
Scalable Robust Matrix Factorization with
Nonconvex Loss

Quanming Yao1,2, James T. Kwok2

14Paradigm Inc. Beijing, China
2Department of Computer Science and Engineering,

Hong Kong University of Science and Technology, Hong Kong
yaoquanming@4paradigm.com, jamesk@cse.ust.hk

Abstract

Matrix factorization (MF), which uses the `2-loss, and robust matrix factorization
(RMF), which uses the `1-loss, are sometimes not robust enough for outliers.
Moreover, even the state-of-the-art RMF solver (RMF-MM) is slow and cannot
utilize data sparsity. In this paper, we propose to improve robustness by using
nonconvex loss functions. The resultant optimization problem is difficult. To
improve efficiency and scalability, we use majorization-minimization (MM) and
optimize the MM surrogate by using the accelerated proximal gradient algorithm
on its dual problem. Data sparsity can also be exploited. The resultant algorithm
has low time and space complexities, and is guaranteed to converge to a critical
point. Extensive experiments show that it outperforms the state-of-the-art in terms
of both accuracy and speed.

1 Introduction

Matrix factorization (MF) is a fundamental tool in machine learning, and an important component
in many applications such as computer vision [1, 38], social networks [37] and recommender
systems [30]. The square loss has been commonly used in MF [8, 30]. This implicitly assumes
the Gaussian noise, and is sensitive to outliers. Eriksson and van den Hengel [12] proposed robust
matrix factorization (RMF), which uses the `1-loss, and obtains much better empirical performance.
However, the resultant nonconvex nonsmooth optimization problem is much more difficult.

Most RMF solvers are not scalable [6, 12, 22, 27, 40]. The current state-of-the-art solver is RMF-MM
[26], which is based on majorization minimization (MM) [20, 24]. In each iteration, a convex
nonsmooth surrogate is optimized. RMF-MM is advantageous in that it has theoretical convergence
guarantees, and demonstrates fast empirical convergence [26]. However, it cannot utilize data sparsity.
This is problematic in applications such as structure from motion [23] and recommender system [30],
where the data matrices, though large, are often sparse.

Though the `1-loss used in RMF is more robust than the `2, still it may not be robust enough for
outliers. Recently, better empirical performance is obtained in total-variation image denosing by
using the `0-loss instead [35], and in sparse coding the capped-`1 loss [21]. A similar observation
is also made on the `1-regularizer in sparse learning and low-rank matrix learning [16, 38, 41]. To
alleviate this problem, various nonconvex regularizers have been introduced. Examples include the
Geman penalty [14], Laplace penalty [34], log-sum penalty (LSP) [9] minimax concave penalty
(MCP) [39], and the smooth-capped-absolute-deviation (SCAD) penalty [13]. These regularizers are
similar in shape to Tukey’s biweight function in robust statistics [19], which flattens for large values.
Empirically, they achieve much better performance than `1.

In this paper, we propose to improve the robustness of RMF by using these nonconvex functions
(instead of `1 or `2) as the loss function. The resultant optimization problem is difficult, and existing

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

RMF solvers cannot be used. As in RMF-MM, we rely on the more flexible MM optimization
technique, and a new MM surrogate is proposed. To improve scalability, we transform the surrogate
to its dual and then solve it with the accelerated proximal gradient (APG) algorithm [2, 32]. Data
sparsity can also be exploited in the design of the APG algorithm. As for its convergence analysis,
proof techniques in RMF-MM cannot be used as the loss is no longer convex. Instead, we develop
new proof techniques based on the Clarke subdifferential [10], and show that convergence to a
critical point can be guaranteed. Extensive experiments on both synthetic and real-world data sets
demonstrate superiority of the proposed algorithm over the state-of-the-art in terms of both accuracy
and scalability.

Notation. For scalar x, sign (x) = 1 if x > 0, 0 if x = 0, and −1 otherwise. For a vector x,
Diag(x) constructs a diagonal matrix X with Xii = xi. For a matrix X , ‖X‖F = (

∑
i,j X

2
ij)

1/2

is its Frobenius norm, ‖X‖1 =
∑
i,j |Xij | is its `1-norm, and nnz(X) is the number of nonzero

elements in X . For a square matrix X , tr(X) =
∑
iXii is its trace. For two matrices X,Y , X � Y

denotes their element-wise product. For a smooth function f , ∇f is its gradient. For a convex f ,
G ∈ ∂f(X) = {U : f(Y) ≥ f(X) + tr(U>(Y −X))} is a subgradient.

2 Related Work

2.1 Majorization Minimization
Majorization minimization (MM) is a general technique to make difficult optimization problems
easier [20, 24]. Consider a function h(X) which is hard to optimize. Let the iterate at the kth MM
iteration be Xk. The next iterate is generated as Xk+1 = Xk + arg minX f

k(X;Xk), where fk is a
surrogate that is being optimized instead of h. A good surrogate should have the following properties
[24]: (i) h(Xk +X) ≤ fk(X;Xk) for any X; (ii) 0 = arg minX

(
fk(X;Xk)− h(Xk +X)

)
and

h(Xk) = fk(0;Xk); and (iii) fk is convex on X . MM only guarantees that the objectives obtained
in successive iterations are non-increasing, but does not guarantee convergence of Xk [20, 24].

