
Randomized Data

Mordecai Golin*

Abstract

Chapter 33

Structures for the Dynamic Closest-Pair Problem

Rajeev Ramant

We describe a new randomized data structure, the sparse
partition, for solving the dynamic closest-pair problem.
Using this data structure the closest pair of a set of n points
in k-dimensional space, for any fixed Ic, can be found in
constant time. If the points are chosen from a finite universe,
and if the floor function is available at unit-cost, then the
data structure supports insertions into and deletions from
the set in expected O(log n) time and requires expected O(n)
space. Here, it is assumed that the updates are chosen by an
adversary who does not know the random choices made by
the data structure. The data structure can be modified to
run in O(log’ n) expected time per update in the algebraic
decision tree model of computation. Even this version is
more efficient than the currently best known deterministic
algorithms for solving the problem for Ic > 1.

1 Introduction

We consider the dynamic closest-pair problem: We are
given a set S of points in k-dimensional space (we
assume Ic is an arbitrary constant) and want to keep
track of the closest pair of points in S as S is being
modified by insertions and deletions. Distances are
measured in the &-metric, where t is fixed, 1 5 t 5 00.

The precursor to this problem is the classical
closest-pair problem which is to compute the closest pair
of points in a static set S, IS] = n. Shamos and Hoey
[12] and Bentley and Shamos [2] gave O(nlogn) time
algorithms for solving the closest-pair problem in the
plane and in arbitrary but fixed dimension, respectively.
This running time is optimal in the algebraic decision
tree model [l]. If we allow randomization as well as
the use of the (non-algebraic) floor function, we find al-

*INRIA-Rocquencourt, 78153 Le Chesnay Cedex, France, and
Hongkong UST. This author was supported by the ESPRIT Basic
Research Actions Program, under contract No. 7141 (project
ALCOM. II) and by NSF grant CCR-8918152. This work was
done while this author was visiting the Max-Plan&Institut fiir
Informatik.

tMax-Planck-Institut fiir Informatik, W-6600 Saarbriicken,

Germany. These authors were supported by the ESPRIT Basic
Research Actions Program, under contract No. 7141 (project

ALCOM II).

Christian Schwarzt Michiel Smidt

gorithms with better (expected) running times for the
closest-pair problem. Rabin, in his seminal paper [9] on
randomized algorithms, gave an O(n) expected time al-
gorithm for this problem. A different approach, leading
to a simpler algorithm also with O(n) expected running
time, was recently described by Khuller and Matias 171.
A randomized “sieving” procedure described in this pa-
per is at the heart of our dynamic algorithm.

There has been a lot of work on maintaining the
closest pair of a dynamically changing set of points.
When restricted to the case where only insertions of
points are allowed (sometimes known as the on-line
closest-pair problem) a series of papers culminated in
an optimal data structure due to Schwarz, Smid and
Snoeyink [ll]. Their data structure required O(n) space
and supported insertions in O(logn) time.

The existing results are not as satisfactory when
deletions must be performed. If only deletions are
to be performed, Supowit [15] gave a data struc-
ture with O(log” n) amortized update time that uses
O(n log”-l n) space. When both insertions and
deletions are allowed, Smid [14] described a data
structure that uses O(nlogk n) space and runs in
O(logL n log log n) amortized time per update. Another
data structure due to Smid [13], with improvements
stemming from results of Salowe [lo] and Dickerson and
Drysdale [5], uses O(n) space and requires O(filog n)
time for updates; this is the best linear-space data struc-
ture currently known for insertions and deletions.

In this paper we discuss a randomized data struc-
ture, the sparse partition, which solves the dynamic
closest pair problem in arbitrary fixed dimension using
O(logn) expected time per update. The data struc-
ture needs O(n) expected space. We assume that the
updates are generated by an adversary who can insert
or delete arbitrary points but has no knowledge of the
random choices that the algorithm makes. The above
bound is obtained assuming the use of the floor func-
tion and assuming that there is some prior bound on the
size of the points (in order to make possible the use of
hashing). If we want to dispense with hashing, then the
algorithm can be modified to run in O(lognloglogn)
expected time per update. If we remove both assump-
tions, we obtain an algorithm with O(log’ n) expected

301

302 GOLIN ET AL.

time per update in the algebraic decision tree model [l].
All three versions of the randomized algorithm are more
efficient than the currently best known deterministic al-
gorithms for solving the problem. Indeed our algorithm
is the first to obtain polylogarithmic update time using
linear space for the dynamic closest-pair problem.

The sparse partition is a random structure; given
a set S of points, the structure that stores S will be
randomly chosen from a set of many possible structures.
In one version of the data structure, the probability that
a particular structure is the one that is being used will
depend only on the set S that is being stored and not
upon the sequence of insertions and deletions that were
used to construct S. In this sense, the data structure is
reminiscent of skip-lists or randomized search trees.

2 Sparse partitions

Let S be a set of n points in k-dimensional space. Let
1 < t 5 03. We denote the Lt-distance between the
points p and q by d(p, q). The minimal distance of S is
S(S) := min{d(p, q) : p, q E S, p # q}. A closest pair
in S is a pair p,q E S such that d(p,q) = S(S). The
distance of p to its nearest neighbor in S is denoted by
d(p, S> := mid@, 9) : q E S \ {PI).

In this section, we define the notion of a sparse par-
tition. This definition is independent of the implemen-
tation. In later sections, we shall give two ways to im-
plement such sparse partitions.

DEFINITION 2.1. A sparse partition for the set S
is a sequence of 5-tuples (Si, Si,ppi, qi, di), 1 5 i 5 L,
where L is a positive integer, such that:
(a) For i= l,...,L:

(a.1) Sj # 0;
(a.2) S,! C Si c S;
(a.31 pi, 9i E Si and pi # qi if]Si] > 1;
(a.41 4 = d(pi, qi) = d(pi, Si>.

(b) For all 1 5 i 5 L, and for, all z E Si:
(b.1) If d(x,Si) > di/3 then 2 E Si;
(b.2) If d(z, Si) 5 di/6k then 3: $ S;l.

(c) For all 1 5 i < L, and for all z E Si:
If 2 E si+1, then there is a point in y E Si
such that d(z, y) < di/3 and y E Si+i.

(d) Si = S and for 1 5 i 5 L - 1, Si+i = Si \ Sl.

