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Abstract

Kirchhoff’s Matrix Tree Theorenpermits the calculation of the number of spanning trees in any
given graphG through the evaluation of the determinant of an associated matrix. In the case of
some special graphs Boesch and Prodinger [Graph Combin. 2 (1986) 191-200] have shown how to
use properties of Chebyshev polynomials to evaluate the associated determinants and derive closed
formulas for the number of spanning trees of graphs.

In this paper, we extend this idea and describe how to use Chebyshev polynomials to evaluate the
number of spanning trees @ whenG belongs to one of three different classes of graphs: (i) when
G is a circulant graph with fixed jumps (substantially simplifying earlier proofs), (ii) wieis a
circulant graph with somaeon-fixedjumps and when (iii}G = K,, & C, wherek, is the complete
graph om vertices andC is a circulant graph.
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1. Introduction

An undirected grapl@ is a pair(V, E), in which V is the vertex setand C V x V
is the edge set. In a graph, se(f)loop is an edge joining a vertex to itself amaultiple
edgesare several edges joining the same two vertices. All graphs considered in this paper
are finite, and undirected with self-loops and multiple edges permitted.

For a graphG, a spanning tree i is a tree which has the same vertex seGag he
number of spanning trees@denoted by (G), is a well-studied quantity, being interesting
both for its own sake and because it has practical implications for network reliability, e.g.
[11,12]

In this paper, we discuss how to derive closed formulas’f@s) when G belongs to
one of three graph classes: (i) whérnis a circulant graph with fixed jumps (substantially
simplifying earlier proofs), (i) whelt is a circulant graph with someon-fixedumps and
(iif) when G = K, + C whereK,, is the complete graph onvertices and’ is a circulant
graph. In all three cases, we start with the matrix-tree formulatidh(6f) which rewrites
T (G) as a cofactor of the Kirchhoff matrix of the graph. We then describe how the special
structure of the Kirchhoff matrix permits rewriting the cofactor in terms of Chebyshev
polynomials.

We start by providing some definitions and background.

Let 1<s1<s2<---<s, $1,982,...,8 integers. Theundirected circulant graph
C)2%2% hasn vertices labeled 0, 2, ...,n — 1, with each vertex (0<i<n — 1)
adjacent to R verticesi + s1,i £ 52, ..., i £ 5, modn. The simplest circulant graph is the
n vertex cycleC} or C,. More generally, iftm, s) = 1 thenC$, is them node cycle while if
(m, s)=d > 1thenC;, is the disjoint union of/ cyclesC,},/d. Fig. lillustrates two circulant
graphs. We note that our definition here specifically forces the graph tb tegalar so, if
i £5; =i £s; (modn) for somei, j then the graph would have repeated edges. See, for

Fig. 1. Two examples of circulant graphs. Note th‘éte’ has multiple edges.
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1
Kyt C,

Fig. 2. Two examples. IiKg — Ci, the dashed lines are deleted edgesk i+ Ci the dashed lines are added
edges.

example,Cé’3 in Fig. L Also, note that in our definition, the arearbitrary, they could be
fixed or they could be functions af We will elaborate on this distinction further later.

K,, thecomplete graplonn vertices, has one edge between each pair of distinct vertices.
LetS be asubsetofthe edge se#gf (or S be asubgraph of,). K,,— S, the graph remaining
when all edges i8 are removed fronk,,, is thecomplementf S in K,, and also denoted as
S. For an edge set, we denote byk,, + S the graphk,, with all edges inS added to it; ifS
is nonempty theik,, + S contains some multiple (repeated) eddgeg. 2gives examples of
Kg— C} andKg + C‘{, which areKg with, respectively, the four cycles deleted and added.

LetV ={v1, v2, ..., v,} be the vertex set ai andd; denote the degree of. SetA(G),
or simply A, to be the adjacent matrix @f. Let B denote the: x n diagonal matrix with
{d1,do, ..., d,}as diagonal entries (and all other entries 0). Matrix Tree Theorenil7]
states that th&irchhoffmatrix H = B — A has all its co-factors equal toT (G) providing
a method for calculatin@ (G) for any particular given graph. For example, the Kirchhoff
matrix of the graphKs — Ci shown inFig. 2is

3 0 -1 -1 0 -1
0 3 -1 0 -1 -1
-1 -1 5§ -1 -1 -1
-1 0 -1 3 0 -1
0O -1 -1 0 3 -1
-1 -1 -1 -1 -1 5

all its co-factors are 192 which is the number of spanning treé&in C‘{.

3The(i, J)th co-factor ofA is the determinant qf thé: — 1) x (n — 1) matrix that results from deleting the
ith row and;th column fromA, with symbol(—1)i*+/.
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The number of spanning trees in graghalso can be calculated from the eigenvalues
of the Kirchhoff matrix H. Let yy >y > - - - > p,(=0) denoté all of H's eigenvalues.
Kel'mans and Chelnokofd6] have shown that the Matrix Tree Theorem implies

1 n—1
T(G):;H,uj. 1)
j=1

For special classes of graphs it is possible to show that their Kirchhoff matrices have spe-
cial structures and then bootstrap off of Kel'mans and Chelnokov’s formula to get formulae
for T(G) whengG is in those classes.

In [8], Boesch and Prodinger use this approach to derive closed formulaeGubelong
to the classes of wheels, fans, ladders, Moebius ladders, squares of cycles and complete
prisms. Their main technique was to show that in these cases (1) can be rewritten in terms
of Chebyshev polynomials and to then use properties of these polynomials to derive the
closed formulae.

Separately, the class of circulant graphs have also been well studied,}"?fgafaphs, in
particular, deserve special mention. The formD{a?,}’z) =nF,2L, F, the Fibonacci numbers,
was originally conjectured by Bedrosig®] and subsequently proven by Kleitman and
Golden[18]. The same formula was also conjectured by Boesch and {8ufegithout the
knowledge 0f18]). Different proofs can been found[ib,8,27] TheC,%’2 graphs are actually
the squares of cycles mentioned above and the formula(fﬁﬂ"z) was also rederived using
Chebyshev polynomials by Boesch and Prodiri§eas described above.