2.2 Robust Matrix Factorization (RMF)
In matrix factorization (MF), the data matrix M ∈ Rm×n is approximated by UV >, where U ∈
Rm×r, V ∈ Rn×r and r � min(m,n) is the rank. In applications such as structure from motion
(SfM) [1] and recommender systems [30], some entries of M may be missing. In general, the
MF problem can be formulated as: minU,V

1
2‖W � (M − UV >)‖2F + λ

2 (‖U‖2F + ‖V ‖2F), where
W ∈ {0, 1}m×n contains indices to the observed entries in M (with Wij = 1 if Mij is observed,
and 0 otherwise), and λ ≥ 0 is a regularization parameter. The `2-loss is sensitive to outliers. In [11],
it is replaced by the `1-loss, leading to robust matrix factorization (RMF):

min
U,V
‖W � (M − UV >)‖1 +

λ

2
(‖U‖2F + ‖V ‖2F). (1)

Many RMF solvers have been developed [6, 7, 12, 18, 22, 26, 27, 40]. However, as the objective
in (1) is neither convex nor smooth, these solvers lack scalability, robustness and/or convergence
guarantees. Interested readers are referred to Section 2 of [26] for details.

Recently, the RMF-MM algorithm [26] solves (1) using MM. Let the kth iterate be (Uk, V k).
RMF-MM tries to find increments (Ū , V̄) that should be added to obtain the target (U, V):

U = Uk + Ū , V = V k + V̄ . (2)

Substituting into (1), the objective can be rewritten as Hk(Ū , V̄) ≡ ‖W � (M−(Uk + Ū)(V k +
V̄)>)‖1 + λ

2 ‖U
k + Ū‖2F + λ

2 ‖V
k + V̄ ‖2F . The following Proposition constructs a surrogate F k of

Hk that satisfies properties (i) and (ii) in Section 2.1. Unlike Hk, F k is jointly convex in (Ū , V̄).
Proposition 2.1. [26] Let nnz(W(i,:)) (resp. nnz(W(:,j))) be the number of nonzero elements in
the ith row (resp. jth column) of W , Λr = Diag(

√
nnz(W(1,:)), . . . ,

√
nnz(W(m,:))), and Λc =

Diag(
√

nnz(W(:,1)), . . . ,
√

nnz(W(:,n))). Then, Hk(Ū , V̄) ≤ F k(Ū , V̄), where

F k(Ū , V̄) ≡‖W�(M − Uk(V k)> − Ū(V k)> − UkV̄ >)‖1

+
λ

2
‖Uk + Ū‖2F +

1

2
‖ΛrŪ‖2F +

λ

2
‖V k + V̄ ‖2F +

1

2
‖ΛcV̄ ‖2F . (3)

2

Equality holds iff (Ū , V̄) = (0, 0).

Because of the coupling of Ū , V k (resp. Uk, V̄) in Ū(V k)> (resp. UkV̄ >) in (3), F k is still difficult
to optimize. To address this problem, RMF-MM uses the LADMPSAP algorithm [25], which is a
multi-block variant of the alternating direction method of multipliers (ADMM) [3].

RMF-MM has a space complexity of O(mn), and a time complexity of O(mnrIK), where I is the
number of (inner) LADMPSAP iterations and K is the number of (outer) RMF-MM iterations. These
grow linearly with the matrix size, and can be expensive on large data sets. Besides, as discussed in
Section 1, the `1-loss may still be sensitive to outliers.

3 Proposed Algorithm
3.1 Use a More Robust Nonconvex Loss
In this paper, we improve robustness of RMF by using a general nonconvex loss instead of the `1-loss.
Problem (1) is then changed to:

min
U,V

Ḣ(U, V) ≡
m∑
i=1

n∑
j=1

Wijφ
(
|Mij − [UV >]ij |

)
+
λ

2
(‖U‖2F + ‖V ‖2F), (4)

where φ is nonconvex. We assume the following on φ:

Assumption 1. φ(α) is concave, smooth and strictly increasing on α ≥ 0.

Assumption 1 is satisfied by many nonconvex functions, including the Geman, Laplace and LSP
penalties mentioned in Section 1, and slightly modified variants of the MCP and SCAD penalties.
Details can be found in Appendix A. Unlike previous papers [16, 38, 41], we use these nonconvex
functions as the loss, not as regularizer. The `1 also satisfies Assumption 1, and thus (4) includes (1).

When the ith row of W is zero, the ith row of U obtained is zero because of the ‖U‖2F regularizer.
Similarly, when the ith column of W is zero, the corresponding column in V is zero. To avoid this
trivial solution, we assume the following, as in matrix completion [8] and RMF-MM.

Assumption 2. W has no zero row or column.

3.2 Constructing the Surrogate
Problem (4) is difficult to solve, and existing RMF solvers cannot be used as they rely crucially on
the `1-norm. In this Section, we use the more flexible MM technique as in RMF-MM. However, its
surrogate construction scheme cannot be used here. RMF-MM uses the convex `1 loss, and only
needs to handle nonconvexity resulting from the product UV > in (1). Here, nonconvexity in (4)
comes from both from the loss and UV >.

