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Abstract. XML makes data flexible in representation and easily portable
on the Web but it also substantially inflates data size as a consequence of
using tags to describe data. Although many effective XML compressors,
such as XMill, have been recently proposed to solve this data inflation
problem, they do not address the problem of running queries on com-
pressed XML data. More recently, some compressors have been proposed
to query compressed XML data. However, the compression ratio of these
compressors is usually worse than that of XMill and that of the generic
compressor gzip, while their query performance and the expressive power
of the query language they support are inadequate.

In this paper, we propose XQzip, an XML compressor which supports
querying compressed XML data by imposing an indexing structure, which
we call Structure Index Tree (SIT), on XML data. XQzip addresses both
the compression and query performance problems of existing XML com-
pressors. We evaluate XQzip’s performance extensively on a wide spec-
trum of benchmark XML data sources. On average, XQzip is able to
achieve a compression ratio 16.7% better and a querying time 12.84 times
less than another known queriable XML compressor. In addition, XQzip
supports a wide scope of XPath queries such as multiple, deeply nested
predicates and aggregation.

1 Introduction

XML has become the de facto standard for data exchange. However, its flexibility
and portability are gained at the cost of substantially inflated data, which is a
consequence of using repeated tags to describe data. This hinders the use of
XML in both data exchange and data archiving. In recent years, many XML
compressors have been proposed to solve this data inflation problem. There are
two types of compressions: unqueriable compression and queriable compression.

The unqueriable compression, such as XMill [8], makes use of the similarities
between the semantically related XML data to eliminate data redundancy so
that a good compression ratio is always guaranteed. However, in this approach
the compressed data is not directly usable; a full chunk of data must be first
decompressed in order to process the imposed queries.



. <site> 11. <increase>$1.50</increase>  21. <bid> 31. <open_auction id="open5">

1

2. <open_auctions> 12. </bid> 22. <date>11/29/2002</date> 32. <initial>$8.50</initial>

3. <open_auction id="open1"> 13. <seller person="person71"/>  23. <increase>$0.50</increase> 33. <bid>

4. <initial>$12.00</initial> 14. </open_auction> 24. </bid> 34.  <date>08/20/2002</date>

5. <bid> 15. <open_auction id="open2"> 25. <seller person="person15"/> 35. <increase>$5.00</increase>
6. <date>12/02/2000</date> 16. <initial>$500.00</initial> 26. </open_auction> 36. </bid>

7.  <increase>$2.00</increase> 17. <seller person="person8"/> 27. <open_auction id="open4"> 37. <seller person="person7"/>
8. </bid> 18. </open_auction> 28. <initial>$100.00</initial> 38. </open_auction>

9. <bid> 19. <open_auction id="open3"> 29. <seller person="personl1"/>  39. </open_auctions>

10. <date>12/03/2000</date> 20. <initial>$1.50</initial> 30. </open_auction> 40. </site>

Fig. 1. A Sample Auction XML Extract
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Fig. 3. SIT of the Auction Structure Tree

The queriable compression encodes each of the XML data items individually
so that the compressed data item can be accessed directly without a full de-
compression of the entire file. However, the fine-granularity of the individually
compressed data unit does not take advantage of the XML data commonalities
and, hence, the compression ratio is usually much degraded with respect to the
full-chunked compression strategy used in unqueriable compression.

The queriable compressors, such as XGrind [14] and XPRESS [10], adopts
homomorphic transformation to preserve the structure of the XML data so that
queries can be evaluated on the structure. However, the preserved structure is
always too large (linear in the size of the XML document). It will be very in-
efficient to search this large structure space, even for simple path queries. For
example, to search for bidding items with an initial price under $10 in the com-
pressed file of the sample XML extract shown in Fig. 1, XGrind parses the entire
compressed XML document and, for each encoded element/attribute parsed, it
has to match its incoming path with the path of the input query. XPRESS makes
an improvement as it reduces the element-by-element matching to path-by-path
matching by encoding a path as a distinct interval in [0.0,1.0), so that a path can
be matched using the containment relationships among the intervals. However,
the path-by-path matching is still inefficient since most paths are duplicate in
an XML document, especially for those data-centric XML documents.



Contributions. We propose XQzip, which has the following desirable features:
(1) achieves a good compression ratio and a good compression/decompression
time; (2) supports efficient query processing on compressed XML data; and (3)
supports an expressive query language. XQzip provides feasible solutions to the
problems encountered with the queriable and unqueriable compressions.

Firstly, XQzip removes the duplicate structures in an XML document to
improve query performance by using an indexing structure called the Structure
Index Tree (or SIT). An example of a SIT is shown in Fig. 3, which is the index
of the tree in Fig. 2, the structure of the the sample XML extract in Fig. 1.
Note that the duplicate structures in Fig. 2 are eliminated in the SIT. In fact,
large portions of the structure of most XML documents are redundant and can
be eliminated. For example, if an XML document contains 1000 repetitions of
our sample XML extract (with different data contents), the corresponding tree
structure will be 1000 times bigger than the tree in Fig. 2. However, its SIT will
essentially have the same structure as the one in Fig. 3, implying that the search
space for query evaluation is reduced 1000 times by the index.

Secondly, XQzip avoids full decompression by compressing the data into a
sequence of blocks which can be decompressed individually and at the same
time allow commonalities of the XML data to be exploited to achieve a good
compression. XQzip also effectively reduces the decompression overhead in query
evaluation by managing a buffer pool for the decompressed blocks of XML data.

