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Kernel Choice

• Central role of the kernel

• Poor kernel choice can lead to significantly impaired performance

• Typically, selects a parametric kernel before learning

– the associated kernel parameters can be learned

• Adapt also the form of the kernel itself

– kernel matrix learning

• semi-definite programming, alignment maximization, boosting

– kernel function learning

• hyperkernel
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Kernel as Distance Metric

• Kernel defines an inner product (and, consequently, a distance

metric) in the feature space F

• Kernel design

↔ finding a good distance metric

↔ finding a set of good feature weights in F

• Standard feature weighting methods

– operate in the input space

– number of parameters increases with input dimensionality

– cannot be easily kernelized (dimensionality of F is usually very

high)
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Similar (or Dissimilar) Information

• Existing methods typically assume the availability of class label

information in the training set

• However, this is sometimes difficult to obtain

• We may only know that certain pairs of patterns are similar (or

dissimilar)

• Xing et al. (2003) proposed a distance metric learning method that

utilizes such similarity information using convex programming

– # parameters in Xing et al. scales linearly/quadratically with #

features

– computationally expensive when # features is large
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Basic Idea
• Kernel defines the pairwise similarity between patterns

• Ideally, two patterns should be considered “similar” iff they belong
to the same class → ideal kernel [Cristianini 2002]

k∗(xi,xj) =
{

1 y(xi) = y(xj),
0 y(xi) 6= y(xj).

• As k∗ is ideal, we can idealize a given kernel k by making it more

similar to the ideal kernel

– k∗ can only be defined on the training patterns

– Q: how to generalize this to patterns outside the training set?

• Learning a good kernel ↔ distance metric learning

– constrain the kernel adaptation to be a linear transform on F
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Idealizing the Kernel

• Idealized kernel :
k̃ = k +

γ

2
k∗,

– γ ≥ 0 (to be determined)

– as both k and k∗ are valid kernels, so is k̃

• Assuming that γ > 0, then the alignment of k̃ will be greater than

that of the original kernel if γ > − 〈K,K∗〉
n2

++n2
−

(n+, n− are # of +ve

and -ve training examples)

– if k is aligned in the “right” direction (〈K,K∗〉 ≥ 0) or slightly

“wrongly” (〈K,K∗〉 is a small negative number), then the

idealized kernel will have an increased alignment

– extension to multi-class case is straightforward
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Corresponding Distance Metric

• First consider k is the linear kernel

• Original inner product for xi,xj ∈ <p: k(xi,xj) = x′iMxj

– M is positive semi-definite

– e.g., M is the identity matrix (Euclidean metric)

– corresponding squared distance: d2
ij = (xi − xj)′M(xi − xj)

• Change k to k̃, new squared distance:

K̃ii + K̃jj − 2K̃ij =
{

d2
ij yi = yj,

d2
ij + γ yi 6= yj.

– for patterns in different classes: distance increased
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Changing the Distance Metric
• Modify the inner product to x′iAA′xj

– Ap×p = [a1, . . . ,ap], where ai’s are a set of “useful” directions

– corresponding distance metric: d̃2
ij = (xi − xj)′AA′(xi − xj)

• Search for an A such that d̃2
ij approximates the desired distance

metric obtained from the idealized kernel:

d̃2
ij

{
≤ d2

ij yi = yj,
≥ d2

ij + γ yi 6= yj.

– same class: may get closer; different classes: pulled apart

• When only (dis)similarity information is available

– S: set containing similar pairs; D: dissimilar pairs

d̃2
ij − d2

ij

{
≤ 0 (xi,xj) ∈ S,
≥ γ (xi,xj) ∈ D.
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Primal
• May not be able to perfectly enforce this for all pairs in D and S

– introduce slack variables

• A performs projection onto a (hopefully small) set of useful features

– small rank(A) = rank(AA′) desirable

– if B ≡ AA′ = UΣU′, then rank(B) = rank(Σ) = ‖Σ‖0

– approximate ‖Σ‖0 by the Euclidean norm ‖Σ‖2 = ‖B‖2

min
B,γ,ξij

1
2
‖B‖2

2 +
CS

NS

∑
(xi,xj)∈S

ξij + CD

−νγ +
1

ND

∑
(xi,xj)∈D

ξij

 ,

subject to


d2

ij ≥ d̃2
ij − ξij, (xi,xj) ∈ S,

d̃2
ij − d2

ij ≥ γ − ξij, (xi,xj) ∈ D,
ξij, γ ≥ 0.
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Dual

max −
∑

(xi,xj)∈S

αij(xi − xj)′M(xi − xj) +
∑

(xi,xj)∈D

αij(xi − xj)′M(xi − xj)

−1
2

∑
(xi,xj),(xk,xl)∈S

αijαkl((xi − xj)′(xk − xl))2

−1
2

∑
(xi,xj),(xk,xl)∈D

αijαkl((xi − xj)′(xk − xl))2

+
∑

(xi,xj)∈S

∑
(xk,xl)∈D

αijαkl((xi − xj)′(xk − xl))2

subject to


1

CD

∑
(xi,xj)∈D αij ≥ ν,

0 ≤ αij ≤ CS
NS

(xi,xj) ∈ S,

0 ≤ αij ≤ CD
ND

(xi,xj) ∈ D.

• QP problem with NS + ND variables (independent of x’s dim)
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“Support Vectors”, “Error Pairs” and ν

• For (xi,xj) ∈ D,

d̃2
ij − d2

ij


= γ 0 < αij < CD

ND
,

≥ γ αij = 0,

≤ γ αij = CD
ND

.

