Under consideration for publication in Knowledge and Infation Systems

XCQ: A Queriable XML Compression System

Wilfred Ng*, Wai-Yeung Lam, Peter T. Woodland Mark Leveng

I Department of Computer Science, The Hong Kong Universitg@énce and Technology, Clear Water Bay,
Kowloon, Hong Kong?2 School of Computer Science and Information Systems, Bakjeniversity of London,
Malet Street, London, UK

Abstract. XML has already become the de facto standard for specifyimyexchanging data
on the Web. However, XML is by nature verbose and thus XML doeents are usually large
in size, a factor that hinders its practical usage, sincelisgntially increases the costs of stor-
ing, processing, and exchanging data. In order to tackéegitiblem, many XML-specific com-
pression systems, such as XMill, XGrind, XMLPPM, and Mill&nave recently been proposed.
However, these systems usually suffer from the following tmadequacies: they either sacrifice
performance in terms of compression ratio and executioa timorder to support a limited range
of queries, or perform full decompression prior to procegsjueries over compressed documents.

In this paper, we address the above problems by exploitiagrformation provided by a
Document Type Definition (DTD) associated with an XML docurhéVe show that a DTD is
able to facilitate better compression as well as generate mgable compressed data to support
querying. We present the architecture of the XCQ, which isragression and querying tool for
handling XML data. XCQ is based on a novel technique we haveldped calledTD Tree and
SAX Event Stream ParsifSP). The documents compressed by XCQ are stor&diititioned
Path-Based GroupingPPG) data streams, which are equipped wilack Statistics Signature
(BSS) indexing scheme. The indexed PPG data streams suppgtocessing of XML queries
that involve selection and aggregation, without the needulbdecompression. In order to study
the compression performance of XCQ, we carry out comprévemrxperiments over a set of
XML benchmark datasets.

Keywords: XML; Document Type Definitions; Compression algorithms;g@uProcessing; Per-
formance

1. Introduction

The Extensible Markup Language (XML) (Bray et al, 2004) isgwsed under the aus-
pices of the World Wide Web Consortium (W3C) as a standaddiz¢a format designed
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for specifying and exchanging data on the Web. With the fenation of mobile devices,
such as pocket PCs, sensor networks and mobile phones, ana ofe&eommunication
in recent years, it is reasonable to expect that in the fegdde future a massive amount
of XML data will be generated and exchanged between apitsitn order to perform
dynamic computations over the Web.

When XML first emerged, the verbosity of XML markup was not sidlered a
pressing issue from a design perspective. However, in ipea2tML documents are
usually extremely large in size, due to the fact that thegroftontain much redundant
data, such as repeated tags (for example, see the DBLP dotauthey, 2005)). As a
result, an XML-ized document is usually much larger than coreveying the same in-
formation but adopting a standard document format. For @@ran XML-ized Weblog
document in (Liefke and Suciu, 2000) is roughly three tinmesgize of the original file.

Let us call this document size inflation theflation problemof XML. The inflation
problem seriously hinders the future use of XML in exchaggiparsing, and query-
ing data, due to the fact that the data size grows much fdsderthe communication
bandwidth. On the one hand, we enjoy the flexibility of XMLn&e the markup facil-
ities of XML are intuitive for people and better able to fitaite web data exchange.
On the other hand, we have to pay the extra cost of consumimg staerage space and
computational resources to store and process XML data.

In recent years, many XML-specific compression systems haea proposed and
developed (Arion et al, 2004; Buneman et al, 2003; Chend&§22Devene and Wood,
2002; Liefke and Suciu, 2000; Min et al, 2003; SundaresanMoidssa, 2001; Tolani
and Haritsa, 2002). However, these systems either do noe refigctive use of the
information provided by a Document Type Definition (DTD) esisited with an XML
document (Arion et al, 2004; Buneman et al, 2003; Cheney?2Di@fke and Suciu,
2000; Min et al, 2003; Tolani and Haritsa, 2002), or do notmupthe querying of
compressed documents directly (Cheney, 2002; Levene aratl ViaD02; Liefke and
Suciu, 2000; Sundaresan and Moussa, 2001).

We believe that a DTD can improve the compression ratio of i Xlocument
and help to produce more usable compressed data. For exaxigi (Liefke and
Suciu, 2000) needs to performfall decompression prior to processing queries over
compressed documents, resulting in a heavy burden on systaarces such as CPU
processing time and memory consumption. At the other exdresame technologies
can avoid (full) XML data decompression but unfortunatehjyoat the expense of
compression performance. For example, XGrind (Tolani aadtsh, 2002) adopts a
homomorphic transformation strategy to transform XML data a specialized com-
pressed format and support direct querying on compressacdbda at the expense of
the compression ratio; thus the inflation problem is nosatiorily resolved.

In this paper, we present our development of a prototypedaieXML Compres-
sion and Querying Syste(KCQ), which attempts to balance the objectives of tackling
the inflation problem and supporting querying on comprestsgd without the burden
of performing a full decompression. We develop the XCQ pxgie and study the fea-
sibility of using XCQ in practice. We evaluate the perforroaonf XCQ in compression,
and demonstrate that a competitive compression ratio,iwisicomparable to that of
XMill (Liefke and Suciu, 2000), is achieved by XCQ at the erpe of compression
time.

The underlying idea behind XCQ is to compress XML documehnéd tonform
to a DTD by making use of the DTD information to aid the compres process. We
achieve this using o TD Tree and SAX Event Stream Pars{B$P) technique. In ad-
dition, we propose and analyze two simple but effectiveniépes for handling queries
over compressed XML data. First, we use a novel Partitioreti-Based Grouping
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|
i Keys for path-based grouped Data i
| Streams: ;
i dO: /library/entry/author/@name
i dl:/library/entry/title :
i d2: /library/entry/year ;
' d3: /library/entry/publisher i
i d4: /library/entry/num_copy ;

Fig. 1. Data Streams Partitioned using Path-Based Grouping (PPG)

(PPG) strategy for storing path-based compressed XML daaumber of streams of
blocks. Second, we impose a minimal indexing scheme, calkidck Statistics Signa-
ture (BSS), on the compressed data blocks. We show that thes@deels are not only
efficient enough to support selection and aggregation gsi@ver compressed XML
data viapartial decompression, but they also require a low computation tordge
space overhead.

The main idea of our proposed PPG strategy is depicted inr&iguin which the
structure stream, derived from a given XML document and f®Dis stored and com-
pressed separately from the data streams. XMill (Liefke @nciu, 2000) also divides
an XML document into a number of separate containers, onthéstructure and one
for each attribute and element name used in the documentPPi@& scheme differs
from this in at least two ways: firstly, the structure strearancoded using information
from the DTD; secondly, the data streams are based on paths DTD (as shown in
Figure 1) rather than simply names.

PPG assumes that the DTD is non-recursive and hence canreseated as a DTD
tree such as that shown in Figure 2, wheeaare is anattribute nodeaut hor ,titl e,
year, publ i sher,andnumcopy areelement nodesndpaper, cour se_not e,
andbook areemptyelements. (A full description of DTD trees is given in Senti®)
The values in a data stream all have the same path back todhefrine DTD tree (or
root of the XML document), as suggested in Figures 1 and 2.