Going further, formulae forT(C,}’g’) and T(C,}’ ) are provided in26]. A connection
between these formulae was giver{28] by showing that, for anjixedsz, s2, .. ., Sk,

T(C’AI‘LSZ,MSI() — na2

n’
where theu,, satisfy a recurrence relation of the form

zsk—l

s —1
Yn>2%"%  a,= Z bia,—;
i=1

and theb; are reals (but not necessarily nonnegative). Recall that the Matrix Tree Theorem
gives us a method of calculatirf(C,**>*) = na? for any arbitrarys by building the
Kirchhoff matrix and evaluating any of its cofactors. This means that we can find the
b; by calculating all of thes; for i <2% and then solving for thé;. The asymptotics

of T(C;»*#*%) could then be found by solving for the minimum modulus root of the
characteristic polynomial of the recurrence relation. This was dof@8irfor all circulant
graphs withsg <5.

4 Becaused is symmetric it has all real eigenvalues. It is not difficult to see that all of the eigenvalues are, in
fact, nonnegative, and that O is an eigenvalue.
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In this paper, we extend the ideas [B] in three directions. In the first, we show
how to use the Chebyshev polynomial technique to derive a much simpler proof that
T(Cyt*% %y =na?, where the, satisfy a linear recurrence relation of ordér2.> This
new proof will have the added advantage of providing a method of deriving the mini-
mum modulus root of the characteristic polynomial of the recurrence relatitirout
having to construct the recurrence relatiothus obviating the need to calculate the de-
terminants (it will only require finding the roots of a particular polynomial of order
sg—1).

In the second, we describe how to use the Chebyshev polynomial technique for deriving
closed formulae for some circulant graphs withn-fixedjumps, a problem which does
not seem to have been generally attacked previously. More specifically, the technique will

permit the derivation of formulae for circulant graphs of the fagm ™~ “ " “ | where
s1, ..., S, areconstantintegers, ..., q; € {2, 3, 4, 6}andvu <1, a,|n,i.e,nisamultiple
of the least common multiple of thg,. As examples, we will derive formulae fGT(C;,’l”),
T(C3M), T(Cy™), T(CE™) andT (Cg23").

In the third we describe how to use tRdebysheypolynomial technique to calculate
T (K, £ S) whereS is a circulant graph.

The problem of calculating” (K, — S) has already been studied for many different
types of S. The first work in this area seems to have been by Weinf@&tgwho gave
formulae forT (K, — S) when all edges inS are not adjacent or are adjacent at one
vertex. Subsequently, in a series of pap@&s6], Bedrosian extended this to show how
to calculateT (K, — S) when all edges inS are not adjacent or adjacent at one ver-
tex, or form a path, a cycle, a complete graph, or are some combination of these con-
figurations. Weinberg’s results have also been generaliz¢2Rin Closed formulae also
exist for the cases wherg is a star[20], a completek-partite graph[21], a multi-star
[19,25] and so on. The number of spanning trees in the complement graph is investigated
in [13,16] when the graph with maximal number of spanning trees is studied. The for-
mulae for the number of spanning trees in the complement graphs of a disjoint union of
cycles or paths are given in generic formg1i8]. Not as much seems to be known about
T (K, + S); Bedrosian4] considered it for some simple configuratiafisi.e., all edges
in S form a cycle, complete graph, ¢§| is quite small but not much more seems to be
known.

In the third part of this paper we add to this literature by deriving formulafpt- S
whereS is a circulant graph with fixed jumps. Our technique is to first start by developing
a new approach to deriving a closed form 1otk ,, — C,), i.e., the cycle or union of cycles
(a closed form for this was previously derived using different techniqugs3if. We then
continue by showing that it is easy to generalize this approach to getting a formula for
T(K, &+ C,*2%) In the case that all of the <4 we will actually be able to derive a
simple closed form functiog (n, m; s1, s2, ..., sx) = T(K,, & C;+*2%) of n, m. Even

5 Note that this new proof only works for undirected circulant graphs as discussed in this pamtire&ted
circulant graphsthe proof in[28] still seems to be the only general one.



Y. Zhang et al. / Discrete Mathematics 298 (2005) 334—-364 339

more, we derive thaf (K, + C;+*2 ) satisfy a recurrence relation wheris fixed and
m is changing.

Therestof the paper is structured as follows. In Section 2, we briefly review the basic facts
we will need. In Section 3, we rederiigC;>*2 %) = na? and describe how to efficiently
calculate its asymptotics. In Section 4, we discuss non-constant jumps. In Section 5, we
deriveT (K, £ S) whereS is a circulant graph. In Section 6, we conclude and present an
open problem.

2. Basic concepts and lemmas

We start by reviewing some basic facts frffhconcerning circulant matrices and graphs.
Ann xn matrixC is said to be airculant matrixif its entries satisfy; ;=c1, j_; 11, where the
subscripts are reduced modul@nd lie in the sefl, 2, ..., n}. In other words, théth row
of C is obtained from the first row af by a cyclic shift ofi — 1 steps, and so any circulant
matrix is determined by its first row. It is clear that the adjacency matrix of the circulant
graphC;**? % is a circulant matrix. The first roiz, ¢, . . ., ¢,) of the adjacency matrix
is determined by the connection jumfasso, . .., sx. More specifically, an edgd, i) isin
the graph ifand only if = (1+£5;) (modn) for somes;, 1< j <k. (Note thatitis possible
for thec; > 1. This happens if1 & s;) = (1 £ s5;,) (modn) for somej # j'. In this case
the graph is a multigraph ang is thenumberof different edges connecting 1 andThis
can only happen whenis small, though.) From the adjacency matrix@t*>* and the
definition of theKirchhoff matrix it is easy to see that tiérchhoff matrix of C;1*2 % is
also a circulant matrix.

The starting point of our calculations is the following lemma which is a direct application
of Proposition 3.5 of7]:

Lemma 1. The Kirchhoff matrix of the circulant grapfi,***"~* has n eigenvalues. They
are0and Vj, 1<j<n—1lthevaluek — ¢t — ... — g7 — ¢f1J — ... — &% where
e =eXmi/m,

Plugging this into (1) yields the following well-known corollary, see, 28].

Corollary 1. Sete = e?™/" Then

o ) 1 o o o
T (CS1525k) = = 1_[ (2k — g5 —g7%2] .. gk
n
j=1
SV — )
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An important case of this occurs when we examine the ag¢leClearly C! has exactly
n spanning trees. Applying the corollary therefore yigRlsthe non-obvious

1 1t 2jn R L
HZT(Cn)Z;/_ll_[ 2—2COST 221_[ 43“’?7 , (2)
j=1 j=1

which will be useful to us later.

The other main tools we use are various standard properti€sehysheypolynomials
of the second kind. For reference we quickly review them here. The following definitions
and derivations (with the exception of (10)) folld&].