The following Proposition first obtains a convex upper bound of the nonconvex φ using Taylor
expansion. An illustration is shown in Figure 1. Note that this upper bound is simply a re-weighted
`1, with scaling factor φ′(|β|) and offset φ(|β|)− φ′(|β|)|β|. As one may expect, recovery of the `1
makes optimization easier. It is known that the LSP, when used as a regularizer, can be interpreted as
re-weighted `1 regularization [8]. Thus, Proposition 3.1 includes this as a special case.

Proposition 3.1. For any given β ∈ R, φ(|α|) ≤ φ′(|β|)|α|+(φ(|β|)−φ′(|β|)|β|), and the equality
holds iff α = ±β.

(a) Geman. (b) Laplace. (c) LSP. (d) modified MCP. (e) modified SCAD.

Figure 1: Upper bounds for the various nonconvex penalties (see Table 5 in Appendix A.2) β = 1,
θ = 2.5 for SCAD and θ = 0.5 for the others; and δ = 0.05 for MCP and SCAD.

3

Given the current iterate (Uk, V k), we want to find increments (Ū , V̄) as in (2). Ḣ in (4) can be
rewritten as: Ḣk(Ū , V̄) ≡

∑m
i=1

∑n
j=1Wijφ(|Mij − [(Uk+ Ū)(V k + V̄)>]ij |) + λ

2 ‖U
k + Ū‖2F +

λ
2 ‖V

k + V̄ ‖2F . Using Proposition 3.1, we obtain the following convex upper bound for Ḣk.

Corollary 3.2. Ḣk(Ū , V̄) ≤ bk + λ
2 ‖U

k + Ū‖2F + λ
2 ‖V

k + V̄ ‖2F + ‖Ẇ k � (M − Uk(V k)> −
Ū(V k)>−UkV̄ >−Ū V̄ >)‖1, where bk =

∑m
i=1

∑n
j=1Wij(φ(|[Uk(V k)>]ij |)−Akij |[Uk(V k)>]ij |),

Ẇ k = Ak �W , and Akij = φ′(|[Uk(V k)>]ij |).

The product Ū V̄ > still couples Ū and V̄ together. As Ḣk is similar to Hk in Section 2.2, one
may want to reuse Proposition 2.1. However, Proposition 2.1 holds only when W is a binary
matrix, while Ẇ k here is real-valued. Let Λkr = Diag(

√
sum(Ẇ k

(1,:)), . . . ,
√

sum(Ẇ k
(m,:))) and

Λkc = Diag(
√

sum(Ẇ k
(:,1)), . . . ,

√
sum(Ẇ k

(:,n))). The following Proposition shows that Ḟ k(Ū , V̄) ≡
‖Ẇ k � (M −Uk(V k)> − Ū(V k)> −UkV̄ >)‖1 + λ

2 ‖U
k + Ū‖2F + 1

2‖Λ
k
r Ū‖2F + λ

2 ‖V
k + V̄ ‖2F +

1
2‖Λ

k
c V̄ ‖2F +bk, can be used as a surrogate. Moreover, it can be easily seen that Ḟ k qualifies as a good

surrogate in Section 2.1: (a) Ḣ(Ū+Uk, V̄ +V k) ≤ Ḟ k(Ū , V̄); (b) (0, 0) = arg minŪ,V̄ Ḟ
k(Ū , V̄)−

Ḣk(Ū , V̄) and Ḟ k(0, 0) = Ḣ(0, 0); and (c) Ḟ k is jointly convex in Ū , V̄ .

Proposition 3.3. Ḣk(Ū , V̄) ≤ Ḟ k(Ū , V̄), with equality holds iff (Ū , V̄) = (0, 0).

Remark 3.1. In the special case where the `1-loss is used, Ẇ k = W , bk = 0 Λkr = Λr, and Λkc = Λc.
The surrogate Ḟ k(Ū , V̄) then reduces to that in (3), and Proposition 3.3 becomes Proposition 2.1.

3.3 Optimizing the Surrogate via APG on the Dual

LADMPSAP, which is used in RMF-MM, can also be used to optimize Ḟ k. However, the dual
variable in LADMPSAP is a dense matrix, and cannot utilize possible sparsity of W . Moreover,
LADMPSAP converges at a rate of O(1/T) [25], which is slow. In the following, we propose a time-
and space-efficient optimization procedure based on running the accelerated proximal gradient (APG)
algorithm on the surrogate optimization problem’s dual. Note that while the primal problem has
O(mn) variables, the dual problem has only nnz(W) variables.

Problem Reformulation. Let Ω ≡ {(i1, j1), . . . , (innz(W), jnnz(W))} be the set containing indices
of the observed elements in W , HΩ(·) be the linear operator which maps a nnz(W)-dimensional
vector x to the sparse matrix X ∈ Rm×n with nonzero positions indicated by Ω (i.e., Xitjt = xt
where (it, jt) is the tth element in Ω), andH−1

Ω (·) be the inverse operator ofHΩ.