Each PPG data stream is partitioned into its set of data blbaking a pre-defined
block sizewhich helps to increase the overall compression ratio(gér and Wilhite,
1994; Liefke and Suciu, 2000; Ng and Ravishankar, 1997;$aed Potapov, 2003)).
A data block in a PPG data stream is able to be compressed omgeessed as an
individual unit. This partitioning strategy allows us tocass the data in a compressed
document by decompressing only those data blocks thatiodh&data elements rele-
vant to the input query, which we call the strategypaftial decompressian

For example, if the block size hasrecords per block, the first batch ofrecords
in the streami, are packed in the first data block, while the next batch eécords
are packed in the second block. As such, each data block utetfaestreams contains a
certain number of elements in the order listed in their gpoading data stream.

The data blocks in the data streams are compressed indiyidsang the low-level
compressor gzip (Gailly and Adler, 2003a). Intuitively,raadler block size (i.e. using
a finer partitioning in a PPG data stream) improves queryoperdnce, since a more
precise portion of the compressed document can be idenfdiedecompression in
order to evaluate a query. However, there is a trade-offahdHfiner block partitioning
degrades the compression ratio, since fewer redundancibe idata streams can be
eliminated by gzip if each block is compressed as a finer iddal block unit.

The BSS indexing scheme is employed to aid the block retrie\RPG data streams
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Fig. 2. A Library DTD Tree

when processing queries on XCQ compressed data. A BSS sseaitable for block-
oriented compressed data, which includes parameters sunimand maxgenerated
for each data block. This signature summarizes the comientompressed data block,
which supports more effective ‘hitting’ of the target bleck answering queries. The
storage space overhead required by the BSS indexing sclselmg. iWe do not need
to generate a bit pattern for each record in a data block as sompressors do. With
respect to the computation overhead, the operations ofgtmgand scanning a signa-
ture can be carried out ifi(n) time. In the case of signature generatioiis the number
of elements in a PPG data stream. In the case of signatureiagan is the number of
compressed data blocks in a PPG data stream.

The remainder of the paper is organized as follows. In Se@iowve explain the
architecture of XCQ, which supports querying compressezmiohents. In Section 3,
we present in detail the DSP technique, outline its workiriggiples, and discuss the
parsing algorithm that realizes the technique. In Sectiameddiscuss the PPG strategy
and the BSS indexing scheme used in XCQ. In Section 5, we prése experimental
results of compressing real world XML documents using XCQjclw compare with
a range of state-of-the-art compressors. In Section 6, wiewerelated work and re-
cent developments in XML compression. Finally, in Sectiow@ give our concluding
remarks and discuss future research work pertaining to XCQ.

2. XCQ Architecture

In this section, we present the architecture of XCQ and dstiow the XCQ system
supports querying over partially decompressed docum@&hts.architecture of XCQ
comprises th&€€ompression Enginand theQuerying EngineThis prototype is devel-
oped using C++, the SAX XML parser of (Clark, 2004) and thepditirary of (Gailly
and Adler, 2003b).

Figure 3 shows the architecture of the Compression Engih&haconsists of the
following components: thBTD parser theDTD tree building modulghe SAX parser
the DSP modulgthe partition and indexing modulend thecompression module

We now briefly explain the functionality of these modulesdvel

— DTD Parser and DTD Tree Building modules
The DTD parser module parses the input DTD document and se&iys content.
The result is utilized by the DTD Tree Building Module to ctmst a DTD tree.
Elements that are used in multiple content models in the DfiéDrepresented by
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Fig. 4. The Architecture of the XCQ Querying Engine

separate nodes in the tree. The Tree Building Module asstiraethe DTD is non-
recursive.

— SAX parser
This module uses the SAX parser in (Clark, 2004) in order ttegate a SAX event
stream (Megginson, 2004) that corresponds to the given Xbttuchent.

— DSP module
This module implements the DSP algorithm, which we discns3dction 3. It takes
as input the DTD tree and the SAX event stream created by tHe Tr€e Build-
ing module and the SAX Parser module, respectively. It astfhe corresponding
structure stream and set of data streams.

— Partition and indexing (BSS) module
This module first partitions the incoming data streams, ggted by the DSP module,
into their corresponding sets of blocks. Each block comstainertain number of data
elements belonging to its corresponding PPG data streaembldule then generates
a BSS index for each data block in a PPG data stream.

— Compression module
The structure stream generated by the DSP module and thecith&®G data streams
generated by the partition and indexing module are comedesslivually and then
packed and merged into a single file. The compression mothderenages the data
buffer in order to minimize disk access frequency. This ntedibuilt on top of the
gzip compression libraries (Gailly and Adler, 2003b). Welddchave used the bzip2
library of (Seward, 2005) as an alternative in this modulewklver, we found that,
in general, bzip2 substantially increases both the corsfmesand query response
times.

XCQ supports querying of compressed documents that cortimithre Partitioned
Path-Based Data Groupinigy only partially decompressing them. The underlying idea
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used in the engine is that it only decompresses portionseo€timpressed document
that are relevant to the query evaluation. Figure 4 showsittigitecture of the Query-
ing Engine, which comprises thguery parser the query processoand thestorage
manager We now briefly explain the functionality of each of these gaments below.

— Query parser
The query parser converts a query formulated in XPath (CGiawk DeRose, 1999)
into an internal form used in XCQ. A set of tokens are used szdee the content,
such as the predicates and the relevant elements, of thedopty. The tokenized
query is then fed into the query processor.

— Query processor
The query processor is used to generate a setodss commandssed on the input
tokenized query. These access commands are used to irthstbrage manager to
access the required portions of the compressed file. The quecessor then eval-
uates the input query based on the results returned fromtdhe@ge manager. The
result generated by the query processor is passed backdtotiage manager, which
outputs the result as an XML document.

— BSS manager
The BSS manager is responsible for checking the data blggrlagires (i.e. BSS
indexes). When the engine is initialized, the BSS managmiddhe BSS indexing
information from the header of the input compressed docaimém main memory.
It subsequently helps the storage manager to determinéhethatcompressed data
block contains the required data elements based on its B&S.in

— Storage manager
The storage manager is responsible for instructing theatipgrsystem to access the
compressed files. It also provides buffer management tamiieidisk I/O overhead.

Although we have concentrated on the compression and aqugeagpects of XCQ
above, we should mention that any XML document compresstdX@Q can be faith-
fully recovered by decompression (except possibly forehekitespace characters that
are not significant). Since both the structure stream andatestreams are compressed
using gzip which is lossless, they can be recovered. Thetatel of the document
can be reconstructed from the structure stream, as showexdonple, in (Levene and
Wood, 2002). Finally, since the data streams in XCQ are&rittut in document order,
it is straightforward to reconstruct the original XML docant from the structure, the
data streams and the DTD.

3. DTD Tree and SAX Event Stream Parsing

In this section, we first give an overview of the DTD Tree andXSBvent Stream

Parsing (DSP) technique and highlight those of its feattirasare desirable for XML
compression. We then present the DSP algorithm and ilkestin@ idea with a detailed
example.

3.1. Overview of DSP

In DSP, we use a SAX event stream (Megginson, 2004) and a Ddédata structure
together to model a given XML document. The generation of & ®kent stream is
carried out by the XML parser in (Clark, 2004), whereas tteation of a DTD tree is
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<IELEMENT library (entry*)>

<IELEMENT entry (author, title, year, publisher?,
(paper|course_note|book), num_c

<IELEMENT author EMPTY>

<IATTLIST author name CDATA>

<IELEMENT title (#PCDATA)>

<IELEMENT year (#PCDATA)>

<IELEMENT course_note EMPTY>

<IELEMENT paper EMPTY>

<IELEMENT book EMPTY>

<IELEMENT num_copy (#PCDATA)>

Fig. 5. A DTD for a Library XML Document

carried out by the DTD tree building module. We now illustraur basic ideas about
building a DTD tree.