For positive integem, the Chebyshepolynomials of the first kind are defined by

T,,(x) = cogm arccosx). 3)
The Chebysheypolynomials of the second kind are defined by

1 .
Upa(e) = = L 7, (1) = SNl arcC0%)

= —\ 4
m dx sin(arccosr) “)

It is easily verified that
Un(x) = 2xUp—-1(x) + Up—2(x) = 0. (5)

Solving this recursion by using standard methods yields

sz-—l [(x +Vx2— 1)m+1 — (x —Vx2 - 1>m+1i| , (6)

where the identity is true for all complex(except atr = +1 where the function can be
taken as the limit).
The definition ofU,, (x) easily yields its zeros and it can therefore be verified that

Um(x) =

m—1 .
Up_1(x)=2""1 l_[ <x - cosﬂ> . 7)
n m
j=1
One further notes that
Un—1(=x) = (1" Up_1(x). (8)
These two results yield another formula gy, (x),
m—1 i
Uf 1) =4""1T] <x2 - cos’-’-) . 9)
j=1 "

Finally, simple manipulation of the above formula yields the following, which will also be
extremely useful to us later:

m—1 .
2 2
U,f,_l< x: ): I1 (x—Zcos%). (10)

j=1
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3. Recurrence relations for fixed step circulant graphs

In this section, we assume that so, .. ., s; arefixedpositive integers with 51 < s2
< -+ < s, and use the properties of Chebyshev polynomials to reprove the main result in
[28], i.e., that there exigly, by, .. ., by -1 such that

2sk—l

T(C452+5%) = na?,  whereVn > 2% q, = Z bity_;. (11)
i=1

We start with a basic lemma on trigonometric polynomials; its proof is quite tedious but
straightforward so we omit it here.

Lemma 2. Let k > 0 be any integer. TheR — 2 cog2kx) can be rewritten in the form
4 £ (cog x) sin® x, where f; (x) is a polynomial of ordek — 1 with leading coefficient
that does not havé as a root.

Combining this with Corollary 1 and some manipulation yields

Lemma 3. The number of spanning tre@gC;**> ) satisfies

1 n—1 . . .
T(Cr2 ) == []4%f (coszﬁ> sin? (E) :
n =1 n n

where f (x) is a polynomial of ordes; — 1 with leading coefficient that does not havé
as a root.

Now letxy, x2, ..., x5 —1 be the roots off (x). Then

sp—1

f) =D ] —x.

i=1

Plugging this into Lemma 3 and using formulae (2) and (9) gives

n—1 sp—1 . .
T(CS1s25k) = % [14* (]‘[ (xi - coszjn—n>> sin? (2-”)

j=1 i=1

sk—1

n—1 .
— (_1)(n—1)(sk—l) E | | g1 l I (xi _ COSZJTC)
n n
Jj=1

i=1
n—1 jTC
x 4 T sin?=—
! n
j=1
sp—1

= ()"0 [T U (V).

i=1
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Using formula (6) to rewrité]z_l(\/?i) gives

n

S i 1 n
TG Yk):”[i_q 2T x ((v=si+vi-x)

2

(v |

This actually provides a ‘closed formula’ fat(C,**2*), albeit, not a particularly
satisfying one. We now continue by, for &Jl1<i <sx — 1, sety; 0 = +/—x; + V1 —x;
andyi1 = /=% — VI =x;. For(d1, 92, ..., dy—1) € {0. 1 " set

sp—1
%Ly
R§1.65,.0005 1 = (D)X= % I visr-
i=1
sk—1 .
Also setc = [] 1/(2v/I=x;). If a, is defined so thal (C,>*%**) = na?, then
i=1
n =C¢ Z Rgl,éz,---ﬁsrl'

(81,02,..., 05, ~1)€{0, 1} 71

Since there are at most2? different Va|ue$51,52,...,6xk71 this immediately implies (11)
and we have proved what we claimed.
As noted in[28] one way to find the; is to simply use the Matrix Tree Theorem to
calculate the value df (C;>°% %) for all n < 2% yielding all of the values of,, and then
solve for theb,. Once theb,, are known the asymptotics af (and thereford (C;**2 %))
could be found by standard generating function techniques, i.e., by calculating the roots of
the characteristic equation of tlag. This is what was done if28]. That paper actually
proved a stronger result; that is, if ged, s2, ..., sx) = 1, then¢, the smallest modulus
root of the generating function of thg, is unique and real s@, ~ c¢" for somec, and
T(CH25) ~ nc2¢p?". The asymptotics of (Ci*2*) could therefore be found by
calculating the smallest modulus root of the generating funétion.
The difficulty with this technique is that, in order to derive the generating function, it was
necessary to apply thdatrix Tree Theoren2’ times, evaluating a determinant each time.
Our new proof of (11) immediately yields a much more efficient method of deriving the
asymptotics. Note that the roots of the generating function are exaatRs1s, 5sk71)-
Finding the smallest modulus root is therefore the same as firkliag the Rs, 5,

,,,,, 53‘;{71
6f gcd(sy, 52, ..., S sg) =d # 1litis described if28] how this case can be reduced down to evaluating
T(CSV/452/d5k/d) Since gedsy /d, so/d, . .., sx/d) = 1 we may always restrict ourselves to assuming that

gcd(sy, 52, - .., sp) =1
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with maximum modulus; since the smallest modulus root is ®aky is real as well. We

can therefore easily fifd Rmax by settingy; = max(|yi.ol, |vi.1]) for all i <sx — 1 and

then noting thatRmax = ]'[f’;_llyi. This technique yields the asymptoticsiofC,* 2 %)
without requiring the evaluation of any determinants; all that is needed is the calculation of
all of the roots of a degreg — 1 polynomial.

As an example we work through the process?l’a)C1 2 3)
j T 6 —2r —4nj —67j
C123 H(G en —e4nj—en]—en]—e?1/—en])
1t 6
=— (6 2cos——200——20 n])
n -1
1t 1
—= 64(0 o= 327” > m27”
n - n
j=1
nl i 1 L 1
= 16( cod~L — Zcog—= + =
" 1_[ ( n 4 n +8>
Jj=1
The roots of the polynomial? — 7x + £ are
1 V7. and 1+f7.
X1==— —/—1 X2 = = — 1.
178 8 278" 8

Thus

yo=vTH VI =i -2+ 247 + W1ar2vT,

Y1,1=ﬁ—/1——m=%\/m—%\/m,

voo= v+ VI— w2 = 1-2 - 2v7 + 11— 2v7

ra ==~ VI-m = -2~ 27 - 1/ 14- 2V
Therefore T (Cr?3) =na2, a, ~ c¢" wherec=1/(2y/IT—x1)1/ (/T —x2) =1/v/14~

0.2672612 an@ = y1.0y2.0 = 1—16(\/ 32+ /224+ v/64J7) ~ 2.102256. These are exactly
the same valuesand¢ derived in[28] using the longer method.