DEFINITION 2.2. A set S stored by a sparse parti-
tion is said to be uniformly stored if the sparse partition
storing it has the property that for all i = 1, . . . , L and
all 2 E S;, Pr(3: = pi) = l/1$].

LEMMA 2.1. Any sparse partition for S satisfies the
following properties:
(1) The sets Si, for 1 5 i 5 L, are non-empty and
pairwise disjoint. For any 1 5 i 5 L, Si = Ujki S(i. Zn
particular, Si U . . . U 57; is a partition of S.

(2) For any 1 5 i < L, di+l 5 di/3. Moreover,
dL/6k 5 b(S) 5 dL.

Proof. For (I), we only need to prove that Sl # 0
for all i. (The other claims are clear.) Since pi E Si and
d(pi, Si) = di > di/3, it follows from Condition (b.1) in
Definition 2.1 that pi E S,!.

To prove the first part of (2), let 1 5 i < L.
Since pi+1 E $+I, we know from Condition (c) in
Definition 2.1 that there is a point y E Si such that
d(Pi+l, Y) I h/3 and y E S’i+l . Therefore,

4+1 = d(Pi+l, Si+l) 5 d(pi+l, Y) I h/3.

To prove the second part of (2), let p, q be a closest
pair in S. Let i and j be such that p E Si and
q E Sj. Assume w.1.o.g. that i 5 j. Then it follows
from (1) that p and q are both contained in Si. It is
clear that S(S) = d(p,q) = d(p,Si). Condition (b.2) in
Definition 2.1 implies that d(p,Si) > da/6k. Since the
dl’s are decreasing, we conclude that S(S) > di/Gk >
dL/6k. The inequality 6(S) 5 dL obviously holds,
because dl; is a distance between two points of ‘3. I

We now give an algorithm that, given an input set
S, stores it uniformly as a sparse partition:

Algorithm Build(S):
(i) Set Si = S; i = 1.

(ii) Choose a random point pi E Si. Calculate di =
d(pi, Si). Let qi E Si be such that d(pi, qi) = di.

(iii) Choose ,S’l to satisfy (b.l), (b.2) and (c) in
Definition 2.1.

(iv) If Si = S{ stop; otherwise set Si+i = ,S’i \ Si!, set
i=i+l andgoto (ii).
LEMMA 2.2. Let S be a set containing n points.

Run Build(S) and let Si, 1 5 i 5 L, be the sets

constructed by the algorithm. Then E(xf=, ISi]) 5 2n.

Proof. We first note that L 5 n by Lemma 2.1.
Define SL+~ := SL+~ := . . . := S, := 0. Let si :=
E(]Si]) for 1 5 i 5 n. We will show that si+i 5 si/2,
which implies that si 5 n/2i-‘. By the linearity of
expectation, we get E(Cf’, ISi]) < Cy=i n/2i-1 5 2n.

It remains to prove that siti 5 si/2. If si = 0, then
si+i = 0 and the claim holds. So assume si > 0. We
consider the conditional expectation E(I&i I I]Si I = 1).
Let T E Si such that d(r, Si) 2 di. Then, Condition
(b.1) of Definition 2.1 implies that r E Si, i.e., r 6 Siti.

Take the points in Si and label them ri, rg, . . . , rr
such that d(rI, Si) 5 d(ra, Si) 2 . . 5 d(r,, Si). The
point pi is chosen randomly from the set Si, so it
can be any of the rj’s with equal probability. Thus
E(]Si+i]] ISi] = 1) 5 l/2, from which it follows that
sit1 = Cl E(]Si+i I I]Si] = 1). Pr(]Si] = 1) 5 si/2. I

DYNAMIC CLOSEST-PAIR PROBLEM 303

DEFINITION 2.3. Let Si, Sh, . . . ,Si be the sets of
a sparse partition for S. For any p E IR” and 1 5 i 5 L,
define the restricted distance

df(p) := min (di, d(p, Ujs;Si)) ,

i.e., the smaller of di and the minimal distance between
p and all points in Si U Sk U . . . U Si.

LEMMA 2.3. Let p E S and let i be the index such
that p E Si.
(1) d;(p) > di/6k.
(2) If q E S,!, where j < i - k, then d(p, q) > d;.

(3) df(p) = min (di, d(p, Sick U Sl-k+l U . . . U S,!)).

Proof (1) Let 1 5 j < i and let q E S(i. Since
p E Sj , it follows from Condition (b.2) of Definition 2.1
that d(p, q) > d(q, Sj) > dj/Sk 2 d;/6k.

(2) Let q E S(i, where j < i - k. As in (l), we
get d(p,q) > dj/6k. Then, Lemma 2.1 implies that

d(p, q) > $ 2 dl--k--l
immediately frorr?(Z).

> 9 > di. Finally, (3) follows
I

LEMMA 2.4.

Proof. The value df(p) is always the distance
between two points in S. Therefore, S(S) 5
mini<i<L minPEs! d,*(p). Let p, q be a closest pair with
p E -5’: and q 6 S,!. Assume w.1.o.g. that j 5 i.
Clearly, d(p,q) = d(p,UhliSi) 2 d!(p). This implies
that 6(S) 2 min isi<L minPEs: d:(p), proving the first
equality.

It remains to prove that we can restrict the value of
itoL-k,L-k+l,..., L. WeknowfromLemma2.3(1)
that minPEs: d;(p) > di/6k. Moreover, we know from
Lemma 2.1 (a), that for i < L-k, di/6k 2 dL--k-l/Gk 2
(3k+1/6k) . dL > dL 1 6(S). I

In order to be able to find the minimal distance
S(S), we maintain the following information. For each
1 < i 5 L, we compute the restricted distances {d:(p) :
p E Si/}. (How we compute these values depends on
the way we implement the sparse partition.) These
distances are stored in a heap Hi, with the minimum
at the top.

We now claim that, given these heaps, we can find
the closest pair in constant time. Indeed, Lemma 2.4
says that 6(S) can only be stored in the heaps

HL-k, HL-k+l, . . . , HL. To find S(S) it is therefore
enough to take the minima of these k + 1 heaps and
then to take the minimum of these k + 1 values.

Now we can give an abstract description of our data
structure.

The closest-pair data structure:
1. A data structure storing the sparse partition.