In Figure 5, we show a simple DTD for an XML document of librémjormation.
A DTD tree for the documentis built as follows. Each eleméat has a unary operator
(“?", “«", or “+") applied to it, such as “entry” and “publisher”, is transfeed into a
corresponding operator node, with the element operandra®ftine node, as shown
in Figure 2. This is a shorthand representation for an operatde with a single child.
Sequences of elements (separated by the “,” operator)sveegresented implicitly by
the ordering of child elements in the tree (as in Figure 2¢ssihodes corresponding to
the “,” operator are required because of the complexity efadbntent model defined in
the DTD.

Elements that comprise a set of alternatives, such as “(pa@persenote| book)”,
are transformed into a choice node with the correspondemmenhts as children. If the
operands of[" operator are expressions that are more complicated thagke €lement
name, then more elaborate subtrees are built. An elememdattributes, such as
“author”, is transformed into a tree node with the attrilsudssociated with the node.
PCDATA nodes are attached to those elements that are defin&P&DATA’ in the
DTD, such as “title”. The generated DTD tree is as shown iuFfeg.

The DTD tree and the SAX event stream are processed by a mhatiienplements
DSP as shown in Figure 6. The functions of this module areo(&xtract thestructural
information(Levene and Wood, 2002; Sundaresan and Moussa, 2001) feinpht
XML document that cannot be inferred from the DTD during tlaesing process, and
(2) to groupdata element@ the document based on their correspondieg pathsn
the DTD tree. By structural information we mean the infonimainecessary to recon-
struct the tree structure of the XML document. By data eleswee mean the attributes
and PCDATA within the document. The module parses the DTP Ine using a spe-
cial traversal sequence, which depends on the SAX eveatstieorder to explore the
required information. The output of this module is a stredmtructural information,
which we call thestructure streamand streams of XML data, which we call tdata
streams

DSP possesses a number of desirable features for XML datpression, detailed
as follows.

1. Less memory is required.
Since an XML document is converted into a SAX event streateatsof a tree data
structure, main memory usage of the compression engingngfisantly reduced. In
addition, our compressor can start the compression processthe DTD tree, which
is usually very small in size, has been constructed. As dtréisa thrashing problem
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Fig. 6. The DSP Module in XCQ

is avoided and the compression time is shortened, which snakeapproach more
efficient in terms of time and space than the pure DDT (Sursgarend Moussa,
2001) and SCA (Levene and Wood, 2002) approaches.

2. Partial decompression is supported.
Data values with related semantics that have the same ttbeimpshe DTD tree
are grouped together in the same data stream. It has beem shdlyer and Wil-
hite, 1994; Liefke and Suciu, 2000; Sundaresan and Mou§€d,)2hat data group-
ing assists generic text compressors to explore data rederes among data and
thus helps to increase the overall compression ratio. litiaddthe indexed PPG
compressed format supports querying over compressed gatarbborming partial
decompression.

3. No user expertise is required.
The streams output from the DSP module can be efficiently cessed without in-
volving user expertise. Our compressor has the advantagesome unqueriable
compressors such as XMill in that it does not require complaxmand line hints
that describe the structure of the compressed documentlar to specify the data
grouping. In XCQ, such information is extracted from the Difilan automated man-

ner.

3.2. DSP Algorithm

The DSP algorithm is implemented in the DSP module. It is digeckalizing a Pseudo-
Depth First (PDF) traversal strategy, which explores tlygiired information from the
DTD tree and SAX event streams, in order to generate thetsteiand data streams.

The PDF traversal strategy varies from the conventionathdégst traversal when
traversing the DTD tree. In particular, the traversal pattdterminedn the flybased on
the input SAX event stream. Using PDF traversal, the DSP theddaverses the DTD
tree in a depth-first traversal manner with respect to thati§AX event streanuntil
an operator node or a choice node is encountered. It themuats the subsequent
traversal path based on what node in the DTD tree the next S&Ktenatches.

We now present the details of the DSP algorithm. Let the ctimede in the DTD

tree be denoted by.
1. If vis a PCDATA node, the DSP module first computes the path framdbt node

of the DTD tree tov, and then outputs the current SAX event to the data stream

corresponding to this path. Finally, it moves to the nodéofaing v in depth-first
order and waits for the next relevant SAX event (either at-glement event or a

PCDATA event).
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<library>

<entry>
<author name="Tom"/>
<title>

Comp123: Operating System: Introducti

</title>
<year>2003</year>
<course_note/>
<num_copy>3</num_copy>

</entry>

<entry>
<author name="Jess Chu"/>
<title>A Better World</title>
<year>1874</year>
<publisher>Clear LTD.</publisher>
<book/>
<num_copy>2</num_copy>

</entry>

</li bréry>

Fig. 7. A Simple XML Document Conforming to the DTD Given in Figure 5

2. Ifvis an element node, the module process the attributes estbgnthe current SAX
event, waits for the next relevant SAX event and then movekeaamode following
v in depth-first order. For simplicity, we assume that allibtires are declared as
REQUIRED in the DTD. Optional attributes can be handled inamner similar to
case 4, while enumerated attributes can be handled siynitadase 6 below.

. If v is labeled with “;” the children of are processed in depth-first order.

4. If v is labeled with “?” then if the current SAX event matches aceeslant ofv,
the module outputs a 1-bit to the structure stream and psesdbe subtree rooted
at the child ofv; otherwise it outputs a 0-bit to the structure stream angdssiie
descendants af.

5. If v is labeled with %" or “+” then if the current SAX event matches a descendant
of v, the module outputs a 1-bit to the structure stream, presdab® subtree rooted
at the child ofv, and then processesagain; if the current SAX event does not match
a descendant af, it outputs a 0-bit to the structure stream and skips theatdetants
of v.

6. If v is labeled with 1" (a choice node) then the current SAX event must match a
descendant of one child of Assume that the index of this childiswith the leftmost
child having index 0. The module outputto the structure stream and processes the
subtree rooted at the child of

w

3.3. Example Execution of the DSP Algorithm

We now illustrate further the underlying ideas of the DSREthm by using the exam-
ple XML document of Figure 7, which conforms to the DTD givarFigure 5. When
the document is parsed, the stream of SAX events shown irré-RBjis generated. The
DTD tree and the SAX event stream are then processed by theria8&le. In Figure 9
we show the DSP process, which starts from the DTD tree’snmode (i.e. the “library”
node).

As the first SAX event token, which is a “library” start-elemesvent (i.e.Token
0 in Figure 8), matches the current DTD tree node (an elemeahd)adhe module tra-
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TokenO: Start element — "library"
Token1: Start element — "entry"
Token?2: Start element — "author", attO:name="Tom"
Token3: End element — "author"
Token4: Start element — "title"

Token5: PCDATA — "Compl23: Operating Systems — Introduction”
Token6: End element — "title"

Token7: Start element — "year"
Token8: PCDATA — "2003"

Token9: End element — "year"
Token10: Start element — "course_note"
Token11: End element — "course_note"
Token12: Start element — "num_copy"
Token13: PCDATA — "3"

Token12: End element — "num_copy"
Token15: End element — "entry"
Token16: Start element — "entry"
Token 17: Start element — "author", attO:name="Jess Chu"
Token18: End element — "author"
Token19: Start element — "title"
Token20: PCDATA — "A Better World"
Token21: End element — "title"
Token22: Start element — "year"
Token23: PCDATA — "1874"
Token24: End element — "year"
Token25: Start element — "publisher”
Token26: PCDATA — "Clear LTD."
Token27: End element — "publisher"
Token28: Start element — "book"
Token29: End element — "book"
Token30: Start element — "num_copy"
Token31: PCDATA — "3"

Token32: End element — "num_copy"
Token33: End element — "entry"

Token n : End element — "entry"
Tokenn+/ : End element — "library"

Fig. 8. A SAX Event Stream Generated Based on the XML Given in Figure 7

Fig. 9. Parsing of the Library DTD Tree
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verses to the subtree of the “library” node in a depth-firshnea using pathP; in
Figure 9. Hence, the “ent®) node becomes the current DTD tree node. The module
then processes the second SAX event token in the SAX eveatstr

Since the “entry” node is labeled with the«#” repetition operator, a bit is output,
the value of which depends on whether the current SAX evéettmatches the current
DTD tree node. As the second SAX event token is an “entry'tskment event (i.e. a
match), the module outputs a 1-bit and then traverses tiefpas shown in Figure 9.