Thirdly, XQzip utilizes the index to query the compressed XML data. XQzip
supports a large portion of XPath [15] queries such as multiple and deeply nested
predicates with mixed value-based and structure-based query conditions, and
aggregations; and it extends an XPath query to select an arbitrary set of distinct
elements with a single query. We also give an easy mapping scheme to make the
verbose XPath queries more readable. In addition, we devise a simple algorithm
to evaluate the XPath [15] queries in polynomial time in the average-case.

Finally, we evaluate the performance of XQzip on a wide variety of benchmark
XML data sources and compare the results with XMill, gzip and XGrind for
compression and query performance. Our results show that the compression ratio
of XQzip is comparable to that of XMill and approximately 16.7% better than
that of XGrind. XQzip’s compression and decompression speeds are comparable
to that of XMill and gzip, but several times faster than that of XGrind. In query
evaluation, we record competitive figures. On average, XQzip evaluates queries
12.84 times faster than XGrind with an initially empty buffer pool, and 80 times
faster than XGrind with a warm buffer pool. In addition, XQzip supports efficient
processing of many complex queries not supported by XGrind. Although we are
not able to compare XPRESS directly due to the unavailability of the code, we
believe that both our compression and query performance are better than that of
XPRESS, since XPRESS only achieves a compression ratio comparable to that
of XGrind and a query time 2.83 times better than that of XGrind, according
to XPRESS’s experimental evaluation results [10].

Related Work. We are also aware of another XML compressor, XQueC [2],



which also supports querying. XQueC compresses each data item individually
and this usually results in a degradation in the compression ratio (compared to
XMill). An important feature of XQueC is that it supports efficient evaluation
of XQuery [16] by using a variety of structure information, such as dataguides
[5], structure tree and other indexes. However, these structures, together with
the pointers pointing to the individually compressed data items, would incur
huge space overhead. Another queriable compression is also proposed recently in
[3], which compresses the structure tree of an XML document to allow it to be
placed in memory to support Core XPath [6] queries. This use of the compressed
structure is similar to the use of the SIT in XQzip, i.e. [3] condenses the tree
edges while the SIT indexes the tree nodes. [3] does not compress the textual
XML data items and hence it cannot be served as a direct comparison.

This paper is organized as follows. We outline the XQzip architecture in
Section 2. Section 3 presents the SIT and its construction algorithm. Section 4
describes a queriable, compressed data storage model. Section 5 discusses query
coverage and query evaluation. We evaluate the performance of XQzip in Section
6 and give our concluding remarks and discuss our future work in Section 7.

XQzip Repository

Compressed blocks

Compressor
(gzip)
XML Parser
Document Index
c

Input SAX

SIT (—I Query Processor

Fig. 4. Architecture of XQzip

2 The Architecture of XQzip

The architecture of XQuzip consists of four main modules: the Compressor, the
Index Constructor, the Query Processor, and the Repository. A simplified dia-
gram of the architecture is shown in Fig. 4. We describe the operations related
to the processes of compression and querying.

For the compression process, the input XML document is parsed by the SAX
Parser which distributes the XML data items (element contents and attribute
values) to the Compressor and the XML structure (tags and attributes) to the
Index Constructor. The Compressor compresses the data into blocks which can
be efficiently accessed from the Hashtable where the element/attribute names
are stored. The Index Constructor builds the SIT for the XML structure.

For the querying process, the Query Parser parses an input query and then
the Query Ezecutor uses the index to evaluate the query. The Executor checks
with the Buffer Manager, which applies the LRU rule to manage the Buffer Pool
for the decompressed data blocks. If the data is already in the Buffer Pool, the



Executor retrieves it directly without decompression. Otherwise, the Executor
communicates with the Hashtable to retrieve the data from the compressed file.

3 XML Structure Index Trees (SITs)

In this section we introduce an effective indexing structure called a Structure
Index Tree (or a SIT) for XML data. We first define a few basic terminologies
used to describe the SIT and then present an algorithm to generate the SIT.

3.1 Basic Notions of XML Structures

We model the structure of an XML document as a tree, which we call the struc-
ture tree. The structure tree contains only a root node and element nodes. The
element nodes represent both elements and attributes. We add the prefix ‘@Q’ to
the attribute names to distinguish them from the elements. We assign a Hash ID
to each distinct tag/attribute name and store it in a hashtable, i.e. the Hashtable
in Fig. 4. The XML data items are separated from the structure and are com-
pressed into different blocks accessible via the Hashtable. Hence, no text nodes
are considered in our model. We do not model namespaces, PIs and comments
for simplicity, though it is a straightforward extension to include them.

Formally, the structure tree of an XML document is an unranked, ordered
tree, T'= (Vp, Ep, ROOT), where Vi and Er are the set of tree nodes and edges
respectively, and ROOT is the unique root of T'. We define a tree node v € Vp
by v = (eid, nid, ext), where v.eid is the Hash ID of the element/attribute being
modelled by v; v.nid is the unique node identifer assigned to v according to
document order; initially v.ext = {v.nid}. We represent each node v by the pair
(v.eid,v.nid). The pair (ROOT.eid, ROOT .nid) is uniquely assigned as (0, 0).
In addition, if a node v has n (ordered) children (81,...,03,), their order in T
is specified as: v.f;.eid < v.05.eid < --- < v.0,.eid; and if v.5;.eid = v.0;41.€id,
then v.8;.nid < v.B;41.nid. This node ordering accelerates node matchings in T’
by an approximate factor of 2, since we match two nodes by their eids and on
average, we only need to search half of the children of a given node.

Definition 1. (Branch and Branch Ordering) A branch of T, denoted as
b, is defined by b =vy — -+ — v; — -+ — vy, where vy, s a leaf node in T and
vi—1 1s parent of v; for 0 < i < p. Let B be a set of branches of a tree or a subtree.
A branch ordering < on B is defined as: Ybi,by € B, let by = ug — -+ —
and by = vg — -+ — v, by < by implies that there exists some i such that
ui.nid = vi.nid and w;y1.nid # virq.nid, and either (1) wiyq.€id < viyq.eid, or
(2) witq.eid = vip1.€id and u;y1.nid < v;y1.nid.