Proposition 3.4. The dual problem of minŪ,V̄ Ḟ
k(Ū , V̄) is

min
x∈Wk

Dk(x) ≡ 1

2
tr((HΩ(x)V k − λUk)>Akr (HΩ(x)V k − λUk))− tr(HΩ(x)>M)

+
1

2
tr((HΩ(x)>Uk − λV k)>Akc (HΩ(x)>Uk − λV k)), (5)

where Wk ≡ {x ∈ Rnnz(W) : |xi| ≤ [ẇk]−1
i }, ẇk = H−1

Ω (Ẇ k), Akr = (λI + (Λkr)2)−1, and
Akc = (λI + (Λkc)2)−1. From the obtained x, the primal (Ū , V̄) solution can be recovered as
Ū = Akr (HΩ(x)V k − λUk) and V̄ = Akc (HΩ(x)>Uk − λV k).

Problem (5) can be solved by the APG algorithm, which has a convergence rate of O(1/T 2) [2, 32]
and is faster than LADMPSAP. AsWk involves only `1 constraints, the proximal step can be easily
computed with closed-form (details are in Appendix B.3) and takes only O(nnz(W)) time.

The complete procedure, which will be called Robust Matrix Factorization with Nonconvex Loss
(RMFNL) algorithm, is shown in Algorithm 1. The surrogate is optimized via its dual in step 4. The
primal solution is recovered in step 5, and (Uk, V k) are updated in step 6.

Exploiting Sparsity. A direct implementation of APG takes O(mn) space and O(mnr) time per
iteration. In the following, we show how these can be reduced by exploiting sparsity of W .

The objective in (5) involves Akr , A
k
c and Wk, which are all related to Ẇ k. Recall that Ẇ k in

Corollary 3.2 is sparse (as W is sparse). Thus, by exploiting sparsity, constructing Akr , A
k
c andWk

only take O(nnz(W)) time and space.

4

Algorithm 1 Robust matrix factorization using nonconvex loss (RMFNL) algorithm.
1: initialize U1 ∈ Rm×r and V 1 ∈ Rm×r;
2: for k = 1, 2, . . . ,K do
3: compute Ẇ k in Corollary 3.2 (only on the observed positions), and Λkr ,Λ

k
c ;

4: compute xk = arg minx∈Wk Dk(x) in Proposition 3.4 using APG;
5: Ūk = Akr

(
HΩ(xk)V k − λUk

)
, V̄ k = Akc (HΩ(xk)>Uk − λV k);

6: Uk+1 = Uk + Ūk, V k+1 = V k + V̄ k;
7: end for
8: return UK+1 and V K+1.

In each APG iteration, one has to compute the gradient, objective, and proximal step. First, consider
the gradient ∇Dk(x) of the objective, which is equal to

H−1
Ω (Akr (HΩ(x)V k − λUk)(V k)>) +H−1

Ω (Uk[(Uk)>HΩ(x)− λ(V k)>]Akc)−H−1
Ω (M). (6)

The first term can be rewritten as ĝk = H−1
Ω (Qk(V k)>), where Qk = Akr (HΩ(x)V k−λUk). As Akr

is diagonal andHΩ(x) is sparse,Qk can be computed asAkr (HΩ(x)V k)−λ(AkrU
k) inO(nnz(W)r+

mr) time, where r is the number of columns in Uk and V k. Let the tth element in Ω be (it, jt). By the
definition ofH−1

Ω (·), we have ĝkt =
∑r
q=1Q

k
itq
V kjtq , and this takesO(nnz(W)r+mr) time. Similarly,

computing the second term in (6) takes O(nnz(W)r + nr) time. Hence, computing∇Dk(x) takes a
total of O(nnz(W)r + (m+ n)r) time and O(nnz(W) + (m+ n)r) space (the Algorithm is shown
in Appendix B.1). Similarly, the objective can be obtained in O(nnz(W)r + (m + n)r) time and
O(nnz(W) + (m+ n)r) space (details are in Appendix B.2). The proximal step takes O(nnz(W))
time and space, as x ∈ Rnnz(W). Thus, by exploiting sparsity, the APG algorithm has a space
complexity of O(nnz(W) + (m+ n)r) and iteration time complexity of O(nnz(W)r + (m+ n)r).
In comparison, LADMPSAP needs O(mn) space and iteration time complexity of O(mnr). A
summary of the complexity results is shown in Figure 2(a).

3.4 Convergence Analysis
In this section, we study the convergence of RMFNL. Note that the proof technique in RMF-MM
cannot be used, as it relies on convexity of the `1-loss while φ in (4) is nonconvex (in particular,
Proposition 1 in [26] fails). Moreover, the proof of RMF-MM uses the subgradient. Here, as φ is
nonconvex, we will use the Clarke subdifferential [10], which generalizes subgradients to nonconvex
functions (a brief introduction is in Appendix C). For the iterates {Xk} generated by RMF-MM, it is
guaranteed to have a sufficient decrease on the objective f in the following sense [26]: There exists a
constant γ > 0 such that f(Xk) − f(Xk+1) ≥ γ‖Xk −Xk+1‖2F ,∀k. The following Proposition
shows that RMFNL also achieves a sufficient decrease on its objective. Moreover, the {(Uk, V k)}
sequence generated is bounded, which has at least one limit point.

Proposition 3.5. For Algorithm 1, {(Uk, V k)} is bounded, and has a sufficient decrease on Ḣ .

Theorem 3.6. The limit points of the sequence generated by Algorithm 1 are critical points of (4).