The module then processes the third SAX event, which is athtatistart-element
event (i.e.Token 2in Figure 8). Since the occurrence of this element is requisethe
DTD, nothing is output to the structure stream. Howeveraitauthor” possesses a
“name” attribute, the attribute value, which comes with §&X event token, is output
to the data stream specified by the path “/library/entrflaut@name”. The module
then receives an “author” end-element event {iaken 3in Figure 8) and traverses to
the next child node of the “entgy node (i.e. the “title” node).

Similarly, when the module finds that the next SAX event tQkshich is a “ti-
tle” start-element event (i.doken 4in Figure 8), matches the current DTD tree node,
it traverses to its subtree and reaches the PCDATA node ysitigP,. The module
then expects a PCDATA event. When this event occurs witheveomp123: Op-
erating Systems - Introduction” (i.doken 5in Figure 8), the value is output to the
data stream whose path is “/library/entry/title/text)hhe module then receives a “title”
end-element event (i.&oken 6in Figure 8) and traverses to the next child node of the
“entry*” node (i.e. the “year” node) using the path.

The subtree under the “year” node is processed in a similainerato the “title”
node. The module then reaches the “publisher?” node and feaithe next SAX event
to occur. As the “publisher” node is labelled with an optiboperator “?”, a bit is
output to the structure stream. Since the next incoming Syefeis not a “publisher”
start event but rather a “cours®te” start event (i.eToken 10n Figure 8), the module
outputs a 0-bit. The module then traverses along patio the next child of the “entry*”
node, which is the choice [(’) node.

When the module reaches the choice node, it checks whiath @hthe choice node
matches the current SAX event. In this example, the modulis firis the second child,
which has an index 1, so it outputs a byte with value 1 to theactitre stream. The
module then traverses paithy, followed by pathP;, when it receives a “courseote”
end element event. The “nutopy” node is then processed in a similar manner to the
“title” node.

After processing the “nungopy” node, the module returns to the “entfynode
using pathP;> and waits for the next SAX event to occur. Since the next SAZnev
token is another “entry” start-element event, the prooggsaits in the manner described
above. The PDF traversal continues until all the tokens @W3AX event stream are
processed. After the DSP process is finished, a set of outiaanss that correspond
to the structural information and the path-based groupé¢a dalues (PCDATA and
attribute values) of the input XML document will have beemgeated.

4. Partitioned Path-Based Grouping

In this section, we discuss the PPG strategy, which is addptsupportpartial de-
compressiomwf a compressed document during query evaluation. We imgpaosaimal
indexing scheme over compressed XCQ documents in ordecilddte better query
processing. Finally, we present a cost analysis of PPG whalnating selection and
aggregation queries.
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Fig. 10.BSS Indexes in a PPG Data Stream

4.1. PPG Data Streams and BSS Indexing

As we have discussed in Section 3, the DSP module outputsatiaeetements of an
XML document to their corresponding data streams based @in tiee pathsin the
DTD tree Within the partitioned path-based data grouping (PPG)YQX@s0 partitions
the data streams into their corresponding sets of blocksh@®sn in Figure 1. Each of
these data blocks can be compressed or decompressed asvatuaidinit. This par-
titioning strategy helps the underlying generic text coasgor in XCQ to explore and
eliminate redundancies in the input data when these strasensompressed individu-
ally, thus increasing the overall compression ratio (Léefiad Suciu, 2000; Sundaresan
and Moussa, 2001).

As data elements are stored in a compressed data block irctiresponding data
streams, the minimum unit of data access in XCQ is a singlepcessed data block.
Unfortunately, accessing a compressed data block carbstitlostly. This is because
when a data block is accessed, XCQ needs to load the requatadbbck from disk
into main memory and then to decompress it, which involvesaeliowing three major
costs: the disk seek time during block searching, the datsster time during block
fetching, and the processor time used during block decaossprg and scanning.

In order to avoid unnecessary access to those data blodkartharelevant to the
input query, we impose a minimal indexing scheme over a PR&atiieam calle@lock
Statistic Signatur¢éBSS) indexing. BSS indexing over PPG data streams is minima
the sense that the scheme requires a very small amount of gpalctime resources
in XCQ. This indexing scheme is a simplified version of gignature file indexing
approaches (Faloutsos and Christodolakis, 1985; Lin atelims, 1992; Datta and
Thomas, 1999). Likérojection Signature Indexinig (Datta and Thomas, 1999), BSS
indexing is desirable for indexing block-oriented comgezsdata. We restrict our dis-
cussion of the BSS indexes that are created for those datnstrthat comprise only
numerical data. Assume that there ar®locks. TheBlock Statistic SignaturéBSS)
index of thei’th block is given byB; = (s;, b;) whereb; represents the set of data items
in the compressed block and the BSS index value: (min(b;), max(b;), sum(b;),
count(b;)), wheremin, max, sum andcount are the usual operations. We define the
value rangefor a BSS indexed blociB;, denoted as;, by (min(b;), max(b;)). The
same principle can be applied to alphabetical data with sodification of the BSS
index values.

Figure 10 depicts the underlying idea of the BSS indexingsuwh When generating
a PPG data stream for numerical data valuesta#istical signaturds generated for
each compressed data block. The signature summarizesttheadizes inside the block.
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When a query is evaluated, the compressed data blocks wargldata streams are
accessed by XCQ. If BSS indexes are built on the data streafilgring processs
carried out by XCQ as follows. Before a data block is fetchexmf the disk, XCQ
consults the corresponding BSS index and ignores thoséttatles that do not contain
the required record(s). To do this, XCQ checks the BSS sigieatf the data block and
decides whether the value range of that block overlaps Witghvalue range specified
in the query. If the two ranges overlap, which means that tita 8lockmay contain
the required record(s), then the data block is fetched andrdpressed for evaluation.
If the two ranges do not overlap, the block does contain the required record(s), in
which case the data block is not fetched.

4.2. Query Processing in XCQ

In this section we do not intend to present a detailed evialmatf XCQ queries in the
scope of this paper, since the mechanism of processing X@@eguand the optimiza-
tion issues involved need the full space of another papers,Tlte now only highlight
the principle that PPG data streams help to process somé& XBaty fragments over a
compressed XML document that conforms to the DTD in Figure 5.

We assume that the data streams for the compressed docuawertiden arranged
as shown in Figure 11. Let us consider the path query fragment

Q1 = “entry[author/@name="Jess’ and publisher/text()=a&lketd.]".