For example, given b; = (0,0) — --- — (3,4), by = (0,0) — -+ — (9,11), b3
= (0,0) — --- — (3,20) in Fig. 2, we have by < by, by < bz and by < bz. We can
describe a tree as the sequence of all its branches ordered by <. For example,
the subtree rooted at the node (17,27) in Fig. 2 can be represented as: (17,27)
e (3.28) < (17,27) — -+ — (33,29) < (17,27) — -+ - — (70,31), while the



tree in Fig. 3 is represented as: z(3,4) < x(9,8) < ¢(89,7) < x(33,5) < z(70,13)
=< x(3,15) < (33,16) < x(70,18), where = denotes (0,0) — --- — for simplicity.

Definition 2. (Sit-Equivalence) Two branches, by = ug — -+ — u, and
by = vg — -+ — vg, are SIT-equivalent if u;.eid = v;.eid for 0 < i < p and
p = q. Two subtrees, t; = byg < -+ < by and to = byg < -+ < boy,, are
SIT-equivalent if t1.ROOT and t2.ROOT are siblings and, by; and by; are SIT-
equivalent for 0 < i <m and m = n.

For example, in Fig. 2, the subtrees rooted at the nodes (17,14) and (17,27)
are SIT-equivalent subtrees since every pair of corresponding branches in the two
subtrees are SIT-equivalent. The SIT-equivalent subtrees are duplicate struc-
tures in XML data and thus we eliminate this redundancy by using a merge
operator defined as follows.

Definition 3. (Merge Operator) A merge operator, Merger, is defined as:
Merger: (t1,t2) — t, where t1 and to are SIT-equivalent and t1.ROOT.nid <
thOOTTLZd, t1 = big < -+ < b1y and tyg = byy < - < b2n; and by; =
Ug — -+ — Up and by = vg — -+ — v,. For 0 < i < n, Merger assigns
uj.ext = uj.ext Uv;.ext for 0 < j < p, and then deletes by;.

Thus, the merge operator merges t; and ¢y to produce ¢, where t is SIT-
equivalent to both ¢; and ¢5. The effect of the merge operation is that the
duplicate SIT-equivalent structure is eliminated. We can remove this redundancy
in the structure tree to obtain a much more concise structure representation, the
Structure Index Tree (SIT), by applying Merger iteratively on the structure tree
until no two SIT-equivalent subtrees are left. For example, the tree in Fig. 3 is
the SIT for the structure tree in Fig. 2. Note that all SIT-equivalent subtrees in
Fig. 2 are merged into a corresponding SIT-equivalent subtree in the SIT.

A structure tree and its SIT are equivalent, since the structures of the deleted
SIT-equivalent subtrees are retained in the SIT. In addition, the deleted nodes
are represented by their node identifiers kept in the node exts while the deleted
edges can be reconstructed by following the node ordering. Since the SIT is
in general much smaller than its structure tree, it allows more efficient node
selection than its structure tree.

3.2 SIT Construction

In this section, we present an efficient algorithm to construct the SIT for an XML
document. We define four node pointers, parent, previousSibling, nextSibling,
and firstChild, for each tree node. The pointers tremendously speed up node
navigation for both SIT construction and query evaluation. The space incurred
for these pointers is usually insignificant since a SIT is often very small.

We linear-scan (by SAX) an input XML document only once to build its
SIT and meanwhile we compress the text data (detailed in Section 4). For ev-
ery SAX start/end-tag event (i.e. the structure information) parsed, we invoke
the procedure construct_SIT, shown in Fig. 5. The main idea is to operate on a



procedure construct_SIT (SAX-Event)
/* stack is an array keeping the start/end tag information (either START-TAG or END-TAG);
top indicates the stack top; ¢ is the current node pointer;  count initially is set to 0 */

begin

1. if (SAX-Event is a start-tag event) /* an attribute is also a start-tag event */

2. create a new node, u,where u.eid := hash (SAX-Event) and count := count +1, u.nid := count,

3. if (stack [top] = START-TAG)

4. assign u as the firstchild of ¢;

5. else

6. insert # among the siblings of ¢ according to the SIT node ordering;

7. top :=top + 1; stack [top] := START-TAG;

8. else if (SAX-Event is an end-tag event) /* an end-tag event is also passed after processing an attribute value */
9. if (subtree (c) is SIT-equivalent to subtree (one of ¢’s preceding siblings, u)) /* check by a parallel DFS */
10. Merge,.( (subtree (u), subtree (c) );

11. if (stack [top] = START-TAG) /% ¢ has no child and the START-TAG was pushed for ¢ */

12. if (stack [top — 1] = START-TAG) /% ¢ is the first child of its parent */

13. stack [top] := END-TAG; /* finish processing ¢ */

14. else /% ¢ has preceding sibling(s) (processed) */

15. top :=top — 1; /* use the previous END-TAG to indicate ¢ has been processed */

16. else /* the END-TAG indicates ¢’s child processed, stack [top—1] must be START-TAG indicating ¢ not processed */
17. if (stack [top — 2] = START-TAG) /* ¢ is the first child of its parent */

18. top := top — 1; stack [top] := END-TAG; /* remove ¢’s child’s stack and indicates ¢ has been processed */

19. else /* ¢’s preceding sibling(s) processed */

20. top :=top —2; /* use ¢’s preceding sibling’s END-TAG, i.e. stack [top-2], to indicate ¢ has been processed */
21. c:=u;

end

Fig. 5. Pseudocode for the SIT Construction Procedure

“base” tree and a constructing tree. A constructing tree is the tree under con-
struction for each start-tag parsed and it is a subtree of the “base” tree. When
an end-tag is parsed, a constructing tree is completed. If this completed subtree
is SIT-equivalent to any subtree in the “base” tree, it is merged into its SIT-
equivalent subtree; otherwise, it becomes part of the “base” tree. We use a stack
to indicate the parent-child or sibling-sibling relationships between the previous
and the current XML element to build the tree structure. Lines 11-20 maintain
the consistency of the structure information and skip redundant information.
Hence, the stack size is always less than twice the height of the SIT.

