
Approximate Shortest Descending Paths∗

Siu-Wing Cheng† Jiongxin Jin‡

Abstract

We present an approximation algorithm for the shortest descending path problem. Given
a source s and a destination t on a terrain, a shortest descending path from s to t is a
path of minimum Euclidean length on the terrain subject to the constraint that the height
decreases monotonically as we traverse that path from s to t. Given any ε ∈ (0, 1), our
algorithm returns in O(n4 log(n/ε)) time a descending path of length at most 1 + ε times
the optimum. This is the first algorithm whose running time is polynomial in n and log(1/ε)
and independent of the terrain geometry.

1 Introduction

Euclidean shortest paths in the plane or on polygonal surfaces have applications in robotics
and geographic information systems. It is also a classic optimization problem in computational
geometry, so many results on exact and approximation algorithms are known. Hershberger and
Suri [8] presented an O(n log n)-time algorithm to find a shortest path in the plane among polyg-
onal obstacles with n vertices. This algorithm was later extended by Schreiber and Sharir [13]
to find a shortest path on a convex polyhedron with n vertices in O(n log n) time. For a non-
convex polygonal surface with n vertices, Mitchell et al. [10] presented a shortest path algorithm
that runs in O(n2 log n) time, and Chen and Han [6] subsequently improved the running time to
O(n2). There are also fast approximation algorithms. Agarwal et al. [1] proposed an algorithm
to find a (1+ε)-approximate shortest path on a convex polyhedron in O(n log(1/ε)+1/ε3) time.
Varadarajan and Agarwal [14] proposed two algorithms to find an approximate shortest path
on a non-convex polyhedron. One returns a 7(1+ε) approximation in O(n5/3 log5/3 n) time and
the other returns a 15(1 + ε) approximation in O(n8/5 log8/3 n) time. More information can be
found in Mitchell’s survey [9].

The utility of a path is enhanced if appropriate features of the environment can be modeled.
When hiking along a path on a rugged terrain1, the common experience is that how much
the path goes up and down is also an important concern in addition to the path length. A
path is descending (resp. ascending) if the height is monotonically decreasing (resp. increasing)
from source to destination. De Berg and van Kreveld [7] pioneered the study of some height
constrained path query problems on terrains. They presented an algorithm to preprocess a
terrain with n vertices in O(n log n) time into a data structure of O(n) size so that for any two
query points s and t, several queries can be answered in O(log n) time, such as whether there
is a descending or ascending path from s to t, and whether there exists a path from s to t that

∗Research supported by the Research Grant Council, Hong Kong, China (project no. 612109). The work was
done while Jin was at the Department of Computer Science and Engineering, HKUST. A preliminary version
appeared in Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, 2013, 144–155.

†Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong
Kong. Email: scheng@cse.ust.hk

‡Google Inc., Seattle, USA. Email: jamesjjx@google.com
1A polygonal surface such that any vertical line intersects the surface in at most once point.

1

stays below a given height. De Berg and van Kreveld posed the combinations of path length
optimization and height constraints as open problems.

There has been recent progress on the problem of finding a shortest descending path (SDP)
from a source to a destination on a terrain. Roy et al. [12] presented an algorithm to compute an
SDP on a convex or concave terrain in O(n2 log n) time, and another algorithm to compute the
SDP that passes through a given sequence of k parallel edges on a general terrain in O(k log k)
time. Later, Ahmed and Lubiw [4] showed that a (1+ ε)-approximate SDP that passes through
a given sequence of k edges on a general terrain can be computed in O(k3.5 log(1/ε)) time.
Eventually, Ahmed et al. [3] discovered two algorithms to construct a (1+ ε)-approximate SDP

on a general terrain. The time complexities of these algorithms are O
(

n2L
εh cos θ log

nL
εh cos θ

)
and

O
(
n2L
εh log2 nL

εh

)
, where L is the largest edge length in the terrain, h is the smallest distance

from a vertex to a non-incident edge in the same terrain face, and θ is the largest acute angle
between a non-horizontal edge and a vertical line. Ahmed and Lubiw [5] recently showed that if
there exists an algorithm to compute the SDP that passes through a given sequence of k terrain
edges in R(k) time, then one can use Chen and Han’s approach [6] to compute an SDP in
O(n2R(n)) time. Unfortunately, it is still unclear how to compute the SDP that passes through
a given edge sequence. Moreover, replacing the exact algorithm by a (1 + ε)-approximate
SDP algorithm for a given edge sequence does not give a good approximation—it leads to a(
1 + cO(n)ε

)O(n)
-approximate SDP, where c is a constant bigger than one [2, Section 3.4.3].

Our main result is that for any given ε ∈ (0, 1), a (1+ε)-approximate SDP can be computed
in O(n4 log(n/ε)) time.2 This is the first algorithm whose running time is polynomial in n and
log(1/ε) and independent of the terrain geometry.

We observe that a constant factor approximation of the SDP length helps us to formulate an
additive error bound for the SDP approximation algorithm. To this end, we compute an SDP
in the L∞ metric using Chen and Han’s sequence tree [6]. We present two solutions, one based
on linear programming and another faster combinatorial algorithm. In all, we can compute in
O(n3 log n) time the L∞ SDP length, which is at most the SDP length and at least the SDP
length divided by

√
3.

Our main SDP approximation algorithm is also based on Chen and Han’s sequence tree.
A key task is to compute an approximate SDP from s to a vertex v through a given sequence
of edges. Our idea is to impose an additive error instead of requiring a (1 + ε)-approximate
SDP. The analysis is tightly coupled with the pruning of the sequence tree, which is essential
for guaranteeing a small tree size. Since we cannot compute exact SDPs, we inevitably make
mistakes in pruning the sequence tree, and we may not generate the sequence of edges passed
through by an SDP from s to t. Hence, we cannot hope to prove the correctness of our algorithm
by arguing that some perturbation of an SDP from s to t has been computed as a candidate.
We introduce the quasi-length of a path and prune the sequence tree using the quasi-length
instead of the true path length. This ensures that a short path remains after each pruning,
which is a key step in the analysis.

Quasi-length is a new concept and it may be useful for other path problems on polygonal
surfaces. The framework of our SDP approximation algorithm may also be applicable in solving
other shortest path problems on terrains with constraints on height or other features.

2The existence of a descending path from the source to the destination can first be verified in O(n log n) time
using the result of de Berg and van Kreveld [7].

2

fα1

fα2

fα3

fα4
fα5

vα1

vα2

vα3

vα4

vα5

fβ1

fβ2

vβ1

vβ2

s

α1 α4 α5α2 α3

α1 α4 α5α2 α3

β1 β2

(a) (b) (c)

Figure 1: In (b), the initial sequence tree consists of only the root and its five children corre-
sponding to the face corners (fαi , vαi) for i ∈ [1, 5] in (a). In (c), when the tree grows from the
leaf α1, α1 acquires two children corresponding to the face corners (fβi

, vβi
) for i ∈ [1, 2] in (a).

The edge sequence σβ2 is (eα1 , eβ2), where eα1 is the grey edge and eβ2 is the bold edge in (a).

2 Preliminaries

Let T be the input terrain, which is a polygonal surface in R
3 that projects injectively onto the

xy-plane. Let n be the number of vertices of T . Without loss of generality, assume that every
face of T is a triangle, and that the given source s and destination t are vertices of T . For every
point p in T , let px, py and pz denote the x-, y- and z-coordinates of p, respectively. When
clockwise and anticlockwise orders are used subsequently, we refer to the view of T from above.

A polygonal path P in T is oriented from its source to destination, consisting of directed
segments called links. P conforms to T if every link is contained in an edge or a face of T . We
assume that all polygonal paths in this paper conform to T , which can be enforced by splitting
the links at their crossings with the edges of T . The endpoints of the links are called nodes.
We use ‖P‖ and ‖P‖∞ to denote the Euclidean length and L∞ length of P , respectively. P
is descending if for every pair of points a, b that appear in order along P , az ≥ bz. For every
pair of points a, b ∈ P appearing in order along P , P [a, b] denotes the subpath from a to b. If
P and Q are two descending paths such that P ’s destination coincides with Q’s source, their
concatenation P ·Q is also a descending path.