This query fragment selects those entry elements that hathedm author with name
‘Jess’ and a publisher whose value is ‘Clear Ltd.". The eatitun of the query depends
on both the document structure and the data values. Theaticalof the two predicates
in Q1 involves data stream$, andds. As dy andds contain string values, neither has
a BSS index associated with it. We first explain how XCQ euvasighe first predicate
“author/@name ='Jess”, id);. Since there is no BSS index dg, XCQ needs to de-
compress the whole data stream and to test each record itrélaensagainst the value
“Jess”. Assuming there are two records,andr in dy, satisfying the first predicate,
XCQ then needs to find the corresponding “publisher” rectodsvaluate the second
predicaté. To find the corresponding record indexes, XCQ parses thetste stream
against the DTD tree and calculates the record indexes andledamsly, . . . , d4 that
correspond to the matched record indexeginAssume that recorg, in the first block
and recordss in the second block of data streafy are the publisher records corre-
sponding to the name records that satisfy the first predicX@®Q decompresses only
the first and second blocks d§ and retrieves the two matched records to evaluate the
second predicate. Now assume that only recgrsiatisfies the second predicategn.
In order to construct the result, XCQ then decompressesdiresponding blocks in
data streamd;, d> andd,. The blocks needed are calculated from the matching record
indexes that were found during structure stream parsinguing that the required
records are each in the first block of the corresponding degare, XCQ needs to de-
compress only the shaded blocks in Figure 11 when procegsing

We can see that a smaller block size (i.e. using a finer paniitg) helps to improve
query performance, since a more precise portion of the cesspd documentis decom-
pressed during query evaluation. However, there is a todfde-that finer block parti-

L There are fewer elements in streathan in streamly since they are optional.
2 XCQ can calculate the blocks corresponding to the recorexies because a fixed blocking factor is used
for each data stream.
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tioning degrades the compression ratio, since fewer reahurids in the data streams
can be eliminated by a text compressor. In addition, we sadftthe selectivity of the
input query increases, the number of data blocks requirdx tdecompressed during
the query evaluation will also increase.

The BSS indexes also help to evaluate the query fragmenttving aggregation
like Q2 = “count(/fentry)” and@s; = “sum(//numcopy[text() > 10])". The former
counts the number of entry elements in the compressed XMumeat and the latter
sums the values of all those nutopy elements in the compressed XML document that
have a value greater than 10. @y, only the number of entry elements in the XML
document is needed to generate the answer. Thus, this tygpeeo§ can be answered
without decompressing the data streams. XCQ only needs$e plze structure stream
against the DTD tree in Figure 2 once. It then counts andmstilme number of “entsy’
node occurrences that are assigned bit value 1. More corslexural queries can be
processed by XCQ using a similar procedureQsy only one data stream is involved
and the result of the query is an aggregate value. In this ¢&3@ just needs to find
those data values in the data stredmthat are greater than 10 and then sum these
values. The BSS index constructed thr can be used to filter out those blocks that
contain only values less than or equal to 10, allowing XCQetcainpress only a subset
of the blocks ofd, in order to answer the query.

5. XCQ Compression Performance

In this section, we present the experimental results ofuatalg the performance of
XCQ compression. We study the scalability of XCQ for differsizes of XML docu-
ments, and examine critically the impacts of varying PPGhkizes and of imposing
BSS indexing on XCQ compression.

5.1. Experimental Design and Setup

We compare the performance of XCQ with that of the followihgee compressors: (1)
gzip, which is a widely used generic text compressorX®jill, which is a well known
XML-conscious compressor, and (Zfarind, which is a well-known XML-conscious
compressor that supports querying of compressed XML data.

All the experiments were run on a notebook computer with thewing configu-
ration:

— Pl machine with a clock rate of 600MHz.
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— 192 MB RAM of main memory.
— 20 GB hard disk (Ultra DMA/66, 4200 rpm, 512 KB cache, 12 msdare).

During the experiments, the number of processes runnindgi@miachine was mini-
mized in order to reduce unrelated influences. The time takenmpress and decom-
press the documents is obtained by running the correspgpdiatesses repeatedly five
times and taking the average of the last three runs. The reagon for doing this is
to reduce the disk I/O influences on the results by loadingwthele document into
the physical memory if possible (the same technique is adgadl in (Liefke and Su-
ciu, 2000)).

To evaluate the performance of the compressors, we useatsigeats that are com-
monly used in XML research (see the experiments in (Cher@22Liefke and Su-
ciu, 2000; Tolani and Haritsa, 2002)Neblog SwissProtDBLP, TPC-H, XMark, and
ShakespeariBosak, 1999; Ley, 2005; Apache Software Foundation, 28@bss-Prot,
2005; TPC-H, 2004; XMark, 2003). We now briefly introduceledataset.

1. Weblogis constructed from the Apache webserver log (Apache Soé&Wwaundation,
2005). The original documents are not in XML.

2. Swissprots constructed from the documents in the SwissProt data($asss-Prot,
2005) with the DNA sequences dropped. The original docusnam not in XML.

3. DBLPis acollection of the XML documents freely available in thBIIP archive (Ley,
2005). The documents are already in XML format.

4. TPC-His an XML representation of the TPC-H benchmark databasehb avail-
able from the Transaction Processing Performance Coure{C{H, 2004).

5. XMark is an XML document that models an auction website. It is gateer by the
tool provided in (XMark, 2003).

6. Shakespeares a collection of the plays of William Shakespeare in XML 3,
1999).

The first five data sets given above are regardediadg-centricas the XML doc-
uments have a very regular structure, whereas the last omgasded aslocument-
centricas the XML documents have a less regular structure. It ishaagntioning that
the XML-ized weblog dataset (XSize) is about 1.6 times bighan its non-XML-ized
data counterpart (Size), as shown in Figure 12. This is duleetdact that we need to
insert control information, such as element tags, into thmuchents.
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XML Doc Compressed CR; CRy
Dataset Size Document Size
(KB) (KB) (bits/byte (percentage %)

gzip XMIll gzip XMl gzip  XMill
Weblog 32722 1156 726 0.282 0.177 96.5 97.8
SwissProt 21254 2889 1739 1.088 0.654 86.4 91.8
DBLP 40902 7418 6149 1451 1203 819 85.0
TPC-H 32295 2912 1514 0.721 0.375 91.0 95.3
XMark 103636 13856 8313 1.07 0.642 86.6 92.0
Shakespeare 7882 2152 1986 2.184 2016 727 74.8

Table 1. Comparing Compression Rati6sR; andC Ry

5.2. Notion of Compression Ratio

There are two different expressions that are commonly usatetine theCompres-
sion Ratio(C R) of a compressed XML document (see the different definitiosed
in (Cheney, 2002; Liefke and Suciu, 2000; Min et al, 2003ahoand Haritsa, 2002)):

sizeof(compressed file) x 8

CR, =

bits/byte.
sizeof (original file) its/byte

sizeof(compressed file)

CRy = (1-— ) x 100%. (1)

sizeof (original file)
The first compression ratio, denotédR;, expresses thaumber of bits required to
represent a bytdJsingC R; a better performing compressor achieves a relatiosier
value. On the other hand, the second compression ratio tetbadr,, expresses the
fraction of the input document eliminatddsingC Rs, a better performing compressor
achieves a relativelighervalue.

