Learning with Idealized Kernels

James Kwok Ivor Tsang

Department of Computer Science Hong Kong University of Science and Technology Hong Kong

Outline

- Introduction
- Proposed Method
- Experimental Results
- Conclusion

Kernel Choice

- Central role of the kernel
- Poor kernel choice can lead to significantly impaired performance
- Typically, selects a parametric kernel before learning
 - the associated kernel parameters can be learned
- Adapt also the form of the kernel itself
 - kernel matrix learning
 - semi-definite programming, alignment maximization, boosting
 - kernel function learning
 - hyperkernel

Kernel as Distance Metric

- \bullet Kernel defines an inner product (and, consequently, a distance metric) in the feature space ${\cal F}$
- Kernel design
 - ↔ finding a good distance metric
 - \leftrightarrow finding a set of good feature weights in ${\mathcal F}$
- Standard feature weighting methods
 - operate in the input space
 - number of parameters increases with input dimensionality
 - cannot be easily kernelized (dimensionality of \mathcal{F} is usually very high)

Similar (or Dissimilar) Information

- Existing methods typically assume the availability of class label information in the training set
- However, this is sometimes difficult to obtain
- We may only know that certain pairs of patterns are similar (or dissimilar)
- Xing *et al.* (2003) proposed a distance metric learning method that utilizes such similarity information using convex programming
 - # parameters in Xing *et al.* scales linearly/quadratically with # features
 - computationally expensive when # features is large

Basic Idea

- Kernel defines the pairwise similarity between patterns
- Ideally, two patterns should be considered "similar" iff they belong to the same class \rightarrow ideal kernel [Cristianini 2002]

$$k^*(\mathbf{x}_i, \mathbf{x}_j) = \begin{cases} 1 & y(\mathbf{x}_i) = y(\mathbf{x}_j), \\ 0 & y(\mathbf{x}_i) \neq y(\mathbf{x}_j). \end{cases}$$

- As k^* is ideal, we can idealize a given kernel k by making it more similar to the ideal kernel
 - k^* can only be defined on the training patterns
 - Q: how to generalize this to patterns outside the training set?
- Learning a good kernel \leftrightarrow distance metric learning
 - constrain the kernel adaptation to be a linear transform on ${\cal F}$

Idealizing the Kernel

Idealized kernel :

$$\tilde{k} = k + \frac{\gamma}{2}k^*,$$

– $\gamma \geq 0$ (to be determined)

- as both k and k^* are valid kernels, so is \tilde{k}
- Assuming that $\gamma > 0$, then the alignment of \tilde{k} will be greater than that of the original kernel if $\gamma > -\frac{\langle \mathbf{K}, \mathbf{K}^* \rangle}{n_+^2 + n_-^2}$ (n_+, n_-) are # of +ve and -ve training examples)
 - if k is aligned in the "right" direction ($\langle \mathbf{K}, \mathbf{K}^* \rangle \ge 0$) or slightly "wrongly" ($\langle \mathbf{K}, \mathbf{K}^* \rangle$ is a small negative number), then the idealized kernel will have an increased alignment
 - extension to multi-class case is straightforward

Corresponding Distance Metric

- First consider k is the linear kernel
- Original inner product for $\mathbf{x}_i, \mathbf{x}_j \in \Re^p$: $k(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}'_i \mathbf{M} \mathbf{x}_j$
 - \mathbf{M} is positive semi-definite
 - e.g., \mathbf{M} is the identity matrix (Euclidean metric)
 - corresponding squared distance: $d_{ij}^2 = (\mathbf{x}_i \mathbf{x}_j)' \mathbf{M} (\mathbf{x}_i \mathbf{x}_j)$
- Change k to \tilde{k} , new squared distance:

$$\tilde{\mathbf{K}}_{ii} + \tilde{\mathbf{K}}_{jj} - 2\tilde{\mathbf{K}}_{ij} = \begin{cases} d_{ij}^2 & y_i = y_j, \\ d_{ij}^2 + \gamma & y_i \neq y_j. \end{cases}$$

- for patterns in different classes: distance increased

Changing the Distance Metric

• Modify the inner product to $\mathbf{x}_i' \mathbf{A} \mathbf{A}' \mathbf{x}_j$