The edge sequence of P , denoted seq(P), is the list of all edges (e1, e2, . . . , ek) that intersect
the interior of P ordered by the intersections along P . The edges containing the source or
destination of P do not belong to seq(P). We assume that P does not reflect at an edge as
it does not happen for an SDP. Thus, for i ∈ [1, k − 1], ei and ei+1 are distinct edges of the
same face, and ei−1 �= ei+1. If the interior of P passes though a vertex, we have some freedom
in setting seq(P). For example, let u1, u2, . . . , uh be the vertices adjacent to v in anticlockwise
order; a path entering v from the face u1vuh and leaving v through the face uivui+1 can be
viewed as crossing vu1, vu2, . . . , vui or vuh, vuh−1, . . . , vui+1. We use |seq(P)| to denote the
number of edges in seq(P).

A descending path is a locally shortest descending path (LSDP) if it is the shortest one
among all descending paths with the same source, destination, and edge sequence.3 There is a
unique LSDP for a given edge sequence [5]. An SDP is a shortest LSDP over all possible edge
sequences.

We use a variant of Chen and Han’s sequence tree [6] to capture the possible edge sequences

3An LSDP is allowed to go through a vertex by our definition, while this is forbidden in [5].

3

of LSDPs from s to other vertices of T . In Chen and Han’s version, the root represents s
and the other internal nodes represent intervals on edges of T crossed by geodesic paths that
originate from s. We retain their main ideas, but we use a different tree node definition in order
to blend with the other parts of our algorithm. Our sequence tree models paths from s to t
with non-empty edge sequences. The edge sequence can be empty only if s and t are vertices
of the same face, in which case the SDP from s to t is trivially the segment st. We assume that
s and t are not vertices of the same face for the rest of the paper.

Each non-root node α of the sequence tree corresponds to a face corner (fα, vα)—the corner
of the face fα at its vertex vα—and the edge eα of fα opposite vα. Let deg(s) denote the degree
of s. For i ∈ [1,deg(s)], let eαi denote a distinct edge opposite s and let fαi denote the face
incident to eαi but not s. The initial sequence tree consists of only the root and its children
α1, . . . , αdeg(s). Each child node αi stores eαi and the face corner (fαi , vαi). Figures 1(a,b) show
an example.

In general, each tree node α stores an edge sequence σα in addition to the face corner (fα, vα).
If α is the root, then σα = ∅; otherwise, α has a parent β and σα = σβ · (eα). Intuitively, the
tree path from the root to a node α represents the paths in T from s to points in fα with edge
sequence σα.

The sequence tree is grown by attaching child nodes to a leaf node α. Let eβ1 , eα, and eβ2

be the edges of fα in anticlockwise order around the boundary of fα. For i ∈ {1, 2}, let fβi
be

the face that shares eβi
with fα, and let vβi

be the vertex of fβi
opposite eβi

. The node α may
acquire a left child β1 and/or a right child β2 corresponding to the face corners (fβ1 , vβ1) and
(fβ2 , vβ2), respectively. Figures 1(a,c) show an example. Thus, every non-root node has at most
two children. As the tree grows, it is possible that multiple tree nodes correspond to the same
face corner.

The sequence tree grows in a breadth-first manner until the number of tree levels equals
the number of faces in T . It is unnecessary to have more levels because an SDP does not visit
a face more than once. If the sequence tree grows without any pruning, the tree size would
become exponential in n eventually. To control the tree size, we impose the one-corner one-split
property: while a face corner may correspond to multiple nodes in the current sequence tree, at
most one such tree node has two children in the current sequence tree. If growing from a leaf
violates the one-corner one-split property, the sequence tree is pruned to restore this property.
Given the one-corner one-split property, Chen and Han proved that O(n2) nodes are ever created
in constructing the sequence tree, including those that are pruned in some intermediate steps.

3 Exact algorithm for L∞ SDP

We show how to compute the minimum L∞ length of a descending path from s to t, denoted
by opt∞, which is a constant factor approximation of the SDP length opt from s to t because
opt∞ ≤ opt ≤

√
3opt∞. Knowing a constant factor approximation will allow our approximate

SDP algorithm to focus on a smaller search space, and this is essential for making the time
complexity independent of the terrain geometry.

We grow Chen and Han’s sequence tree as described in Section 2. Recall that each tree
node α in the sequence tree stores the edge sequence σα. To compute an L∞ SDP from s to t,
whenever we insert a new tree node α into the sequence tree, we compute an L∞ LSDP from
s to vα with edge sequence σα. Denote this L∞ LSDP stored at α by Pα. We will present two
solutions for computing Pα, one based on linear programming (Section 3.1) and another faster
combinatorial algorithm (Section 3.2). We ignore the computation of Pα for now.

To enforce the one-corner one-split property, we need a notion of dominance among the
sequence tree nodes. Let α and β be two tree nodes corresponding to the same face corner

4

vα
eα

g

e3
e2

e1êβ

êα

e
r

fα

Pβ

Pα

vα

eα

fαe3
e2e1

êβ

êα
e

r

g

Pβ

Pα

(a) (b)

Figure 2: Assume that α dominates β. The longest common suffix of seq(Pα) and seq(Pβ) is
(e1, e2, e3, eα). In (a), α dominates β on the right, and Lemma 3.1(ii) says that any L∞ LSDP
with edge sequence σβ from s to a point r ∈ e (shown as a dashed path) cannot be shorter
than the L∞ LSDP with edge sequence σα from s to r. In (b), α dominates β on the left, and
Lemma 3.1(ii) gives a symmetric conclusion.

(fα, vα). The node α dominates β if ‖Pα‖∞ < ‖Pβ‖∞, or ‖Pα‖∞ = ‖Pβ‖∞ and |σα| < |σβ|.
That is, the shorter of Pα and Pα is preferred, and if Pα and Pβ have the same L∞ length, the
one with a shorter edge sequence is favored. Ties are broken arbitrarily when ‖Pα‖∞ = ‖Pβ‖∞
and |σα| = |σβ|.

Once we know that α dominates β, we need to test whether α dominates β on the left or
right. We prune the left child of β if β is dominated on the left; otherwise, we prune the right
child of β. The test works as follows. The general case is that σα and σβ are not suffixes of each
other. In this case there exist edges êα and êβ in σα and σβ, respectively, that immediately
precede the longest common suffix of σα and σβ .

4 Let e1 be the first edge in the longest
common suffix of σα and σβ. Note that êα, êβ and e1 are contained in the same face g. Refer
to Figure 2. The node α dominates β on the right (resp. left) if (e1, êβ , êα) are in anticlockwise
(resp. clockwise) order around the boundary of g. In the special case that σα is a proper suffix
of σβ, replace êα by s in the test above. Similarly, if σβ is a proper suffix of σα, replace êβ by s.

Lemma 3.1 below is the basis for the subsequent correctness proof of our pruning procedure.
The shortcut argument in proving the first part of Lemma 3.1(ii) is essentially the same as that
in [6]. But there is the subtlety that shortcutting a path by a line segment may not strictly
decrease its L∞ length. Therefore, we need to show that a node does not cause itself to be
pruned and we need to handle paths with the same L∞ length.

Lemma 3.1 Let α and β be two tree nodes that correspond to the same face corner (fα, vα)
such that α dominates β on the right (resp. left). Let e be the edge that follows eα immediately
in anticlockwise (resp. clockwise) order around the boundary of fα.

(i) α is not a descendant of β.

(ii) For each point r ∈ e and each L∞ LSDP Qβ with edge sequence σβ from s to r, every L∞
LSDP Qα with edge sequence σα from s to r satisfies ‖Qα‖∞ ≤ ‖Qβ‖∞ and if ‖Qα‖∞ =
‖Qβ‖∞, then |σα| ≤ |σβ|.

Proof. Recall that Pα and Pβ are L∞ LSDPs from s to vα = vβ with edge sequences σα and
σβ, respectively.

Consider (i). For the sake of contradiction, suppose that α is a descendant of β. So σβ is a
proper prefix of σα and, therefore, |σα| > |σβ |. It follows that ‖Pα‖∞ < ‖Pβ‖∞ as α dominates

4Since α and β correspond to the same face corner (fα, vα), eα is the last edge in both σα and σβ . Hence, σα

and σβ have a non-empty common suffix.

5

vα
eα

fα

e2e1

êα

êβ

e
r

p
Pα

Qβ

g

Figure 3: Pα and Qβ intersect at a point p such that Qβ[p, r] and Pα[p, vα] have the same edge
sequence.

