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Abstract

Kirchhoff ’s Matrix Tree Theorempermits the calculation of the number of spanning trees in any
given graphG through the evaluation of the determinant of an associated matrix. In the case of
some special graphs Boesch and Prodinger [Graph Combin. 2 (1986) 191–200] have shown how to
use properties of Chebyshev polynomials to evaluate the associated determinants and derive closed
formulas for the number of spanning trees of graphs.

In this paper, we extend this idea and describe how to use Chebyshev polynomials to evaluate the
number of spanning trees inG whenG belongs to one of three different classes of graphs: (i) when
G is a circulant graph with fixed jumps (substantially simplifying earlier proofs), (ii) whenG is a
circulant graph with somenon-fixedjumps and when (iii)G = Kn ± C, whereKn is the complete
graph onn vertices andC is a circulant graph.
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1. Introduction

An undirected graphG is a pair(V ,E), in whichV is the vertex set andE ⊆ V × V

is the edge set. In a graph, a (self-)loop is an edge joining a vertex to itself andmultiple
edgesare several edges joining the same two vertices. All graphs considered in this paper
are finite, and undirected with self-loops and multiple edges permitted.
For a graphG, a spanning tree inG is a tree which has the same vertex set asG. The

number of spanning trees inG denoted byT (G), is awell-studied quantity, being interesting
both for its own sake and because it has practical implications for network reliability, e.g.
[11,12].
In this paper, we discuss how to derive closed formulas forT (G) whenG belongs to

one of three graph classes: (i) whenG is a circulant graph with fixed jumps (substantially
simplifying earlier proofs), (i) whenG is a circulant graph with somenon-fixedjumps and
(iii) whenG = Kn ± C whereKn is the complete graph onn vertices andC is a circulant
graph. In all three cases, we start with the matrix-tree formulation ofT (G) which rewrites
T (G) as a cofactor of the Kirchhoff matrix of the graph. We then describe how the special
structure of the Kirchhoff matrix permits rewriting the cofactor in terms of Chebyshev
polynomials.
We start by providing some definitions and background.
Let 1�s1<s2< · · ·<sk, s1, s2, . . . , sk integers. Theundirected circulant graph,

C
s1,s2,...,sk
n , hasn vertices labeled 0,1,2, . . . , n − 1, with each vertexi (0� i�n − 1)

adjacent to 2k verticesi ± s1, i ± s2, . . . , i ± sk modn. The simplest circulant graph is the
n vertex cycleC1

n orCn. More generally, if(m, s)= 1 thenCs
m is them node cycle while if

(m, s)=d >1 thenCs
m is the disjoint union ofd cyclesC1

m/d . Fig. 1illustrates two circulant
graphs. We note that our definition here specifically forces the graph to be 2k regular so, if
i ± si ≡ i ± sj (modn) for somei, j then the graph would have repeated edges. See, for
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Fig. 1. Two examples of circulant graphs. Note thatC
2,3
6 has multiple edges.
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Fig. 2. Two examples. InK6 − C1
4, the dashed lines are deleted edges; inK6 + C1

4 the dashed lines are added
edges.

example,C2,3
6 in Fig. 1. Also, note that in our definition, thesi arearbitrary, they could be

fixed or they could be functions ofn. We will elaborate on this distinction further later.
Kn, thecomplete graphonn vertices, has one edge between each pair of distinct vertices.

LetS beasubset of theedgeset ofKn (orS beasubgraphofKn).Kn−S, thegraph remaining
when all edges inS are removed fromKn, is thecomplementof S inKn and also denoted as
S. For an edge setS, we denote byKn +S the graphKn with all edges inS added to it; ifS
is nonempty thenKn +S contains somemultiple (repeated) edges.Fig. 2gives examples of
K6 −C1

4 andK6 +C1
4, which areK6 with, respectively, the four cycles deleted and added.

LetV ={v1, v2, . . . , vn} be the vertex set ofG anddi denote the degree ofvi . SetA(G),
or simplyA, to be the adjacent matrix ofG. LetB denote then × n diagonal matrix with
{d1, d2, . . . , dn} as diagonal entries (and all other entries 0). TheMatrix Tree Theorem[17]
states that theKirchhoffmatrixH =B −A has all its co-factors3 equal toT (G) providing
a method for calculatingT (G) for any particular given graph. For example, the Kirchhoff
matrix of the graphK6 − C1

4 shown inFig. 2 is

H =




3 0 −1 −1 0 −1
0 3 −1 0 −1 −1

−1 −1 5 −1 −1 −1
−1 0 −1 3 0 −1
0 −1 −1 0 3 −1

−1 −1 −1 −1 −1 5


 ,

all its co-factors are 192 which is the number of spanning trees inK6 − C1
4.

3 The(i, j)th co-factor ofA is the determinant of the(n − 1) × (n − 1) matrix that results from deleting the
ith row andj th column fromA, with symbol(−1)i+j .



Y. Zhang et al. / Discrete Mathematics 298 (2005) 334–364 337

The number of spanning trees in graphG also can be calculated from the eigenvalues
of the Kirchhoff matrixH . Let �1��2� · · · ��n(=0) denote4 all of H ’s eigenvalues.
Kel’mans and Chelnokov[16] have shown that the Matrix Tree Theorem implies

T (G) = 1

n

n−1∏
j=1

�j . (1)

For special classes of graphs it is possible to show that their Kirchhoff matrices have spe-
cial structures and then bootstrap off of Kel’mans and Chelnokov’s formula to get formulae
for T (G) whenG is in those classes.
In [8], Boesch and Prodinger use this approach to derive closed formulae whenG belong

to the classes of wheels, fans, ladders, Moebius ladders, squares of cycles and complete
prisms. Their main technique was to show that in these cases (1) can be rewritten in terms
of Chebyshev polynomials and to then use properties of these polynomials to derive the
closed formulae.
Separately, the class of circulant graphs have also been well studied. TheC

1,2
n graphs, in

particular, deserve specialmention.The formulaT (C
1,2
n )=nF 2

n, Fn the Fibonacci numbers,
was originally conjectured by Bedrosian[2] and subsequently proven by Kleitman and
Golden[18]. The same formula was also conjectured by Boesch andWang[9] (without the
knowledgeof[18]).Different proofs canbeen found in[1,8,27].TheC1,2

n graphsareactually
the squares of cyclesmentioned above and the formula forT (C

1,2
n )was also rederived using

Chebyshev polynomials by Boesch and Prodinger[8] as described above.
Going further, formulae forT (C

