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Speaker Adaptation

• A well-trained speaker-dependent (SD) model generally achieves a

significantly lower word error rate than a speaker-independent (SI)

model on recognizing speech from the specific speaker

• Hard to acquire a large amount of data from a user to train the

SD model

– adapt the SI model with a relatively small amount of SD speech

• maximum a posteriori (MAP) adaptation

• maximum likelihood linear regression (MLLR) adaptation

– when the amount of available adaptation speech is really small

(e.g., only a few seconds): eigenvoice -based adaptation
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Eigenvoice vs Kernel Eigenvoice

• Eigenvoice (EV)

– use principal component analysis (PCA) to find the eigenvoices

– represent the new speaker as a linear combination of the leading

eigenvoices

– estimate the (small) set of weights by using maximum likelihood

– linear PCA → captures only linear relationships

• Kernel eigenvoice (KEV)

– kernel PCA

– issues:

• do all computations rely only on kernel evaluations?

• how to compute the observation likelihood?
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Eigenvoice: Training

• A set of speaker-dependent (SD) acoustic hidden Markov models

(HMMs) are trained from each speaker

– in general, the HMM states are GMMs

• A speaker’s voice is represented by a speaker supervector that

is composed by concatenating the mean vectors of all his HMM

Gaussian distributions

– R states in each HMM

– xi = [x′i1, . . . ,x
′
iR]′

• PCA is then performed on a set of training speaker supervectors

and the resulting eigenvectors are called eigenvoices
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Eigenvoice: Adaptation

• The new speaker’s supervector s is assumed to be a linear

combination of the M leading eigenvoices {v1, . . . ,vM}

s = s(ev) =
M∑

m=1

wmvm

• Given the adaptation data O = {o1,o2, . . . ,oT}, estimate the

eigenvoice weights (w = [w1, . . . , wm]′) by maximum likelihood

max
w

Q(w) ≡ −1
2

R∑
r=1

T∑
t=1

γt(r)‖ot − sr(w)‖2
Cr

– γt(r): posterior probability of observation sequence being at

state r at time t

– Cr: covariance matrix of the Gaussian at state r

– sr: rth constituent of s
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Kernel Principal Component Analysis

input space

feature space

ψ

• Kernel PCA: linear PCA in the feature space

• Given {x1, . . . ,xN}, construct K = [k(xi,xj)] = [ϕ(xi)′ϕ(xj)]

• K = UΛU′ (assume that {ϕ(x1), . . . , ϕ(xN)} has been centered)

– U = [α1, . . . ,αN ] with αi = [αi1, . . . , αiN ]′

– Λ = diag(λ1, . . . , λN)

• kth orthonormal eigenvector: vk =
∑N

i=1
αki√

λk
ϕ(xi)
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Problem

• Estimation of the eigenvoice weights requires the evaluation of the

distances between adaptation data ot and Gaussian means of the

new speaker in the observation space

• EV: breaks up the speaker-adapted (SA) model found by EV

adaptation into its constituent HMM Gaussians

– s(ev) → s(ev)
1 , . . . , s(ev)

R → Gaussian means

• KEV: the SA model found by KEV adaptation resides in the feature

space, not in the input speaker supervector space

– cannot access each constituent Gaussian directly
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Composite Kernel

k(xi,xj) = f(k1(xi1,xj1), . . . , kR(xiR,xjR))

k(xi , xj)

xi

x j

feature space

input space
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Examples

• Direct sum kernel:

k(xi,xj) =
R∑

r=1

kr(xir,xjr)

– corresponding feature: ϕ(xi) = [ϕ1(xi1)′, . . . , ϕR(xiR)′]′

• Tensor product kernel:

k(xi,xj) =
R∏

r=1

kr(xir,xjr)

• If kr(·, ·)’s are valid Mercer kernels, so is k(·, ·)
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New Speaker in the Feature Space

ϕ(s) =
M∑

m=1

wmvm =
M∑

m=1

N∑
i=1

wmαmi√
λm

ϕ(xi)

• rth constituent: ϕr(sr) =
∑M

m=1

∑N
i=1

wmαmi√
λm

ϕr(xir)