Itis nota priori obvious thaRmax is positive but, since we are only interestedz'uf and nota,,, knowing
| Rmax| suffices.
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Fig. 3. Examples of non fixed-jump circulant graﬁé;,” with n =4 and 5.

4. The number of spanning trees in some non fixed-jump circulant graphs

In the previous section we examined the spanning tree humbers for circulant graphs in
which thestepsor jumps i.e., thes;, were fixed and the number of nodes, ie.¢changing.

In this section, we derive formulae for some graphs in which the step sizes can be functions
of n. Fig. 3illustrates two examples of such graphs. Our approach is, as before, to expand
T () as a product of trigonometric polynomials and then express it in terr@hebyshev
polynomials, in this case, ratios of such polynomials. We will see though, that this technique
is not totally general and only works for particular values of jumps.

We illustrate the technique via three examples. Starting from a eas;TQd‘é;,"), that
illustrates the core ideas, continuing omoc;;"), which is more complicated, and ending
atT(Ci,’l”) which reveals where the difficulties lie in extending the technique further.

We start by caIcuIatin@(Czl;z"). Recall that, according to our definition of circulant

graphs,C%;[’ is thefour-regular graph with 2x vertices 01, ..., 2n — 1 such that node
has one edge connecting itto+ 1) (mod 2:) one edge connecting it 1@ — 1) (mod 1)
andtwo edges connecting it t6 + n) (mod 21).

Theorem 4.
2

T(Cy" = %[(«/EJr 1) +(v2- 1)”] .

8We should note that this is not the same graph advthebiusladder which is ahreeregular graph on
the same vertex set in which noddas one edge connecting it to each(oft 1) (mod 21), (i — 1) (mod 2z)
and(i + n) (mod 22). The techniques described here, though, could be used to rederive closed formulae for the
spanning tree numbers bfoebiusladders and similar graphs (i for such a derivation).
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Proof. Lete, = €2M/2" By Lemma 1, we have
T(cin = = [T@-e—e’ - —e™)
2)=5, | 2~ & 2 — &

2n—1

1 2nj
=5 ]_[ <4 20052— —2cos(nJ))
j=1
1 21 = j
=5 | (6—2cos—> l_[ <2—200$2—>
Jj=1 Jj=1
2 2|j

Note that if j = 2’ for some integey’, then cos 2 j/2n = cos 2t /n gives
2n—1

1 o Lo _ 2cosz’”
T(Cy") = > I (6— 2cos an> H

i1 j=16— 2 cos? =/

_ 1.2 n?
=>-U3, 4 (ﬁ) 0 (ﬁ)
“1[(va+1) + (v2-1)' T,
where (2), (6) and (10) are used to derive the last two steps.
We now continue to

Theorem 5.
7 3 2n 7 3 2n
1n n
T ’ = — —_ — - — 1
(an) 3 <‘/4+\/;> + (,/4 ,/4> +

Proof. The proof starts similar to the previous one. kgt e?™/3" By Lemma 1, we have

1 S S
T =5 [[@-e -2’ — 5 —25")
j=1
1 21 2nj
— 4 — Zcos——2c
=3 [T (1200 2oy
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Note that if j = 3’ for some integey’ then co$2xj/3n) = coS2xr ;' /n). Also note that if
3fj, then cog2rj/3) = — 3. This gives

3n—-1 N\ n—1 27
1 2n 2—2cos=4
Iny L
Ty =511 (5—2°°° 3 ) 1_[ L5 ZCOSZn/
j=1

We next see

Theorem 6.

2 72
Iny _ ﬁ § \/? \/?_\/i n _ nq2
T(Ch) =7 ([f 2) +< >3] | [(Va+1) +(va-1) ).
Proof. The proof again starts similar to the previous ones.chet e™/4*, We have

An—

1 . . . o

rCyh =g [[G-ah—e’ —a —e")
j=1

1 an j
= — 4 — Zcos— — 2C0S—
m H( 205 )

n—-1

- 21 27 J
4—2cos 4—2cos _2cos™
H( COSn)H( cos4n cosz)
= ]:l
J[ 2|j

where the last derivation follows from the fact thatfij 2hen co$2r j /4n) =0. Unlike in the
previous proofs, though, if|2 it is not true that co@xnj/4n) equals some constant, so we
will have to derive further. We use the fact thaj if= 2’ then co$2xrj /4n) = coS2nj/2n)

to get

4n—1

1 g 2c052ﬂ —2cosn
T(Ci;,"):4— I (4—2coc ) ).
n 1 4 — 2coszn

j=1 j=
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At this point we can evaluate both the leftmost product and the denominator of the
rightmost product in terms of Chebyshev polynomials. To evaluate the numerator of the
rightmost product we will need to split it into two cases depending upon whetisevdd
or even, and apply the same type of procedigain This yields

2 3 )
1 Ub—a <\/;> -1 2nj) n=lo_ 2cosZ
a U

n
1_[ 2nj
j=16—2c0s5~

[ (5]
<[(v2+1)'+ (v2-1)T. o

The proofs of Theorems 4, 5 and 6 depend on certain symmetry propertiescokihe
functions, e.g., if 8/ then co$2n;/3) = —% that permitted us to write products out as
ratios that were in the proper form to expresCebyshepolynomials. Unfortunately,
this cannot always be done. For example, we do not seem to be able to use this technique to
derive a formula forT(Cé,;"). The furthest that we are currently able to push this technique
is to derive closed formulae for the number of spanning trees (as a functionfof all

S1yeeerSks g seens .
circulant graphs of,,l e ,wheresq, ..., s are constantintegersandail . .., ¢
are in the sef2, 3, 4, 6} with a,|n for anyu, 1<u </.
We conclude this section with a few more applications (proofs omitted):

e (5 ) (B Tiery seaoy
[ ()T
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Theorem 8.

(a2 =% (\/> \[ )2’1 (\r \[)
(]

x [<ﬁ+ 1)n + («@ —~ 1)”]2.

5. The number of spanning trees inT(Kn = S) with S a circulant graph

In this section we derive methods to calculd@tek,, + S) whenS is a circulant graph.
We first review some notation and basic results.