4 Experiments
In this section, we compare the proposed RMFNL with state-of-the-art MF algorithms. Experiments
are performed on a PC with Intel i7 CPU and 32GB RAM. All the codes are in Matlab, with sparse
matrix operations implemented in C++. We use the nonconvex loss functions of LSP, Geman and
Laplace in Table 5 of Appendix A, with θ = 1; and fix λ = 20/(m+ n) in (1) as suggested in [26].

4.1 Synthetic Data
We first perform experiments on synthetic data, which is generated as X = UV > with U ∈ Rm×5,
V ∈ Rm×5, and m = {250, 500, 1000}. Elements of U and V are sampled i.i.d. from the standard
normal distribution N (0, 1). This is then corrupted to form M = X + N + S, where N is
the noise matrix from N (0, 0.1), and S is a sparse matrix modeling outliers with 5% nonzero
elements randomly sampled from {±5}. We randomly draw 10 log(m)/m% of the elements from

5

M as observations, with half of them for training and the other half for validation. The remaining
unobserved elements are for testing. Note that the larger the m, the sparser is the observed matrix.

The iterate (U1, V 1) is initialized as Gaussian random matrices, and the iterative procedure is stopped
when the relative change in objective values between successive iterations is smaller than 10−4. For
the subproblems in RMF-MM and RMFNL, iteration is stopped when the relative change in objective
value is smaller than 10−6 or a maximum of 300 iterations is used. Rank r is set to the ground truth
(i.e., 5). For performance evaluation, we follow [26] and use the (i) testing root mean square error,
RMSE =

√
‖W̄ � (X − Ū V̄ T)‖2F /nnz(W̄), where W̄ is a binary matrix indicating positions of the

testing elements; and (ii) CPU time. To reduce statistical variability, results are averaged over five
repetitions.

Solvers for Surrogate Optimization. Here, we compare three solvers for surrogate optimization
in each RMFNL iteration (with the LSP loss and m = 1000): (i) LADMPSAP in RMF-MM; (ii)
APG(dense), which uses APG but without utilizing data sparsity; and (iii) APG in Algorithm 1, which
utilizes data sparsity as in Section 3.3. The APG stepsize is determined by line-search, and adaptive
restart is used for further speedup [32]. Figure 2 shows convergence in the first RMFNL iteration
(results for the other iterations are similar). As can be seen, LADMPSAP is the slowest w.r.t. the
number of iterations, as its convergence rate is inferior to both variants of APG (whose rates are the
same). In terms of CPU time, APG is the fastest as it can also utilize data sparsity.

(a) Complexities of surrogate optimizers. (b) Number of iterations. (c) CPU time.

Figure 2: Convergence of the objective on the synthetic data set (with the LSP loss and m = 1000).
Note that the curves for APG-dense and APG overlap in Figure 2(b).

Table 1 shows performance of the whole RMFNL algorithm with different surrogate optimizers.1 As
can be seen, the various nonconvex losses (LSP, Geman and Laplace) lead to similar RMSE’s, as has
been similarly observed in [16, 38]. Moreover, the different optimizers all obtain the same RMSE. In
terms of speed, APG is the fastest, then followed by APG(dense), and LADMPSAP is the slowest.
Hence, in the sequel, we will only use APG to optimize the surrogate.

Table 1: Performance of RMFNL with different surrogate optimizers.
m = 250 (nnz: 11.04%) m = 500 (nnz: 6.21%) m = 1000 (nnz: 3.45%)

loss solver RMSE CPU time RMSE CPU time RMSE CPU time
LADMPSAP 0.110±0.004 17.0±1.4 0.072±0.001 195.7±34.7 0.45±0.007 950.8±138.8

LSP APG(dense) 0.110±0.004 12.1±0.6 0.073±0.001 114.4±18.8 0.45±0.007 490.1±91.9
APG 0.110±0.004 3.2±0.6 0.073±0.001 5.5±1.0 0.45±0.006 24.6±3.2

LADMPSAP 0.115±0.014 20.4±0.8 0.074±0.006 231.0±36.9 0.45±0.007 950.8±138.8
Geman APG(dense) 0.115±0.011 13.9±1.6 0.073±0.002 146.9±24.8 0.45±0.007 490.1±91.9

APG 0.114±0.009 3.1±0.5 0.073±0.002 8.3±1.1 0.45±0.006 24.6±3.2
LADMPSAP 0.110±0.004 17.1±1.5 0.072±0.001 203.4±22.7 0.45±0.007 950.8±138.8

Laplace APG(dense) 0.110±0.004 12.1±2.1 0.073±0.003 120.9±28.9 0.45±0.007 490.1±91.9
APG 0.111±0.004 2.8±0.4 0.074±0.001 5.6±1.0 0.45±0.006 24.6±3.2

Comparison with State-of-the-Art Matrix Factorization Algorithms. The `2-loss-based MF
algorithms that will be compared include alternating gradient descent (AltGrad) [30], Riemannian
preconditioning (RP) [29], scaled alternating steepest descent (ScaledASD) [33], alternative
minimization for large scale matrix imputing (ALT-Impute) [17] and online massive dictionary
learning (OMDL) [28]. The `1-loss-based RMF algorithms being compared include RMF-MM [26],
robust matrix completion (RMC) [7] and Grassmannian robust adaptive subspace tracking algorithm

1For all tables in the sequel, the best and comparable results according to the pairwise t-test with 95%
confidence are highlighted.