The time complexity is O(|Vr|) in the average-case and O(|SIT||Vr|) in
the worse-case, where |Vr| is the number of tags and attributes in the XML
document and |SIT| is the number of nodes in the SIT. O(|SIT||Vr|) is the
worst-case complexity because we at most compare and merge 2|SIT| nodes for
each of the |Vr| nodes parsed. However, in most cases only a constant number
of nodes are operated on for each new element parsed, resulting in the O(|Vr|)
time. The space required is |Vr| for the node exts and at most 2|SIT| for the
structure since at all time, both the “base” tree and the constructing tree can
be at most as large as the final tree (i.e. the SIT).

SIT and F&B-Index. The SIT shares some similar features with the F&B-
Index [1, 7]. The F&B-Index uses bisimulation [7, 12] to partition the data nodes
while we use SIT-equivalence to index the structure tree. However, the SIT pre-
serves the node ordering whereas bisimulation preserves no order of the nodes.
This node ordering reduces the number of nodes to be matched in query evalu-



ation and in SIT construction by an average factor of 50%. The F&B-Index can
be computed in time O(mlogn), where m and n are the number of edges and
nodes in the original XML data graph, by first adding an inverse edge for every
edge and then computing the 1-Index [9] using an algorithm proposed in [11].
However, the memory consumption is too high, since the entire structure of an
XML document must be first read into the main memory.

4 A Queriable Storage Model for Compressed XML Data

In this section, we discuss a storage model for the compressed XML data. We
seek to balance the full-chunked and the fine-grained storage models so that the
compression algorithm is able to exploit the commonalities in the XML data to
improve compression (i.e. the full-chunk approach), while allowing efficient re-
trieval of the compressed data for query evaluation (i.e. the fine-grain approach).

We group XML data items associated with the same tag/attribute name
into a same data stream (c.f. this technique is also used in XMill [8]). Each data
stream is then compressed separately into a sequence of blocks. These compressed
blocks can be decompressed individually and hence full decompression is avoided
in query evaluation. The problem is that if a block is small, it does not make
good use of data commonalities for a better compression; on the other hand, it
will be costly to decompress a block if its size is large. Therefore, it is critical
to choose a suitable block size in order to attain both a good compression ratio
and efficient retrieval of matching data in the compressed file.

We conduct an experiment (described in Section 6.1) and find that a block
size of 1000 data records is feasible for both compression and query evaluation.
Hence we use it as the default block size for XQzip. In addition, we set a limit of
2 MBytes to prevent memory exhaustion, since some data records may be long.
When either 1000 data records have been parsed into a data stream or the size
of a data stream reaches 2 MBytes, we compress the stream using gzip, assign
an id to the compressed block and store it on disk, and then resume the process.

The start position of a block in the compressed file is stored in the Element
Hashtable. (Note that gzip can decompress a block given its start position and
an arbitrary data length.) We also assign an id to each block as the value of
the maximum node identifier of the nodes whose data is compressed into that
block. To retrieve the block which contains the compressed data of a node, we
obtain the block position by using the containment relationship of the node’s
node identifier and the ids of the successive compressed blocks of the node’s data
stream. The position of the node’s data is kept in an array and can be obtained
by a binary search on the node identifier (in our case, this only takes log1000
time since each block has at most 1000 records) and the data length is simply
the difference between two successive positions.

A desirable feature of the queriable compressors XGrind [14] and XPRESS
[10] is that decompression is avoided since string conditions can be encoded
to match with the individually compressed data, while with our storage model
(partial) decompression is always needed for the matching of string conditions.



However, this is only true for exact-match and numeric range-match predicates,
decompression is still inevitable in XGrind and XPRESS for any other value-
based predicates such as string range-match, starts-with and substring matches.
To evaluate these predicates, our block model is much more efficient, since de-
compressing z blocks is far less costly than decompressing the corresponding
1000z individually compressed data units. More importantly, as we will discuss
in Section 5.2, our block model allows the efficient management of a buffer pool
which significantly reduces the decompression overhead, while the compressed
blocks serve naturally as input buffers to facilitate better disk reads.

5 Querying Compressed XML Using SIT

In this section, we present the queries supported by XQzip and show how they
are evaluated on the compressed XML data.

5.1 Query Coverage

Our implementation of XQzip supports most of the core features of XPath 1.0
[15]. We extend XPath to select an arbitrary set of distinct elements by a single
query and we also give a mapping to reduce the verbosity of the XPath syntax.

XPath Queries. A query specifies the matching nodes by the location path. A
location path consists of a sequence of one or more location steps, each of which
has an axis, a node test and zero or more predicates. The axis specifies the
relationship between the context node and nodes selected by the location step.
XQzip supports eight XPath axes: ancestor, ancestor-or-self, attribute, child,
descendant, descendant-or-self, parent and self. XQzip simplifies the node test by
comparing just the eids of the nodes. The predicates use arbitrary expressions,
which can in turn be a location path containing more predicates and so on
recursively, to further refine the set of nodes selected by the location step.
Apart from the comparison operators (=, | =, >, <, >= and <=) and
string operators (contains, i.e. substring, and starts-with), XQzip supports a com-
plete set of standard aggregation operators (count and sum, average, minimum
and mazimum). XQzip also allows structure-based, value-based, and aggregation
predicates to be combined by the logical operators (not, or and and).