- $\mathbf{A}_{p \times p} = [\mathbf{a}_1, \dots, \mathbf{a}_p]$, where \mathbf{a}_i 's are a set of "useful" directions - corresponding distance metric: $\tilde{d}_{ij}^2 = (\mathbf{x}_i - \mathbf{x}_j)' \mathbf{A} \mathbf{A}' (\mathbf{x}_i - \mathbf{x}_j)$

• Search for an **A** such that \tilde{d}_{ij}^2 approximates the desired distance metric obtained from the idealized kernel:

$$\tilde{d}_{ij}^2 \left\{ \begin{array}{ll} \leq d_{ij}^2 & y_i = y_j, \\ \geq d_{ij}^2 + \gamma & y_i \neq y_j. \end{array} \right.$$

- same class: may get closer; different classes: pulled apart
- When only (dis)similarity information is available
 - \mathcal{S} : set containing similar pairs; \mathcal{D} : dissimilar pairs

$$\tilde{d}_{ij}^2 - d_{ij}^2 \left\{ \begin{array}{ll} \leq 0 & (\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{S}, \\ \geq \gamma & (\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{D}. \end{array} \right.$$

Primal

- May not be able to perfectly enforce this for all pairs in D and S
 introduce slack variables
- A performs projection onto a (hopefully small) set of useful features
 - small $rank(\mathbf{A}) = rank(\mathbf{A}\mathbf{A'})$ desirable
 - if $\mathbf{B}\equiv\mathbf{A}\mathbf{A}'=\mathbf{U}\boldsymbol{\Sigma}\mathbf{U}'$, then $\mathsf{rank}(\mathbf{B})=\mathsf{rank}(\boldsymbol{\Sigma})=\|\boldsymbol{\Sigma}\|_0$
 - approximate $\|\mathbf{\Sigma}\|_0$ by the Euclidean norm $\|\mathbf{\Sigma}\|_2 = \|\mathbf{B}\|_2$

$$\min_{\mathbf{B},\gamma,\xi_{ij}} \frac{1}{2} \|\mathbf{B}\|_{2}^{2} + \frac{C_{\mathcal{S}}}{N_{\mathcal{S}}} \sum_{(\mathbf{x}_{i},\mathbf{x}_{j})\in\mathcal{S}} \xi_{ij} + C_{\mathcal{D}} \left(-\nu\gamma + \frac{1}{N_{\mathcal{D}}} \sum_{(\mathbf{x}_{i},\mathbf{x}_{j})\in\mathcal{D}} \xi_{ij} \right),$$

subject to
$$\begin{cases} d_{ij}^2 \geq \tilde{d}_{ij}^2 - \xi_{ij}, & (\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{S}, \\ \tilde{d}_{ij}^2 - d_{ij}^2 \geq \gamma - \xi_{ij}, & (\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{D}, \\ \xi_{ij}, \gamma \geq 0. \end{cases}$$

Dual

$$\begin{split} \max & -\sum_{(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{S}} \alpha_{ij} (\mathbf{x}_i - \mathbf{x}_j)' \mathbf{M} (\mathbf{x}_i - \mathbf{x}_j) + \sum_{(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{D}} \alpha_{ij} (\mathbf{x}_i - \mathbf{x}_j)' \mathbf{M} (\mathbf{x}_i - \mathbf{x}_j) \\ & -\frac{1}{2} \sum_{(\mathbf{x}_i, \mathbf{x}_j), (\mathbf{x}_k, \mathbf{x}_l) \in \mathcal{S}} \alpha_{ij} \alpha_{kl} ((\mathbf{x}_i - \mathbf{x}_j)' (\mathbf{x}_k - \mathbf{x}_l))^2 \\ & -\frac{1}{2} \sum_{(\mathbf{x}_i, \mathbf{x}_j), (\mathbf{x}_k, \mathbf{x}_l) \in \mathcal{D}} \alpha_{ij} \alpha_{kl} ((\mathbf{x}_i - \mathbf{x}_j)' (\mathbf{x}_k - \mathbf{x}_l))^2 \\ & + \sum_{(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{S}} \sum_{(\mathbf{x}_k, \mathbf{x}_l) \in \mathcal{D}} \alpha_{ij} \alpha_{kl} ((\mathbf{x}_i - \mathbf{x}_j)' (\mathbf{x}_k - \mathbf{x}_l))^2 \\ & \text{subject to} \begin{cases} \frac{1}{C_D} \sum_{(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{D}} \alpha_{ij} \leq \frac{C_S}{N_S} & (\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{S}, \\ 0 \leq \alpha_{ij} \leq \frac{C_D}{N_D} & (\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{D}. \end{cases} \end{split}$$