We now illustrate the difference in both CR definitions byitig compression ratios
achieved by gzip and XMill in Table X’ R, shows that the fraction of an input docu-
ment eliminated by gzip is only a few percent smaller than ¢iaXMill. This means
that the performance of gzip and XMill based 61R; appear to be similar. However,
the actual size of a document compressed by XMill is genenallch smaller than that
of the the document compressed by gzip. For example, for thieldy document the
size after compression by XMill is about 60% of the size aflempression by gzip.
This is also true for the SwissProt, TPC-H and XMark docummedn the other hand,
as we can see in Table 1, the difference is better reflectedesatioC R, . For exam-
ple, we can see from Table 1 that there is an eleven-foldrdiffee between th€ R,
values for the Weblog (0.177 bits/bytes) and Shakespedig&gdits/bytes) datasets us-
ing XMill, while the difference between the correspondifidk, readings (i.e. 97.8%
and 74.8%) is only 23%. In addition, the notion behifi®; (i.e. the number of bits
required to represent a byte) gives us an intuition reladetti¢ amount of information
in the dataset, a commonly used notion in information th€¢8hannon, 1948). Thus,
we henceforth choose to adapf?; as the metric to measure compression performance.

5.3. Compression Performance of XCQ
We now present an empirical study of XCQ performance witlpeesto compression

ratio, compression time, and decompression time. All thmemical data used to con-
struct the graphs can be found in the tables listed in (XCQehplpx, 2005).
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5.3.1. Compression Ratio

Figure 13 shows the compression ratios that are achieveldeoabtove-mentioned six
datasets expressedin?; (bits/byte). Notably, both XMill and XCQ consistently aekie
a better compression ratio than gzip. The compression aatieeved is relatively high
for data-centric documents (i.e. Weblog, SwissProt, DRIF;-H and XMark) and rel-
atively low for document-centric documents (i.e. Shakespe This can be explained
by the fact that the Shakespeare document does not havelarrsgucture, and there-
fore XMill and XCQ cannot take much advantage of the docunsémicture during
compression.

It is interesting to note that the compression ratio achdeye XGrind is much
worse than that achieved by the other three compressors.igdue to the fact that
XGrind independently compresses the data values insideMin document, which is
one of the requirements of itomomorphic transformatiofTolani and Haritsa, 2002).
Thus, XGrind cannot take full advantage of eliminating tedundancies among data
values within a document. We now show that, in a statistieake, XCQ achieves a
significantly better compression ratio than XMill. The esiite for this is obtained
from performingformal hypothesis testing for two sample meé#cis Chapter 8 in
(Schefler, 1988)) on a set of 30 different XML datasets agtdl

Let A denote the difference in compression ratio between XMitl X€CQ on an
XML document.

A = Compression Ratio of XMil- Compression Ratio of XCQ.

Let the mean ofA be denoted ag. We check the following two hypotheses (the
first is the null hypothesis and the second is the alternatyothesis):

H():/J,:O
Ha:p>0 (2)

In these hypotheseg], represents the fact that XMill achieves an equally good
compression ratio (i.e. there is no statistical differgnaed H 4 represents the fact that
XCQ achieves a better compression, which involves a oredsiest on the positive
region of the distribution curve. From the results given able 10 in (XCQ Appen-
dix, 2005), we find that the sampteean(z) andvariance(o?) are0.034 and0.000622,
respectively. It should be pointed out that the Central Liffieorem (see Chapter 6.4
in (Schefler, 1988)) allows us to assume that the samplirtghaiton will be approx-



18 W. Ng et al

80

70 + [ Gzip i
O xmin
60 - XCQ b

M XGrind
50 - E

addl

‘Weblog SwissProt DBLP TPC-H XMark Shakespeare

Compression time in s

Fig. 14.Compression Time for Different Datasets

imately normal, even though our data may not be distributaanally in the parent
populations. We now use thetest to rejectd,, which is a standard statistical tech-
nique. Using the values af ando? above, we compute thatvalue = 7.476. If we

set the significance level ef = 0.01 (note that this is stricter than the acceptable level
of a = 0.05), the critical value = 2.33. As thez-value > 2.33, the null hypothesis
Hy is rejected on the positive side of the distribution curvljolt means thatf 4 is
supported. In other words, XCQ achieves a better compmesaim than XMill with a
confidence level of 99%. This indicates the effectivenessioftompression approach.
With the knowledge of the DTD, XCQ does not need to encode ashnstructural
information as XMill does in the compressed documents.

5.3.2. Compression Time

Figure 14 shows the compression time (expressed in secaglgjed by the compres-
sors to compress the XML documents. It is clear that gzip ed¢pms the other com-
pressors in this experiment. XMill had a slightly longer quession time than gzip,
and XCQ in turn had a slightly longer compression time thanilKMhe time overhead
can be explained by the fact that both XMill and XCQ introdacpre-compression
phase for re-structuring the XML documents to help the mampression process. In
the pre-compression phase, XCQ generates precise PPGtidatans by recursively
traversing the DTD tree. In contrast, XMill adopts by defar approximation match
on areversed DataGuidé determine which container a data value belongs to. This
grouping by enclosing tabeuristic runs faster than the grouping method used in XCQ
and thus XMill runs slightly faster than XCQ. It should be edthowever, that the data
grouping result generated by XMill may not be as precise asPRG data streams.
This complicates the search for related data values of an Xfslgment in the sepa-
rated data containers in a compressed file. In addition,dahgcession buffer window
size in XMill is set at 8MB, which is optimized solely for bettcompression (Liefke
and Suciu, 2000). Such a large chunk of compressed datatig to&ull or partial de-
compression. On the other hand, the compression time eshojr XGrind is generally
much longer than that required by gzip, XMill, and XCQ. XGtinses Huffman cod-
ing and thus needs an extra parse of the input XML documerdlteat statistics for a
better compression ratio, resulting in almost double thm@ssion time required in a
generic compressor (Tolani and Haritsa, 2002).
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5.3.3. Decompression Time

Figure 15 shows the decompression time (expressed in sgo@uired by the decom-
pressors. One observation from Figure 15 is that, in gengzgd outperforms the other
compressors in decompression and XMill runs faster than X&@ther observation
is that XGrind requires a much longer decompression time tha other five decom-
pressors. We also note that XMill decompresses Weblog dentsslightly faster than
gzip, which conforms to the results reported in (Liefke andi8, 2000).

The extra overhead required by XMill and XCQ to merge datasénto their orig-
inal positions in the structure after decompressing tha dantainers (or data streams)
may explain longer decompression times compared to gzipeMer, when the XMill-
compressed file size is much smaller than the gzip-compididsaize, as shown in the
case of the XMark dataset, it is possible that XMill achiexeecompression time that
is shorter than that of gzip, mainly due to the much smallgk déad overhead.

5.3.4. Scalability of XCQ Compression

We now study the scalability of XCQ with respect to the ott@npressors. As we have
observed that the compressors behave in a similar way fierdift document types, we
choose to us&veblogdocuments of different sizes, presented in Figure 12, addtee
set in this experiment.

Figure 16(a) shows the comparison between compressed @ntsines (expressed
in MB) obtained by different compressors. All four compi@ssscale roughly linearly
with respect to the input document size, which is consisattt the findings shown in
Figure 13. XCQ and XMill produce compressed documents of sinilar sizes, while
the poor performance of XGrind (consistently large gragjienexpected according to
Figure 13.

Figure 16(b) shows the performance of the compressors insteff compression
time (expressed in seconds), presented on a logarithnig €taarly, gzip outperforms
the other compressors consistently regardless of the demusize. In particular, both
XMill and XCQ have a longer compression time than gzip fodal€uments, since they
introduce a pre-compression phase. XMill takes about I@dgilonger than gzip to
complete the compression process, a finding consistentiétresults given in (Liefke
and Suciu, 2000), while XCQ, in turn, takes about 1.6 timegé&y than XMill. XGrind
takes considerably longer than XCQ.