β. Pα traverses the same edges and faces as Pβ until fβ. Afterwards, Pβ stops at vβ, and Pα

leaves fβ through some point p on an edge of fβ other than eβ . Shortcut Pα by connecting p
to vβ directly and removing the rest of Pα. This gives a descending path Q from s to vβ such
that seq(Q) = σβ and ‖Q‖∞ ≤ ‖Pα‖∞ < ‖Pβ‖∞. But then Q is shorter than the L∞ LSDP Pβ

from s to vβ with edge sequence σβ, a contradiction.
Consider (ii). Without loss of generality, assume that α dominates β on the right. Let

(e1, e2, . . . , ek) be the longest common suffix of σα and σβ . Note that ek = eα = eβ . Assume
that σα and σβ are not suffixes of each other. (So êα and êβ are well defined.) The two special
cases of σα being a suffix of σβ and σβ being a suffix of σα are handled similarly.

We claim that the subpath of Pα from êα to vα must intersect the subpath of Qβ from êβ to
r. See Figure 3. Let g be the face of T incident to êα, e1 and êβ . As α dominates β on the right
by assumption, (e1, êβ , êα) are in anticlockwise order around the boundary of g. If Pα and Qβ

intersect in g, our claim holds. If not, then (Qβ∩êβ, Pα∩êα, Pα∩e1, Qβ∩e1) are in anticlockwise
order around the boundary of g. Inductively, if Pα and Qβ do not intersect in the face incident
to ei−1 and ei for any i ∈ [2, k], then for every i ∈ [2, k], (Qβ∩ei−1, Pα∩ei−1, Pα∩ei, Qβ∩ei) are
in anticlockwise order around the boundary of the face incident to ei−1 and ei. Consequently, if
Pα and Qβ do not intersect before eα, then within the face fα the segment connecting Qβ ∩ ek
and r must intersect the segment connecting Pα ∩ ek and vα. This proves our claim.

Let p be the intersection between Pα and Qβ furthest away from s along Qβ. It lies in a
face incident to ei for some i ∈ [1, k]. Note that Pα[p, vα] and Qβ[p, r] have the same edge
sequence. Since Qα is an L∞ LSDP from s to r with edge sequence σα by the assumption of
the lemma, we obtain ‖Qα‖∞ ≤ ‖Pα[s, p]‖∞+‖Qβ[p, r]‖∞ because σα is also the edge sequence
of the descending path Pα[s, p] · Qβ[p, r]. Similarly, ‖Pβ‖∞ ≤ ‖Qβ [s, p]‖∞ + ‖Pα[p, vα]‖∞.
Combining the two inequalities gives ‖Qα‖∞ + ‖Pβ‖∞ ≤ ‖Qβ‖∞ + ‖Pα‖∞. Since α dominates
β, either ‖Pα‖∞ < ‖Pβ‖∞, or ‖Pα‖∞ = ‖Pβ‖∞ and |σα| ≤ |σβ|. In the first case, we get
‖Qα‖∞ < ‖Qβ‖∞. In the second case, we get ‖Qα‖∞ ≤ ‖Qβ‖∞ and |σα| ≤ |σβ |.

The L∞ SDP algorithm works as follows. We first construct the initial sequence tree as
described earlier. It consists of the root corresponding to s and deg(s) children, which are the
leaves of the initial tree. Then we compute L∞ LSDPs from s to the face corners represented
by these deg(s) leaves. Throughout the algorithm, each face corner (f, v) stores the current tree
node, if any, that corresponds to (f, v) and is not dominated by another tree node.

We grow the sequence tree in rounds. In each round, we grow from all the leaves at the
bottommost level, and compute the L∞ LSDPs to the face corners represented by the new
leaves. We do not grow from leaves above the bottommost level. To grow from a leaf β, we
create a right child (resp. left child) γ of β if β is not dominated on the right (resp. left) by
any other tree node. After creating a new leaf γ, we compute an L∞ LSDP from s to vγ with
edge sequence σγ . If no tree node is stored at the face corner (fγ , vγ), store γ there. Otherwise,
suppose that α is the tree node stored at (fγ , vγ). If α dominates γ, then γ can gain only
one child in the next round of expansion. If γ dominates α, then store γ at (fγ , vγ) instead

6

(γ cannot be dominated by any other tree node); furthermore, if γ dominates α on the right
(resp. left), then delete α’s right subtree (resp. left subtree). The one-corner one-split property
is thus guaranteed.

The sequence tree expands in a breadth-first manner until the number of tree levels equals
the number of faces in T . After the tree stops growing, take the minimum L∞ LSDP length
from s to vα among all tree nodes α such that vα = t. Return this minimum as opt∞.

Lemma 3.2 Let T (k) be the time to compute an L∞ LSDP from s to any vertex with an edge
sequence of length k. An L∞ SDP from s to t can be computed in O(n3+n2 ·T (m)) time, where
m and n are the number of faces and vertices in T , respectively.

Proof. We first analyze the running time. Due to the one-corner one-split property, only O(n2)
nodes are created while constructing the sequence tree. When creating a new leaf γ, we compute
an L∞ LSDP from s to vγ with edge sequence σγ , which takes T (|σγ |) ≤ T (m) time. Given two
tree nodes α and γ that correspond to the same face corner, we check the dominance between
them in O(1) time. Then, we trace σα and σγ backward in O(n) time to decide if it is dominance
on the left or right. In total, the running time is O(n2(n+ T (m))) = O(n3 + n2 · T (m)).

We establish the correctness as follows. Let P0 be an L∞ SDP from s to t with the shortest
edge sequence. Then P0 does not visit a terrain face more than once. (An arbitrary L∞ SDP
may visit a face more than once.) So |seq(P0)| is less than the bound on the number of levels
in the sequence tree. If the final sequence tree contains a tree node β0 such that σβ0 = seq(P0),
then our algorithm must report a path length no more than ‖Pβ0‖∞ = ‖P0‖∞. Suppose that
the final sequence tree does not contain such a tree node β0. There must exist two nodes α0

and α1 in some intermediate sequence tree such that σα0 is a prefix of σβ0 and α1 dominates α0.
The child of α0 that would be an ancestor of β0 is pruned due to the dominance of α1 over α0.
By Lemma 3.1(i), α1 remains after this pruning. By Lemma 3.1(ii), we can replace a prefix of
P0 with edge sequence σα0 by a descending path Q with edge sequence σα1 so that the resulting
descending path P1 from s to t is not longer than P0 (in the L∞ metric). That is, P1 is also
an L∞ SDP from s to t. The path Q cannot be shorter than the prefix of P0 replaced (in the
L∞ metric) because P0 is optimal. Then, Lemma 3.1(ii) further implies that |σα1 | ≤ |σα0 | and,
therefore, |seq(P1)| ≤ |σβ0 | = |seq(P0)|. This implies that our algorithm can generate a node
β1 in the final sequence tree such that σβ1 = seq(P1) unless some ancestor of β1 is dominated,
causing β1 to be pruned. If β1 is in the final sequence tree, we are done. Otherwise, we can
repeat the analysis above. Since the sequence tree is pruned a finite number of times, there must
be an L∞ SDP Pi from s to t with edge sequence σβi

so that the final sequence tree contains
the node βi. The correctness of the algorithm thus follows.

Theorem 3.1 Let s and t be two vertices in a polygonal terrain of n vertices. An L∞ shortest
descending path from s to t can be computed in O(n3 log n) time.

Proof. By Lemma 3.2, the correctness is guaranteed and the running time is O(n3+n2 ·T (m)).
Section 3.1 shows that T (k) is polynomial in the input size using linear programming. Section 3.2
describes a combinatorial algorithm that reduces T (k) to O(k log k).