2. The heaps H1, Hz, . . . , HL.

The rest of the paper is organized as follows. We discuss
different ways to implement the data structure. First,
we describe a grid based implementation. Since this
data structure is the most intuitive one, we describe the
update algorithms for this structure. Then, we define
the other variants of the data structure. Concerning
implementation details and update algorithms, we then
only mention what changes have to be made in compar-
ison to the grid based implementation to establish the
results.

3 A grid based implementation

To give a concrete implementation of a sparse partition,
we only have to define the set Si, i.e. the subset of sparse
points in Si, for each i.

Let S be a set of n points in k-dimensional space.
We assume that the points of S are chosen from a
bounded universe, more precisely: we assume that the
ratio of their maximal and minimal distance is bounded.
We start with some definitions.

Let d > 0. We use G(d) to denote the grid
with mesh size d and a lattice point at (O,O, . . ., 0).
Hyperrectangles of the grid are called boxes. More
precisely, a box has the form

[iId : (il + 1)d) x [i2d : (i2 + 1)d) x . . . x [ikd : (ik + l)d),

for integers ii,. . . , ik. We call (ii,. . . , ik) the index of
the box. Note that with this definition of a box as
the product of half-open intervals, every point in lHk
is contained in exactly one grid box.

The neighborhood of a box b in the grid G(d),
denoted by N(b), consists of b itself plus the collection
of 3k - 1 boxes bordering on it.

Let q be any point in lHk and let b, denote the box
of G(d) that contains q. The neighborhood of q in G(d),
denoted by Nd(q), is defined as the neighborhood of b,,
i.e. Nd(q) := N(b,).

We number the 3k boxes in the neighborhood of
q as follows. The number of a box is a k-tuple over
{-l,O, 1). The j-th component of the k-tuple is -l,O,
or 1, depending on wether the j-th coordinate of the
box’s index is smaller than, equal to or greater than
the corresponding coordinate of bg’s index. We call this
k-tuple the signature of a box. We denote by b:(q)
the box with signature c in Nd(q).With this notation,
q E b;>...‘o. We are now going to define the notion of
partial neighborhood of a point q. For any signature
u, we denote by Ni(q) the part of q’s neighborhood
that is in the neighborhood of b:(q). Note that Ni(q)

304 GOLIN ET AL.

contains all the boxes b:‘(q) of Nd(q) whose signature
u’ differs from o by at most 1 for each coordinate -
these are exactly the boxes bordering on b:(q) including
b:(q) itself. Particularly, N:‘““‘(q) = Nd(q), i.e.
the partial neighborhood with signature 0,. . . ,O is the
whole neighborhood of q.

Now we consider the neighborhood of a point
q E IRk restricted to a set of points. The neighborhood of
q in G(d) relative to S, denoted by Nd(q, S), is the set
of points in S\(q) that are contained in Nd(q), the (un-
restricted) neighborhood of q. We say that q is sparse
in G(d) relative lo S if Nd(q, S) = 0, i.e. if, besides q,
there are no points of S in Nd(q). In cases that S and
d are understood from the context we will simply say
that p is sparse.

We now list some properties of the neighborhood
relation in grids. These properties will imply that
the above definition of sparseness using the notion of
neighborhood actually satisfies the requirements of a
sparse partition according to Definition 2.1.

(N.l) If Nd(p,S) = 0, then d(p,S) > d.
(N.2) For any z E Nd(p, S), d(p, x) _< 2k. d
(N.3) Let S,T SIR”, and let z E S and y E T. Then
x E Nci(y, S) u Y E Nci(x,T).

If we are given d and S, then we use perfect hashing
(see [4,6]) to store the points of S: For each point, we
take as a key the index of the box in G(d) that contains
it. We store the keys of the non-empty boxes in a hash
table. With each box 6, we store a list containing the
points in S n 6, in arbitrary order. We call this storing
S according to G(d). The box indices must be bounded
to make possible the use of hashing. This is the case
when the ratio of the maximal distance and the minimal
distance between any two points in S is bounded.

If S is stored according to G(d), then we can answer
the question “are any points from S in box b?” in O(1)
worst case time. Moreover, if the answer is yes, we can
report all points in S II b in time proportional to their
number. By checking all boxes in the neighborhood of
an arbitrary point q, we check in 0(1) time if q is sparse
in S. So, by doing this for each point in S we can, in
linear time, find the set of sparse points in S.

We are now in a position to define our grid based
data structure. Recall that the only remaining task is
to define the sets S; precisely. We do this by using the
notion of sparseness as defined above: For i > 1, let
Si := {p E Si : p sparse in G(di/Gk) relative to S;}.

The grid based data structure:
1. Si stored according to G(di/Sk), 1 5 i < L.

2. Si stored according to G(di/Gk), 1 5 i < L.

3. The heaps Hi, Hz, . . . , HL.

Since we only use grids G(di/Gk), we will use short
forms for grid-dependent objects like boxes and neigh-
borhoods: E.g., Ni(p,T) stands for Nd,,Gk(p,T), the
neighborhood of p in G(di/Bk) relative to T. We will
often refer to the data structures associated with index
i as level i.

LEMMA 3.1. Using the above definition of S,!, we
get a sparse partition according to Definition 2.1.

Proof. We only have to prove Conditions (b) and
(c) of Definition 2.1. Let 1 5 i 2 L and let z E Si.
First assume that z $! Si. Then, there is a point
q E Si that is in the neighborhood of 2. By (N.l),
d(x,Si) < d(x,q) 5 2k . di/6k = di/3. This proves
Condition (b.1). To prove (b.2), assume that 2 E 5’:.
Then, the neighborhood of x relative to Si is empty.
Hence, by (N.2), d(x, Si) > di/6k.

To prove (c), let 1 < i < L and let z E Si+i =
Si \ Si. It follows that there is a point y E Si such that
y E N~(z,$). By the symmetry property (N.3), this
is equivalent to 2 E Ni(y, Si) and therefore y E Si+i.
From Condition (b.l), we also have d(x, y) 2 di/3. This
proves that we indeed have a sparse partition. I

This is probably a good time to point out that the
grid implementation of our algorithm Build given in
Section 2 is essentially the randomized static closest-
pair algorithm given in [7] with many bells and whistles
attached. The algorithm there was only concerned with
finding dL, since with it, one can find the closest-pair in
O(n) time (see [7] for details). It did not have to save
the information at all of the levels. Our algorithm, in
order to be dynamic, must have access to it.

LEMMA 3.2. Assume we are given the grid based
data structure for S. Let 1 5 i 5 L and let p E S,!. The
value df(p) can be computed in O(1) time.