6

(GRASTA) [18]. Codes are provided by the respective authors. We do not compare with AOPMC
[36], which has been shown to be slower than RMC [7].

As can be seen from Table 2, RMFNL produces much lower RMSE than the MF/RMF algorithms,
and the RMSEs from different nonconvex losses are similar. AltGrad, RP, ScaledASD, ALT-Impute
and OMDL are very fast because they use the simple `2 loss. However, their RMSEs are much higher
than RMFNL and RMF algorithms. A more detailed convergence comparison is shown in Figure 3.
As can be seen, RMF-MM is the slowest. RMFNL with different nonconvex losses have similar
convergence behavior, and they all converge to a lower testing RMSE much faster than the others.

Table 2: Performance of the various matrix factorization algorithms on synthetic data.
m = 250 (nnz: 11.04%) m = 500 (nnz: 6.21%) m = 1000 (nnz: 3.45%)

loss algorithm RMSE CPU time RMSE CPU time RMSE CPU time
`2 AltGrad 1.062±0.040 1.0±0.6 0.950±0.005 1.8±0.3 0.853±0.010 6.0±4.2

RP 1.048±0.071 0.1±0.1 0.953±0.012 0.4±0.2 0.848±0.009 1.1±0.1
ScaledASD 1.042±0.066 0.2±0.1 0.950±0.009 0.4±0.3 0.847±0.009 1.2±0.5
ALT-Impute 1.030±0.060 0.2±0.1 0.937±0.010 0.3±0.1 0.838±0.009 1.0±0.2

OMDL 1.089±0.055 0.1±0.1 0.945±0.018 0.2±0.1 0.847±0.009 0.5±0.2
`1 GRASTA 0.338±0.033 1.5±0.1 0.306±0.002 2.9±0.3 0.244±0.009 6.1±0.4

RMC 0.226±0.040 2.8±1.0 0.201±0.001 2.7±0.5 0.195±0.006 4.2±2.5
RMF-MM 0.194±0.032 13.4±0.6 0.145±0.009 154.9±12.5 0.122±0.004 827.7±116.3

LSP RMFNL 0.110±0.004 3.2±0.6 0.073±0.001 5.5±1.0 0.047±0.002 14.0±5.2
Geman RMFNL 0.114±0.004 3.1±0.5 0.073±0.001 8.3±1.1 0.047±0.001 19.0±4.9
Laplace RMFNL 0.111±0.004 2.8±0.4 0.074±0.001 5.6±1.0 0.047±0.002 15.9±6.1

(a) m = 250. (b) m = 500. (c) m = 1000.

Figure 3: Convergence of testing RMSE for the various algorithms on synthetic data.

4.2 Robust Collaborative Recommendation
In a recommender system, the love/hate attack changes the ratings of selected items to the minimum
(hate) or maximum (love) [5]. The love/hate attack is very simple, but can significantly bias overall
prediction. As no love/hate attack data sets are publicly available, we follow [5, 31] and manually
add permutations. Experiments are performed on the popular MovieLens recommender data sets:
MovieLens-100K, MovieLens-1M, and MovieLens-10M (Some statistics on these data sets are in
Appendix E.1). We randomly select 3% of the items from each data set. For each selected item,
all its observed ratings are set to either the minimum or maximum with equal possibilities. 50% of
the observed ratings are used for training, 25% for validation, and the rest for testing. Algorithms
in Section 4.1 will be compared. To reduce statistical variability, results are averaged over five
repetitions. As in Section 4.1, the testing RMSE and CPU time are used for performance evaluation.

Results are shown in Table 3, and Figure 4 shows convergence of the RMSE. Again, RMFNL
with different nonconvex losses have similar performance and achieve the lowest RMSE. The MF
algorithms are fast, but have high RMSEs. GRASTA is not stable, with large RMSE and variance.

4.3 Affine Rigid Structure-from-Motion (SfM)
SfM reconstructs the 3D scene from sparse feature points tracked in m images of a moving camera
[23]. Each feature point is projected to every image plane, and is thus represented by a 2m-
dimensional vector. With n feature points, this leads to a 2m × n matrix. Often, this matrix
has missing data (e.g., some feature points may not be always visible) and outliers (arising from
feature mismatch). We use the Oxford Dinosaur sequence, which has 36 images and 4, 983 feature
points. As in [26], we extract three data subsets using feature points observed in at least 5, 6 and 7

7

Table 3: Performance on the MovieLens data sets. CPU time is in seconds. RMF-MM cannot converge
in 104 seconds on the MovieLens-1M and MovieLens-10M data sets, and thus is not reported.