1,3
n ) andT (C

1,4
n ) are provided in[26]. A connection

between these formulae was given in[28] by showing that, for anyfixeds1, s2, . . . , sk,

T (Cs1,s2,...,sk
n ) = na2n,

where thean satisfy a recurrence relation of the form

∀n>2sk−1, an =
2sk−1∑
i=1

bian−i

and thebi are reals (but not necessarily nonnegative). Recall that the Matrix Tree Theorem
gives us a method of calculatingT (C

s1,s2,...,sk
n ) = na2n for any arbitraryn by building the

Kirchhoff matrix and evaluating any of its cofactors. This means that we can find the
bi by calculating all of theai for i�2sk and then solving for thebi. The asymptotics
of T (C

s1,s2,...,sk
n ) could then be found by solving for the minimum modulus root of the

characteristic polynomial of the recurrence relation. This was done in[28] for all circulant
graphs withsk �5.

4 BecauseH is symmetric it has all real eigenvalues. It is not difficult to see that all of the eigenvalues are, in
fact, nonnegative, and that 0 is an eigenvalue.
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In this paper, we extend the ideas in[8] in three directions. In the first, we show
how to use the Chebyshev polynomial technique to derive a much simpler proof that
T (C

s1,s2,...,sk
n )=na2n, where thean satisfy a linear recurrence relation of order 2sk−1.5 This

new proof will have the added advantage of providing a method of deriving the mini-
mum modulus root of the characteristic polynomial of the recurrence relationwithout
having to construct the recurrence relation, thus obviating the need to calculate the de-
terminants (it will only require finding the roots of a particular polynomial of order
sk − 1).
In the second, we describe how to use the Chebyshev polynomial technique for deriving

closed formulae for some circulant graphs withnon-fixedjumps, a problem which does
not seem to have been generally attacked previously. More specifically, the technique will

permit the derivation of formulae for circulant graphs of the formC
s1,...,sk,

n
a1

,..., n
al

n , where
s1, . . . , sk areconstant integers,a1, . . . , al ∈ {2,3,4,6}and∀u� l, au|n, i.e.,n is amultiple
of the least common multiple of theau. As examples, we will derive formulae forT (C

1,n
2n ),

T (C
1,n
3n ), T (C

1,n
4n ), T (C

1,n
6n ) andT (C

1,2n,3n
6n ).

In the third we describe how to use theChebyshevpolynomial technique to calculate
T (Kn ± S) whereS is a circulant graph.
The problem of calculatingT (Kn − S) has already been studied for many different

types ofS. The first work in this area seems to have been by Weinberg[24] who gave
formulae forT (Kn − S) when all edges inS are not adjacent or are adjacent at one
vertex. Subsequently, in a series of papers[3–6], Bedrosian extended this to show how
to calculateT (Kn − S) when all edges inS are not adjacent or adjacent at one ver-
tex, or form a path, a cycle, a complete graph, or are some combination of these con-
figurations. Weinberg’s results have also been generalized in[22]. Closed formulae also
exist for the cases whereS is a star[20], a completek-partite graph[21], a multi-star
[19,25], and so on. The number of spanning trees in the complement graph is investigated
in [13,16] when the graph with maximal number of spanning trees is studied. The for-
mulae for the number of spanning trees in the complement graphs of a disjoint union of
cycles or paths are given in generic forms in[13]. Not as much seems to be known about
T (Kn + S); Bedrosian[4] considered it for some simple configurationsS, i.e., all edges
in S form a cycle, complete graph, or|S| is quite small but not much more seems to be
known.
In the third part of this paper we add to this literature by deriving formulas forKn ± S

whereS is a circulant graph with fixed jumps. Our technique is to first start by developing
a new approach to deriving a closed form forT (Kn −Cs

m), i.e., the cycle or union of cycles
(a closed form for this was previously derived using different techniques in[13]). We then
continue by showing that it is easy to generalize this approach to getting a formula for
T (Kn ± C

s1,s2,...,sk
m ). In the case that all of thesi �4 we will actually be able to derive a

simple closed form functiong(n,m; s1, s2, . . . , sk) = T (Kn ± C
s1,s2,...,sk
m ) of n, m. Even

5Note that this new proof only works for undirected circulant graphs as discussed in this paper. Fordirected
circulant graphsthe proof in[28] still seems to be the only general one.
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more, we derive thatT (Kn ± C
s1,s2,...,sk
m ) satisfy a recurrence relation whenn is fixed and

m is changing.
The rest of the paper is structured as follows. InSection 2,webriefly review the basic facts

we will need. In Section 3, we rederiveT (C
s1,s2,...,sk
n )=na2n and describe how to efficiently

calculate its asymptotics. In Section 4, we discuss non-constant jumps. In Section 5, we
deriveT (Kn ± S) whereS is a circulant graph. In Section 6, we conclude and present an
open problem.

2. Basic concepts and lemmas

Westart by reviewing somebasic facts from[7] concerning circulantmatrices and graphs.
Ann×nmatrixC is said to beacirculant matrixif its entries satisfycij =c1,j−i+1, where the
subscripts are reduced modulon and lie in the set{1,2, . . . , n}. In other words, theith row
of C is obtained from the first row ofC by a cyclic shift ofi − 1 steps, and so any circulant
matrix is determined by its first row. It is clear that the adjacency matrix of the circulant
graphCs1,s2,...,sk

n is a circulant matrix. The first row(c1, c2, . . . , cn) of the adjacency matrix
is determined by the connection jumpss1, s2, . . . , sk. More specifically, an edge(1, i) is in
the graph if and only ifi ≡ (1± sj ) (modn) for somesj , 1�j �k. (Note that it is possible
for theci >1. This happens if(1± sj ) ≡ (1± sj ′) (modn) for somej �= j ′. In this case
the graph is a multigraph andci is thenumberof different edges connecting 1 andi. This
can only happen whenn is small, though.) From the adjacency matrix ofC

s1,s2,...,sk
n and the

definition of theKirchhoffmatrix it is easy to see that theKirchhoffmatrix ofCs1,s2,...,sk
n is

also a circulant matrix.
The starting point of our calculations is the following lemmawhich is a direct application

of Proposition 3.5 of[7]:

Lemma 1. The Kirchhoff matrix of the circulant graphCs1,s2,...,sk
n has n eigenvalues. They

are0 and, ∀j, 1�j �n− 1 the values2k − �−s1j − · · · − �−skj − �s1j − · · · − �skj , where
� = e2�i/n.