Proof. We know from Lemma 2.3 (2) that if da(p) =
d(p, q) with d(p, q) < di then q must be in one of
s;,s;l-l,. . .) SiFk. Furthermore, there are only a con-
stant number of boxes in the grids G(dj/Gk), i - k <
j 2 i, where a point q can possibly appear in: these are
the grid boxes that are within 6k boxes of the box that
p is located in. Finally, because of the sparseness of Sj ,
a’ - k 5 j 5 i, in their respective sets, there can be at
most one point found in each grid box. Therefore, using
the hash tables storing Si, i-k 5 j 5 i, we can find all
these points and compute d:(p) in constant time. I

LEMMA 3.3, The grid based data structure can be
built in O(n) expected time and it has O(n) expected
size. Given this data structure, we can find the closest
pair in S in O(1) time.

Proof. Consider the i-th iteration of algorithm
Build(S). Step (“) 11 can be performed in O(]Si 1) de-
terministic time by calculating the distance between

DYNAMIC CLOSEST-PAIR PROBLEM 305

pi and all other points in Si. Steps (iii)-(vi) take
O(lSil + l,S~l) = O(lSil) expected time, because we use
perfect hashing. Therefore the expected running time
of the algorithm is bounded by O(E(C,(lSil)), which
is also the amount of space used. Lemma 2.2 shows
that this quantity is O(n). Finally, we can compute the
closest pair in S in constant time from the heaps, using
Lemma 2.4 and Lemma 3.2. I

The grid-based data structure also has properties
that extend Definition 2.1. These properties will be used
for the dynamic mainenance of the data structure. The
most important one is the following:

For any p E IR” and any 1 5 i < L, if p is
sparse in G(di/Glc) relative to Si, then p is also
sparse in G(di+i/Glc) relative to $+I.

This statement is equivalent to Ni(z:, Si) = 8 +
N+l(x,si+l) = 0, which will be shown in Lemma 3.5.

To establish the additional properties, we first
examine the relationship between neighborhoods of
different grids:

LEMMA 3.4. Let 0 < d’ 5 d”/2 be real numbers and
let q EIR~. Then

(N.4) Nd’(q) c Nd”(4).

(N.5) For any u E {-l,O, 1)“: b:,(q) c N&(q).

LEMMA 3.5. For any 1 < i 5 L and any x ER,~:

N+1(X,Si+1) G Ni(X,Si).
Proof. Let x EIR”. Apply (N.4) from Lemma 3.4

with d” = di/6k,d’ = di+l/6k, noting that Si+i C Si,
to obtain Ni+i (x:, si+l) C N~(x, si). I

4 Dynamic maintenance of the grid based data
structure

We first give an intuitive description of the insertion
algorithm. Let S be the current set of points, and
assume we want to insert the point q. Assume that
S is uniformly stored in the sparse partition. We
want to store S U {q} uniformly in a sparse partition.
By assumption, pl is a random element of Si = S.
(We call pl the pivot.) Now, to generate a pivot for
Sr U {q} it suffices to retain pl as pivot with probability
ISII/(ISII + 1) and t o c h oose q instead with probability
l/(lSrl + 1). If q is chosen, then we discard everything
and run Build(S1 U {q}), terminating the procedure.
This happens, however, only with probability l/(lSrl +
1) and so the expected cost is O(1).

Assume now that pi remains unchanged as the
pivot. We now check to see if q1 and, hence, dl have
to be changed. First note that q can be the nearest
neighbor of at most 3k - 1 5 3k points in Sr. (See [3].)
This means that dl can change only if pl is one of these
points. Since we assumed that the adversary cannot
see the coin tosses of the algorithm, and since pl is

chosen uniformly from 5’1, it follows that the probability
of dl changing is at most 3k/lSrl. If dl changes, we
run Build(S1 U {q}) and t erminate the procedure. The
expected cost of this is O(1). The previous two steps
are called “check for rebuild” in the later part of this
section.

Assume now that pl, 21 and dl remain unchanged.
Let us denote S U {q} by S. We now need to determine
the set 32, which contains the non-sparse points in
,?i = S. If q is sparse in 5’1, it will go into &%, and
nothing further needs to be done, that is, the tuples
(Si, Si,pi, qi, di), 2 < i 5 L, remain the same. So, in
this case, we can terminate the procedure. Otherwise,
52 contains q and possibly some points from 5’:. The set
of points which are deleted from Sl, due to the insertion
of q is called downl. This completes the construction of
the first 5-tuple.

Now we need to insert q and down1 into &. Before
we describe the algorithm any further, we should take
a closer look at the down sets.

We define down0 := 0. Now assume that the
inse@ion algorithm attempts to construct the 5-tuple
for S’i without having made a rebuilding yet. Then, for
1 5 j 5 i, downy is defined as the set of points in S
that are sparse in G(dj/Gk) relative to Sj but that are
not sparse in this grid relative to Sj, i.e.

(4.1) downj = {X E S \ Sj+l : z E 2j+l}.

The following lemma gives two equivalent characteriza-
tions for the sets downj, 1 5 j 5 i:

LEMMA 4.1. Let Dj := S$ U downj-1. Then

(4.2) downj = {Z E Dj : x E Nj(q, Dj)}.

The set Dj = Sj U downy-1 is called the “candidate set”
for downj. We also have:

(4.3) x E downj a Nj(Z,Z) = {q}.

Proof We omit the proof due to lack of space. The
proof uses Lemma 3.1, saying that we have a sparse
partition, and Lemma 3.5, which says that a point which
is sparse at level i is also sparse at level i + 1. I

LEMMA 4.2. Let the sets downo,. . ., downi be de-
fined as described above. Then I UICjCi downjl 5 3k. --

Proof. Assume that x E downj for some j 5 i.
Then x E Nj (q) and Nj (x, S) = 8 by Equations (l)-
(3). Moreover, let z E b,“(q). The partial neighborhood
NJ?(q) is the intersection of q’s neighborhood with the
neighborhood of x. Since Nj(x, S) = 8, NY(q) contains
no point of S \ {x}. N ow, let y E b;(q) for any 1 > j.
Sinced Cd. r _ 3+r 5 dj/3 by Lemma 2.1 (2), Lemma 3.4

306 GOLIN ET AL.

gives y E NY(q). Th is means that at levels j + 1 < 1 5 i,
there cannot be any point in down, with signature u
except t itself. (Note that a point can be in several
down sets.) It follows that for each RH E {-l,O, l}“, the
set of points z in 5’ such that there exists a j E { 1, . . . , i}
satisfying c E downj as well as z E b;(q) contains at
most one element. I

In particular, each single down set has constant
size. Let us now continue with the construction of the
5-tuple for gj. We now are in a position to clear a
small lie we told earlier; constructing (,$, $,Fi, c, &)
from (Si , Si, pi, qi, di) requires that, instead of one, up
to 3” + 1 points (q as well the points in downi-1) be
considered as new pivots, and also increases the chance
of one of these points being closer to the old pivot
than the pivot’s previous closest neighbor, but this only
increases the probabilities by a constant factor.