• QP problem with $N_S + N_D$ variables (independent of x's dim)

"Support Vectors", "Error Pairs" and ν

• For
$$(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{D}$$
,
 $\tilde{d}_{ij}^2 - d_{ij}^2 \begin{cases} = \gamma \quad 0 < \alpha_{ij} < \frac{C_{\mathcal{D}}}{N_{\mathcal{D}}}, \\ \geq \gamma \quad \alpha_{ij} = 0, \\ \leq \gamma \quad \alpha_{ij} = \frac{C_{\mathcal{D}}}{N_{\mathcal{D}}}. \end{cases}$

- α_{ij} nonzero but below upper bound: constraints exactly met

- α_{ij} zero: constraints met with larger "margin", corresponding $(\mathbf{x}_i, \mathbf{x}_j)$ pair not used in solution (not "support vector")
- α_{ij} at upper bound: constraints may be violated ("error")

• Similarly, for
$$(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{S}$$
,
 $d_{ij}^2 - \tilde{d}_{ij}^2 \begin{cases} = 0 \quad 0 < \alpha_{ij} < \frac{C_S}{N_S}, \\ \ge 0 \quad \alpha_{ij} = 0, \\ \le 0 \quad \alpha_{ij} = \frac{C_S}{N_S}. \end{cases}$

• ν is a lower bound on the fraction of support vectors in $\mathcal D$ and an upper bound on the fraction of error pairs in $\mathcal D$

Heuristic for Computational Speedup

- Our QP problem has $N_{\mathcal{S}} + N_{\mathcal{D}}$ variables
- When similarity information is abundant
 - $N_{\mathcal{S}} + N_{\mathcal{D}}$ can be of $O(n^2)$ for a data set with n patterns
 - computationally expensive
- Simple heuristic inspired from locally linear embedding
 - for each pattern $\mathbf{x},$ its local neighborhood will be the most influential
 - only select the m closest $(\mathbf{x}, \mathbf{x}_j)$ pairs in S and \mathcal{D} such that each of these \mathbf{x}_j 's is also within a radius of R from \mathbf{x}
 - $N_{\mathcal{S}} + N_{\mathcal{D}}$ will at most be of O(n)

Kernelize!

- Only inner products are required in our formulation
- Simply replace all the ${\bf x}$ by $\varphi({\bf x})$ and then apply the kernel trick

• e.g.,

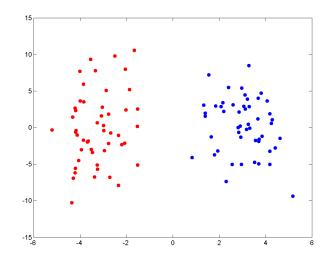
– the idealized kernel $\tilde{\mathbf{K}}$ is then:

$$\tilde{\mathbf{K}}(\mathbf{x}_{a}, \mathbf{x}_{b}) = -\sum_{(\mathbf{x}_{i}, \mathbf{x}_{j}) \in \mathcal{S}} \alpha_{ij} (K_{ai} - K_{aj}) (K_{ib} - K_{jb}) + \sum_{(\mathbf{x}_{i}, \mathbf{x}_{j}) \in \mathcal{D}} \alpha_{ij} (K_{ai} - K_{aj}) (K_{ib} - K_{jb})$$

 similarly for the other expressions, such as the dual objective, distance metric, etc

Experiments

- Toy data set
 - one relevant feature, ten irrelevant features



- Real-world data sets (toy, colon, lymphoma, soybean, wine)
- Results based on averages over 50 random repetitions