XPath Group Queries. An XPath query can only specify one distinct element
to be selected at a time. We modify the XPath syntax slightly to make it possible
to select an arbitrary set of distinct elements by a single query, which we call an
XPath group query. We use “(” and “)” to indicate the grouping, and “+” to
represent the union of elements in a group. For example, the XPath group query
“(//Orderitem|[/discount]. >= 20% and . <= 50%)]/(Qid + quantity + price))”
selects three elements from “Orderitem” with a “discount” of 20-50%.
Evaluating an XPath group query is much more efficient than evaluating a
group of XPath queries, since all location paths inside a group share the same



context node addressed by the location path just preceding the group. For ex-
ample, given (I/(lop+ -+ +1,)), we evaluate [ only once for all [;.

Table 1. Abbreviated Syntax

Full Form | Abbr.JFull Form Abbr. |Full Form | Abbr. |Full Form | Abbr. |Full Form | Abbr.
self . |descendant /| |logical-not ! |sum() $S |text() $T
child / |ancestor-or-self .\ |logical-or | count() $C |wildcard *
parent \ |descendant-or-self] /. |logical-and] & |max() $U |contains 2=
ancestor \\ |root .. _laverage() $A |min() $L |starts-with =

Abbreviated Syntax. Although the syntax of XPath is straightforward, it is
rather verbose as a query language. We therefore map the XPath axes, together
with the functions and operators, to more concise syntactic abbreviations, in
addition to those existing standard XPath abbreviated syntax [15]. We show
the mapping in Table 1. In order to make parsing easier, our query parser re-
quires that predicates in queries be fully parenthesized. Another difference from
XPath’s abbreviated syntax is that we use ‘..” to represent the root whereas
XPath uses ‘..” as the parent of the context node, since parent is already repre-
sented by ‘\’ and we wish to address the root directly in a query.

5.2 Query Evaluation

XQzip evaluates queries in four major phases: (1) query parsing; (2) node selec-
tion; (3) data retrieval; and (4) query result output.

Query Parsing. The query parser translates an input query into a stream
of events represented as integers, with positive values representing the XML
elements (i.e. their Hash IDs) and negative values representing other expressions.

Node Selection. Node selection is critical in query evaluation. A survey [6]
shows that contemporary XPath query engines evaluate XPath queries in ex-
ponential time. The cause of the exponential time evaluation is that for each
location step, a set of nodes of size linear in the size of the document may be
selected and each node in this set may in turn select a linear number of nodes
for the next location step. Hence, the time complexity is | D|/?!, where |D] is the
document size and |Q)| the query size. Although [6] proposes a polynomial-time
XPath evaluation algorithm, it is not applicable with our setting. We propose a
simple algorithm which gives polynomial time complexity in the average case.

Our algorithm basically divides an axis closure into two disjoint areas. We
associate each node in the SIT a wvisited flag. A subtree is wisited if its root’s
visited flag is set. The union of all visited subtrees in an axis closure with respect
to a context node forms the visited_closure, and the unvisited_closure is simply
the difference between the axis closure and the visited _closure.

We give the core of our query evaluation algorithm in Fig. 6. The idea is as
follows: on evaluating s;...s, where a; is the descendant or descendant-or-self



axis (and similarly if a; is the ancestor or ancestor-or-self axis) w.r.t. a context
node u, the subtree rooted at w is set to be visited when the evaluation process
finishes s;...s, w.r.t. u (regardless of the evaluation result), since the result
of s;...s, will always be the same for the same context node u. Moreover, an
ancestor always includes its descendants and hence we set a node visited when
it is included in the result set. Consequently, as the evaluation process goes
on, more and more subtrees will be visited and the unvisited_closure becomes
smaller and even vanishes. This implies that the nodes selected at each location
step are no longer linear at later stages of the query evaluation. Hence, we have
the average-case polynomial query evaluation time in the size of the SIT.

The worst-case time complexity is still exponential, i.e. |SIT ||Q|, since the
unvisited_closure has no effect on predicates. Nonetheless, predicate evaluation
rarely checks all nodes specified by the predicate’s location path but it terminates
as soon as one evaluation returns true. More importantly, |STT| is often orders of
magnitude smaller than |D|, implying that |SIT|!?! is much smaller than |D|I9l.
The space complexity is O(|SIT| + |Vr|): O(]SIT|) since we only hold the SIT
in memory and all nodes in the result set are distinct (we do not count the space
requirements for the buffer pool and for writing query result) and O(|Vr|) space
is needed to indicate which elements are matched for value-based predicates.

procedure evaluate_query (u, i, Q)

/* u is the context node and i is initially setto O; Q: sp. .. s;. .. s,, where s; = < a;, t;, p; > */
begin

1. for each node v in unvisited_closure ( a; (u) ) do

2. if (#; (v) is true and for all j, p; is true for v )

3. if(i<n)

4. evaluate_query (v, i + 1, Q);

5. else /* i=n */

6. include v in the query result set and set v.visited_flag;
7. if (a;,=\\)

8. set v.visited_flag;

9. ifCa,=//)

10. set u.visited_flag;

end

Fig. 6. Core Query Evaluation Algorithm

Data Retrieval and Decompression. We have described the retrieval of a
compressed block and the retrieval of data from a decompressed block in Section
4. Although the data retrieval cost is not expensive, an element may appear in
many places of a query or in a set of queries asked consecutively, resulting in a
compressed block being retrieved and decompressed many times. Since we use
gzip as our underlying compression tool, we cannot do much to improve the time
to decompress a block. Instead, we avoid the scenario that the same block being
repeatedly decompressed by introducing a buffer pool.