If no rebuilding takes place, we determine 3, which
is the set of sparse points in Si U downi- U {q} in the
grid G(di/Gk). Note that S,! U downi- is a sparse set
in G(di/6k) by Lemma 3.1 and Lemma 3.5. Therefore
q is the only point that can cause a point of this set
to become non-sparse. From Lemma 4.1, recall that
Di := S,! U downi- is the candidate set for downi, and
downi is the subset of Di that is not part of,?&.

We now have constructed (gi, ,?i, pi, G, di) and also
determined gj+, = 5: \ $+I. If ,!?i+i = 8, then we are
finished with the insertion algorithm. Otherwise, we
continue with the next level.

We now give an outline of the probabilistic analysis.
We show that the expected run-time of an insert oper-
ation is O(logn), provided that the time to construct a
5-tuple without rebuilding is O(1).

The expectation is taken both over the new coin
tosses and over the expected state of the old data
structure (this means in particular that the run-times
of consecutive inserts are not independent).

Let the initial set of tuples be (Si,Sj,pi, pi, di),
1 5 i 5 n, padding the sequence out with empt_y
tuples if necessary. Let T; be the time to construct S;
from Si assuming no rebuilding has taken place while
constructing Si , . . . , g;- 1. Clearly, the expected run-
time X satisfies X 5 & z. Let N = peg n). For
1 5 i 2 N, it holds that Ti = O(jSil) expected time
with probability O(l/jSil) and Ti = O(1) otherwise,
and so E(Ti) = O(l), independently of the previous
state of the data structure. It is fairly easy to see that
cr=,,+i Ti is bounded by c. (S,v+i 1 for some constant
c. This means that:

E(X) 5 5 E(Z) + E(c + ISN+I I) = O(log n)
i=l

since E(ISN+~ I) is O(1).
We now give a more detailed description of the

algorithm; this will show the above algorithm outline
can indeed be efficiently implemented. As already
mentioned, we denote by level i the data structures
associated with index i.

Let us examine the point movements between the
different levels during an insertion more closely. Assume
that we are working at level iJ where i _> 1, i.e. we are
constructing the 5-tuple for Si. The definition of the
down sets implies that, at each level i, downi- is the
set of points in S that move at least down to level i,
while downi is the set of points in S that move at least
down to level i+ 1, where down0 := 0. More specifically,

(i) 2 E downi \ downi- means z starts moving at level
i, i.e. x E Si and x 6 Si,
(ii) x E downi- \ downi means x stops moving at level
i, i.e. x $! Si and x E Si,
(iii) x E downiml n downi means that z moves through

level i, i.e. t 6 Si and x 4 ,!?i.

For all the points satisfying (i) or (ii), we have to update
all the heaps where the considered points disappear
(i) or enter (ii). This task will be performed by the
procedure changeheap, to be described later. Of course,
the changes from the 5-tuple (Si, Si, pi, pi, di) to the 5-
tuple (gi, ,$,pi, Fi, 4) also have to be performed in the
data structures that actually store the 5-tuple. We omit
these details and only show how to compute the set
downi in constant time.

We already saw that the total complexity of the
down sets is constant. In particular, each single down
set has constant size. Now we show that, given the
candidate set D; = 5’: U downi-1, where S,! is stored
according to grid G(di/Gk), we can compute downi in
constant time. We use Equation (4.2) for this purpose,
i.e. we show that Xi = {x E Si U downi- : x E
Ni(q,S{ U downi-1)) can be constructed in constant
time. We want to know for all z E S’i U downi-
wether x E Ni(q, Si U downi-1). Using symmetry this
is equivalent to q E Ni(t, S,l U downi- U {q}). How do
we perform the membership tests? The elements in 5’:
are already stored at that level, whereas the elements
in downi- U {q} are not. We tentatively insert these
points into the data structure storing the sparse set Si.
This proves that we can find Xi in constant time.

The complete algorithm is given below. We main-
tain the invariant th_at, if we have constructed the 5-
tuples (Sj, $, Fj, 5, dj) for 1 5 j 2 i without rebuild-

ing, then Si = .S’i U downi- U {q}. Note that the invari-
ant is true in the beginning because down0 = 8. The
invariant ensures that the new set of 5-tuples satisfies
the requirements of a sparse partition of Definition 2.1

DYNAMIC CLOSEST-PAIR PROBLEM 307

as well as the properties of the neighborhood relation
(N.l)-(N.5).

Algorithm Insert(q):
1. initialize i - 1; dovlnc 4- 0;

Invariant: Zi = Si U downi-1 U {q)

From the invariant, we know ,$i; we want to determine
gi. Before that, we check if the data structure has to
be rebuilt, in which case the algorithm runs Build(.!?i)
and stops.

2. check fo_r rebuild: flip an ,$s@ed coin, giving
pivot pi of Si; if fi $ Si, then Build($); stop;

otherwise, the old pivot pi of Si is also the pivot for gi

if d(pi,z) < di for some 2 E downi- U {q} then
Build(gi); stop;

otherwise, di = d(pi, S;) equals d(pi, Zi).

3. Determine 5:: To determine 2: and therefore
S;+i, it basically suffices to determine downi, the set
of points that started moving before level i and that
move below level i.

We can compute downi in constant time as described
above. The portion of Si U downi- that is not in downi

is sparse in $!?i and will therefore go into ,!?i. So, out of
,?i = Si+i U Si U downi- U {q}, we have determined
all the elements w.r.t. membership in gi, except q. If
downi # 8, q is certainly not in 5:. Otherwise, we have
to check Ni(q, Si), the neighborhood of q relative to Si,
separately to see if there are points in Si+i that prevent
q from being sparse in si. In either case, we know $?i+i.
If q is not sparse in ,?i, then we have ,$+I = $i \ 2: =
Si+l U (5’: U downi-1) \ 3 U {q} = S~+I U downi U {q},
i.e., the invariant is still valid for the next level.