3.1 L∞ LSDP by linear programming

We present a linear program that finds an L∞ LSDP from s to a vertex w with edge sequence
(e1, e2, . . . , ek). For i ∈ [1, k], let ui and vi denote the endpoints of ei and every point in ei can
be written as (1−ζi)ui+ζivi, where ζi ∈ [0, 1]. The x–coordinate of a point in ei can be written
as (1 − ζi)ui,x + ζivi,x, and we similarly can do the same for the y- and z- coordinates of any

7

point in ei. Let u0 = v0 = s. Let uk+1 = vk+1 = w. An L∞ LSDP from s to w can be found by
solving the following linear program.

min
∑k

i=0 	i
s.t. −	i ≤ (1− ζi)ui,x + ζivi,x − (1− ζi+1)ui+1,x − ζi+1vi+1,x ≤ 	i, ∀ i ∈ [0, k]

−	i ≤ (1− ζi)ui,y + ζivi,y − (1− ζi+1)ui+1,y − ζi+1vi+1,y ≤ 	i, ∀ i ∈ [0, k]
0 ≤ (1− ζi)ui,z + ζivi,z − (1− ζi+1)ui+1,z − ζi+1vi+1,z ≤ 	i, ∀ i ∈ [0, k]
0 ≤ ζi ≤ 1, ∀ i ∈ [0, k + 1]

The inequalities (1 − ζi)ui,z + ζivi,z − (1 − ζi+1)ui+1,z − ζi+1vi+1,z ≥ 0 in the third set of
constraints force the path to be descending. The first three sets of constraints make the value
of 	i an upper bound on the L∞ length of the link that goes from uivi to ui+1vi+1. Thus,
minimizing

∑k
i=0 	i gives the L∞ LSDP length from s to w with edge sequence (e1, e2, . . . , ek).

3.2 A combinatorial L∞ LSDP algorithm

This section describes a faster algorithm for computing an L∞ LSDP from s to a vertex vα with
edge sequence σα whenever a new node α is created in the sequence tree. The algorithm works
by extending the L∞ LSDPs computed at the parent of α. For simplicity, we will not mention
the edge sequences of the L∞ LSDPs as they are fixed by the sequence tree.

Suppose that we have already computed L∞ LSDPs from s to all points on eα. Our strategy
is to extend these paths to L∞ LSDPs to all points on the two edges of fα incident to vα. A
point in a terrain edge with endpoints a and b can be written as pζ = (1 − ζ)a + ζb for some
ζ ∈ [0, 1]. We represent the L∞ LSDP lengths from s to ab by a function Fab : Iab → R. That
is, Fab(ζ) is the L∞ LSDP length from s to pζ . The domain Iab of Fab is a subinterval of [0, 1]
and it is possible that Iab �= [0, 1] due to the descending constraint.

Given a function h that maps some subset D ⊂ R
d to R, the graph of h, denoted G(h), is

the hypersurface {(x1, x2, · · · , xd, xd+1) : (x1, x2, · · · , xd) ∈ D ∧ xd+1 = h(x1, x2, · · · , xd)}.
Refer to Figure 4. Let u and w be the other two vertices of fα. Let e be the edge with

endpoints u and vα. We parametrize eα and e by λ, τ ∈ [0, 1] such that pλ = (1 − λ)u + λw
denotes the parametrized point on eα and pτ = (1− τ)u+ τvα denotes the parametrized point
on e. The LSDP to a point pλ ∈ eα is extended to a point pτ ∈ e by appending the segment
pλpτ . The L∞ length of pλpτ is ‖τ(vα − u)− λ(w − u)‖∞. We require pλpτ to be descending,
so there is the constraint that (vα,z − uz)τ ≤ (wz − uz)λ.

Consider a three-dimensional space in which the horizontal plane is the τλ-plane. We label
the vertical axis by � which takes on real values. Define seven planes as follows.

H1 : � = (vα,x − ux)τ − (wx − ux)λ

H2 : � = −(vα,x − ux)τ + (wx − ux)λ

H3 : � = (vα,y − uy)τ − (wy − uy)λ

H4 : � = −(vα,y − uy)τ + (wy − uy)λ

H5 : � = (vα,z − uz)τ − (wz − uz)λ

H6 : � = −(vα,z − uz)τ + (wz − uz)λ

H7 : (wz − uz)λ− (vα,z − uz)τ = 0

The graph of |(vα,x − ux)τ − (wx − ux)λ| is the upper envelope of H1 and H2. Similarly, the
graphs of |(vα,y−uy)τ − (wy−uy)λ| and |(vα,z−uz)τ − (wz−uz)λ| are the upper envelops of H3

and H4, and H5 and H6, respectively. Therefore, the graph of ‖pλpτ‖∞ is the upper envelope
of the six planes Hi for i ∈ [1, 6].

8

vα

u

w

e

eα

fα

Figure 4: The configuration of fα.

τ

�

λ

G(L)
(1, 1, 0)

H7

τ

�

λG(Feα)

(1, 1, 0)

G(F eα)

(a) (b)

Figure 5: In (a), the subset of G(L) inH+
7 contains the set of (τ, λ)’s for which pλpτ is descending.

In (b), G(Feα) is shown bold in the λ�-plane, and each segment on it is extended into a strip.
The resulting surface is G(F eα).

Define the function L(τ, λ) to be the L∞ length of pλpτ . The halfspace H+
7 : (wz − uz)λ ≥

(vα,z −uz)τ bounded by H7 contains the set of (τ, λ)’s for which pλpτ is descending. Therefore,
G(L) ∩ H+

7 is the graph of ‖pλpτ‖∞ for which pλpτ is descending. See Figure 5(a) for an
illustration. G(L)∩H+

7 is convex and it consists of convex polygonal faces that share the origin
as a common vertex because Hi contains the origin for i ∈ [1, 7].

We first show that for every terrain edge e′, Fe′ is a convex piecewise linear function.

Lemma 3.3 For every terrain edge e′, Fe′ is a convex piecewise linear function.

Proof. We prove the lemma by induction on the construction of the sequence tree. In the initial
sequence tree, the edges opposite s correspond to the children of the root. For every such edge
e′, if a point q moves linearly along e′, then sx−qx, sy−qy and sz−qz change linearly. It follows
that Fe′ , which gives ‖sq‖∞, is a convex piecewise linear function of constant complexity.

Refer to Figure 4 and consider the induction step in which we want to compute Fe from Feα .
By the induction assumption, Feα is convex and piecewise linear. Refer to Figure 5(b). We
sweep each segment 	 in G(Feα) in a direction parallel to the τ -axis to obtain a strip [0, 1] × 	.
This gives a convex surface, which is the graph of a function F eα such that F eα(τ, λ) = Feα(λ)
for every τ ∈ [0, 1] and every λ ∈ Ieα . The domain of F eα + L is the convex set [0, 1] × Ieα .
Therefore, F eα + L is convex and piecewise linear because it is the addition of two convex
piecewise linear functions.

Let D be the convex set ([0, 1] × Ieα) ∩H+
7 , which consists of all (τ, λ)’s for which pλpτ is

descending. Thus, the domain of Fe is the interval Ie = {τ ∈ [0, 1] : (τ, λ) ∈ D for some λ}. Fe

is convex and piecewise linear because Fe(τ) = minλ:(τ,λ)∈D
{
F eα(τ, λ) + L(τ, λ)

}
.

Next, we show that Fe can be constructed quickly when Feα is given.

9

Lemma 3.4 If G(Feα) has k segments, then Fe can be constructed from Feα in O(k log k) time.

Proof. Let F eα be defined as in the proof of Lemma 3.3. Let G denote the subset of G(F eα +L)
clipped within H7 and the unbounded box [0, 1] × Ieα × [0,∞). The projection of G onto the
τλ- plane can be computed in O(k) time, because it is the overlay of the projection of G(L)
onto the τλ-plane, which has O(1) size, and the projection of G(Feα) onto the τλ-plane, which
has k parallel segments. The function value of F eα +L at every vertex can be evaluated in O(1)
time. Therefore, G can be computed in O(k) time.

We obtain the domain Ie of Fe by traversing G in O(k) time. Let [a, a′] denote Ie. We
extract in O(k) time the cross-section of G at τ = a, which is a single vertex. Fe(a) is the
�-value of this vertex. Then, we sweep a plane orthogonal to the τ -axis from a to a′, stopping
at the τ -value of every vertex of G. Between two consecutive stops b and b′, the sweep plane
moves over a strip of G. We track the lowest segment on this strip, or in the degenerate case
the triangle or trapezoid on this strip that is perpendicular to the τ�-plane. The projection of
this segment, triangle, or trapezoid onto the τ�-plane is the portion of G(Fe) over the τ -range
[b, b′]. The running time of the plane sweep is O(k log k).

It may be possible to speed up the plane sweep algorithm in the proof of Lemma 3.4 by
exploring more properties of the graph of F eα + L, but the time complexity in Lemma 3.4 is
not the bottleneck of our approximate SDP algorithm.