XQzip applies the LRU rule to manage a buffer pool for holding recently
decompressed XML data. The buffer pool is modelled as a doubly-linked list
with a head and tail pointer and the buffers do not have a fixed size but are
allocated dynamically according to decompressed data size. When a new block



is decompressed, the buffer manager appends it to the tail of the list. When a
block is accessed again, the buffer manager takes it out from the list and appends
it to the tail. We set a memory limit (default 16 MBytes) to the total size of the
buffer pool. When the memory limit is reached, the buffer manager removes the
buffers at the head of the list until memory is sufficient to allocate a new buffer.

Each buffer in the pool can be instantly accessed from the Hashtable and
is assigned an id which is the same as the compressed block id, thus, avoiding
decompressing a block again if a buffer with the same id is already in the pool.

The data access patterns of queries asked at a certain time are usually similar
according to the principle of locality. Therefore, after some queries have been
evaluated and the buffers have been initialized, new blocks tend to be decom-
pressed only occasionally. Our experimental evaluation result shows that the
buffer pool significantly reduces the querying time: the average querying time
measured with a warm (initialized) buffer pool is 5.14 times less than that with
a cold buffer pool. Moreover, restoring the original XML document from the
compressed file is also much faster with a warm buffer pool.

Query Result Output. The query processor produces the query result speci-
fied by the output expression. XQzip allows the following output expressions: (1)
not specified: all elements in the result set are returned; (2) location path/text():
only text contents of the result elements are returned; (3) location path/op: one
of the five aggregation operations; and (4) [Q]: returns true if Q evaluates to be
true, false otherwise.

6 Experimental Evaluation

We evaluated the performance of XQzip by an extensive set of experiments. All
experiments were run on a Windows XP machine with a Pentium 4, 2.4 GHz
and 256 MBytes main memory. We compared our compression performance with
XMill, gzip and XGrind, and query performance with XGrind. Since XGrind is
not able to compress all the datasets used in our evaluation and simply outputs
query results as “found” or “not found”, we modified the XGrind source code to
make it work for all the datasets we used and write query results to a disk file,
as XQzip does. We also made XGrind adapt to our experimental platform.

We first studied the effect of using different sized data blocks on the compres-
sion and query performance of XQzip; the aim of this experiment is to choose a
feasible default block size for XQzip. We then performed, for each data source,
four classes of experiments: (1) the effectiveness of the SIT; (2) compression
ratios; (3) compression/decompression time; and (4) query performance. We
define the compression ratio as: Compression Ratio = (1 — Compressed file
size/ Original XML file size) x 100%, and we measure all the time in seconds.

We use eight data sources for our evaluation, which cover a wide range of
XML data formats and structures. A description of the datasets is given in [4]
due to space limit but we give their characteristics in Table 2, where E_num and
A _num refer to the number of elements and attributes in the dataset respectively.



Table 2. XML Data Sources

Data Source | Size (MB)] Depth |Tags/Attrs] E num | A num
XMark 111 11 86 1666315 ] 381878
OMIM 24.5 5 22 188052 0
DBLP 148 6 41 3883112 471124
SwissProt 109 5 100 2977031 | 2189859
Treebank 82 36 252 2437666 1
PSD 683 7 72 21305818] 1052770
Shakespeare| 7.3 6 23 179072 0
Lineitem 30.8 3 19 1022976 1

6.1 Effect of Using Different Block Size

We carried out a set of experiments to explore the effects of using different data
block sizes on compression and query performance. We chose three representative
documents: SwissProt (which has no heavy text items), XMark (which has a lot
of data and one heavy text item) and OMIM (whose data content is dominated
by very heavy texts) for running the experiments.

Compression. For all datasets, compression performance is extremely poor for
block sizes less than 2 KBytes and improves linearly with the increase in block
size (greater than 2 KBytes), but does not improve much (within 10%) for block
sizes beyond 100-150 (SwissProt: ~150, XMark: ~130, OMIM: ~100) KBytes.
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Fig. 7. Querying Time with Different Block Sizes

Query Evaluation. We use range predicates to select a set of queries (the
queries are listed in [4] due to the space limit) of different selectivity for each
dataset: low-selectivity (appr. 0.01%, 0.03%, 0.05%, 0.08% and 0.1%), medium-
selectivity (appr. 0.3%, 0.5%, 0.7%, 1% and 3%) and high-selectivity (appr. 5%,
20%, 50%, 80% and 100%). For each dataset, we plot the average querying time
of the queries of each selectivity group, represented by the prefixes L, M and H
respectively in Fig. 7. We also found that the block size is actually sensitive to
the number of records per block instead of number of bytes per block. We thus
measure the block size in terms of number of data records per block.

For all the three data sources, query performance is poor on small block
sizes (less than 100 records). High-selectivity queries have better performance
on larger block sizes though performance improves only slightly for block sizes



beyond 1000 records. Medium and low selectivity queries have best performance
in the range of 500 to 800 records and 250 to 300 records respectively, and their
querying time increases linearly for block sizes exceeding the optimal ranges. The
difference in querying time of the various selectivity queries with the change in
block size is mainly due to the inverse correlation between the decompression
time of the different-sized blocks and the total number of blocks to be decom-
pressed w.r.t. a particular block size, i.e. larger blocks have longer decompres-
sion time but fewer blocks need be decompressed, and vice versa. Although the
optimal block size does not agree for the different data sources and different
selectivity queries, we find that within the range of 600 to 1000 data records per
block, the querying time of all queries is close to their optimal querying time.
We also find that a block size of about 950 data records is the best average.
For most XML documents, a total size of 950 records of a distinct element
is usually less than 100 KBytes, a good block size for compression. However, to
facilitate query evaluation, we choose a block size of 1000 data records per block
(instead of 950 for easier implementation) as the default block size for XQzip,
and we demonstrate that it is a feasible choice in the subsequent subsections.