4. Update heaps: Some points of downi- may not
be in downi, and vice versa. As described before,
these are the points that stop and start moving down,
respectively. For these points we have to update the
heaps. Let p be one of these points. We execute
procedure changeheap(which is given below. We
also insert q into the heap structure, if appropriate,
using changeheap(Note that, at each level i, a point
can be associated with only a constant number of heap
values, which are located in the heaps Hi+/, 0 5 1 5 k.

5. Next iteration: We are done with level i.
If Ni(q, Zi) # 0, th en i+i+ 1; got0 2.

Otherwise, stop. We have computed the sparse partition
for the new set ,!? = S U {q}, and have also updated the
heaps.

It remains to decribe the procedure changeheap
which actually performs the heap updates. There are
two cases: the procedure is called (i) when p starts
moving at level i and (ii) when p stops moving at some
level j, where i < j. In the first case, we basically
perform a deletion of the heap values associated with p,
while in the second case, we perform the corresponding
reinsertions into the heap structure. Note that the latter
case does not occur if the data structure has been rebuilt
at some level i < 1 5 j. In this case, the rebuilding
algorihm inserts the values associated with p into the
heap structure appropriately.

From Lemma 2.3 (3), we know that d,‘(p) =
min (da, d(p, Simk U . . . U Si)) . Thus, a point p E 5’: can
be associated to a heap in two different ways: First,
there is a value d,‘(p) in Hi. Furthermore, for each
0 5 1 5 L, there may be q E Si + 1 such that d(q,p)
gives rise to d:(q) E Hi+,. The procedure is as follows:

if p starts moving at level i, (p E S,!, but p 6 5:) then
delete df (p) from Hi;
for 0 5 1 5 k do:

for all q E Si+r such that d,*,,(q) = d(q,p) do:
recompute df+l(q); replace old value;

else (p stops moving at level j, i.e. p 4 Sj, but p E ,?i)
compute d;(p); insert it into Hj;
for 0 5 1 5 k do:

for all q E ,!?i+l such that d(q,p) < dT+l(q) do:
dT+r(q) = d(q, p); replace old value;

We haven’t mentioned yet how the heaps are connected
with the points stored in the sparse partition. For each
value d,t(p) in Hi, we store a pointer from the unique
occurrence of p in Si to it. Moreover, with d,t(p) we
store the pair (p, q) such that d,t(p) = d(p, q). These
informations make accessible the heap values that are
involved in the procedure.

Each restricted distance can be computed in O(1)
time by Lemma 3.2. Moreover, from the proof of
Lemma 3.2 we know that the restricted distances are
computed by searching the area of at most 6k boxes
away from p in the grids that store the sparse sets
Si+r, 0 5 1 2 k. Outside this area, the restricted
distance of a point q cannot be affected by removal of p.
Since we assume that the dimension k is fixed, the total
number of heap operations carried out by the procedure
is constant.

THEOREM 4.1. Insert(q) correctly maintains the
data structure and takes expected time O(logn).

Proof. As discussed before, the algorithm maintains
a sparse partition according to Definition 2.1, and
the expected cost of step 2, summed over the entire
procedure, is O(log n).

The running time for step 3 is 0(1 + Idowni-I(+

308 GOLIN ET AL.

(downil) at level i. Since (downi 1 = O(l), 1 5 i 5 L,
each step costs only constant time and the cost of this
step is subsumed in the cost of step 2.

Now consider step 4. From Lemma 4.2 we know
that the heap update procedure is only called for a
constant number of points over all the levels. Since
this procedure only performs O(1) heap operations, the
total time for the heap updates is O(logn): O(1) heap
operations, each of cost O(logn). I

Now we come to the algorithm that deletes a point q
from the data structure. Let S denote S\(q) during the
discussion of deletion. Deletion is basically the reverse
of insertion. In particular, the points that move to
lower levels during an insertion of q move back to their
previous locations when q is deleted directly afterwards,
if no rebuilding takes place. Because of the rebuilding,
we have to be a little more careful with deletions.
An insertion ends at the level where the new point q
eventually is sparse. Therefore, we want to start the
deletion at the level h such that q E Si. Since q has to
be deleted from all the sets Si, 1 5 i 5 h, we have to
take care that, by doing this, we don’t delete the pivot
or its nearest neighbor at some of these levels. For this
purpose, we first attempt to find the level h such that
q E SA, starting at the first level. If the pivot conditions
mentioned above are violated at some level i 5 h, we
rebuild at that level and stop without having located q
in the set Si. Then we walk up again and delete q from
the levels encountered. Note that no rebuilding occurs
any more in this phase. ,

In order to be able to delete q efficiently from the
non-sparse sets Si containing it, we link the occurrence
of a point in Si to its occurrence in Si-i and vice versa,
if the corresponding level exists.

As already mentioned, points may move up some
levels due to the deletion of q. Let 1 5 i 5 h and q E Sk.
Then q E Si. Analogously to the insertion algorithm, we
define up, to be the set of points the movement of which
started below level i and does not stop before level i, i.e.
upi = {z E Si+i \{q} : z 4 ,?$+I}, if no rebuilding takes
place at a level j 5 i. Otherwise, upi := 0. Concerning
the number of points moving between levels during an
update operation, the up sets are identical to the down
sets, i.e. 1 U,<;,L upil 5 3k, see Lemma 4.2.

We can compute a set upi in constant time, as
follows. The corresponding statement to Equation (4.3)
is 2 E upi z Ni(z, Si) = {q}. Checking this condition
means finding all points in Si having only q in their
neighborhood. Using the symmetry property (N.3), this
can be done in O(1) time.

Analogous to the insertion algorithm, (i) z E upiml\
upi means x starts moving at level i, i.e. x E Si and

x $ S{, (ii) 2 E upi \ upiT means 5 stops moving at

level i, i.e. x $,S’i and x E ,!?l, and (iii) x E upid n upi
means that x moves through level i, i.e. z 6 Si and

x $ $. As before, the points that start or stop moving
are causing heap updates.