– αij nonzero but below upper bound: constraints exactly met

– αij zero: constraints met with larger “margin”, corresponding

(xi,xj) pair not used in solution (not “support vector” )

– αij at upper bound: constraints may be violated (“error” )

• Similarly, for (xi,xj) ∈ S,

d2
ij − d̃2

ij


= 0 0 < αij < CS

NS
,

≥ 0 αij = 0,

≤ 0 αij = CS
NS

.

• ν is a lower bound on the fraction of support vectors in D and an

upper bound on the fraction of error pairs in D
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Heuristic for Computational Speedup

• Our QP problem has NS + ND variables

• When similarity information is abundant

– NS + ND can be of O(n2) for a data set with n patterns

– computationally expensive

• Simple heuristic inspired from locally linear embedding

– for each pattern x, its local neighborhood will be the most

influential

– only select the m closest (x,xj) pairs in S and D such that each

of these xj’s is also within a radius of R from x
– NS + ND will at most be of O(n)
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Kernelize!

• Only inner products are required in our formulation

• Simply replace all the x by ϕ(x) and then apply the kernel trick

• e.g.,

– the idealized kernel K̃ is then:

K̃(xa,xb) = −
∑

(xi,xj)∈S

αij(Kai −Kaj)(Kib −Kjb)

+
∑

(xi,xj)∈D

αij(Kai −Kaj)(Kib −Kjb)

– similarly for the other expressions, such as the dual objective,

distance metric, etc
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Experiments

• Toy data set

– one relevant feature, ten irrelevant features

• Real-world data sets (toy, colon, lymphoma, soybean, wine)

• Results based on averages over 50 random repetitions
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With Class Label Information

• Use a subset for training, and the rest for testing

• S and D: two patterns as similar if they belong to the same class;

dissimilar otherwise.

• Classification using 1-nearest neighbor classifier

• Variations on different CS, CD settings (ν = 0.1)

data set CD\CS
CD

1 3 10 30 100

lymphoma 100 7.21% 7.53% 8.32% 6.84% 8.21%
(11.29%) 300 7.79% 8.53% 7.00% 7.58% 7.74%

1000 6.42% 8.79% 8.58% 7.00% 6.32%
colon 100 16.92% 16.67% 17.67% 18.17% 18.17%

(26.82%) 300 18.17% 18.00% 17.42% 18.83% 15.92%
1000 16.83% 19.00% 18.33% 18.92% 17.25%
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data kernel Euclidean learned Xing tr align tr align tst align tst align

set metric kernel et al. (before) (after) (before) (after)

toy linear 28.50% 3.08% 3.33% 0.17 0.62 0.15 0.53

rbf 27.75% 7.92% - 0.70 0.77 0.69 0.73

colon linear 29.83% 14.67% - 0.15 0.28 0.31 0.33

rbf 27.83% 16.83% - 0.74 0.70 0.76 0.68

lym. linear 14.17% 8.11% - 0.19 0.30 0.18 0.20

rbf 13.67% 11.17% - 0.68 0.69 0.70 0.75

soybean linear 2.82% 0.12% 0.59% 0.60 0.70 0.61 0.68

rbf 2.82% 1.17% - 0.77 0.86 0.79 0.84

wine linear 28.03% 10.13% 22.58% 0.53 0.54 0.55 0.56

rbf 27.62% 26.82% - 0.71 0.58 0.66 0.50

• # parameters in Xing et al. scales quadratically with # features

– cannot apply on colon, lymphoma nor RBF kernel

• Outperforms the original kernel and Xing et al.

• Training/test alignments typically improve after adaptation

Learning with Idealized Kernels ICML-2003 17



With Similarity Information
• S: random subset of all pairs of patterns belonging to the same

class

• D: same as in the previous experiment

• Classification using 1-nearest neighbor classifier
data set kernel Euclidean metric learned kernel Xing et al.

toy linear 28.25% 9.83% 9.83%
rbf 27.75% 16.50% -

colon linear 28.75% 17.08% -
rbf 27.83% 22.67% -

lymphoma linear 14.17% 8.50% -
rbf 11.00% 9.94% -

soybean linear 2.82% 0.11% 0.71%
rbf 1.76% 0.94% -

wine linear 28.03% 12.00% 13.00%
rbf 27.36% 26.28% -
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• Clustering using k-means clustering

accuracy =
∑
i>j

1{1{ci = cj} = 1{ĉi = ĉj}}
0.5n(n− 1)

(Rand index)

– 1{·} is the indicator function

– n is the number of patterns

– ci: true cluster label for xi; ĉi: predicted label

data set kernel Euclidean metric learned kernel Xing et al.
toy linear 55.33% 100.00% 98.11%

rbf 50.16% 100.00% -
colon linear 77.15% 82.28% -

rbf 82.23% 85.13% -
lymphoma linear 79.50% 88.86% -

rbf 79.50% 84.92% -
soybean linear 83.63% 100.00% 100.00%

rbf 84.45% 100.00% -
wine linear 71.87% 77.63% 73.46%

rbf 72.04% 73.12% -
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Conclusion

• We propose idealizing a given kernel such that it becomes more

similar to the ideal kernel

– this is formulated as a distance metric learning problem that

looks for a suitable linear transform (feature weighting)

• Requires only a training set with examples of similar and dissimilar

pairs, but not explicit class label information

• Leads to a quadratic programming problem, and the number of

variables is independent of the number of features

• Experimentally, improved performance on both classification and

clustering tasks
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