Plugging this into (1) yields the following well-known corollary, see, e.g.,[28].

Corollary 1. Set� = e2�i/n. Then

T (Cs1,s2,...,sk
n ) = 1

n

n−1∏
j=1

(2k − �−s1j − �−s2j − · · · − �−skj

− �s1j − �s2j − · · · − �skj )

= 1

n

n−1∏
j=1

(
k∑

i=1

(
2− 2 cos

2jsi�
n

))
.
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An important case of this occurs when we examine the cycleC1
n. ClearlyC

1
n has exactly

n spanning trees. Applying the corollary therefore yields[8] the non-obvious

n = T (C1
n) = 1

n

n−1∏
j=1

(
2− 2 cos

2j�
n

)
= 1

n

n−1∏
j=1

(
4 sin2

j�
n

)
, (2)

which will be useful to us later.
The other main tools we use are various standard properties ofChebyshevpolynomials

of the second kind. For reference we quickly review them here. The following definitions
and derivations (with the exception of (10)) follow[8].
For positive integerm, theChebyshevpolynomials of the first kind are defined by

Tm(x) = cos(marccosx). (3)

TheChebyshevpolynomials of the second kind are defined by

Um−1(x) = 1

m

d

dx
Tm(x) = sin(marccosx)

sin(arccosx)
. (4)

It is easily verified that

Um(x) − 2xUm−1(x) + Um−2(x) = 0. (5)

Solving this recursion by using standard methods yields

Um(x) = 1

2
√
x2 − 1

[(
x +
√
x2 − 1

)m+1 −
(
x −
√
x2 − 1

)m+1
]
, (6)

where the identity is true for all complexx (except atx = ±1 where the function can be
taken as the limit).
The definition ofUm(x) easily yields its zeros and it can therefore be verified that

Um−1(x) = 2m−1
m−1∏
j=1

(
x − cos

j�
m

)
. (7)

One further notes that

Um−1(−x) = (−1)m−1Um−1(x). (8)

These two results yield another formula forUm(x),

U2
m−1(x) = 4m−1

m−1∏
j=1

(
x2 − cos2

j�
m

)
. (9)

Finally, simple manipulation of the above formula yields the following, which will also be
extremely useful to us later:

U2
m−1

(√
x + 2

4

)
=

m−1∏
j=1

(
x − 2 cos

2�j
m

)
. (10)
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3. Recurrence relations for fixed step circulant graphs

In this section, we assume thats1, s2, . . . , sk arefixedpositive integers with 1�s1<s2
< · · ·<sk and use the properties of Chebyshev polynomials to reprove the main result in
[28], i.e., that there existb1, b2, . . . , b2sk−1 such that

T (Cs1,s2,...,sk
n ) = na2n, where∀n>2sk−1, an =

2sk−1∑
i=1

bian−i . (11)

We start with a basic lemma on trigonometric polynomials; its proof is quite tedious but
straightforward so we omit it here.

Lemma 2. Let k >0 be any integer. Then2 − 2 cos(2kx) can be rewritten in the form
4kfk(cos2 x) sin2 x, wherefk(x) is a polynomial of orderk − 1 with leading coefficient1
that does not have1 as a root.

Combining this with Corollary 1 and some manipulation yields

Lemma 3. The number of spanning treesT (C
s1,s2,...,sk
n ) satisfies

T (Cs1,s2,...,sk
n ) = 1

n

n−1∏
j=1

4sk f

(
cos2

j�
n

)
sin2
(
j�
n

)
,

wheref (x) is a polynomial of ordersk − 1 with leading coefficient1 that does not have1
as a root.

Now letx1, x2, . . . , xsk−1 be the roots off (x). Then

f (x) = (−1)sk−1
sk−1∏
i=1

(xi − x).

Plugging this into Lemma 3 and using formulae (2) and (9) gives

T (Cs1,s2,...,sk
n ) = 1

n

n−1∏
j=1

4sk (−1)sk−1

(
sk−1∏
i=1

(
xi − cos2

j�
n

))
sin2
(
j�
n

)

= (−1)(n−1)(sk−1) 1

n

sk−1∏
i=1


4n−1

n−1∏
j=1

(
xi − cos2

j�
n

)

× 4n−1
n−1∏
j=1

sin2
j�
n

= (−1)(n−1)(sk−1)n

sk−1∏
i=1

U2
n−1

(√
xi
)
.
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Using formula (6) to rewriteU2
n−1(

√
xi) gives

T (Cs1,s2,...,sk
n ) = n

[
sk−1∏
i=1

1

2
√
1− xi

((√−xi +√1− xi

)n

−
(√−xi −√1− xi

)n)]2
.

This actually provides a ‘closed formula’ forT (C
s1,s2,...,sk
n ), albeit, not a particularly

satisfying one. We now continue by, for alli, 1� i�sk − 1, setyi,0 = √−xi + √
1− xi

andyi,1 = √−xi − √
1− xi . For(�1, �2, . . . , �sk−1) ∈ {0,1}sk−1 set

R�1,�2,...,�sk−1 = (−1)
∑sk−1

i=1 �i

sk−1∏
i=1

yi,�i
.

Also setc =
sk−1∏
i=1

1/(2
√
1− xi). If an is defined so thatT (C

s1,s2,...,sk
n ) = na2n, then

an = c
∑

(�1,�2,...,�sk−1)∈{0,1}sk−1

Rn
�1,�2,...,�sk−1

.