MovieLens-100K MovieLens-1M MovieLens-10M
loss algorithm RMSE CPU time RMSE CPU time RMSE CPU time
`2 AltGrad 0.954±0.004 1.0±0.2 0.856±0.005 30.6±2.5 0.872±0.003 1130.4±9.6

RP 0.968±0.008 0.2±0.1 0.867±0.002 4.4±0.4 0.948±0.011 199.9±39.0
ScaledASD 0.951±0.004 0.3±0.1 0.878±0.003 8.7±0.2 0.884±0.001 230.2±7.7
ALT-Impute 0.942±0.021 0.2±0.1 0.859±0.001 10.7±0.2 0.872±0.001 198.9±2.6

OMDL 0.958±0.003 0.1±0.1 0.873±0.008 2.6±0.5 0.881±0.003 63.4±4.2
`1 GRASTA 1.057±0.218 4.6±0.3 0.842±0.011 31.1±0.6 0.876±0.047 1304.3±18.0

RMC 0.920±0.001 1.4±0.2 0.849±0.001 40.6±2.2 0.855±0.001 526.0±29.5
RMF-MM 0.901±0.003 402.3±80.0 — — — —

LSP RMFNL 0.885±0.006 5.9±1.5 0.828±0.001 34.9±1.0 0.817±0.004 1508.2±69.1
Geman RMFNL 0.885±0.005 6.6±1.2 0.829±0.005 35.3±0.3 0.817±0.004 1478.5±72.8
Laplace RMFNL 0.885±0.005 4.9±1.1 0.828±0.001 35.1±0.2 0.817±0.005 1513.4±12.2

(a) MovieLens-100K. (b) MovieLens-1M. (c) MovieLens-10M.

Figure 4: Convergence of testing RMSE on the recommendation data sets.

images. These are denoted “D1" (with size 72×932), “D2" (72×557) and “D3" (72×336). The fully
observed data matrix can be recovered by rank-4 matrix factorization [12], and so we set r = 4.

We compare RMFNL with RMF-MM and its variant (denoted RMF-MM(heuristic)) in Section 4.2
of [26]. In this variant, the diagonal entries of Λr and Λc are initialized with small values and
then increased gradually. It is claimed in [26] that this leads to faster convergence. However, our
experimental results show that this heuristic leads to more accurate, but not faster, results. Moreover,
its key pitfall is that Proposition 2.1 and the convergence guarantee for RMF-MM no longer holds.

For performance evaluation, as there is no ground-truth, we follow [26] and use the (i) mean absolute
error (MAE) ‖W̄ � (Ū V̄ > −X)‖1/nnz(W̄), where Ū and V̄ are outputs from the algorithm, X is
the data matrix with observed positions indicated by the binary W̄ ; and (ii) CPU time. As the various
nonconvex penalties have been shown to have similar performance, we will only report the LSP here.

Results are shown in Table 4. As can be seen, RMF-MM(heuristic) obtains a lower MAE than
RMF-MM, but is still outperformed by RMFNL. RMFNL is the fastest, though the speedup is not
as significant as in previous sections. This is because the Dinosaur subsets are not very sparse (the
percentages of nonzero entries in “D1", “D2" and “D3" are 17.9%, 20.5% and 23.1%, respectively).

Table 4: Performance on the Dinosaur data subsets. CPU time is in seconds.
D1 D2 D3

MAE CPU time MAE CPU time MAE CPU time
RMF-MM(heuristic) 0.374±0.031 43.9±3.3 0.381±0.022 25.9±3.1 0.382±0.034 10.8±3.4

RMF-MM 0.442±0.096 26.9±3.4 0.458±0.043 14.9±2.2 0.466±0.072 9.2±2.1
RMFNL 0.323±0.012 8.3±1.9 0.332±0.005 6.8±1.3 0.316±0.006 3.4±1.0

5 Conclusion

In this paper, we improved the robustness of matrix factorization by using a nonconvex loss instead
of the commonly used (convex) `1 and `2-losses. Second, we improved its scalability by exploiting
data sparsity (which RMF-MM cannot) and using the accelerated proximal gradient algorithm (which
is faster than the commonly used ADMM). The space and iteration time complexities are greatly
reduced. Theoretical analysis shows that the proposed RMFNL algorithm generates a critical point.
Extensive experiments on both synthetic and real-world data sets demonstrate that RMFNL is more
accurate and more scalable than the state-of-the-art.

8

References
[1] R. Basri, D. Jacobs, and I. Kemelmacher. Photometric stereo with general, unknown lighting. International

Journal of Computer Vision, 72(3):239–257, 2007.

[2] M. Beck, A.and Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via
the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1):1–122,
2011.

[4] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[5] R. Burke, M. O’Mahony, and N. Hurley. Recommender Systems Handbook. Springer, 2015.

[6] R. Cabral, F. De la Torre, J. Costeira, and A. Bernardino. Unifying nuclear norm and bilinear factorization
approaches for low-rank matrix decomposition. In International Conference on Computer Vision, pages
2488–2495, 2013.

[7] L. Cambier and P. Absil. Robust low-rank matrix completion by Riemannian optimization. SIAM Journal
on Scientific Computing, 38(5):S440–S460, 2016.

[8] E.J. Candès and B. Recht. Exact matrix completion via convex optimization. Foundations of Computational
Mathematics, 9(6):717–772, 2009.

[9] E.J. Candès, M.B. Wakin, and S. Boyd. Enhancing sparsity by reweighted `1 minimization. Journal of
Fourier Analysis and Applications, 14(5-6):877–905, 2008.

[10] F. Clarke. Optimization and Nonsmooth Analysis. SIAM, 1990.

[11] F. De La Torre and M. Black. A framework for robust subspace learning. International Journal of Computer
Vision, 54(1):117–142, 2003.

[12] A. Eriksson and A. Van Den Hengel. Efficient computation of robust low-rank matrix approximations
in the presence of missing data using the `1-norm. In International Conference on Computer Vision and
Pattern Recognition, pages 771–778, 2010.