The critical issue is how the complexity of Fe depends on the complexity k of Feα because
it affects the time to construct the children of vα in the sequence tree. The number of segments
in G(Fe) is no more than the number of faces on G(F eα + L), which is at most 6k as it is the
upper envelope of 6k planes clipped by another 5 planes as explained in the proof of Lemma 3.4.
This bound of 6k is not useful though because the bound becomes 2O(|σα|) as the construction
proceeds down the sequence tree. The rest of this section is devoted to showing that the
complexity of Fe is at most the complexity of Feα plus a fixed constant, which implies that the
complexity of Fe is O(|σα|).

Refer to Figure 4. For every τ ∈ Ie, define λτ = min{λ : Fe(τ) = Feα(λ) + L(τ, λ)}. The
next lemma shows that λτ increases monotonically in τ .

Lemma 3.5 For every pair of values τ0 and τ1 in Ie, if τ0 < τ1, then λτ0 ≤ λτ1 .

Proof. For the sake of contradiction, suppose that there exist τ, τ ′ ∈ Ie such that τ > τ ′ but
λτ < λτ ′ . In this case, the segment connecting pλτ ∈ eα and pτ ∈ e must cross the segment
connecting pλτ ′ ∈ eα and pτ ′ ∈ e. In a convex quadrilateral, the sum of the L∞ lengths of its
two diagonals is at least the sum of the L∞ lengths of any two opposite sides. Therefore,

Feα(λτ) + L(τ ′, λτ) + Feα(λτ ′) + L(τ, λτ ′)

≤ Feα(λτ) + L(τ, λτ) + Feα(λτ ′) + L(τ ′, λτ ′)

= Fe(τ) + Fe(τ
′). (1)

We claim that the segments pλτ pτ ′ and pλτ ′pτ are descending. Since pλτ pτ and pλτ ′pτ ′ are
diagonals of the convex quadrilateral pλτ pλτ ′pτpτ ′ , they cross at some point z. The segments
pλτ z, pλτ ′z, zpτ and zpτ ′ are descending because pλτ pτ and pλτ ′pτ ′ are descending. Therefore,
pλτ zpτ ′ and pλτ ′ zpτ are two descending paths, implying that the segments pλτ pτ ′ and pλτ ′pτ
are descending.

It follows from our claim and the definition of Fe that Feα(λτ) + L(τ ′, λτ) ≥ Fe(τ
′) and

Feα(λτ ′) + L(τ, λτ ′) ≥ Fe(τ). By (1), we conclude that Feα(λτ ′) + L(τ, λτ ′) = Fe(τ) and
Feα(λτ) + L(τ ′, λτ) = Fe(τ

′). But the equality Feα(λτ ′) + L(τ, λτ ′) = Fe(τ) contradicts the
definition of λτ as λτ ′ < λτ by assumption.

10

τ

λ

H7

Figure 6: The λ-values of the dotted horizontal lines are the breakpoints of Feα . The non-bold
solid lines are the edges of L. The locus η is shown in bold and it is monotone with respect to
both the τ -axis and the λ-axis. We divide η into maximal segments so that no segment crosses
a dotted horizontal line or an edge of L.

The next lemma characterizes the value λτ for every τ ∈ Ie. We call a value λ0 ∈ Ieα a
breakpoint of Feα if λ0 is the λ-value of a vertex of G(Feα), including the endpoints of Ieα . The
breakpoints of Fe are similarly defined.

Lemma 3.6 For every value τ0 in Ie, at least one of the following three possibilities hold:

(i) λτ0 is a breakpoint of Feα ,

(ii) (τ0, λτ0) are the first two coordinates of some point on an edge of G(L), or

(iii) τ0 and λτ0 satisfy the equation of the plane H7.

Proof. Suppose that λτ0 is not a breakpoint of Feα . Then, λτ0 lies between two successive
breakpoints λi < λi+1. Let F eα be defined as in the proof of Lemma 3.3. Let � = aiλ + bi
be the support plane of the strip in G(F eα) that lies above [λi, λi+1]. Add � = aiλ+ bi to the
equations of Hj for j ∈ [1, 6] to obtain the equations of six new planes H ′

j for j ∈ [1, 6]. Let U
be the subset of the upper envelope of these H ′

j ’s that lies above Ie × [λi, λi+1]. Let U ′ be the

subset of U that lies in H+
7 . Observe that U ′ ⊆ G(F eα + L).

By our definition of λτ0 , (τ0, λτ0) must be the first two coordinates of some point on an
edge of U ′. If τ0 and λτ0 do not satisfy the equation of H7, then (τ0, λτ0) must be the first two
coordinates of some point on an edge of U . Although U is geometrically different from G(L),
their projections onto the τλ-plane are identical because each H ′

j is obtained by adding the
same linear equation � = aiλ + bi to Hj. Thus, (τ0, λτ0) must be the first two coordinates of
some point on an edge of G(L).

We use Lemmas 3.5 and 3.6 to show that the complexity of Fe is equal to the complexity of
Feα plus a constant.

Lemma 3.7 If G(Feα) consists of k segments, there are at most k+3k′+1 segments in G(Fe),
where k′ is the number of faces in G(L).

Proof. Consider increasing the value of τ from the smaller endpoint of Ie to the larger endpoint.
As τ increases, the point (τ, λτ) traces a locus η in the τλ-plane. Project the subset of G(L)
that lies in H+

7 onto the τλ-plane. Let L denote the projected image.
By Lemmas 3.5 and 3.6, η is monotone with respect to both the τ -axis and the λ-axis.

Moreover, for each segment in η, either it lies on an edge of L, or it is parallel to the τ -axis

11

	0

g

λ

τ
(τ0, λτ0)

	0

g

τ

λ

(τ0, λτ0)

Figure 7: The black dot is the point (τ0, λτ0). On the left, 	0 stops in the interior of g and then
turns right in the direction of the positive τ -axis. On the right, 	0 extends all the way across g.

and has the λ-value of a breakpoint of Feα . Notice that η could be disconnected. While tracing
η, we may jump from a point (τ0, λτ0) in the direction of positive λ-axis to a point (τ0, λ

′).
It happens when Feα(λ) + L(τ0, λ) = Feα(λτ0) + L(τ0, λτ0) for every λ ∈ [λτ0 , λ

′], because the
definition of λτ prefers λτ0 to all such larger λ. In summary, η follows an edge of L, or moves
in the direction of positive τ -axis, or makes a jump in the direction of positive λ-axis. Figure 6
shows an example. We break η into segments, each being a maximal connected subset that
lies on an edge of L and between two successive breakpoints of Feα , or that is parallel to the
direction of the positive τ -axis and lies inside a face of L. Each segment of η projects to a subset
of Ie that lies between two successive breakpoints of Fe. Therefore, the number of segments in
η is an upper bound on the complexity of G(Fe).

We first bound the number of jumps η makes. Suppose that η jumps from a point (τ0, λτ0)
in the direction of the positive λ-axis in a face g of L. Let 	0 be the segment in g covered by this
jump, i.e., (τ0, λτ0) is the lower endpoint of 	0, and 	0 is parallel to the λ-axis. Refer to Figure 7.
As explained earlier, Feα(λ) + L(τ0, λ) remains the same for all (τ0, λ) ∈ 	0. In other words,
Feα must cancel the component of L(τ0, λ) that involves λ. The face g corresponds to some
plane Hj, so within g the value of L is determined by the equation of Hj. The term involving
λ in the equation of Hj is fixed. This implies that 	0 can continue to extend in g, while keeping
Feα(λ) + L(τ0, λ) independent of λ, until the upper endpoint of 	0 reaches a λ-value that is
a breakpoint of Feα , or 	0 hits an edge of g. In the first case, 	0 cannot extend any further
because we would switch to the next segment in G(Feα), which must have a slope different from
the current segment in G(Feα) as Feα is convex. Thus, the equation of Hj can no longer cancel
Feα(λ) for any λ-value larger than the upper endpoint of 	0. On the other hand, there is no
edge of L to follow in the interior of g. Therefore, if the upper endpoint of 	0 is in interior of g,
then by Lemma 3.6, η will continue from the upper endpoint of 	0 in the direction of positive
τ -axis until η reaches an edge of g. From this point onward, η cannot make any further jump
into g in the direction of positive λ-axis because Feα is convex and therefore a different segment
of Feα cannot cancel the term in the equation of Hj that involves λ. For the second case that
	0 extends all the way across g, η will have to traverse a segment in the direction of the positive
τ -axis to enter g again. Such a segment corresponds to a breakpoint of Feα . Therefore, by the
same argument as before, η cannot jump in g again after encountering a breakpoint of Feα . We
conclude that η makes at most one jump in the direction of the positive λ-axis in each face of
L.