Since there are at most 2sk−1 different valuesR�1,�2,...,�sk−1 this immediately implies (11)
and we have proved what we claimed.
As noted in[28] one way to find thebi is to simply use the Matrix Tree Theorem to

calculate the value ofT (C
s1,s2,...,sk
n ) for all n�2sk yielding all of the values ofan and then

solve for thebn.Once thebn are known the asymptotics ofan (and thereforeT (C
s1,s2,...,sk
n ))

could be found by standard generating function techniques, i.e., by calculating the roots of
the characteristic equation of thean. This is what was done in[28]. That paper actually
proved a stronger result; that is, if gcd(s1, s2, . . . , sk) = 1, then�, the smallest modulus
root of the generating function of thean, is unique and real soan ∼ c�n for somec, and
T (C

s1,s2,...,sk
n ) ∼ nc2�2n. The asymptotics ofT (C

s1,s2,...,sk
n ) could therefore be found by

calculating the smallest modulus root of the generating function.6

The difficulty with this technique is that, in order to derive the generating function, it was
necessary to apply theMatrix Tree Theorem2sk times, evaluating a determinant each time.
Our new proof of (11) immediately yields a much more efficient method of deriving the

asymptotics. Note that the roots of the generating function are exactly 1/(R�1,�2,...,�sk−1).

Finding the smallest modulus root is therefore the same as findingRmax, theR�1,�2,...,�sk−1

6 If gcd(s1, s2, . . . , sk) = d �= 1 it is described in[28] how this case can be reduced down to evaluating

T (C
s1/d,s2/d,...,sk/d
n ). Since gcd(s1/d, s2/d, . . . , sk/d) = 1 we may always restrict ourselves to assuming that

gcd(s1, s2, . . . , sk) = 1.
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with maximum modulus; since the smallest modulus root is real,Rmax is real as well. We
can therefore easily find7 Rmax by settingyi = max(|yi,0|, |yi,1|) for all i�sk − 1 and
then noting that|Rmax| =∏sk−1

i=1 yi. This technique yields the asymptotics ofT (C
s1,s2,...,sk
n )

without requiring the evaluation of any determinants; all that is needed is the calculation of
all of the roots of a degreesk − 1 polynomial.
As an example we work through the process forT (C

1,2,3
n ):

T (C1,2,3
n ) = 1

n

n−1∏
j=1

(6− e
2�j
n − e

4�j
n − e

6�j
n − e

−2�j
n − e

−4�j
n − e

−6�j
n )

= 1

n

n−1∏
j=1

(
6− 2 cos

2�j
n

− 2 cos
4�j
n

− 2 cos
6�j
n

)

= 1

n

n−1∏
j=1

64

(
cos4

�j
n

− 1

4
cos2

�j
n

+ 1

8

)
sin2

�j
n

= n

n−1∏
j=1

16

(
cos4

�j
n

− 1

4
cos2

�j
n

+ 1

8

)
.

The roots of the polynomialx2 − 1
4x + 1

8 are

x1 = 1

8
−

√
7

8
i and x2 = 1

8
+

√
7

8
i.

Thus

y1,0 = √−x1 +√1− x1 = 1
4

√
−2+ 2

√
7i + 1

4

√
14+ 2

√
7i,

y1,1 = √−x1 −√1− x1 = 1
4

√
−2+ 2

√
7i − 1

4

√
14+ 2

√
7i,

y2,0 = √−x2 +√1− x2 = 1
4

√
−2− 2

√
7i + 1

4

√
14− 2

√
7i,

y2,1 = √−x2 −√1− x2 = 1
4

√
−2− 2

√
7i − 1

4

√
14− 2

√
7i.

Therefore,T (C
1,2,3
n )=na2n, an ∼ c�n wherec=1/(2

√
1− x1)1/(2

√
1− x2)=1/

√
14≈

0.2672612 and�= y1,0y2,0= 1
16(

√
32+√

224+
√
64

√
7) ≈ 2.102256. These are exactly

the same valuesc and� derived in[28] using the longer method.

7 It is not a priori obvious thatRmax is positive but, since we are only interested inna2n and notan, knowing
|Rmax| suffices.
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Fig. 3. Examples of non fixed-jump circulant graphC
1,n
3n with n = 4 and 5.

4. The number of spanning trees in some non fixed-jump circulant graphs

In the previous section we examined the spanning tree numbers for circulant graphs in
which thestepsor jumps, i.e., thesi , were fixed and the number of nodes, i.e.,n, changing.
In this section, we derive formulae for some graphs in which the step sizes can be functions
of n. Fig. 3 illustrates two examples of such graphs. Our approach is, as before, to expand
T ( ) as a product of trigonometric polynomials and then express it in terms ofChebyshev
polynomials, in this case, ratios of such polynomials.Wewill see though, that this technique
is not totally general and only works for particular values of jumps.
We illustrate the technique via three examples. Starting from a easy one,T (C

1,n
2n ), that

illustrates the core ideas, continuing on toT (C
1,n
3n ), which is more complicated, and ending

atT (C
1,n
4n ) which reveals where the difficulties lie in extending the technique further.

We start by calculatingT (C
1,n
2n ). Recall that, according to our definition of circulant

graphs,C1,n
2n is thefour-regular graph8 with 2n vertices 0,1, . . . ,2n − 1 such that nodei

has one edge connecting it to(i + 1) (mod 2n) one edge connecting it to(i − 1) (mod 2n)
andtwoedges connecting it to(i + n) (mod 2n).

Theorem 4.

T (C
1,n
2n ) = n

2

[(√
2+ 1

)n +
(√

2− 1
)n]2

.

8We should note that this is not the same graph as theMoebiusladder which is athree-regular graph on
the same vertex set in which nodei has one edge connecting it to each of(i + 1) (mod 2n), (i − 1) (mod 2n)
and(i + n) (mod 2n). The techniques described here, though, could be used to rederive closed formulae for the
spanning tree numbers ofMoebiusladders and similar graphs (see[8] for such a derivation).
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Proof. Let �2 = e2�i/2n. By Lemma 1, we have

T (C
1,n
2n ) = 1

2n

2n−1∏
j=1

(4− �j2 − �−j
2 − �nj2 − �−nj

2 )

= 1

2n

2n−1∏
j=1

(
4− 2 cos

2�j
2n

− 2 cos(�j)
)

= 1

2n

2n−1∏
j=1
2�j

(
6− 2 cos

2�j
2n

) 2n−1∏
j=1
2|j

(
2− 2 cos

2�j
2n

)
.