Figure 16(c) shows the performance in terms of decompnesisiee (expressed in
seconds), presented on a logarithmic scale. It can be saeKRill completes the de-
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Fig. 16. Processing Weblog XML Documents in XCQ

compression process either more quickly than or in roudtdysame time as gzip. This
is consistent with the results in (Liefke and Suciu, 200@wdver, on the other bench-
mark XML documents we used, such as DBLP, Shakespeare, Bwisand TPC-H,
XMill requires a slightly longer decompression time tharipgicf. Figure 14). XCQ
takes 1.3 seconds longer than XMill to decompress a 32MB ¥¢KML document.
However, it should be noted that XCQ is able to process gsié&xyeonly partially de-
compressing the document, implying that the decompressierhead will be much
lower.

5.3.5. Summary and Discussion

To summarize, we find that both XMill and XCQ achieve bettenpoession ratios than
gzip at the expense of compression and decompression ti@€. Xeeds more time
than XMill to generate a PPG data stream in an XML documentmthe document
is compressed. This enables XCQ to achieve a slightly bettewpression ratio than
XMill. On the other hand, the compression performance of K&is consistently worse
than those of XMill and XCQ. This supports the findings repdiih (Tolani and Haritsa,
2002).
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5.4. Block Partitioning and BSS Indexing

In this section, we study the impact of varying the block simd imposing BSS indexing
on data streams in XCQ. We only present the effect on the 89MBIYYg dataset, since
other datasets exhibit similar behavior.

5.4.1. Effect of Block Partitioning

We now present the results related to the choice of blockwtmen partitioning PPG
data streams.

Figure 17(a) depicts the compression ratio that is achibyedCQ under different
block sizes. For ease of reference, we superimpose a dtteaii the figure to indicate
the compression ratio achieved by XCQ when no partitiongngnade. It can be seen
from the figure that the compression ratio degrades when kesrbkock size (i.e. a finer
partitioning) is used. The degradation in the compressiio lis due to the fact that
fewer redundancies in the data streams can be eliminatedext aompressor if each
block is compressed as a finer individual unit. When the bsiokis increased to around
5,000 records per block, the compression ratio achieveohgparable to that achieved
when no partitioning is made; the difference is less than Bigures 17(b) and 17(c)
show that both the compression and decompression timelsardegraded when a finer
partitioning is used. The degradation in the compressidrd@sompression times is due
to the fact that, if we set a smaller block size in XCQ, the nandf compression and
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Fig. 18.Effect of BSS Indexing

decompression operations is increased. Consequentliotédeoverhead is increased,
since each block is compressed and packed as an individital un

5.4.2. Effect of BSS Indexing

We now study the impact of BSS indexing on XCQ compressiothdrfollowing, we
compare the performance of two configurations of XCQ: th¢ ifirthe default config-
uration with BSS indexing, while the second is XCQ with BS8earingturned off
Figures 18(a) to 18(c) show comparisons of the compressita, compression
time, and decompression time, respectively, between tbectwfigurations of XCQ.
As can been seen, only small overheads are added to the cgsigoréoughly 5%) and
decompression (roughly 1% to 2%) times when BSS indexindapted in XCQ. There
is virtually no difference in the compression ratio betwdes two XCQ versions (i.e.
with and without BSS indexing). These results agree witheypectations, since the
BSS indexing scheme is designed to be minimal for blockrdeig compressed data.

5.4.3. Discussion

We find that a very fine partitioning (smaller than 3000 resqrdr block) on PPG data
streams imposes overheads in compression ratio, commnéssaie, and decompression
time. However, when using a finer data stream partitioningQXcan utilize the ad-

vantage of decompressing a more precise portion of the @sspd document when
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answering queries, as was discussed in Section 4.2. We medidodocks in a PPG data
stream in order to have efficient XCQ query processing. Owother hand the overhead
of BSS indexing is minimal, and is virtually independent ba block size in our study.

6. Related work

Because there are usually substantial redundancies emdbétican XML document
structure, information theory states that we should be &béehieve significant com-
pression of XML data. However, such embedded redundanaewatrivial to discover
and are largely ignored by conventional textual compressiech as gzip (Gailly and
Adler, 2003a) or bzip2 (Seward, 2005). Thus, many XML-cdmss compression tech-
nologies have been proposed and developed in recent years.

We are aware of two XML-conscious compression technolotiias make use of
DTDs. They areDifferential DTD Tree(DDT) compression in Millau (Sundaresan and
Moussa, 2001) and the Structure Compression Algorithm (S@8posed in (Levene
and Wood, 2002). The DDT and SCA approaches adopt a simitaprEssion strategy
that encodes only the information that cannot be inferrechfa given DTD. (A sim-
ilar approach to encoding a document with respect to a DTDuwsasl for a different
purpose in (Garofalakis et al, 2003).) The limitation of¢gb@pproaches is that, when
parsing an XML document in order to create a correspondieg structure, a large
amount of memory is required to store the generated DOM Tree.vigorous use of
virtual memory leads, in practice, to frequent thrashingisk I/O, which degrades the
efficiency of the compression process.

XMill (Liefke and Suciu, 2000) is a typical example of ungizxe XML com-
pression technolody It achieves a good compression ratio but the compressed dat
needs to go through a full decompression in order to evalgaggies. XMill has a
pre-compression phase introduced prior to the main comjregrocess. The pre-
compression phase is designed to perform the following tamnasks: first, to separate
the document structural information from the data, andisécim group data items with
related semantics in the same “container”. The structafatination includes element
tag names and attribute names. The data items include PCRAdAttribute values.

In order to group data items in an effective manner, XMillsis@& approximation
matching on theeversed DataGuidéGoldman and Widom, 1997; Liefke and Su-
ciu, 2000) to determine which containers data values befonfn its default setting,
data items with the same tag or attribute name are groupdértisame data container.
Each container is then compressed individually in the maimmression phase by us-
ing an ordinary text compressor such as gzip, whose outfbeis concatenated as a
single file. In addition, path expressions can be specifiecbagmand line arguments
to instruct the XMill compressor how to group data items. &fi@semantic compres-
sors can also be employed in order to pre-compress the pomémg data containers
before they are compressed by a text compressor. This furdhgs to achieve a better
compression ratio. However, user expertise and manuat effe needed to intervene in
the compression process.

Cheney describes a different XML-conscious encoding ddaltiplexed Hierar-
chical Modeling(MHM) in (Cheney, 2002). This offers better compressiomsathan
XMill at the expense of compression speed. Like XMill, themmressed documents
need to be decompressed before queries can be evaluateshon th

3 To the best of our knowledge, only XMill source code is retehand directly compilable.
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To avoid the need to decompress documents when evaluatergegusome re-
cent XML compression technologies provide direct accesotopressed documents.
XGrind (Tolani and Haritsa, 2002) is the first knogmeriableXML compressor. XGrind
adopts a homomorphic transformation strategy to transtmmXML document into a
specialized compressed format that preserves the syswactisemantics information of
the original document. All the tag and attribute names inctipressed document are
tokenized using a dictionary encoding approach, and eratioartype attribute values
are binary encoded. PCDATA and general attribute values@reressed individually
by using non-adaptive context-free Huffman encoding (hhaifi, 1952).

As the compressed document output by XGrind is a homomotgarisformation of
the input document, all operations that can be executedbg@riginal document, such
as querying, are preserved. These operations can be edesing existing techniques
and tools with some modifications. However, it should be didbat the advantage of
avoiding decompressi6nvhen querying is obtained at the expense of compression ra-
tio. For instance, XGrind compresses an 89MB Weblog XML dvoent into a 38MB
compressed document, while XMill is able to compress theesdotument to only
2.3MB.