Lemma 9 (Kelmans and Chelnokofd6]). Let G be a graph with n vertices ar@ the
complementgraph of G i, . If theKirchhoff matrix of G has eigenvalues, p, ..., &, 1
and0, then theKirchhoff matrix of G has eigenvalues — uy, n — iy, . . ., n — w,_4 ando.

Following the proof of Lemma 9, we can easily prove the next lemma:

Lemma 10. Let G be a graph with the same vertex setgs If the Kirchhoff matrix
of G has eigenvalueg,, p, ..., it,_1 and0, then theKirchhoff matrix of K, + G has
eigenvalues + pq, n + p, ..., n+ u, 5 ando.

Let G1 = (V1, E1) and G = (V», E2) be two graphs with disjoint vertex sets. The
join G = G1 @ G2 is defined as the graph with vertex sét= V; U V, and edge set
E=E1UE2U {uvlu € V1, v € Vo} [10]. (Please note that in this paper we usp™to
denote the join graph instead 6f" as used in some other references. This is because we are
already using 4" to denote the graph that is resulted by adding edges to some other graph.)
The following lemma describes the relation of the eigenvalues oKtrethoff matrix of
join graph and the eigenvalueskirchhoff matrices of the original graphs.

Lemma 11 (Huang and Li[15], Kel'mans and Chelnokdi16]). If the Kirchhoff matrix
of graph G1 with n vertices has eigenvalués, 1, ..., 4,(=0) and that of graphG
with m vertices has eigenvalugs, 1, . .., 1, (=0), then theKirchhoff matrix of the join
G160 Gs haseigenvalues +n, A1 +m, ..., p—1+mandu; +n,..., 1, 1+n,0.

311 524 50058kq Cslz 1829500455k 817,825

LetC,, veees Cmy ! be a collection of circulant graphs, and
U 1CS1“ ek pe their disjoint union. For eadn, 1<u </, supposen, > 2s;, and
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yeeesS,

let C,y "2 " be the complement graph 6, *** in K, . Note that, for any,

n=Y_qma,

l
Sy 252 5--sk S14.52q 1 aSkq
K, — U Cm;' " "= (K”*Ziml mu) @(Kml - le )

u=1
S17552) 5eeesS
<D DK = Cuf

TS5 527 028k
— (K ) @ C 1 1 k1
n_ u=1Mu

So, by Lemmas 1, 9, 11 and (1), we have the following result:

Corollary 2. Forn> Zi:lmu and for eachy, 1<u <1, my, > 2sy,,,

! I my—1
T|K, - U Cusszurhu | = = S ima=2 l—[ l—[ (n— 2k, + ¢, =51, J

u=1 u=1 j=1

51 J

dotg gl gy,

whereg,, = e2™/mu for each y 1<u <I.

In a similar fashion, the following corollary can be derived from Lemmas 1, 10, 11 and

(1):

Corollary 3. Forn>Y"_, m,,

1 [ my—1
; .
T (Kn + | sz k“) =n""Zu= M2 TT T (0 4 2k, — 6"

u=1 u=1 j=1

—Sky J S, J Sky J
— Ty " _‘guuj_ _guu )1

whereg, = €2™/™u for eachu, 1<u <.

Now we start to calculaté& (K,, — S) by assuming tha$ = C;,. As previously noted, if
(m, s) =1thisisjust then-cycle and if(m, s) =d > 1 this is the disjoint union of cycles,
each of lengthn /d.

Before proceeding we note th@tlbert andMyrvold [13] already gave a formula for the
number of spanning trees in the grakilh — S wheres is the disjoint union of cycles. The
following theorem can actually be derived frd&ilbert andMyrvold's formula. The proof
here is new, though; we derive it since it provides a ‘pure’ way of illustrating the techniques
we will use later.
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Theorem 12. Forn>m > 2s, if (m, s) =d, then

d d
T(Ky—C)y=n""2| [ |5+ —a)" - _\/E+ )"
neoTme 4 4 4 4

Proof. Letey = eX™/™m |f (m,s)=d, thenc;, is the disjoint union o#/ cyclesCl/d So,
by Corollary 2, we have

d
T(K,—CS)=T (Kn - C,}W>
u=1

d 7-1
:nn_m+d_2l_[ l_l(n_2+8I] +8i)
u=1 j=1
d i1 2djn
— pt—m+d=2 — 2+ 2cos—=
o T (2ot

m

r—md— 21—[ (4)';;_11—[< -n+4 Szdf”> |

m

where we are using the fact thatlcog2x) = 2 co¥ x.
Applying the formulas (9) and then (6) yields the required

+d—2 m_1y,2 —n+4
T(K, —C3)=n""" H[(—l)d Undzl( 7 )}

(el

As a first consequence of Theorem 12 we can easily derive:

Corollary 4.
T(K, — CH=n""4n-32 n>3,
T(K, —CH=n""3(n—-22n—-4), n>4,
T(K, — CH =n""%0n?—-51+5)2 n>5,
T(K, —CH=n""(n—12%n—-3)>n—4), n=>6,
T(K, — Cg) =n"%n -3% n>6.
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The first four formulae of the above corollary already appefglivhere they are given in
generic forms and derived frokel'mansandChelnokots result (1) by direct computation.

The proof above illustrates our general tools. We now see how to apply them when looking
at the complement of a more complicated circulant graph.

Theorem 13. Forn>m > 4,

m mn2
T(Kn—C,};z)=n”_m_2|:<x1+,/xf—l) - <x1— xf—l) i|
m mA2
x[(xg—l—,/x%—l) —(xg— x%—l) :| ,
wherex; = /3 + V25— 4n, xp=,/3 — $/25—4n.

Proof. We use a very similar technique to the proof of Theorem 12. In this proof let
¢1 = e2M/m andxy, xo be defined as above. Then

m—1
T(K, — CL2) =pr—m-1 l_[ (n—4+e’ + 8;2] + ¢ + 8?1)
j=1

m—1 . 1
—pn—m-1 1‘[ <n —4-12c02?" 1 16c0é ﬂ)
j=1 " "

m—1 . .
_ n—m—1 -1 2 E 2 _ E
=n 16 ] (xl cog - ) (xz cog )

m
j=1

n=m=ly2  (e)UZ 1 (x2).

=n
The closed formula in the theorem statement follows from (9) and then (8).
As a simple application, Theorem 13 can directly imply the following formulae:
Corollary 5.
T(K, — Ce% =n""%n-5"% n>5,
T(K, — Ce?)=n"""(n—6)%(n —4°, n>6,
T(Ky — C3%) =n""8(n® — 1412 + 631 — 912, n>7.

