are 

represented as a feature vector. Given two document 

features, a and b , the similarity score between these two 

documents is defined to be
|b||a|

ba

⋅

⋅

. This application 

computes the pair-wise similarity score for a set of 

documents. Each Map computes the similarity score for 

two documents. It outputs the intermediate pair of the 

score as the key and the pair of the two document IDs 

as the value. No Reduce stage is required. 

Matrix Multiplication (MM): Matrix 

multiplication is widely applicable to analyze the 

relationship of two documents. Given two matrices M 

and N, each Map computes multiplication for a row 
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from M and a column from N. It outputs the pair of the 

row ID and the column ID as the key and the 

corresponding result as the value. No Reduce stage is 

required. 

Page View Count (PVC): It obtains the number of 

distinct page views from the web logs. Each entry in the 

web log is represented as <URL, IP, Cookie>, where 

URL is the URL of the accessed page; IP is the IP 

address that accesses the page; Cookie is the cookie 

information generated when the page is accessed. This 

application has two executions of MapReduce. The first 

one removes the duplicate entries in the web logs. The 

second one counts the number of page views. In the 

first MapReduce, each Map takes the pair of an entry as 

the key and the size of the entry as value. The sort is to 

eliminate the redundancy in the web log. Specifically, if 

more than one log entries have the same information, 

we keep only one of them. The first MapReduce 

outputs the result pair of the log entry as key and the 

size of the line as value. The second MapReduce 

processes the key/value pairs generated from the first 

MapReduce. The Map outputs the URL as the key and 

the IP as the value. The Reduce computes the number 

of IPs for each URL.  

Page View Rank (PVR): With the output of the 

Page View Count, the Map in Page View Rank takes 

the pair of the page access count as the key and the 

URL as the value, and obtains the top ten URLs that are 

most frequently accessed. No Reduce stage is required. 

In summary, these applications have different 

characteristics. As for the computation, MM and SS are 

more computation intensive than other applications. As 

for the number of occurrences of MapReduce, PVC has 

two whereas other applications have one. PVC has the 

Reduce stage, while others do not. 

Finally, we show the size of the source code written 

by the developer using Mars and Phoenix in Table 5.  

The code size is measured in number of source code 

lines. In general, the application with Mars has a 

similar code size as that with Phoenix. Programming 

with Mars uses our own string manipulation library 

while programming with Phoenix uses the standard 

string library in C/C++. The code in user-defined 

functions in Mars is simpler than that in Phoenix, 

because each Map or Reduce task in Mars handles 

fewer tuples than that in Phoenix. Thus, the code size 

by the developer with Mars can be smaller than that 

with Phoenix.  

Table 5. The size of the source code in user-defined 

functions using Mars and Phoenix. 

 II SM SS MM PVC PVR 
Phoenix 365 250 196 317 292 166 
Mars  375 173 258 235 276 152 

4.2. Results on String Library 
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Figure 3. Performance comparison of the string libraries 

in C/C++ and Mars.  

Figure 3 shows the performance comparison of the 

string libraries in C/C++ and Mars, denoted as “CPU” 

and “GPU”, respectively. The number of string 

operations is 8 million. The average string length is 16. 

The string operations are performed using multiple 

threads on the CPU. The measurements on the GPU 

with accessing data using char4 and char are 

denoted as “opt” and “non-opt”, respectively. We 

define the speedup to be the ratio of the execution time 

on the CPU to that on the GPU. The optimized GPU 

implementation achieves 2-9X speedup over the CPU 

implementation.  

String manipulations in the library have different 

performance comparison between the CPU and the 

GPU. For the memory intensive ones such as strcpy, 

strcat, and memset, the non-optimized GPU 

implementation can be slower than the CPU 

implementation. In contrast, the optimized GPU 

implementation is much faster than the CPU 

implementation with a speedup of 2.8-6.8X. For other 

three comparison-based APIs, i.e., strcmp, strchr, 

and strstr, the difference between the optimized and 

the un-optimized GPU implementation is small, 

because only part of the string is accessed.   

4.3. Results on MapReduce 

Figure 4 shows the performance speedup of the 

optimized Mars over Phoenix with the data set size 

varied. Overall, Mars is around 1.5-16X faster than 

Phoenix when the data set is large. The speedup varies 

for applications with different computation 

characteristics. For computation-intensive applications 

such as SS and MM, Mars is over 4X faster than 

Phoenix. For memory-intensive applications such as II 

and SM, Mars is slightly faster than Phoenix. These 

applications are simple in the computation. Thus, they 

achieve a smaller performance speedup using the GPU.  
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Figure 4. Performance speedup between Phoenix and the 

optimized Mars with the data size varied.  