Let k be the number of segments in G(Feα). In other words, Feα has k + 1 breakpoints.
Let k′ be the number of faces in L. The above analysis shows that η makes at most k′ jumps.
Since η is monotone, segments in η that lie on edges of L have different λ-values at their upper
endpoints. Such an upper endpoint is either at some τ -value that η makes a jump, or at some
λ-value that is a breakpoint of Feα . So there are at most k+k′+1 such upper endpoints, which
implies that η has at most k + k′ + 1 segments that lie on edges of L.

12

It remains to bound the number of segments in η that are parallel to the τ -axis. Consider
two such segment h1 and h2 in this order along η that lie in the same face g of L. We claim
that η must make a jump in g between h1 and h2. Suppose not. The right endpoint of h1 must
then be on the lower boundary edge of g. After h1, η remains on or below the lower boundary
edge of g until h2 because η does not jump into g before that. But this is impossible because
the left endpoint of h2 must be above the lower boundary edge of g in order that h2 lies in g.
Therefore, if η has two segments in a face of L that are parallel to the τ -axis, then η must make
a jump between them. Since η makes at most one jump in a face, we conclude that η has at
most two segments in each face that are parallel to the τ -axis in each face. Hence, η has at
most 2k′ such segments in total that are parallel to the τ -axis.

Lemma 3.8 During the construction of the sequence tree, for each node α created, it takes
O(|σα| log |σα|) time to compute an L∞ LSDP from s to vα with edge sequence σα.

Proof. Lemma 3.7 implies that for each node α created, G(Feα) consists of O(|σα|) segments.
By Lemma 3.4, the L∞ LSDP computation at α takes O(|σα| log |σα|) time.

Plugging the result of Lemma 3.8 into Lemma 3.2 gives Theorem 3.1.

4 Approximation algorithm for SDP

Our approximate SDP algorithm consists of three steps. First, we apply Theorem 3.1 to compute
the L∞ SDP length opt∞ from s to t. Recall that opt is the SDP length from s to t and
opt∞ ≤ opt ≤

√
3 opt∞. Second, we clip the terrain T within the box centered at s and

of side length 4
√
3opt∞. Triangulate all non-triangular faces produced by the clipping. Let

T ∗ denote the clipped terrain. For all ε ∈ (0, 1), every (1 + ε)-approximate SDP has length
at most 2opt ≤ 2

√
3opt∞, so it lies completely inside T ∗. It thus suffices to work with T ∗.

Every edge in T ∗ has length at most 12opt∞. This upper bound on the edge lengths allows
us to remove the dependence on the spread of T from the running time. Third, we define
the quasi-length of a path in T ∗, which is based on both the path length and the path’s edge
sequence length. We combine the sequence tree approach with an approximate LSDP algorithm
of Ahmed [2, Section 3.3.7] to compute an approximate SDP from s to t. Our innovation is to
prune the sequence tree based on the quasi-lengths of the approximate LSDPs instead of their
true lengths.

In the rest of this section, we explain the third step in detail and analyze the whole algorithm.
For simplicity, we also use n to denote the number of vertices in T ∗, which is asymptotically no
more than the number of vertices in T .

4.1 Computing an approximate LSDP

Given a destination v, an edge sequence σ, and an error parameter μ ∈ (0, 1), Ahmed proposed
an algorithm [2, Section 3.3.7] to compute in O(|σ|2 log(L/μ)) time an approximate LSDP from
s to v with edge sequence σ, where L is the length of the longest edge in σ, and proved that
the relative error of the returned path is O(μ|σ|/h), where h is the smallest distance between
a vertex and a non-incident edge. Ahmed’s algorithm is based on the characterization of the
bend angles of an LSDP [5], which allows the LSDP to be traced in time linear in the number
of links once the direction of the first link is fixed. Therefore, one can guess the direction of
the first link to trace an LSDP, and then binary search to find a good enough initial direction.
We describe Ahmed’s algorithm below for the sake of completeness. We modify the original

13

analysis [2, Section 3.3.7] to change the error bound from a relative error to an additive error of
|σ|μ. The additive error bound will be useful in the analysis of our approximate SDP algorithm.

Suppose that σ = (e1, . . . , ek). Before the binary search starts, the algorithm first constructs
two “boundary paths” Q and R that sandwich the approximate LSDP to be computed. Let
q′0 = s, let r′k+1 = v, and set q′i to be the highest point in ei that is not higher than q′i−1. For
i ∈ [1, k], let r′i be the lowest point in ei that is not lower than r′i+1. If q

′
i or r

′
i for some i does not

exist, then the algorithm aborts, since the LSDP from s to v with edge sequence σ does not exist.
Afterwards, for i ∈ [1, k], let qi and ri be the left and right endpoints of q′ir

′
i with respect to the

traversal of the sequence (e1, e2, . . . , ek). The paths Q and R are (q0 = s, q1, q2, . . . , qk, qk+1 = v)
and (r0 = s, r1, r2, . . . , rk, rk+1 = v), respectively. Intuitively, the LSDP cannot “cross” Q and
“bend to the left”, and it cannot “cross” R and “bend to the right”.

Let c0 = s. The goal is to find an interval aibi ⊆ qiri ⊆ ei and a point ci ∈ aibi for i ∈ [1, k]
that fulfills the following conditions:

• Both ai and bi can be reached by descending segments from ci−1.

• ‖aibi‖ ≤ μ/2 and ci is equal to ai or bi, whichever is higher.

• The LSDP from ci−1 to v with edge sequence (ei, · · · , ek) exists and it crosses aibi.

The computation of aibi and ci proceeds in stages from i = 1 to k. The ith stage works as
follows. Initialize ai and bi to be qi and ri, respectively. If ai is higher than ci−1, then set ai
to be the point in qiri that is at the same height as ci−1. Similarly, if bi is higher than ci−1,
then set bi to be the point in qiri that is at the same height as ci−1. Let ci be the midpoint
of aibi. Trace an LSDP from ci−1 along the initial direction ci−1ci until the path hits Q or R.
If Q is hit, set ai to be ci; otherwise, R is hit and set bi to be ci. Set ci to be the midpoint
of aibi. Repeat the tracing of an LSDP along ci−1ci and the update of ai, bi and ci until
‖aibi‖ ≤ μ/2. After the binary search terminates, set ci to be the higher endpoint of the final
interval aibi and proceed to the next stage. The LSDP tracing maintains the property that the
LSDP from ci−1 to v exists and passes through aibi. After completing all k stages, return the
path P = (s = c0, c1, c2, . . . , ck, v).

Lemma 4.1 Given a source s, a vertex v, an edge sequence σ, and any μ ∈ (0, 1), an approxi-
mate shortest descending path from s to v with edge sequence σ and additive error at most |σ|μ
can be computed in O(|σ|2 log(L/μ)) time, where L is the length of the longest edge in σ.

Proof. It was proved in [2, Section 3.3.7] that the algorithm runs in O(|σ|2 log(L/μ)) time
and returns a descending path D from s to v with edge sequence σ. We analyze the additive
error of D. For i ∈ [0, k], let Pi be the LSDP from ci to v with edge sequence (ei+1, . . . , ek).
By the invariants of the algorithm, we can assume that Pi crosses ai+1bi+1 for i ∈ [0, k − 1].
Note that Pk = ckv = D[ck, v]. We show by backward induction from i = k down to 0 that
‖D[ci, v]‖ ≤ ‖Pi‖+ (k − i)μ.

The base case of i = k is trivial as D[ck, v] = Pk. Let c be the crossing between Pi and
ai+1bi+1. So ‖ci+1c‖ ≤ μ/2. Since ci+1 is the higher of ai+1 and bi+1, the concatenation
ci+1c · Pi[c, v] is a descending path from ci+1 to v with edge sequence (ei+2, . . . , ek). Thus,
ci+1c ·Pi[c, v] is at least as long as Pi+1. On the other hand, ‖Pi+1‖ ≥ ‖D[ci+1, v]‖− (k− i−1)μ
by induction assumption. Therefore,

‖Pi[c, v]‖ + ‖ci+1c‖ ≥ ‖Pi+1‖ ≥ ‖D[ci+1, v]‖ − (k − i− 1)μ.