We now examine the complement of a slightly more complicated circulant graph.



352 Y. Zhang et al. / Discrete Mathematics 298 (2005) 334—-364

Theorem 14. For n>m > 8, if m is odd then
T(K, — C2% =T(K, — CL?).

Otherwiseif m is eventhen

m/2 m/2
T(Kn—c,%ll):”nm2|:<x1+wx%_l) — <X1—\/X]2_—1) :|
m/2 m/2 4
[l e

wherex; andx; are as defined in Theorefr8.

4

Proof. If m is odd therC,%4 is isomorphic t(f,},’z (see, e.g[28], the note after Lemma 7),
so the result of Theorem 13 appliesnifis evenc,%’4 is the disjoint union of 2 circulant
graphscj;/zz. The proof in this case is just to combine Corollary 2 and the proof of Theorem

13. Whenm is even then let, = e*™/™ we have

T(Ky — C2H =T (Ky — Cyty U Cty)

m_q
2
=0 [T —4+e7 + 6% +e)+5)
j=1
41 ’
2j 2j
S (n—4—12C0§ﬂ+16C0§ﬂ)
X m m
j=1
m_q 2
n—m 21 E 2 2jm 2 2jn
=n 16271 [ (% —cos == ) (x5 — cos ==
m m
j=1
=n""Uy_ ()Uy_y(2). O

Corollary 6.
T(K, — C5* =n""00n — 6)2(n® — 1202 + 451 — 512, n>9,
T(K, — C3h =n""Om - 5% n>10,
T(K, — C3H =n""2(n® — 22n* + 18T% — 7532 + 14410 — 9792, n>11.

We now discuss the general technique for calculafiokj, — C,2 2 **) when gcdsy , s2,
..., sk, m) =1 (the case gads, s2, ..., sk, m) # 1 can then be dealt with similarly to the

case n is even” in the proof of Theorem 14). In the following paragraphs tete?™/”
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From Corollary 2,

T (K, — C3b525%)

m—1
=n"" [ =2k e e e Y 2 )
=1
m—1
251m 25om 25,
=ptm-1 l_[ (n — 2k +2cos—2E 1 2 cos22t ~|—~~+2005—k) .
j=1 m m m

Similar to the situation in Lemma 2 it is easy to prove by induction thatkogscan be
expressed as a polynomial in cosf orderk. Using this fact, for any integer cog2sjw/m)
can be written as a polynomial in &ggr/m) of orders. So,

m—1 .
51,852,004 —m—1 JT
T(Kn—C;ll 52008k ) = pt =M l_[ (n—2k+g<0052;>>,

j=1
whereg(x) is a polynomial of ordes;, (dependent only upos, s2, .. ., si, and not onn).
Thus,

m—1

i
T(Kn _ C;},SZ,...,S]() — nnfmfl 1_[ h <C0§;‘]> ,
j=1

whereh(x) is a polynomial of degres, whose constant termis a linear functiomofEven
more, by explicit calculation we can see that the coefficient®ofin i (x) is 4%. We can
therefore write

Sk .
. Tj
h(x) = (—4)% ]1 (x,» - co§;> ,

wherexi, x2, ..., xx are zeros ofi(x). Then, combining formula (9) with the last two
equations we have

Sk
T(K, — C;}’Sz""’sk) — (_1)sknn—m—1 1_[ Urgz—l (ﬁ) ) (12)
i=1

Plugging in (6) gives

Sk
1
T(K, — Cfnl,sz,u.,sk) — (_1)sknn—m—1 (1_[ : )
i AT -1

Sk m ma2
xl_[|:(x,~+,/xi2—1> —(xi— xf—l) ] (13)
i=1
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an exact formula fof’ (K, — C;+°% %) in terms of thex;, which are the roots of polynomial
h(x) which, in turn, is only dependent upon theandn.

Inthe special casg < 4, the polynomiak (x) can be explicitly factored so we can find an
explicit formula for thex; as a function of: and therefore an exact formula for the number
spanning trees ik, — C,-*** as a function of:. In the appendix we illustrate this by
listing the formulas for alll (K,, — C;+*2 %) with distincts; such that <4.

From Corollary 3 and the properties of Chebyshev polynomials, we also can derive
the following closed formulae for the numbers of spanning trees in complete graphs with
circulant graphs added. As before, we start by addif)g

Theorem 15. For n>m, if (m, s) =d, then

T2 m/d T2 m/d 2d
T(K C5 ) = n—m—2 n \/E _ n _ \/Z ]
(Kn + m) n (ﬁ 4 + 4 \/ 4 4

Proof. This is similar to the proof of Theorem 12. By Corollary 3, we have

d
u=1

d G-1
—pltmtd=2 l_[ l_[ (n+2—e’' —¢p)
u=1 j=1
d g1 .
2djm
— nii—m+d—2 2 _2cos—,"
[T1T (n+2-20052
u=1 j=1

d 71 .
m 4 djn
_ n—m+d—2 451 ntA o4
o 2 a8 ("7 —eod
u=1 j=1

By using the formulae (9) and then (6), we have

d n+4
_ pn—m+d—2 2
u=

m/d mjd %
n—m—2 n-+4 n n-+4 n
=n + /= — — /= . O
4 4 4 4

This immediately gives us, for example,
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Corollary 7.
T(K,+CH=n"3(n+4), n>2,
T(K,+CH=n""2n+32 n>3,
T(Ky+C) =n""(n+H(n+27° n>4,
T(Ky+CH=n""(n+48?% n>4,
T(K, +CH=n""%n?+51+52 n>5.

We can also derive results for genefg] + C;1*2* that are analogous to the ones
previously derived fok,, — C;1'*2 %, Since the proofs are so similar, we omit them.

Theorem 16. For n >m,

T(K,+ C,,11’2) = (—1)mn”_m_2|:(x1 + ,/x% ) - <x1 — ,/xl ) i|
m ma2
x|:<x2+,/x%—l> —(xz— x2—1> :|
wherexy = /3 + 3v25+4n, xp=,/3 — $/25+ 4n.

Corollary 8.

T(Ky+C3H) =n""*(n+6)?2, n>3,

T(Ky+C;2) =n"2(n+H(n + 62 n>4,

T(K, +Co?) =n"8n 45?2, n>5,

T(K, 4+ Cg?) =n"""(n +6)°(n +4°, n=>6,

T(Ky +C3%) =n""8(n® + 1402 + 631 + 92, n>T7.
Theorem 17. For n>m, if m is odd then

T(K, +C2% =T (K, +CL?).