Algorithm Delete(q):
1. check for rebuild: i +- 1;

while q $ Si and no rebuilding takes place, do:

if q is the pivot pi or if d(pi, q) < di
then Build(Si \ (9)); else i+i+ 1;

Now, either q E Si, or the data structure has been
rebuilt for Si \ {q} and q was previously stored in
SA, h 2 i. In either case, we have upi = 0.

We know upi and ?i+i, we want to determine &.

2. Determine Si: We are interested in upiml, i.e. the

set of points in 5’; \ {q} that don’t go into Si. From
the discussion above, we can compute upi-, in constant
time using upizl = {x E Si-1 : Ni-1(x,$-1) = {q}}.

Now we know Si = Si \ upiml \ {q} and .!$ = ,?i \ Si+i.
In particular, we know that all x E upi \ upj-, go into

Si and Si.

4. Update heaps: Completely analogous to Algo-
rithm Insert. We execute changeheap for the points in
the symmetric difference of upi-i and upi, and for the
deleted point q, if we are on a level where q contibutes
a heap value.

5. Next iteration: If i > 1, then i + i - 1; goto 2.

Otherwise, stop.-We have computed the sparse partition
for the new set S = S \ {q} and updated the heaps.

THEOREM 4.2. Delete(q) correctly maintains the
data structure and takes expected time O(Iogn).

Proof. The proofs of correctness and running time
are analogous to those for the insertion algorithm and
are therefore omitted. I

5 Removing the finite universe assumption

In the previous sections, we stored the non-empty grid
boxes using perfect hashing. Therefore, we required
that the indices of the boxes are from a finite universe.
Clearly, we can also store the non-empty boxes in a
balanced binary search tree. Given a point p, we use
the floor function to find the box that contains this
point. Then, we search for this box in logarithmic time.
Similarly, we can insert and delete points: If a new point
is contained in a new box, we insert the box, together
with the point; otherwise, we add the point to the box
that is stored in the tree already.

For the update algorithms, we need an expected
number of O(log n) dictionary operations plus O(log n)

DYNAMIC CLOSEST-PAIR PROBLEM 309

time per update operation. Now, each dictionary
operation takes O(log n) time. Hence, the expected
update time is increased to O(log2 n). Clearly, for this
solution, we do not need the finiteness of the universe;
it works for arbitrary point sets.

Note that during an update, we perform basically
the same search operations at each level. Therefore,
we can apply a special form of fractional cascading to
improve the expected update time. This leads to the
following result. (Details will be given in the full paper.)

THEOREM 5.1. For the dynamic closest pair prob-
lem, with arbitrary point sets, there exists a randomized
data structure of expected size O(n), that maintains the
closest pair in O(log n log log n) expected time per inser-
tion and deletion. The algorithms on this data structure
use the floor function.

6 An algebraic decision tree implementation

The solution of the previous section still uses the floor
function. It is well k,nown that this function is very
powerful: For the maximum-gap problem, there is an
Q(nlogn) lower bound for the algebraic decision tree
model. Adding the floor function, however, leads to an
O(n) complexity.

Therefore, we want an algorithm that does not use
the floor function. Note that this function was only
used to compute the grid box containing a given point.
Therefore, we will use a degraded grid for which we only
need algebraic functions. A similar type of grid appears
already in [8].

DEFINITION 6.1. Let S be a set of n points in Ic-
dimensional space and let d be a positive real number.
A h-dimensional degraded d-grid is a collection of hy-
perrectangles, that are inductively defined as follows:
(1) For k = 1, a one-dimensional degraded d-grid is a
set of intervals si = [ai, bi), i 2 1, that are non-empty,
pairwise disjoint and cover S, such that d 5 bi - ai 5 2d
and ~i+i - bi 2 d.
(2) Let k > 1. Let si, ~2,. . be a one-dimensional
degraded d-grid for the multiset consisting of the
first coordinates of all points in S. Let S(“) be the
points of S whose first coordinates are contained in
si. Let bil, bi2,. . . be the hyperrectangles of a (le - l)-
dimensional degraded d-grid for S(i), where we only take
the last /Z - 1 coordinates. Then the collection of hyper-
rectangles si x bij, i, j 2 1, is a k-dimensional degraded
d-grid for S.

In [8], an algorithm is given that constructs a k-
dimensional degraded d-grid in O(n logn) time. It
follows from Definition 6.1, that we can store a degraded
d-grid using the slab method. In particular, we can
locate the hyperrectangle containing a point p, by

performing /c binary searches. Hence, it takes O(logn)
time to locate a point.

Suppose we want to insert a new point p =

(P1,... ,pk). Then, we first check if there is already
an interval si containing pi. If so, we insert (P2, . . , pk)
into the (k - 1)-d’ imensional degraded d-grid for Sci),
using the same algorithm recursively.

Otherwise, there is no interval containing pl. The
search for p ended between two non-empty intervals, say
s and t. If the interval between s and t has width less
than 2d, we make one new (non-empty) interval out of
it. We insert this new interval into the data structure.
Otherwise, the interval between s and t has width at
least 2d. We make a new interval, say U, taking care
that the interval between s and u has width either zero,
or at least d. Similarly, the interval between u and t
has width either zero or at least d. As before, we insert
u into the data structure. The entire insert algorithm
takes O(logn) time. The delete algorithm, which also
takes O(logn) time, is similar.

In order to implement our data structure, we define
the sets S;. First, we need some definitions. Let
gi := dJ42k. W e s ore t the set Si in a degraded gi-
grid. Each rectangle in this degraded grid has sides
of length between gi and 2gi. Note that the degraded
grid not only depends on gi, as in the grid case, but
also on the set Si to be stored in it. (Actually, it
even depends on the way Si has developed by updates.)
Let B be a rectangle of this degraded grid and let
(bl, b, . . . , bk) be the “lower left” corner of B. Then
N(B), the neighborhood of B, is defined as the set of
all rectangles of the degraded grid that have their lower
left corner in the box

P1 - g!?i : bl + 1 lgi] x . . . x [bk - 9gi : bk + 1 lgi].