Note that ifj = 2j ′ for some integerj ′, then cos 2�j/2n = cos 2�j ′/n gives

T (C
1,n
2n ) = 1

2n

2n−1∏
j=1

(
6− 2 cos

2�j
2n

) n−1∏
j=1

2− 2 cos2�j
n

6− 2 cos2�j
n

= 1

2n
U2
2n−1

(√
2
) n2

U2
n−1

(√
2
)

= n

2

[(√
2+ 1

)n +
(√

2− 1
)n]2

,

where (2), (6) and (10) are used to derive the last two steps.�

We now continue to

Theorem 5.

T (C
1,n
3n ) = n

3


(√7

4
+
√
3

4

)2n
+
(√

7

4
−
√
3

4

)2n
+ 1



2

.

Proof. The proof starts similar to the previous one. Let�3=e2�i/3n. By Lemma 1, we have

T (C
1,n
3n ) = 1

3n

3n−1∏
j=1

(4− �j3 − �−j
3 − �nj3 − �−nj

3 )

= 1

3n

3n−1∏
j=1

(
4− 2 cos

2�j
3n

− 2 cos
2�j
3

)

= 1

3n

3n−1∏
j=1
3�j

(
5− 2 cos

2�j
3n

) 3n−1∏
j=1
3|j

(
2− 2 cos

2�j
3n

)
.
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Note that ifj = 3j ′ for some integerj ′ then cos(2�j/3n) = cos(2�j ′/n). Also note that if
3�j , then cos(2�j/3) = −1

2. This gives

T (C
1,n
3n ) = 1

3n

3n−1∏
j=1

(
5− 2 cos

2�j
3n

) n−1∏
j=1

2− 2 cos2�j
n

5− 2 cos2�j
n

= 1

3n
U2
3n−1

(√
7

4

)
n2

U2
n−1

(√
7
4

)

= n

3



(√

7

4
+
√
3

4

)2n
+
(√

7

4
−
√
3

4

)2n
+ 1



2

. �

We next see

Theorem 6.

T (C
1,n
4n ) = n

4


(√3

2
+
√
1

2

)2n
+
(√

3

2
−
√
1

2

)2n
2[(√

2+ 1
)n +

(√
2− 1

)n]2
.

Proof. The proof again starts similar to the previous ones. Let�4 = e2�i/4n. We have

T (C
1,n
4n ) = 1

4n

4n−1∏
j=1

(4− �j4 − �−j
4 − �nj4 − �−nj

4 )

= 1

4n

4n−1∏
j=1

(
4− 2 cos

2�j
4n

− 2 cos
�j
2

)

= 1

4n

4n−1∏
j=1
2�j

(
4− 2 cos

2�j
4n

) 4n−1∏
j=1
2|j

(
4− 2 cos

2�j
4n

− 2 cos
�j
2

)
,

where the last derivation follows from the fact that if 2�j then cos(2�j/4n)=0.Unlike in the
previous proofs, though, if 2|j it is not true that cos(2�j/4n) equals some constant, so we
will have to derive further.We use the fact that ifj =2j ′ then cos(2�j/4n)= cos(2�j/2n)
to get

T (C
1,n
4n ) = 1

4n

4n−1∏
j=1

(
4− 2 cos

2�j
4n

) 2n−1∏
j=1

4− 2 cos2�j2n − 2 cos(�j)

4− 2 cos2�j2n

.
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At this point we can evaluate both the leftmost product and the denominator of the
rightmost product in terms of Chebyshev polynomials. To evaluate the numerator of the
rightmost product we will need to split it into two cases depending upon whetherj is odd
or even, and apply the same type of procedureagain. This yields

T (C
1,n
4n ) = 1

4n

U2
4n−1

(√
3
2

)

U2
2n−1

(√
3
2

) 2n−1∏
j=1

(
6− 2 cos

2�j
2n

) n−1∏
j=1

2− 2 cos2�j
n

6− 2 cos2�j
n

= 1

4n

U2
4n−1

(√
3
2

)

U2
2n−1

(√
3
2

) U2
2n−1

(√
2
)

U2
n−1

(√
2
) n2

= n

4


(√3

2
+
√
1

2

)2n
+
(√

3

2
−
√
1

2

)2n
2

×
[(√

2+ 1
)n +

(√
2− 1

)n]2
. �

The proofs of Theorems 4, 5 and 6 depend on certain symmetry properties of thecosine
functions, e.g., if 3�j then cos(2�j/3) = −1

2 that permitted us to write products out as
ratios that were in the proper form to express asChebyshevpolynomials. Unfortunately,
this cannot always be done. For example, we do not seem to be able to use this technique to
derive a formula forT (C

1,n
5n ). The furthest that we are currently able to push this technique

is to derive closed formulae for the number of spanning trees (as a function ofn) for all

circulant graphs ofC
s1,...,sk,

n
a1

,..., n
al

n , wheres1, . . . , sk are constant integers and alla1, . . . , al
are in the set{2,3,4,6} with au|n for anyu, 1�u� l.
We conclude this section with a few more applications (proofs omitted):

Theorem 7.

T (C
1,n
6n ) = n

6


(√5

4
+
√
1

4

)3n
+
(√

5

4
−
√
1

4

)3n
2[(√

2+ 1
)n +

(√
2− 1

)n]2

×
[(√

5

4
+
√
1

4

)n
+
(√

5

4
−
√
1

4

)n]2

×

(√7

4
+
√
3

4

)2n
+
(√

7

4
−
√
3

4

)2n
+ 1



2

.
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Theorem 8.

T (C
1,2n,3n
6n ) = n

6



(√

11

4
+
√
7

4

)2n
+
(√

11

4
−
√
7

4

)2n
− 1



2

×


(√

7

4
+
√
3

4

)2n
+
(√

7

4
−
√
3

4

)2n
+ 1



2

×
[(√

2+ 1
)n +

(√
2− 1

)n]2
.

5. The number of spanning trees inT(Kn ± S)with S a circulant graph

In this section we derive methods to calculateT (Kn ± S) whenS is a circulant graph.
We first review some notation and basic results.

Lemma 9 (Kel’mans and Chelnokov[16]). Let G be a graph with n vertices andG the
complement graph of G inKn. If theKirchhoffmatrix of G has eigenvalues�1,�2, . . . ,�n−1

and0, then theKirchhoff matrix ofG has eigenvaluesn−�1, n−�2, . . . , n−�n−1 and0.