Otherwise m is evelthen

m/2 m/2 4
T(Kn+ Cs{4) = n"m2|:<x1 + ,/x% — l) — <x1 — x]2_ — 1) :|
m/2 m/2 4
X |:(x2+,/x§—1> —(xz— X2 — 1) :|

wherex1 andx; are defined as in Theorefr6.
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Corollary 9.
T(K,+C2*=n""%n+6)* n=>86,
T(K, +C3*% =n""8(n® + 1402 + 631 4+ 902, n>7,
T(Ky +C5H =n"80 + 82 + 6)%, n>8,

T(Ky + C5™ =n""Pn + 6)2(n° + 1212 + 451 + 512, n>9.

We conclude this discussion by quickly pointing out t@gtK, — C,>°%*) can be
shown to satisfy recurrence relationsiin (Recurrence relations f@ (K, + Cy*2%)
can be derived similarly.)

We already know from (12) that

Sk
T(Kn _ C;;‘;]_,Sz,...,sk) — (_1)Sknn7mfll_[ U;fl_l (\/x_l) ,
i=1

wherex; depend only upon the andn. Writing 7(K,, — Cy-*%%) = n"="~142 from
the formula (6) it is seen that, = rZizil ri", wherer, r;, 1<i <2% are functions ofi.
So, thea,, satisfy a recurrence relation of the form

225y +sk

Vm > 2% + 25,  an = Z biam_;.
i=2s;+1

To derive theb; for specific cases we can use the Matrix Tree Theorem to calaylfbe
253 +1<i < 2%+ 425, and then solve far; . Two examples (without proof) are given below:

Theorem 18. Forn>m >3,
T(K, — CLy=n""""1a2

m?

wheregq,, satisfies the recurrence relation
am =~n —4a,_1+ ap_2
with initial conditionsaz =n — 3, a4 = /n — 4(n — 2).

Theorem 19. Forn>m >5,

T(K, — CL?) = p"m"142

m?

whereq,, satisfies the recurrence relation
am =~n —4a,_1—am_—2+~vn—4a,_3— an_4

with initial conditionsas = (n — 5)2, ag=+/n — 4(n —4)(n —6), az=n>— 1412+ 631 — 91,
ag = /n — 4(n — 6)(n? — 8n — 14).
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6. Conclusion and open problems

In this paper, we used properties of Chebyshev polynomials to derive closed formulas
for the number of spanning trees in graphs belonging to classes related to circulant graphs.
The first problem we described was to rederive that the number of spanning trees in the
circulant graphC;**2* with fixed step sizes has the forf(C;**?*) = na2, where
a, satisfies a recurrence relation of ordér2. This theorem had previously been proven
in [28]; the method provided here is simpler though and also provides a new more efficient
technique, for deriving asymptotics.

We then discussed how to use a similar approach to derive closed formulas for some

n n
S1yeeesSky e

T(C, e ) where the step sizes are not constant. More specifically, the technique
is applicable whenever, ..., s; are constant integers and all, ..., a; are in the set
{2, 3, 4, 6} with a,|n for anyu, 1<u <I.

We concluded by deriving closed formulas for the number of spanning treés 41 S
whereS = C;1*?* is a circulant graph. Our key step was to factorize a polynomial of
orders; and then express the number of spanning trees in terms of Chebyshev polynomials
evaluated at functions of the roots of the polynomial. In particular, whet¥, we could
explicitly factorize the polynomial and derive a “closed” form for the number of spanning
trees.

One thing that we should point out s that, in all the formulas we derived, we assumed that
s1 <2 <--- < 8. Thiswas just for the sake of convenience, though, and was not necessary
for our proofs. The techniques above still work for repeatedalues, e.g., we could use
them to evaluatd (K,, + C,},’l) (m<n) WhereC,%,’1 is the doubly-linked cycle.

A major open problem still remaining is to devise a technique that would work to derive

S1yeens sam e .
closed formulae foiT(Cn1 b ), where thez; could be arbitrary.
Appendix A

In Section 5 we discussed a general method for calculdtifig, — C;-°% %) where
gcd(s1, s2, ..., s, m) = 1. For fixed jumpsy, s2, .. ., s¢ (13) tells us that

Sk
1
T(K, — C5152%) — (—1 Sknil—ln—l
(Ky — Cy! )= (-1 (,.114()@?—1))

T (1) - (- )T,

where thex; are the roots of a degreg polynomial defined in terms of thg andn. In
what follows, fork > 1 ands; <4, we give all of thesé(x)s and their roots.

1. For the graplk, — C,};z, the corresponding polynomialx) is

n—4—12x + 16x% = 16(x1 — x)(x2 — x),
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wherexy, x2 are as follows:
Syilves—am, :-Liv25—an
2. For the graplk,, — CcL3 the corresponding polynomialx) is
n— 84 40x — 96x2 4 64x3 = —64(x1 — x)(x2 — x)(x3 — X),

wherexy, x2, x3 are as follows:

1 1 1
1 am :
22 Tyam Ty
1 1111 1 1
1 oas_1 +iia(taame
48" 2203 T3 T giv3 <6 * 4 oc(1/3)> !
1 111 1 1
o3 _ a3 _
~ 28~ >3 T~ “/—< 4 (1/3>>

o := 432— 1081 + 12y/1200— 6481 + 81n2.
3. For the graplx,, — C,};“, the corresponding polynomialx) is
n — 4 — 60x 4 320v? — 5123 + 256¢* = 256(x1 — x)(x2 — x)(x3 — x)(xa — x),

wherex1, x2, x3, x4 are as follows:

1 1
288Vt g

=192 o + 6¢—a(2/ ¥ _ 192, /a; + 288,/an + 72/6 oz(l/ 3
x CEN

1 1 1
228"V g5

—1924"7 /i + 620" — 192,/33 + 288/n + 12/624 "
X p—
2%y

1 1 1
PR AT

=192 o + 6¢—a<2/3) — 192,/ + 288,/oon — 72./6 05(1/3)
% P
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1 1 1
228" g5

2
—192"? /33 + 6 /520> — 192, /7 + 288 /51 — T2/6 a(1/3>
X [—
ERNNEE

o1 := —2708+ 1152 + 12/51153— 44352 + 107522 — 76813,

1670 o - 324 4gn
o2 1= a3 .
*

4. For the graplk,, — m 3 the corresponding polynomialx) is
n— 4+ 20x — 80x2 + 64x3 = —64(x1 — x)(x2 — x)(x3 — x),

wherexy, x2, x3 are as follows:

1 5 1 5
L1/
2* T3am Tt
1 5 1 1 (1 20 1
_1,am_5 5 L a(tas 2
48" 6 2l 12+ 8"/§<6OC 3 a<1/3>>’
1 5 1 5 1 /1 20 1
_ 1 am_ 5 5 L oa(tas 2
48" 6219 | 12 81@<6a 3 a<1/3>)’

o = 532— 1081 4 12,/1521— 798 + 81n2.