6.2 Effectiveness of the SIT

In this subsection, we show that the SIT is an effective index. In Table 3, |T|
represents the total number of tags and attributes in each of the eight datasets,
while |Vp| and |V;| show the number of nodes (presentation tags not indexed)
in the structure tree and in the SIT respectively; |V7|/|Vr| is the percentage of
node reduction of the index; Load Time (LT) is the time taken to load the SIT
from a disk file to the main memory; and Acceleration Factor (AF) is the rate
of acceleration in node selection using the SIT instead of the F&B-Index.

Table 3. Index Size

Data Source ITI 1Vl Vil [IVI/IVH] LT AF

XMark 2048193| 1837608] 30071 1.64%| 0.67s| 2.15
OMIM 188052] 188052 445 0.24%| 0.07s| 2.16
DBLP 4354236] 4350639 1877 0.04%| 1.62s] 2.11
SwissProt 5166890 5166890] 1466332] 28.38%| 5.61s| 1.92
Treebank 2437667] 2437667 2277202  93.42%| 2.26s| 1.76
PSD 22358588] 22358588] 2425868]  10.85%| 9.97s| 2.18
Shakespeare 179072 179072 3514 1.96%| 0.07s| 2.10
Lineitem 1022977 1022977 19] 0.002%| 0.42s| 1.78

For five out of the eight datasets, the size of the SIT is only an average of 0.7%
of the size of their structure tree, which essentially means that the query search
space is reduced approximately 140 times. For SwissProt and PSD, although the
reduction is smaller, it is still a significant one. The SIT of Treebank is almost
the same size as its structure tree, since Treebank is totally irregular and very
nested. We remark that there are few XML data sources in real life as irregular as
Treebank. Note also that most of the SITs only need a fraction of a second to be



loaded in the main memory. We find that the load time is roughly proportional
to |Vi]/|Vr| (i.e. irregularity) and |Vr| of an XML dataset.

We built the F&B-Index (no idrefs, presentation tags and text nodes), using
a procedure described in [7]. However, it ran out of memory for DBLP, SwissProt
and PSD datasets on our experimental platform. Therefore, we performed this
experiment on these three datasets on another platform with 1024 MBytes of
memory (other settings being the same). On average, the construction (including
parsing) of the SIT is 3.11 times faster than that of the F&B-Index. We next
measured the time taken to select each distinct element in a dataset using the
two indexes. The AF for each dataset was then calculated as the sum of time
taken for all node selections of the dataset (e.g. 86 node selections for XMark
since it has 86 distinct elements) using the F&B-Index divided by that using the
SIT. On average, the AF is 2.02, which means that node selection using the SIT
is faster than that using the F&B-Index by a factor of 2.02.
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Fig. 8. Compression Ratio

6.3 Compression Ratio

Fig. 8 shows the compression ratios for the different datasets and compressors.
Since XQzip also produces an index file (the SIT and data position information),
we represent the sum of the size of the index file and that of the compressed file
as XQzip+. On average, we record a compression ratio of 66.94% for XQzip+,
81.23% for XQzip, 80.94% for XMill, 76.97% for gzip, and 57.39% for XGrind.

When the index file is not included, XQzip achieves slightly better compres-
sion ratio than XMill, since no structure information of the XML data is kept
in XQzip’s compressed file. Even when the index file is included, XQzip is still
able to achieve a compression ratio 16.7% higher than that of XGrind, while the
compression ratio of XPRESS only levels with that of XGrind.

6.4 Compression/Decompression Time

Fig. 9a shows the compression time. Since XGrind’s time is much greater than
that of the others, we represent the time in logarithmic scale for better viewing.
The compression time for XQzip is split into three parts: (1) parsing the input
XML document; (2) applying gzip to compress data; and (3) building the SIT.



The compression time for XMill is split into two parts as stated in [8]: (1)parsing
and (2) applying gzip to compress the data containers. There is no split for gzip
and XGrind. On average, XQzip is about 5.33 times faster than XGrind while
it is about 1.58 times and 1.85 times slower than XMill and gzip respectively.
But we remark that XQzip also produces the SIT, which contributs to a large
portion of its total compression time, especially for the less regular data sources
such as Treebank.

Fig. 9b shows the decompression time for the eight datasets. The decompres-
sion time here refers to the time taken to restore the original XML document.
We include the time taken to load the SIT to XQzip’s decompression time, rep-
resented as XQzip+. On average, XQuzip is about 3.4 times faster than XGrind
while it is about 1.43 time and 1.79 times slower than XMill and gzip respec-
tively, when the index load time is not included. Even when the load time is
included, XQzip’s total time is still 3 times shorter than that of XGrind.
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Fig. 9. (a) Compression Time (b) Decompression Time (Seconds in logio scale)

6.5 Query Performance

We measured XQzip’s query performance for six data sources. For each of the
data sources, we give five representative queries which are listed in [4] due to
the space limit. For each dataset except Treebank, Q1 is a simple path query for
which no decompression is needed during node selection. Q2 is similar to Q1 but
with an exact-match predicate on the result nodes. Q3 is also similar to Q1 but
it uses a range predicate. The predicates are not imposed on intermediate steps
of the queries since XGrind cannot evaluate such queries. Q4 and Q5 consists
multiple and deeply nested predicates with mixed structure-based, value-based,
and aggregation conditions. They are used to evaluate XQgzip’s performance
on complex queries. The five queries of Treebank are used to evaluate XQzip’s
performance on extremely irregular and deeply nested XML data.