Recent work by Buneman et al. (Buneman et al, 2003; Bunemah 2005) and
on XPRESS (Min et al, 2003) also allow queries to be evaludiegttly on com-
pressed XML documents. The technique adopted in (Buneman2003) compresses
the skeletonof a given XML document (essentially its structure) by usantgchnique
based on the idea of sharing common subtrees, therebydrarisf) the skeleton into
a directed acyclic graph (DAG). This DAG can be further coesged by replacing any
consecutive sequence of out-edges to the same vertex bgla sioige labeled with the
appropriate cardinality. The focus of Buneman et al.'s el framework is different
from our approach, in that skeleton compression aims atcieduhe size of the doc-
ument structure, rather than the textual data items in ticement, and the framework
does not use knowledge of a DTD to perform structure comjznesk (Buneman et
al, 2005), the skeleton and its corresponding data storagdata vectors) are used
together to support processing a fragment of XQuery. We @am the skeleton com-
ponent as a “pseudo-DTD”, since, roughly speaking, it prssa compact structure of
a given XML document, while a data vector in (Buneman et a3)0s essentially a
non-partitioned data stream.

Although the skeleton technique is able to compress thetstrei of an XML docu-
ment well, the overall compression ratio (including textleta) achieved by this frame-
work, as mentioned in (Buneman et al, 2003), is worse thanahXMill. However,
using the proposed compression technique, the authorsfigretudy the evaluation of
expressions in Core XPath (Buneman et al, 2003) and XQueargdBan et al, 2005).
The essence of evaluating such queries is done by manipgitht compressed skeleton
instance with only partial decompression. This technidlosva the navigational aspect
of query evaluation, which is responsible for a large poriid the query processing
time, to be carried out in main memory. Such techniques anept@mentary to our
work. In principle, we could extend our work to output a queggult in a compressed
format (i.e. outputting the related fragment of the stroe&tream and the data accord-
ing to their corresponding data streams).

XPRESS adopts mixed encoding methods on paths and achieweghebetter query
processing time (two to three times faster) than that of X@raccording to the exper-
imental results reported in (Min et al, 2003). However, a®ahentioned in (Min et

4 Note that range queries still require partial decompresisicXGrind.
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al, 2003), the compression ratio of XPRESS is in fact wors@ that of XMill. In ad-
dition, compression time is almost twice that of XMill, ssMEPRESS requires parsing
the input XML document twice in the compression process.

XQuec (Arion et al, 2004), which is a recent emerging XML coagsion technol-
ogy, claims that XQuery language can be fully supportede ksrind and XPRESS,
XQueC is able to compress an XML document as well as to avdidd&compres-
sion during query evaluation. However, the approach diffesm that used by XGrind
and XPRESS in that XQueC separates the XML structure fronXtfle data items
and uses a variety of auxiliary structures, such as DataSui@oldman and Widom,
1997), structure trees, and other indexes, in order to sugfficient evaluation of
XQuery (Boag et al, 2005). The individually compressed datas are organized into
containers, and they can be efficiently accessed by poiintenghe auxiliary data struc-
tures. However, it seems that the fine-grained compressiwgery likely to result in a
worse compression ratio than that of XMill. Moreover, theiiary data structures, to-
gether with the pointers to the individually compresseddigms, would incur a huge
space overhead.

7. Conclusions and Future Work

We have presented the development of XCQ, a prototype sydésigned to support
querying over compressed XML documents. Overall, we shaatby exploiting the
information presentin a DTD, XCQ is able to achieve bettenpression and to support
evaluation of a set of fundamental XPath queries. Our deveémt is based on the
following series of novel techniques.

— We propose®TD Tree and SAX Event Stream Pars{B$P), which enables users to
compress XML documents that conform to a given DTD. DSP do¢saguire user
expertise, such as providing data grouping commands, indimgression process.

— We proposed the Partitioned Path-Based Data Grouping (BPd&ta streams as an
effective block-oriented storage scheme for supportingigladecompression over
compressed data.

— We proposed a simple and minimal indexing scheme for PPG ddetgams called
theBlock Statistical SignatureBSS) indexing scheme. The BSS indexing scheme
designed to facilitate the fast recognition of target bkirtka PPG data stream.

We demonstrated in a diversified set of experimental reguBection 5 that XCQ
can achieve good compression and can compress XML-izedhtmag consistently
better than the generic text compressor gzip. It also aebiawslightly better compres-
sion ratio, at the expense of a greater compression time, dtsde-of-the-art systems
such as XMill, which is optimized only for compression rat8ased on the study con-
ducted in Section 5.3, we found that XCQ achieves a bettepeession ratio than gzip
at the expense of the compression and decompression tirnegpating it to another
well-known unqueriable compressor, XMill, XCQ performmghtly better in terms of
the compression ratio but worse in compression and decasipretime. XCQ was
found to be scalable for a wide range of XML benchmark docus)jeas listed in
Section 5.1. We also found that XCQ performs consistenttyeb¢han another well-
known queriable XML compressor, XGrind, in compressiorf@@nance. Admittedly,
the main drawback of DSP is that the compression and decasipretimes for process-
ing an XML document as a whole are relatively longer than ¢hafsthe generic com-
pressor gzip. The underlying reason for this is that XCQ sdedyenerate PPG data

is
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streams corresponding to the compressed XML document. tHawee argue that the
time overhead is worthwhile, since the generated PPG d&arss are able to support
queries over compressed documents in an efficient manngrattice, this time over-
head is a once-off consumption, since the generated datnstrcan be buffered when
XCQ is used in the context of an XML application.

The techniques presented in XCQ pave the way to developyaffatiged querying
engine that is able to support more sophisticated XPath &@ukXy queries. Currently,
we are also developing a cost model that is able to accouhtferthe response time is
affected by various parameters involved in the compressti@tegy, such as the block
size in a data stream, the number of clusters, the cost ohsaamdexes, the cost of
decompressing a block, query selectivity, data distrdsutind workload statistics. The
cost model can be incorporated into the XCQ engine for ogtingi query evaluation.
An orthogonal but promising direction related to query optiation is to employ a
caching technique in the engine to handle the PPG data bédcksompressed docu-
ment. An efficient caching scheme for fetching and updatmguressed data blocks
would help XCQ to minimize overheads, such as I/O costs,nduttie compression,
querying and updating of XML documents.

In the existing XCQ version, we have not considered the grolbf updating com-
pressed XML documents. However, an append operation cewd|ported by XCQ in
a straightforward manner. In order to append an XML fragnietite compressed doc-
ument, XCQ would first extract the structural informatiordatata information from
the fragment and then append the extracted informationdostiucture stream and
the corresponding data streams. Using this approach, belgttucture stream and the
last block of each updated data stream would have to be remeased. However, for
general update operations, we still need to devise effitgatiniques to deal with the
deletion and modification of fragments of compressed XMladat

Although our current implementation supports only nordrsive DTDs, it would
be straightforward to modify it to handle recursive DTDstle first place, the DTD
parser would build a DTD graph rather than a tree. When pgugidocument against
the DTD graph, the graph would still be traversed in deptst-birder. However there
would now be the possibility that a node in the graph could isted multiple times
while parsing a single path in the document, although thebmrrof times would be
bounded by the maximum depth of any node in the document.dardo determine
the correct data stream on which to output a text node, thiersysould consult the
stack maintained by the depth-first search of the DTD grapls tEchnique effectively
implements a deterministic PDA as shown to be necessaryudficient for the single-
pass)validation of XML documents by Segoufin and Vianu in (Béig and Vianu,
2002).
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