Following the proof of Lemma 9, we can easily prove the next lemma:

Lemma 10. Let G be a graph with the same vertex set asKn. If the Kirchhoff matrix
of G has eigenvalues�1,�2, . . . ,�n−1 and0, then theKirchhoff matrix ofKn + G has
eigenvaluesn + �1, n + �2, . . . , n + �n−1 and0.

Let G1 = (V1, E1) andG2 = (V2, E2) be two graphs with disjoint vertex sets. The
join G = G1

⊕
G2 is defined as the graph with vertex setV = V1 ∪ V2 and edge set

E = E1 ∪ E2 ∪ {uv|u ∈ V1, v ∈ V2} [10]. (Please note that in this paper we use “
⊕

” to
denote the join graph instead of “+” as used in some other references. This is becausewe are
already using “+” to denote the graph that is resulted by adding edges to some other graph.)
The following lemma describes the relation of the eigenvalues of theKirchhoffmatrix of
join graph and the eigenvalues ofKirchhoffmatrices of the original graphs.

Lemma 11 (Huang and Li[15] , Kel’mans and Chelnokov[16]). If theKirchhoff matrix
of graphG1 with n vertices has eigenvalues�1, �2, . . . , �n(=0) and that of graphG2
with m vertices has eigenvalues�1,�2, . . . ,�m(=0), then theKirchhoff matrix of the join
G1
⊕

G2 has eigenvaluesm + n, �1 + m, . . . , �n−1 + m and�1 + n, . . . ,�m−1 + n, 0.

LetC
s11,s21,...,sk1
m1 ,C

s12,s22,...,sk2
m2 , . . . , C

s1l ,s2l ,...,skl
ml

be a collection of circulant graphs, and⋃l
u=1C

s1u ,s2u ,...,sku
mu

be their disjoint union. For eachu, 1�u� l, supposemu >2sku and
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let C
s1u ,s2u ,...,sku
mu

be the complement graph ofC
s1u ,s2u ,...,sku
mu

in Kmu . Note that, for anyn,
n�∑l

u=1mu,

Kn −
l⋃

u=1

C
s1u ,s2u ,...,sku
mu

= (K
n−∑l

u=1 mu
)
⊕

(Km1 − C
s11,s21,...,sk1
m1 )

×
⊕

· · ·
⊕

(Kml
− C

s1l ,s2l ,...,skl
ml

)

= (K
n−∑l

u=1mu
)
⊕

C
s11,s21,...,sk1
m1

×
⊕

· · ·
⊕

C
s1l ,s2l ,...,skl
ml

.

So, by Lemmas 1, 9, 11 and (1), we have the following result:

Corollary 2. For n�∑l
u=1mu and for eachu, 1�u� l,mu >2sku ,

T

(
Kn −

l⋃
u=1

Cs1u,s2u,...,sku
mu

)
= nn−∑l

u=1mu+l−2
l∏

u=1

mu−1∏
j=1

(n − 2ku + �
−s1u j
u

+ · · · + �
−sku j
u + �

s1u j
u + · · · + �

sku j
u ),

where�u = e2�i/mu , for each u, 1�u� l.

In a similar fashion, the following corollary can be derived from Lemmas 1, 10, 11 and
(1):

Corollary 3. For n�∑l
u=1mu,

T

(
Kn +

l⋃
u=1

Cs1u,s2u,...,sku
mu

)
= nn−∑l

u=1 mu+l−2
l∏

u=1

mu−1∏
j=1

(n + 2ku − �
−s1u j
u

− · · · − �
−sku j
u − �

s1u j
u − · · · − �

sku j
u ),

where�u = e2�i/mu , for eachu, 1�u� l.

Now we start to calculateT (Kn − S) by assuming thatS = Cs
m.As previously noted, if

(m, s)=1 this is just them-cycle and if(m, s)=d >1 this is the disjoint union ofd cycles,
each of lengthm/d.
Before proceeding we note thatGilbert andMyrvold [13] already gave a formula for the

number of spanning trees in the graphKn − S whereS is the disjoint union of cycles. The
following theorem can actually be derived fromGilbert andMyrvold’s formula. The proof
here is new, though; we derive it since it provides a ‘pure’way of illustrating the techniques
we will use later.
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Theorem 12. For n�m>2s, if (m, s) = d, then

T (Kn − Cs
m) = nn−m−2



(√

n

4
+
√

n − 4

4

)m/d

−
(

−
√

n

4
+
√

n − 4

4

)m/d


2d

.

Proof. Let �1 = e2d�i/m. If (m, s) = d, thenCs
m is the disjoint union ofd cyclesC1

m/d . So,
by Corollary 2, we have

T (Kn − Cs
m) = T

(
Kn −

d⋃
u=1

C1
m/d

)

= nn−m+d−2
d∏

u=1

m
d

−1∏
j=1

(n − 2+ �−j
1 + �j1)

= nn−m+d−2
d∏

u=1

m
d

−1∏
j=1

(
n − 2+ 2 cos

2dj�
m

)

= nn−m+d−2
d∏

u=1


(−4)

m
d

−1

m
d

−1∏
j=1

(−n + 4

4
− cos2

dj�
m

) ,
where we are using the fact that 1+ cos(2x) = 2 cos2 x.
Applying the formulas (9) and then (6) yields the required

T (Kn − Cs
m) = nn−m+d−2

d∏
u=1

[
(−1)

m
d

−1U2
m
d

−1

(√−n + 4

4

)]

= nn−m−2


(√n

4
+
√

n − 4

4

)m/d

−
(

−
√

n

4
+
√

n − 4

4

)m/d


2d

.

�

As a first consequence of Theorem 12 we can easily derive:

Corollary 4.

T (Kn − C1
3) = nn−4(n − 3)2, n�3,

T (Kn − C1
4) = nn−5(n − 2)2(n − 4), n�4,

T (Kn − C1
5) = nn−6(n2 − 5n + 5)2, n�5,

T (Kn − C1
6) = nn−7(n − 1)2(n − 3)2(n − 4), n�6,

T (Kn − C2
6) = nn−6(n − 3)4, n�6.
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The first four formulae of the above corollary already appear in[6] where they are given in
generic forms and derived fromKel’mansandChelnokov’s result (1) by direct computation.
Theproof above illustrates our general tools.Wenowseehow to apply themwhen looking

at the complement of a more complicated circulant graph.