14

Then,

‖Pi‖ = ‖Pi[c, v]‖ + ‖cic‖
≥ ‖D[ci+1, v]‖ − (k − i− 1)μ + ‖cic‖ − ‖ci+1c‖
≥ ‖D[ci+1, v]‖ − (k − i− 1)μ + (‖cici+1‖ − ‖ci+1c‖)− ‖ci+1c‖
= ‖D[ci, v]‖ − (k − i− 1)μ − 2 ‖ci+1c‖
≥ ‖D[ci, v]‖ − (k − i)μ.

This completes the induction. When i = 0, we get ‖D‖ = ‖D[c0, v]‖ ≤ ‖P0‖+ kμ.

Due to the one-corner one-split property, there exists a constant κ ≥ 1 such that the con-
struction of the sequence tree creates fewer than κn2 tree nodes. Set μ = εopt∞/(κn2m(m+1)),
where n is the number of vertices and m is the number of faces in T ∗. The fact that every edge
of T ∗ has length at most 12opt∞ immediately yields the following result.

Corollary 4.1 Let μ = εopt∞/(κn2m(m+ 1)). Given a destination v and an edge sequence σ
in T ∗, we can compute in O(|σ|2 log(n/ε)) time an approximate LSDP in T ∗ from s to v with
edge sequence σ and additive error at most |σ|μ.

4.2 Quasi-length and quasi-dominance

In the construction of the sequence tree, whenever a new tree node α is created, we apply
Corollary 4.1 to compute an approximate LSDP from s to vα with edge sequence σα. We
denote this path by Pα and store it at α. The remaining task is to define a tree pruning rule to
enforce the one-corner one-split property.

Let μ = εopt∞/(κn2m(m+1)) as defined in Corollary 4.1. Define μ̃ = κn2mμ = εopt∞/(m+
1). For every path Q in T ∗, the quasi-length of Q is equal to ‖Q‖ + |seq(Q)| · μ̃. We define a
notion of dominance among the tree nodes in order to impose the one-corner one-split property.
Let α and β be two tree nodes corresponding to the same face corner (fα, vα). Therefore, Pα

and Pβ are approximate LSDPs from s to vα = vβ with edge sequences σα and σβ, respectively.
Then, α quasi-dominates β if the quasi-length of Pα is less than or equal to the quasi-length
of Pβ. (Break ties arbitrarily.) Assume that α quasi-dominates β. We further decide whether
α quasi-dominates β on the left or right. The left/right quasi-dominance is determined by the
same test used in the definition of left/right dominance for the L∞ case in Section 3. Refer to
Figure 2 for the possible configurations of Pα and Pβ .

The next result is the analog of Lemma 3.1 in the L∞ case.

Lemma 4.2 Let α and β be two tree nodes that correspond to the same face corner (fα, vα) such
that α quasi-dominates β on the right (resp. left). Let e be the edge that follows eα immediately
in anticlockwise (resp. clockwise) order around the boundary of fα.

(i) α is not a descendant of β.

(ii) For every point r ∈ e and every LSDP Qβ with edge sequence σβ from s to r, the LSDP
Qα with edge sequence σα from s to r satisfies ‖Qα‖ ≤ ‖Qβ‖+ (|σβ | − |σα|)μ̃+ |σβ |μ.

Proof. Refer to Figure 3 for an illustration of the configuration.
Consider (i). Suppose for the sake of contradiction that α is a descendant of β. So σβ is

a proper prefix of σα. Pα traverses the same edges and faces as Pβ until fβ. Afterwards, Pβ

stops at vβ , and Pα leaves fβ through some point p on an edge of fβ other than eβ . Shortcut

15

Pα by connecting p to vβ directly and removing the rest of Pα. This gives a path Q such that
seq(Q) = σβ and ‖Q‖ < ‖Pα‖. Thus, ‖Q‖ + |σβ |μ̃ < ‖Pα‖ + (|σα| − 1)μ̃ because |σβ| < |σα|.
Since α quasi-dominates β, we get ‖Q‖ + |σβ|μ̃ < ‖Pβ‖ + (|σβ | − 1)μ̃. Therefore, ‖Q‖ <
‖Pβ‖− μ̃ ≤ ‖Pβ‖−|σβ|μ because μ̃ ≥ mμ ≥ |σβ|μ. But the additive error of Pβ is at most |σβ |μ
by Corollary 4.1, implying that Q is shorter than the LSDP from s to vβ with edge sequence
σβ, a contradiction.

Consider (ii). Without loss of generality, assume that α quasi-dominates β on the right.
The same analysis in the proof of Lemma 3.1(ii) shows that Pα intersects Qβ at a point p such
that Pα[p, vα] and Qβ[p, r] have the same edge sequence as illustrated in Figure 3. Therefore,
Pα[s, p] ·Qβ [p, r] is a descending path from s to r with edge sequence vα. Since Qα is the LSDP
from s to r with edge sequence vα by assumption, we obtain

‖Qα‖ ≤ ‖Pα[s, p]‖+ ‖Qβ[p, r]‖
= ‖Pα‖+ ‖Qβ‖ − ‖Qβ[s, p] · Pα[p, vα]‖
≤ ‖Pβ‖+ (|σβ | − |σα|)μ̃+ ‖Qβ‖ − ‖Qβ[s, p] · Pα[p, vα]‖ (2)

The last inequality follows from the quasi-dominance of α over β. Note that Qβ[s, p] ·Pα[p, vα] is
a descending path from s to vα with edge sequence σβ. Therefore, if it is shorter than Pβ , Corol-
lary 4.1 implies that it is shorter by no more than |σβ |μ. That is, ‖Pβ‖−‖Qβ[s, p] · Pα[p, vα]‖ ≤
|σβ|μ. Plugging this inequality into (2) gives (ii).

4.3 Algorithm and analysis

Our approximate SDP algorithm also grows from the leaves at the bottommost level of the
sequence tree in rounds until the number of tree levels equals the number of faces in T ∗.
There are two differences though. First, dominance among the tree nodes is replaced by quasi-
dominance. Thus, every dominance check is replaced by a quasi-dominance check. Second,
after creating a new leaf α, we use Corollary 4.1 to compute an approximate LSDP Pα from
s to vα with edge sequence σα. The one-corner one-split property is enforced by pruning the
sequence tree as described in the L∞ SDP algorithm in Section 3. After the tree stops growing,
we return the minimum ‖Pα‖ among all tree nodes α such that vα = t. This is the approximate
SDP length from s to t. The next result shows the correctness of the algorithm.

Lemma 4.3 For any ε ∈ (0, 1), our algorithm returns a (1 + ε)-approximate SDP from s to t.

Proof. Recall that μ = εopt∞/(κn2m(m + 1)), μ̃ = κn2mμ = εopt∞/(m + 1), and m denotes
the number of faces in T ∗ (which bounds the number of levels in the sequence tree). Let opt be
the SDP length from s to t. Let P0 be an SDP from s to t. So ‖P0‖ = opt and |seq(P0)| < m
as P0 does not visit any face more than once.

Suppose that the final sequence tree contains a node γ0 such that vγ0 = t and σγ0 = seq(P0).
Corollary 4.1 gives an approximate LSDP Pγ0 such that ‖Pγ0‖ ≤ ‖P0‖ + |σγ0 |μ < opt +mμ <
opt+ εopt∞ ≤ (1 + ε)opt. Our algorithm returns a path of length at most ‖Pγ0‖.

Suppose that there is no such node γ0 in the final sequence tree. There must exist two nodes
β0 and α1 in some intermediate sequence tree such that σβ0 is a prefix of σγ0 , and the child of
β0 that would be an ancestor of γ0 is pruned due to the quasi-dominance of α1 over β0. By
Lemma 4.2(i), α1 remains after pruning. We will show that there is an almost equally good
descending path from s to t whose edge sequence has α1 as a prefix.

Without loss of generality, assume that α1 quasi-dominates β0 on the right, so the right
child of β0 is pruned. Refer to Figure 8. Let e be the edge that immediately follows eβ0 in
anticlockwise order around the boundary of fβ0 . Since the pruned right child of β0 would be

16

vβ0

P0
vγ0 = t

êα1

êβ0

e

p

eβ0

Qα1

fβ0

Figure 8: P0 consists of the grey solid and grey dashed links. The grey dashed path is not
represented in the final sequence tree because α1 quasi-dominates β0 on the right. The grey
solid path has edge sequence σβ0 . Lemma 4.2(ii) guarantees a bold solid path Qα1 from s to p
with edge sequence σα1 . Concatenating Qα1 with the grey dashed path gives a descending path
from s to t with edge sequence σγ1 .

an ancestor of γ0, P0 must cross the edge e at some point p. By Lemma 4.2(ii), there is a
descending path Qα1 from s to p with edge sequence σα1 such that

‖Qα1‖ ≤ ‖P0[s, p]‖+ (|σβ0 | − |σα1 |)μ̃+ |σβ0 |μ
< ‖P0[s, p]‖+ (|σβ0 | − |σα1 |)μ̃+mμ. (3)

Let σγ1 be the concatenation of σα1 and the suffix of σγ0 after σβ0 . So |σγ0 |−|σγ1 | = |σβ0 |−|σα1 |.
The edge sequence of the descending path Qα1 ·P0[p, t] is σγ1 . This implies that the LSDP from
s to t with edge sequence σγ1 exists. Denote it by P1. It satisfies the following relation.