With Class Label Information

- Use a subset for training, and the rest for testing
- S and D: two patterns as similar if they belong to the same class; dissimilar otherwise.
- Classification using 1-nearest neighbor classifier
- Variations on different C_S, C_D settings ($\nu = 0.1$)

data set	$C_D \setminus \frac{C_S}{C_D}$	1	3	10	30	100
lymphoma	100	7.21%	7.53%	8.32%	6.84%	8.21%
(11.29%)	300	7.79%	8.53%	7.00%	7.58%	7.74%
	1000	6.42%	8.79%	8.58%	7.00%	6.32%
colon	100	16.92%	16.67%	17.67%	18.17%	18.17%
(26.82%)	300	18.17%	18.00%	17.42%	18.83%	15.92%
	1000	16.83%	19.00%	18.33%	18.92%	17.25%

data	kernel	Euclidean	learned	Xing	tr align	tr align	tst align	tst align
set		metric	kernel	et al.	(before)	(after)	(before)	(after)
toy	linear	28.50%	3.08%	3.33%	0.17	0.62	0.15	0.53
	rbf	27.75%	7.92%	-	0.70	0.77	0.69	0.73
colon	linear	29.83%	14.67%	-	0.15	0.28	0.31	0.33
	rbf	27.83%	16.83%	-	0.74	0.70	0.76	0.68
lym.	linear	14.17%	8.11%	-	0.19	0.30	0.18	0.20
	rbf	13.67%	11.17%	-	0.68	0.69	0.70	0.75
soybean	linear	2.82%	0.12%	0.59%	0.60	0.70	0.61	0.68
	rbf	2.82%	1.17%	-	0.77	0.86	0.79	0.84
wine	linear	28.03%	10.13%	22.58%	0.53	0.54	0.55	0.56
	rbf	27.62%	26.82%	-	0.71	0.58	0.66	0.50

- # parameters in Xing *et al.* scales quadratically with # features
 - cannot apply on colon, lymphoma nor RBF kernel
- Outperforms the original kernel and Xing *et al.*
- Training/test alignments typically improve after adaptation

- S: random subset of all pairs of patterns belonging to the same class
- \mathcal{D} : same as in the previous experiment
- Classification using 1-nearest neighbor classifier

data set	kernel	Euclidean metric	learned kernel	Xing <i>et al.</i>
toy	linear	28.25%	9.83%	9.83%
	rbf	27.75%	16.50%	_
colon	linear	28.75%	17.08%	-
	rbf	27.83%	22.67%	-
lymphoma	linear	14.17%	8.50%	-
	rbf	11.00%	9.94%	_
soybean	linear	2.82%	0.11%	0.71%
	rbf	1.76%	0.94%	-
wine	linear	28.03%	12.00%	13.00%
	rbf	27.36%	26.28%	-

- Clustering using k-means clustering accuracy = $\sum_{i>j} \frac{1\{1\{c_i = c_j\} = 1\{\hat{c}_i = \hat{c}_j\}\}}{0.5n(n-1)}$ (Rand index)
 - $1\{\cdot\}$ is the indicator function
 - n is the number of patterns
 - c_i : true cluster label for \mathbf{x}_i ; \hat{c}_i : predicted label

data set	kernel	Euclidean metric	learned kernel	Xing <i>et al.</i>
toy	linear	55.33%	100.00%	98.11%
	rbf	50.16%	100.00%	-
colon	linear	77.15%	82.28%	-
	rbf	82.23%	85.13%	-
lymphoma	linear	79.50%	88.86%	-
	rbf	79.50%	84.92%	-
soybean	linear	83.63%	100.00%	100.00%
	rbf	84.45%	100.00%	-
wine	linear	71.87%	77.63%	73.46%
	rbf	72.04%	73.12%	-

Conclusion

- We propose idealizing a given kernel such that it becomes more similar to the ideal kernel
 - this is formulated as a distance metric learning problem that looks for a suitable linear transform (feature weighting)
- Requires only a training set with examples of similar and dissimilar pairs, but not explicit class label information
- Leads to a quadratic programming problem, and the number of variables is independent of the number of features
- Experimentally, improved performance on both classification and clustering tasks