Theorem 13. For n�m>4,

T (Kn − C1,2
m ) = nn−m−2

[(
x1 +
√
x21 − 1

)m
−
(
x1 −
√
x21 − 1

)m]2

×
[(

x2 +
√
x22 − 1

)m
−
(
x2 −
√
x22 − 1

)m]2
,

wherex1 =
√

3
8 + 1

8

√
25− 4n, x2 =

√
3
8 − 1

8

√
25− 4n.

Proof. We use a very similar technique to the proof of Theorem 12. In this proof let
�1 = e2�i/m, andx1, x2 be defined as above. Then

T (Kn − C1,2
m ) = nn−m−1

m−1∏
j=1

(n − 4+ �−j
1 + �−2j

1 + �j1 + �2j1 )

= nn−m−1
m−1∏
j=1

(
n − 4− 12 cos2

j�
m

+ 16 cos4
j�
m

)

= nn−m−116m−1
m−1∏
j=1

(
x21 − cos2

j�
m

)(
x22 − cos2

j�
m

)

= nn−m−1U2
m−1(x1)U

2
m−1(x2).

The closed formula in the theorem statement follows from (9) and then (6).�

As a simple application, Theorem 13 can directly imply the following formulae:

Corollary 5.

T (Kn − C
1,2
5 ) = nn−6(n − 5)4, n�5,

T (Kn − C
1,2
6 ) = nn−7(n − 6)2(n − 4)3, n�6,

T (Kn − C
1,2
7 ) = nn−8(n3 − 14n2 + 63n − 91)2, n�7.

We now examine the complement of a slightly more complicated circulant graph.
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Theorem 14. For n�m>8, if m is odd, then

T (Kn − C2,4
m ) = T (Kn − C1,2

m ).

Otherwise, if m is even, then

T (Kn − C2,4
m ) = nn−m−2

[(
x1 +
√
x21 − 1

)m/2

−
(
x1 −
√
x21 − 1

)m/2
]4

×
[(

x2 +
√
x22 − 1

)m/2

−
(
x2 −
√
x22 − 1

)m/2
]4

,

wherex1 andx2 are as defined in Theorem13.

Proof. If m is odd thenC2,4
m is isomorphic toC1,2

m (see, e.g.[28], the note after Lemma 7),
so the result of Theorem 13 applies. Ifm is evenC2,4

m is the disjoint union of 2 circulant
graphsC1,2

m/2. The proof in this case is just to combine Corollary 2 and the proof of Theorem

13. Whenm is even then let�2 = e4�i/m, we have

T (Kn − C2,4
m ) = T (Kn − C

1,2
m/2 ∪ C

1,2
m/2)

= nn−m




m
2 −1∏
j=1

(n − 4+ �−j
2 + �−2j

2 + �j2 + �2j2 )




2

= nn−m




m
2 −1∏
j=1

(
n − 4− 12 cos2

2j�
m

+ 16 cos4
2j�
m

)
2

= nn−m


16m

2 −1

m
2 −1∏
j=1

(
x21 − cos2

2j�
m

)(
x22 − cos2

2j�
m

)
2

= nn−mU4
m
2 −1(x1)U

4
m
2 −1(x2). �

Corollary 6.

T (Kn − C
2,4
9 ) = nn−10(n − 6)2(n3 − 12n2 + 45n − 51)2, n�9,

T (Kn − C
2,4
10 ) = nn−10(n − 5)8, n�10,

T (Kn − C
2,4
11 ) = nn−12(n5 − 22n4 + 187n3 − 759n2 + 1441n − 979)2, n�11.

Wenowdiscuss thegeneral technique for calculatingT (Kn−C
s1,s2,...,sk
m )whengcd(s1, s2,

. . . , sk,m) = 1 (the case gcd(s1, s2, . . . , sk,m) �= 1 can then be dealt with similarly to the
case “m is even” in the proof of Theorem 14). In the following paragraphs let� = e2�i/m.
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From Corollary 2,

T (Kn − Cs1,s2,...,sk
m )

= nn−m−1
m−1∏
j=1

(n − 2k + �−s1j + �−s2j + · · · + �−skj + �s1j + �s2j + · · · + �skj )

= nn−m−1
m−1∏
j=1

(
n − 2k + 2 cos

2s1�
m

+ 2 cos
2s2�
m

+ · · · + 2 cos
2sk�
m

)
.

Similar to the situation in Lemma 2 it is easy to prove by induction that cos(kx) can be
expressed as a polynomial in cosx of orderk. Using this fact, for any integers, cos(2sj�/m)

can be written as a polynomial in cos2(j�/m) of orders. So,

T (Kn − Cs1,s2,...,sk
m ) = nn−m−1

m−1∏
j=1

(
n − 2k + g

(
cos2

j�
m

))
,

whereg(x) is a polynomial of ordersk (dependent only upons1, s2, . . . , sk, and not onm).
Thus,

T (Kn − Cs1,s2,...,sk
m ) = nn−m−1

m−1∏
j=1

h

(
cos2

�j
m

)
,

whereh(x) is a polynomial of degreesk whose constant term is a linear function ofn. Even
more, by explicit calculation we can see that the coefficient ofxsk in h(x) is 4sk . We can
therefore write

h(x) = (−4)sk
sk∏
i=1

(
xi − cos2

�j
m

)
,

wherex1, x2, . . . , xk are zeros ofh(x). Then, combining formula (9) with the last two
equations we have

T (Kn − Cs1,s2,...,sk
m ) = (−1)sknn−m−1

sk∏
i=1

U2
m−1

(√
xi
)
. (12)

Plugging in (6) gives

T (Kn − Cs1,s2,...,sk
m ) = (−1)sknn−m−1

(
sk∏
i=1

1

4(x2i − 1)

)

×
sk∏
i=1

[(
xi +
√
x2i − 1

)m
−
(
xi −
√
x2i − 1

)m]2
, (13)
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anexact formula forT (Kn−C
s1,s2,...,sk
m ) in termsof thexi , which are the roots of polynomial

h(x) which, in turn, is only dependent upon thesi andn.
In the special casesk �4, the polynomialh(x) can be explicitly factored sowe can find an

explicit formula for thexi as a function ofn and therefore an exact formula for the number
spanning trees inKn − C

s1,s2,...,sk
m as a function ofn. In the appendix we illustrate this by

listing the formulas for allT (Kn − C
s1,s2,...,sk
m ) with distinctsi such thatsk �4.