We recorded the query performance results in Table 4. Column (1) records
the sum of the time taken to parse the input query and to select the set of
result nodes. In case decompression is needed, the time taken to retrieve and
decompress the data is given in Column (2). Column (3) and Column (4) give the
time taken to write the textual query results (decompression may be needed) and
the index of the result nodes respectively. Column (5)is the total querying time,



Table 4. Query Evaluation Results

(@ @ E)) . @ O] . (6) (D . ¥ .9
Node Partial Result (text) Result (index) Querying |Querying |Querying |Query Query
Data Selecting Decomp. Processing Processing  Time (sec) | Time (sec) | Time (sec) |Result (text)| Result (index)
Sources Time (sec) Time (sec) Time (sec) Time (sec) (XQzip-)  |(XQzip+) |(XGrind) |(KBytes) (KBytes)
XMark Q1 |0.001 - 0.911 0.001 0.913 0.122 22.774 |263 40
(111MB) Q2 10.001 0.920 0.012 0.001 0.934 0.295 23.067 0.8 0.09
Q3 |0.001 3.395 0.014 0.001 3.411 0.349 35.012 |1.74 0.22
Q4 |0.003 --- 0.551 0.030 0.584 0.118 - 14999 1256
Q5 10.831 4.534 0.010 0.001 5.376 1.544 === 0.21 0.03
OMIM Q1 |0.001 - 0.030 0.001 0.032 0.005 3.513 146 23.6
(24.5MB) Q2 10.001 0.021 0.011 0.001 0.034 0.014 4.690 191 2.7
Q3 [0.001 0.036 0.057 0.001 0.095 0.067 6.134 66.8 9.45
Q4 ]0.005 --- --- - 0.005 0.005 - - ---
Q5 10.012 0.020 0.580 0.001 0.613 0.034 - 1666 274
DBLP Q1 0.001 - 0.370 0.010 0.381 0.034 19.582 |7219 621
(148MB) Q2 10.001 0.330 0.013 0.001 0.345 0.029 26.108 |59 6
Q3 |0.033 0.391 8.997 0.120 9.541 1.543 50.344 |22940 1853
Q4 10.001 - 0.000 0.000 0.001 0.001 --- No Match |No Match
Q5 10.087 1.122 0.260 0.012 1.481 0.642 --- 2312 205
Lineitem Q1 [0.001 = 0.041 0.001 0.043 0.011 2.336 1176 175
(30.8MB) Q2 10.001 0.031 0.011 0.001 0.044 0.012 2.890 130 16
Q3 [0.001 0.058 0.015 0.001 0.075 0.014 3.210 393 54
Q4 10.001 - 1.594 0.082 1.677 0.342 -~ 31539 4024
Q5 10.002 0.030 - --- 0.032 0.007 === === ===
Shakespeare|Q1 |0.001 --- 0.035 0.001 0.037 0.014 1.311 865 89
(7.3MB) Q2 10.001 0.034 0.002 0.001 0.038 0.016 1.620 0.05 0.001
Q3 |0.001 0.032 0.005 0.001 0.039 0.016 2.312 48 23
Q4 |0.005 --- --- - 0.005 0.005 - - ---
Q5 10.007 0.032 == === 0.039 0.014 === === ===
Treebank Q1 |0.321 - 3.304 0.120 3.745 0.674 - 21278 5659
(82MB) Q2 |0.167 - 0.010 0.001 0.178 0.177 --- 0.45 0.12
Q3 |0.183 - 1.012 0.064 1.259 0.453 --- 785 204
Q4 |0.124 - 6.123 0.282 6.529 1.003 - 24111 6078
Q5 10.156 --- 6.004 0.274 6.434 0.985 --- 24111 6078

which is the sum of Column (1) to (4) (note that each query was evaluated with
an initially empty buffer pool). Column (6) records the time taken to evaluate
the same queries but with the buffer pool initialized by evaluating several queries
containing some elements in the query under experiment prior to the evaluation
of the query. Column (7) records the time taken by XGrind to evaluate the
queries. Note that XGrind can only handle the first three queries of the first five
datasets and does not give an index to the result nodes. Finally, we record the
disk file size of the query results in Column (8) and (9). Note that for the queries
whose output expression is an aggregation operator, the result is printed to the
standard output (i.e. C++ stdout) directly and there is no disk write.

Column (1) accounts for the effectiveness of the SIT and the query evaluation
algorithm, since it is the time taken for the query processor to process node
selection on the SIT. Compared to Column (1), the decompression time shown
in Column (2) and (3) is much longer. In fact, decompression would be much
more expensive if the buffer pool is not used. Despite of this, XQzip still achieves
an average total querying time 12.84 times better than XGrind, while XPRESS
is only 2.83 times better than XGrind. When the same queries are evaluated with
a warm buffer pool, the total querying time, as shown in Column (6), is reduced
5.14 times and is about 80.64 times shorter than XGrind’s querying time.



7 Conclusions and Future Work

We have described XQzip, which supports efficient querying compressed XML
data by utilizing an index (the SIT) on the XML structure. We have demon-
strated by employing rich experimental evidence that XQzip (1) achieves com-
parable compression ratios and compression/decompression time with respect
to XMill; (2) achieves extremely competitive query performance results on the
compressed XML data; and (3) supports a much more expressive query language
than its counterpart technologies such as XGrind and XPRESS. We notice that
a lattice structure can be defined on the SIT and we are working to formulate a
lattice whose elements can be applied to accelerate query evaluation.
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