• Similarity between ϕr(sr) and ϕr(ot):

kr(sr,ot) = ϕr(sr)
′
ϕr(ot) = A(r, t) +

M∑
m=1

wm√
λm

B(m, r, t)

– A(r, t) = 1
N

∑N
j=1 kr(xjr,ot)

– B(m, r, t) =
(∑N

i=1 αmikr(xir,ot)
)
−A(r, t)

(∑N
i=1 αmi

)
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Maximum Likelihood Adaptation

• kr(·, ·): e.g., isotropic kernels kr(sr,ot) = κ(‖ot − sr‖2
Cr

)

– e.g., Gaussian kernels: kr(sr,ot) = exp(−β‖ot − sr‖2
Cr

)
– if κ is invertible, ‖ot−sr‖2

Cr
→ function of kr(sr,ot) → function

of w

• Substitute back to Q(w) and differentiate to obtain ∂Q/∂wj

• No closed form solution for the optimal w

– use generalized EM algorithm (GEM)

• w(0): eigenvoice weights of the supervector composed from the

speaker-independent model x(si)

– wm(0) = v′mϕ(x(si)) (can be obtained from kernel evaluations)
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Incorporate the SI Model

• Interpolate ϕ(s) with the ϕ-mapped SI supervector ϕ(x(si)) to

obtain the final SA model (in the feature space):

ϕ(rkev)(s) = w0ϕ(x(si)) + (1− w0)ϕ(s), 0 ≤ w0 ≤ 1

– w0 estimated in the same manner as the other wm’s

– robust kernel eigenvoice

• ϕ(rkev)(s) contains components in ϕ(x(si)) from eigenvectors

beyond the M selected kernel eigenvoices for adaptation

– preserve the speaker-independent projections on the remaining

less important but robust eigenvoices in the final speaker-adapted

model
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Experimental Setup: Data Set and HMM Models

• TIDIGITS corpus

– 163 speakers (of both genders) in each (training and test) set,

each pronouncing 77 utterances of 1-7 digits (out of: “0”, “1”,

. . ., “9”, and “oh”)

• 12 mel-frequency cepstral coefficients and the normalized frame

energy from each speech frame of 25 ms at every 10 ms

• Digit model

– strictly left-to-right HMM with 16 states

– one Gaussian with diagonal covariance per state

• A 3-state “sil” model to capture silence speech and a 1-state “sp”

model to capture short pauses between digits
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Adaptation

• SD digit model

– one for each training speaker

– variances and transition matrices are borrowed from SI models

(only the Gaussian means are estimated)

• The “sil” and “sp” models are simply copied to the SD model

• 5, 10, 20 digits for adaptation (' 2.1s, 4.1s, and 9.6s of speech)

• Results are averages of 5-fold cross-validation over all test speakers

• (Testing) word accuracy of SI model: 96.25%
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Experiment 1: Number of Kernel Eigenvoices
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• KEV outperforms the SI model even with only two eigenvoices

• Robust KEV significantly improves KEV
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Experiment 2: KEV vs. EV
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• (Robust) KEV always performs better than (robust) EV

• When only 2.1s or 4.1s of adaptation data are available

EV ' MAP ' MLLR < SI ' robust EV < KEV < robust KEV

• With 9.6s of adaptation data

– MLLR works marginally better than robust KEV (by an absolute

0.06%)

• Word error rate reduction over SI

KEV robust KEV

2.1s 16.0% 27.5%

4.1s 21.3% 31.7%

9.6s 21.3% 33.3%
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Conclusion and Future Work
• (Nonlinear) kernel PCA + composite kernel

– better eigenvoices → improved speaker adaptation

• Interpolate the SI model with the speaker model found by KEV

• In the TIDIGITS task

– standard EV does not help

– KEV outperforms SI by 16–21% (word error rate reduction)

– robust KEV: 28–33% word error rate reduction over SI

• Disadvantage: KEV is slower than EV

– online computation of many kernel functions required during

subsequent speech recognition

– currently investigating speed-up techniques
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