[13] J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal
of the American Statistical Association, 96(456):1348–1360, 2001.

[14] D. Geman and C. Yang. Nonlinear image recovery with half-quadratic regularization. IEEE Transactions
on Image Processing, 4(7):932–946, 1995.

[15] P. Gong and J. Ye. HONOR: Hybrid optimization for non-convex regularized problems. In Advance in
Neural Information Processing Systems, pages 415–423, 2015.

[16] P. Gong, C. Zhang, Z. Lu, J. Huang, and J. Ye. A general iterative shrinkage and thresholding algorithm
for non-convex regularized optimization problems. In International Conference on Machine Learning,
pages 37–45, 2013.

[17] T. Hastie, R. Mazumder, J. Lee, and R. Zadeh. Matrix completion and low-rank SVD via fast alternating
least squares. Journal of Machine Learning Research, 16:3367–3402, 2015.

[18] J. He, L. Balzano, and A. Szlam. Incremental gradient on the Grassmannian for online foreground
and background separation in subsampled video. In Computer Vision and Pattern Recognition, pages
1568–1575, 2012.

[19] P. Huber. Robust Statistics. Springer, 2011.

[20] D. Hunter and K. Lange. A tutorial on MM algorithms. The American Statistician, 58(1):30–37, 2004.

[21] W. Jiang, F. Nie, and H. Huang. Robust dictionary learning with capped `1-norm. In International Joint
Conference on Artificial Intelligence, pages 3590–3596, 2015.

[22] E. Kim, M. Lee, C. Choi, N. Kwak, and S. Oh. Efficient `1-norm-based low-rank matrix approximations for
large-scale problems using alternating rectified gradient method. IEEE Transactions on Neural Networks
and Learning Systems, 26(2):237–251, 2015.

9

[23] J. Koenderink and A. Van Doorn. Affine structure from motion. Journal of the Optical Society of America,
8(2):377–385, 1991.

[24] K. Lange, R. Hunter, and I. Yang. Optimization transfer using surrogate objective functions. Journal of
Computational and Graphical Statistics, 9(1):1–20, 2000.

[25] Z. Lin, R. Liu, and H. Li. Linearized alternating direction method with parallel splitting and adaptive
penalty for separable convex programs in machine learning. Machine Learning, 2(99):287–325, 2015.

[26] Z. Lin, C. Xu, and H. Zha. Robust matrix factorization by majorization minimization. IEEE Transactions
on Pattern Analysis and Machine Intelligence, (99), 2017.

[27] D. Meng, Z. Xu, L. Zhang, and J. Zhao. A cyclic weighted median method for `1 low-rank matrix
factorization with missing entries. In AAAI Conference on Artificial Intelligence, pages 704–710, 2013.

[28] A. Mensch, J. Mairal, B. Thirion, and G. Varoquaux. Dictionary learning for massive matrix factorization.
In International Conference on Machine Learning, pages 1737–1746, 2016.

[29] B. Mishra and R. Sepulchre. Riemannian preconditioning. SIAM Journal on Optimization, 26(1):635–660,
2016.

[30] A. Mnih and R. Salakhutdinov. Probabilistic matrix factorization. In Advance in Neural Information
Processing Systems, pages 1257–1264, 2008.

[31] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams. Toward trustworthy recommender systems: An
analysis of attack models and algorithm robustness. ACM Transactions on Internet Technology, 7(4):23,
2007.

[32] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Programming,
140(1):125–161, 2013.

[33] J. Tanner and K. Wei. Low rank matrix completion by alternating steepest descent methods. Applied and
Computational Harmonic Analysis, 40(2):417–429, 2016.

[34] J. Trzasko and A. Manduca. Highly undersampled magnetic resonance image reconstruction via homotopic-
minimization. IEEE Transactions on Medical Imaging, 28(1):106–121, 2009.

[35] M. Yan. Restoration of images corrupted by impulse noise and mixed Gaussian impulse noise using blind
inpainting. SIAM Journal on Imaging Sciences, 6(3):1227–1245, 2013.

[36] M. Yan, Y. Yang, and S. Osher. Exact low-rank matrix completion from sparsely corrupted entries via
adaptive outlier pursuit. Journal of Scientific Computing, 56(3):433–449, 2013.

[37] J. Yang and J. Leskovec. Overlapping community detection at scale: a nonnegative matrix factorization
approach. In Web Search and Data Mining, pages 587–596, 2013.

[38] Q. Yao, J. Kwok, T. Wang, and T. Liu. Large-scale low-rank matrix learning with nonconvex regularizers.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.

[39] C. Zhang. Nearly unbiased variable selection under minimax concave penalty. Annals of Statistics,
38(2):894–942, 2010.

[40] Y. Zheng, G. Liu, S. Sugimoto, S. Yan, and M. Okutomi. Practical low-rank matrix approximation
under robust `1-norm. In International Conference on Computer Vision and Pattern Recognition, pages
1410–1417, 2012.

[41] W. Zuo, D. Meng, L. Zhang, X. Feng, and D. Zhang. A generalized iterated shrinkage algorithm for
non-convex sparse coding. In International Conference on Computer Vision, pages 217–224, 2013.

10