The other definitions are analogous to the ones given in
Section 3. Let p be a point in IR” and let BP be the
rectangle of the degraded grid that contains p. Then the
neighborhood of p in the degraded grid relative to Si,
denoted by Ni(p, Si), is defined as the set of all points
in Si \ {p} that are contained in any of the rectangles
in N(B,), the neighborhood of BP. As before, we say
that a point p is sparse in the degraded grid relative
to Si if Ni(p,Si) = 8. We define 5’: := {p E Si :
p sparse in the degraded gi-grid relative to Si},

The degraded grid based data structure:
1. Si stored in a degraded gi-grid, 1 < i 5 L;

2. Si stored in a degraded g;-grid, 1 5 i 5 L;

3. The heaps Hi, Hz,. . . , HL.
LEMMA 6.1. Using this definition for S{, we get a

sparse partition according to Definition 2.1.

310

Proof. Let 1 5 i < L and let 3: E Si. Assume that
x E Si. Then d(~, Si) > 9gi - 2gi = 7gi = di/6k. If
x $ Si, then d(x, Si) 2 Ilg;k + 2gik = I3gik _< di/3.
This proves that Condition (b) of Definition 2.1 holds.
It remains to prove Condition’(c). Let 1 < i < L and let
x E Si+l = Si \Si. Let y be the nearest neighbor of x in
Si. Since the neighborhood relation for rectangles of the
degraded grid is symmetric, the neighborhood relation
for points is also symmetric. Therefore, y is not sparse
relative to Si, i.e., y E S;+l. I

Note that Lemma 6.1 corresponds to Lemma 3.1 in
Section 3. We also have an analogous statement to
Lemma 3.5:

LEMMA 6.2. For any 1 5 i 5 L and any x EIR’:

Ni-f-1 (2, Si+l) C Ni(z, Si)-

Proof. Let Bi and Bi+l denote the box containing
x in the degraded gi-grid for S; and in the degraded
gi+l-grid for ,‘$+I, respectively. We want to show that
N(Bi+l) c N(Bi), from which the lemma follows.

Surely, P; := [PI - 9gi : P1 + 9gi] X . . . X [pk - 9gi :

pk •i- 9g;] c N(Bi). Similarly, Pi+1 := [PI - Ilgi+l :

Pl+119;+1]X...x[pk-llgi+l :Pk+llgi+~] > N(Bi+l).
But gi+l < gi/3 from Lemma 6.1, and SO Pi+1 C Pi,
which implies N(Bi+l) c N(Bi). I

Now let us examine the update algorithms. In
Section 4, we defined the sets downi. The definition
remains the same here, except that we have a new
notion of neighborhood. Note that the 3 equivalent
characterizations of the down sets in Equations (4.1)-
(4.3) are still valid, since they only relied on Lemmas 3.1
and 3.5, for which we have proved the corresponding
statements in Lemmas 6.1 and 6.2.

This means that the correctness proofs are still
valid. Concerning the complexity of the down sets, we
only prove a very crude bound:

LEMMA 6.3. Let 1 5 i < L and downy be deJined
for 1 5 j 5 i. Then ldownjl 5 20”, for each j.

Proof. Let B, denote the box containing q in the
degraded gj-grid for Sj. From Equations (4.1)-(4.3), we
infer that each x E downj must satisfy 2: E N(B,) and
Nj(p, Sj) = 0. Particularly, each of these points must
be the only one in its box. So, each of the at most 20k
boxes of N(B,) can contain at most one point of S. I

It follows that we have logarithmic bound on the
expected size of the union of the down sets. Hence,
there are O(logn) heap operations per update. These
already take O(log’ n) time. The same holds for the up
sets that come up during the,,deletion algorithm.

All the other lemmas and theorems concerning
correctness and running times remain valid, except that
we have to multiply the time bounds by logn.

We remark here that this data structure does no

GOLIN ET AL.

longer have the property that its distribution is indepen-
dent of the history of updates. The analysis, however,
remains essentially unchanged.

THEOREM 6.1. Let S be a set of n points in Rk.
There exists a randomized data structure of expected
size O(n), that maintains the closest pair in S in
O(log2 n) expected time per insertion and deletion. The

algorithms on this data structure fit in the algebraic
decision tree model.

References

111

PI

[31

[41

151

P1

PI

PI

PI

[lOI

IllI

Dl

1131

[I41

[151

M. Ben-Or. Lower bounds for algebraic decision trees.
Proc. 15th STOC, 1983, pp. 80-86.
J.L. Bentley and M.I. Shamos. Divide-and-conquer in
multidimensional space. Proc. 8th STOC, 1976, pp.
220-230.
W.H.E. Day and H. Edelsbrunner. Eficient algorithms
for agglomerative hierarchical clustering methods. Jour-
nal of Classification 1 (1984), pp. 7-24.
M. Dietzfelbinger and F. Meyer auf der Heide. A
new universal class of hash functions and dynamic
hashing in real time. Proc. ICALP 90, LNCS, Vol. 443,
Springer-Verlag, 1990, pp. 6-19.
M.T. Dickerson and R.S. Drysdale. Enumerating k
distances for n points in the plane. Proc. 7th ACM
Symp. Comp. Geom., 1991, pp. 234-238.
M. Fredman, F. Komlos and E. Szemeredi. Storing a
sparse table with O(1) worst case access time. Journal
of the ACM 17 (1984), pp. 538-544.
S. Khuller and Y. Matias, A simple randomized sieve
algorithm for the closest-pair problem. Proc. 3rd Can.
Conf. Comp. Geom., 1991, pp. 130-134.
H.P. Lenhof and M. Smid. Enumerating the k closest
pairs optimally. Proc. 33rd FOCS, 1992.
M.C. Rabin, Probabilistic algorithms, in “Algorithms
and Complexity: New Directions and Recent Results
(J.F. Traub ed.),” (1976), pp. 21-39.
J.S. Salowe. Shallow interdistance selection and inter-
distance enumeration. International Journal of Compu-
tational Geometry & Applications 2 (1992), pp. 49-59.
C. Schwarz, M. Smid and J. Snoeyink. An optimal
algorithm for the on-line closest pair problem. Proc.
8th Symp. Comp. Geom., 1992, pp. 330-336.
M.I. Shamos and D. Hoey. Closest-point problems.
Proc. 16th FOCS, 1975, pp. 151-162.
M. Smid. Maintaining the minimal distance of a point
set in less than linear time. Algorithms Review 2
(1991), pp. 33-44.
-. Maintaining the minimal distance of a point
set in polylogarithmic time. Discrete Comput. Geom.
7 (1992), pp. 415-431.
K.J. Supowit. New techniques for some dynamic
closest-point and farthest-point problems. Proc. 1st
SODA, 1990, pp. 84-90.