5. For the graplk,, — C,?;“, the corresponding polynomialx) is
n — 4 — 28x + 224x% — 4483 + 256¢* = 256(x1 — x)(x2 — x)(x3 — x)(xa — x),

wherexq, x2, x3, x4 are as follows:

1_6 + 18 \/_«/ + —
—210x§1/ ¥ Sz + 6 a0sY + 24, fa; + 288, /an — 1263417
X - 1
oM oz
16 48*/_V

210" 3)¢a—2 + 6¢a_2a§2/ ) 1 24,/ + 288, /an — 126\/:‘;@((1/3)
|7 CEN
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7 1 1
6 2873V + g5

2100 o3 + 6, /o0 ® + 24/t + 288, /an + 126430
X - 1
oMY /e
7 1

1
16 2VV% g

—2104M% /5% + 6,/Fn® + 24./7 + 288/ + 126v/31"%
X p—
4

o1 = —2492+4 12601 + 12,/43125— 43626 + 108332 — 76813,

 350Y 1 207 1 84 9

o
1/3)
%

6. Forthe graplk,, — C,},’2’3, the corresponding polynomialx) is
n — 8+ 24x — 80x2 + 64x3 = —64(x1 — x)(x2 — x)(x3 — x),
wherexy, x2, x3 are as follows:

1 a7 1 5

2" Team 1

1 71 5 1,71 14 1
I € V) R > o= o3 7

48" 12205 127 53”/5’(6OC 3 o<<1/3>> !

1 7 1 5 1,71 14 1
_Lam_ T 51 5t am 14

2" "t V3 (6 g 3 a<1/3>> ’

o := 784— 1081 + 12/4116— 11761 + 81n2.
7. For the graplk,, — C%*, the corresponding polynomialx) is
n — 4 — 76x + 336¢% — 512¢3 + 256¢% = 256(x1 — x)(x2 — x)(x3 — X) (X2 — X),

wherexy, x2, x3, x4 are as follows:

1 1 1
2T 28Vt 45

’

~144M° o5 + 6 Joa?P — 1512 /a3 + 288 fan + T24/60Y°
X —_
2?2



Y. Zhang et al. / Discrete Mathematics 298 (2005) 334—-364 361

1 1 1
PR AL

—1440(&1/3)4/052 + 64/0520152/3) 1512 /o, + 288, /oon + 72«/_05(1/3)
|~ 2

A N R

144 Jotz + 6,020 > — 1512, /ai; + 288, /azn — 72/6 oc(l/ &
X —
NG

1 1 1
2 28" g5

—1444Y /5 + 607 — 1512,/ + 288, fan — 721/6040
< |-
RN

o1 := —5292+ 8641 + 12,/305613— 127008 + 172802 — 76813,

12219 4 43 2524 a8
(1/3)

o =

8. For the graplk,, — cL34 the corresponding polynomialx) is
n — 8 — 24x + 224x% — 4483 + 256¢* = 256(x1 — x)(x2 — x)(x3 — X) (x4 — X),

Wherexl, X2, X3, x4 are as follows:

E — «/_ 32 + 4
—210Y 3&/a—2 + 600> — 624, /5 + 288,/an + 18J§a<1/3>
T A /7
E + 78 «/_ 302 — —

—210:" 3)¢a—2 + 6¢a—2a§2/ ¥ _ 624,/o; + 288,/an + 18J§a<1/3>
* 07 N

LA N Ve

—2104" /7 + 6% — 624,/ + 288 /zn — 18v/31%
X N 1
4" oz
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- VB

/3)\/—

o1 := —5408+ 12601 + 12/210912— 1054561 + 1601 %2 — 76813,

J —2104Y 3)¢a—2 +6,/m087Y — 624, /o + 288 /oion — 1835
X [—

350% 4 2047% — 208+ 96n

o =
(x(l/3)

9. For the grapiX, — 234

, the corresponding polynomialx) is
n — 4 — 44x + 240c% — 4483 + 2560* = 256(x1 — x)(x2 — x)(x3 — X) (x4 — X),

wherexl, X2, x3, x4 are as follows:

E —«/’f+—

J —16205(11/3)\/06_2 + 6\/<X_2cx52/3) — 1296,/02 + 288, /oon — 198\/§oc(11/3)
X p—

RN |
16 48‘/—*/_
—1624Y 3)¢a_2 + 6¢a—2a§2/ ¥ _ 1296,/a; + 288,/5zn — 198\/§oc(1/ ¥
07 CEN
— — _\/_\/_ _|_ _

16

—16206(11/ ¥ Jaz + 6520 7Y — 1296,/3; + 288, /@on + 19830
X - L
NG

16 V3% 4

—1624Y? /a3 + 6520 %¥ — 1296,/ + 288, /a0 + 198f3a<1/ ¥
07 A Ja

o1 := —54004 9721 + 12/272484— 1195561 + 169292 — 76813,

204" + 247 — 432+ 96n

oo 1=
1/3)
%
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10. For the grapik,, — C,},’2’3’4, the corresponding polynomialx) is
n — 8 — 40x + 240r% — 4483 + 256¢* = 256(x1 — x)(x2 — x)(x3 — x)(xa — x),

wherexl, X2, x3, x4 are as follows:

1_6 * 48\/_\/_ 2% 78
—162a(11/3>¢a—2 + 6¢a_2a(12/3) 1944, /33 + 288,/azn — 54/3 oc(l/3)
x P
E + f 3o — —
—1624Y 3>¢<x—2 +6,/a20 > — 1944, /3; + 288 /on — 54¢§a<1/ &
RN
E — —f 32 + 4
—162" 3)\/05_2 + 600> — 1944, /a7 + 288 /azn + 54\/§oc(1/3)
/3)\/—
1_6 - _‘/_*/_ 48
. —162" 3)¢<x—2 + 6 /o0 Y — 1944, /a7 + 288 /azn + 54¢§a<1/ ¥

(1/3)\/—

o1 := —7776+4 9721 + 12/656100— 209952 + 221132 — 76813,

2764M% 1 202/ _ 648+ 96n

oo 1=
2P
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