We next investigate the time breakdown of each 

application. We divide the total execution time of a 

GPU-based application into four components including 

the time for file I/O, the Map stage, the sort after the 

map and the reduce stage. Note, the measurement of the 

Map stage includes the time for copying the input data 

into the device memory, and the measurement of the 

Reduce includes the time for copying the result back to 

the main memory. The I/O time is dominant for SM and 

II, and the computation time is insignificant compared 

with the I/O time. Advanced I/O mechanisms such as 

using a disk array can greatly improve the overall 

performance for these two applications. In contrast, the 

total time of Map, Sort and Reduce is dormant for the 

other four applications. When the Sort step is required 

for the applications such as SS, PVC and PVR, the Sort 

time is a large part of the total execution time. 

Improving the sorting performance will greatly improve 

the overall performance of those applications.  
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Figure 5. The time breakdown of Mars on the six 

applications with the large data set.  

In the following, we present the results for the 

performance impact of the hashing, the coalesced 

accesses and using built-in vector type. We study these 

three optimization techniques separately. Since we 

obtain similar results for different data sizes, we present 

the results for the large data sets only.  
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Figure 6. Performance speedup with hashing in Mars. The 

hashing technique improves the overall performance by 

1.4-4.1X.  

Figure 6 shows performance speedup of the hashing 

technique for II and PVC on the GPU. We define the 

performance speedup of an optimization technique to 

be the ratio of the elapsed time without the optimization 

technique to that with the optimization technique. The 

results for the other four applications are now shown, 

because the hashing technique is not used in those 

applications. To separate the performance impact of the 

hashing technique from the other two optimization 

techniques, we measured these numbers without using 

built-in vector or coalesced access. The hashing 

technique improves the overall performance by 1.4-

4.1X. The performance improvement of the hashing 

technique on PVC is larger than that on II, because 

PVC has two MapReduce and the hashing technique is 

used more frequently.  
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Figure 7. Performance speedup of coalesced accesses in 

Mars. The coalesced access improves the overall 

performance by 1.2-2.1X.  

Figure 7 shows the performance speedup of 

coalesced accesses on the six applications. Note that 

these measurements are obtained with hashing but 

without using built-in vector. The coalesced access 

improves the memory bandwidth utilization, which 

yields a performance speedup of 1.2-2.1X.  
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Figure 8. Performance speedup of accessing data with 

built-in vector types in Mars.  

Figure 8 shows the performance speedup of 

accessing data with built-in vector types on the GPU. 

The measurement is with both hashing and coalesced 

access optimizations.  Using built-in vector type 

reduces the number of memory requests and improves 

the bandwidth utilization. It improves the overall 

performance by 1.09-2.15X. The performance speedup 

depends on the size of the data accessed in a Map or 

Reduce task. For instance, the performance speedup for 

MM and PVC is high, because each Map in MM and 

PVC requires fetching long integer vectors or a web log 

entry, and the built-in vector greatly helps. In contrast, 

the speedup for the other applications is small, because 

fetching data using built-in vector type is not frequent. 

Note, the sort algorithm with the hashing technique has 

a low probability of fetching the original data. Thus, the 

performance impact of using built-in vector type is little 

for the applications such as PVR. 

4.4. Results on Co-Processing on CPU and GPU 

Figure 9 shows the performance speedup of co-

processing on both the CPU and the GPU over 

processing on the GPU only. We used the large data 

set. The key/value pairs are assigned to Phoenix on the 

CPU and Mars on the GPU according to the speedup 

between Phoenix and Mars. Overall, the co-processing 

utilizes the computation power of both the CPU and the 

GPU, and yields a considerable performance 

improvement over using the GPU only. The 

performance speedup of co-processing mainly depends 

on the performance comparison between the CPU 

processing and the GPU processing. For example, the 

performance improvement on the SS is small, because 

the CPU processing of Phoenix is much slower than the 

GPU processing of Mars on SS. Thus, adding the CPU 

computation makes insignificant performance 

improvement on SS. In contrast, the co-processing 

scheme further reduces the execution time for other 

applications by scheduling the tasks among the CPU 

and the GPU.  
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Figure 9. Performance speedup of co-processing on the 

CPU and the GPU over processing on the GPU only.  

5. Conclusion 
Graphics processors have emerged as a commodity 

platform for parallel computation. However, the 

developer requires the knowledge of the GPU 

architecture and much effort in tuning the performance. 

Such difficulty is even more for complex and 

performance-centric tasks such as web data analysis.  

Since MapReduce has been successful in easing the 

development of web data analysis tasks, we propose a 

GPU-based MapReduce for these applications. With 

the GPU-based framework, the developer writes their 

code using the simple and familiar MapReduce 

interfaces. The runtime on the GPU is completely 

hidden from the developer by our framework. 

Moreover, our MapReduce framework yields up to 16 

times performance improvement over the state-of-the-

art CPU-based framework.  

Finally, it is an interesting future direction to extend 

our MapReduce framework to other application 

domains such as data mining. We are also interested in 

integrating Mars into the existing MapReduce 

implementations such as Hadoop so that the 

MapReduce framework can take the advantage of the 

parallelism among different machines as well as the 

parallelism within each machine. The code and 

documentation of our framework can be found at 

http://www.cse.ust.hk/gpuqp/.   
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