‖P1‖ ≤ ‖Qα1‖+ ‖P0[p, t]‖
< ‖P0‖+ (|σβ0 | − |σα1 |)μ̃ +mμ (∵ (3))

= ‖P0‖+ (|σγ0 | − |σγ1 |)μ̃ +mμ (4)

= opt+ (|σγ0 | − |σγ1 |)μ̃+mμ.

If the final sequence tree contains a tree node γ1 such that vγ1 = t and σγ1 = seq(P1), then
we can proceed to bound ‖Pγ1‖ and show that our algorithm returns a (1 + ε)-approximation.
However, it is possible that the final sequence tree does not contain such a node γ1. We deal
with this case first. Our idea is to repeat the previous argument to define another LSDP P2

from s to t which is only slightly longer. We prove by induction a more general claim.

Claim 4.1 For i ∈ [0, κn2 − 1], if the final sequence tree does not contain a tree
node γi such that vγi = t and σγi = seq(Pi), then there exists a descending path Pi+1

from s to t such that ‖Pi+1‖ ≤ opt+ (|σγ0 | − |σγi+1 |)μ̃+ (i+ 1)mμ.

Proof. We have already shown the base case when i = 0. Assume inductively that

‖Pi‖ ≤ opt+ (|σγ0 | − |σγi |)μ̃+ imμ (5)

for some i ∈ [1, κn2 − 1]. Suppose that the final sequence tree does not contain a
tree node γi such that vγi = t and σγi = seq(Pi). Observe that ‖Pi‖ ≥ opt and
for i < κn2, imμ < κn2mμ = μ̃. Plugging these two inequalities into (5) gives
(|σγi | − |σγ0 |) μ̃ ≤ imμ < μ̃. It follows that |σγi | ≤ |σγ0 | < m because edge sequence
lengths are integers. Since our algorithm grows the sequence tree until its height
reaches m, it means that the tree node γi would have been generated if the sequence
tree had not been pruned during its construction. Therefore, there must exist tree
nodes βi and αi+1 in some intermediate sequence tree such that γi is a descendant

17

of βi, αi+1 and βi correspond to the same face corner, and the child of βi that would
be an ancestor of γi is pruned due to the quasi-dominance of αi+1 over βi. Note
that σβi

is a prefix of σγi as γi is a descendant of βi. Let σγi+1 be the edge sequence
obtained by replacing the prefix σβi

of σγi by σαi+1 . We can prove that the LSDP
from s to t with edge sequence σγi+1 exists using the same analysis as we used for
showing the existence of P1. Denote it by Pi+1. We can also adapt the derivation
of (4) to show that

‖Pi+1‖ ≤ ‖Pi‖+ (|σγi | − |σγi+1 |)μ̃ +mμ.

Plugging (5) into the inequality above proves the claim.

In the proof of Claim 4.1, the path Pi is defined after pruning some intermediate sequence
tree, which implies that P1, P2, . . . are defined in this chronological order. Pruning can only
happen after the creation of a new leaf. Therefore, there are fewer than κn2 prunings because
fewer than κn2 tree nodes are ever created. It means that there exists j ∈ [1, κ2n− 1] such that
P1, . . . , Pj are defined but Pj+1 is not. As a result, the final sequence tree contains a tree node
γj such that vγj = t and σγj = seq(Pj). Moreover,

∥∥Pγj

∥∥ ≤ ‖Pj‖+ |σγj |μ (∵ Corollary 4.1)

≤ opt+ (|σγ0 | − |σγj |)μ̃+ jmμ + |σγj |μ (∵ Claim 4.1)

< opt+ |σγ0 |μ̃+ κn2mμ (∵ μ̃ > μ and j < κn2)

< opt+ (m+ 1)μ̃ (∵ |σγ0 | < m and κn2mμ = μ̃)

= opt+ εopt∞ (∵ μ̃ = εopt∞/(m+ 1))

≤ (1 + ε)opt.

The path returned by our algorithm has length at most
∥∥Pγj

∥∥, so it is a (1 + ε) approximate
SDP from s to t.

Theorem 4.1 Given any ε ∈ (0, 1) and two vertices s and t in a polygonal terrain of n vertices,
one can compute a (1 + ε)-approximate shortest descending path from s to t in O(n4 log(n/ε))
time.

Proof. We first check the existence of a descending from s to t in O(n log n) time using de Berg
and van Kreveld’s result [7]. By Theorem 3.1, it takes O(n3 log n) time to compute opt∞. By
Corollary 4.1, computing the LSDP takes O(n2 log(n/ε)) time at each sequence tree node. Since
O(n2) tree nodes are ever created, the total time is O(n4 log(n/ε)).

5 Conclusion

We present the first (1 + ε)-approximate SDP algorithm whose running time is polynomial in
n and log(1/ε) and independent of the terrain geometry. This is achieved via computing a
constant-factor lower bound on the optimal path length and introducing the quasi-length of a
path, which is critical in the design of the algorithm as well as the analysis of the approximation
ratio. Quasi-length is a new concept and it may be useful for other path problems on polygonal
surfaces. The framework of our SDP approximation algorithm may also be applicable in solving
other shortest path problems on terrains with other constraints.

18

References

[1] P.K. Agarwal, S. Har-Peled, M. Sharir, and K.R. Varadarajan. Approximating shortest
paths on a convex polytope in three dimensions. Journal of ACM, 44 (1997), 567–584.

[2] M. Ahmed. Constrained Shortest Paths in Terrains and Graphs. PhD thesis, University
of Waterloo, Canada, 2009.

[3] M. Ahmed, S. Das, S. Lodha, A. Lubiw, A. Maheshwari and S. Roy. Approximation
algorithms for shortest descending paths in terrains. Journal of Discrete Algorithms, 8
(2010), 214–230.

[4] M. Ahmed and A. Lubiw. Shortest descending paths through given faces. Computational
Geometry: Theory and Applications, 42 (2009), 464–470.

[5] M. Ahmed and A. Lubiw. Shortest descending paths: towards an exact algorithm. Inter-
national Journal of Computational Geometry and Applications, 21 (2011), 431–466.

[6] J. Chen and Y. Han. Shortest paths on a polyhedron, part I: computing shortest paths.
International Journal of Computational Geometry and Applications, 6 (1996), 127–144.

[7] M. de Berg and M. van Kreveld. Trekking in the Alps without freezing or getting tired.
Algorithmica, 18 (1997), 306–323.

[8] J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the plane.
SIAM Journal on Computing, 28 (1999), 2215–2256.

[9] J.S.B. Mitchell. Geometric shortest paths and network optimization. In J.-R. Sack and
J. Urrutia, editors, Handbook of Computational Geometry, pages 633?V701. Elsevier, 2000.

[10] J.S.B. Mitchell, D.M. Mount and C.H. Papadimitriou. The discrete geodesic problem.
SIAM Journal on Computing, 16 (19897), 647–668.

[11] J.S.B. Mitchell and C.H. Papadimitriou. The weighted region problem: finding shortest
paths through a weighted planar subdivision. Journal of ACM, 38 (1991), 18–73.

[12] S. Roy, S. Das, and S.C. Nandy. Shortest monotone descent path problem in polyhedral
terrain. Computational Geometry: Theory and Applications, 27 (2007), 115–133.

[13] Y. Schreiber and M. Sharir. An optimal-time algorithm for shortest paths on a convex
polytope in three dimensions. Proceedings of the 22nd annual symposium on Computational
geometry, 2006, 30–39.

[14] K.R. Varadarajan and P.K. Agarwal. Approximating shortest paths on a non-convex poly-
hedron. SIAM Journal on Computing, 30 (2001), 1321–1340.

19