From Corollary 3 and the properties of Chebyshev polynomials, we also can derive
the following closed formulae for the numbers of spanning trees in complete graphs with
circulant graphs added. As before, we start by addingCs

m.

Theorem 15. For n�m, if (m, s) = d, then

T (Kn + Cs
m) = nn−m−2


(√n + 4

4
+
√

n

4

)m/d

−
(√

n + 4

4
−
√

n

4

)m/d


2d

.

Proof. This is similar to the proof of Theorem 12. By Corollary 3, we have

T (Kn + Cs
m) = T

(
Kn +

d⋃
u=1

C1
m/d

)

= nn−m+d−2
d∏

u=1

m
d

−1∏
j=1

(n + 2− �−j
1 − �j1)

= nn−m+d−2
d∏

u=1

m
d

−1∏
j=1

(
n + 2− 2 cos

2dj�
m

)

= nn−m+d−2
d∏

u=1


4m

d
−1

m
d

−1∏
j=1

(
n + 4

4
− cos2

dj�
m

) .

By using the formulae (9) and then (6), we have

T (Kn + Cs
m) = nn−m+d−2

d∏
u=1

[
U2

m
d

−1

(√
n + 4

4

)]

= nn−m−2


(√n + 4

4
+
√

n

4

)m/d

−
(√

n + 4

4
−
√

n

4

)m/d


2d

. �

This immediately gives us, for example,
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Corollary 7.

T (Kn + C1
2) = nn−3(n + 4), n�2,

T (Kn + C1
3) = nn−4(n + 3)2, n�3,

T (Kn + C1
4) = nn−5(n + 4)(n + 2)2, n�4,

T (Kn + C2
4) = nn−4(n + 4)2, n�4,

T (Kn + C1
5) = nn−6(n2 + 5n + 5)2, n�5.

We can also derive results for generalKn + C
s1,s2,...,sk
m that are analogous to the ones

previously derived forKn − C
s1,s2,...,sk
m . Since the proofs are so similar, we omit them.

Theorem 16. For n�m,

T (Kn + C1,2
m ) = (−1)mnn−m−2

[(
x1 +
√
x21 − 1

)m
−
(
x1 −
√
x21 − 1

)m]2

×
[(

x2 +
√
x22 − 1

)m
−
(
x2 −
√
x22 − 1

)m]2
,

wherex1 =
√

3
8 + 1

8

√
25+ 4n, x2 =

√
3
8 − 1

8

√
25+ 4n.

Corollary 8.

T (Kn + C
1,2
3 ) = nn−4(n + 6)2, n�3,

T (Kn + C
1,2
4 ) = nn−5(n + 4)(n + 6)2, n�4,

T (Kn + C
1,2
5 ) = nn−6(n + 5)2, n�5,

T (Kn + C
1,2
6 ) = nn−7(n + 6)2(n + 4)3, n�6,

T (Kn + C
1,2
7 ) = nn−8(n3 + 14n2 + 63n + 91)2, n�7.

Theorem 17. For n�m, if m is odd, then

T (Kn + C2,4
m ) = T (Kn + C1,2

m ).

Otherwise m is even, then

T (Kn + C2,4
m ) = nn−m−2

[(
x1 +
√
x21 − 1

)m/2

−
(
x1 −
√
x21 − 1

)m/2
]4

×
[(

x2 +
√
x22 − 1

)m/2

−
(
x2 −
√
x22 − 1

)m/2
]4

,

wherex1 andx2 are defined as in Theorem16.



356 Y. Zhang et al. / Discrete Mathematics 298 (2005) 334–364

Corollary 9.

T (Kn + C
2,4
6 ) = nn−6(n + 6)4, n�6,

T (Kn + C
2,4
7 ) = nn−8(n3 + 14n2 + 63n + 91)2, n�7,

T (Kn + C
2,4
8 ) = nn−8(n + 4)2(n + 6)4, n�8,

T (Kn + C
2,4
9 ) = nn−10(n + 6)2(n3 + 12n2 + 45n + 51)2, n�9.

We conclude this discussion by quickly pointing out thatT (Kn − C
s1,s2,...,sk
m ) can be

shown to satisfy recurrence relations inm. (Recurrence relations forT (Kn + C
s1,s2,...,sk
m )

can be derived similarly.)
We already know from (12) that

T (Kn − Cs1,s2,...,sk
m ) = (−1)sknn−m−1

sk∏
i=1

U2
m−1

(√
xi
)
,

wherexi depend only upon thesi andn. Writing T (Kn − C
s1,s2,...,sk
m ) = nn−m−1a2m, from

the formula (6) it is seen thatam = r
∑2sk

i=1 r
m
i , wherer, ri , 1� i�2sk are functions ofn.

So, theam satisfy a recurrence relation of the form

∀m>2sk + 2sk, am =
22sk+sk∑
i=2sk+1

biam−i .

To derive thebi for specific cases we can use the Matrix Tree Theorem to calculateai for
2sk+1� i�2sk+1+2sk and thensolve forbi.Twoexamples (withoutproof) aregivenbelow:

Theorem 18. For n�m�3,

T (Kn − C1
m) = nn−m−1a2m,

wheream satisfies the recurrence relation:

am = √
n − 4am−1 + am−2

with initial conditionsa3 = n − 3, a4 = √
n − 4(n − 2).

Theorem 19. For n�m�5,

T (Kn − C1,2
m ) = nn−m−1a2m,

wheream satisfies the recurrence relation:

am = √
n − 4am−1 − am−2 + √

n − 4am−3 − am−4

with initial conditionsa5=(n−5)2, a6=√
n − 4(n−4)(n−6), a7=n3−14n2+63n−91,

a8 = √
n − 4(n − 6)(n2 − 8n − 14).
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6. Conclusion and open problems

In this paper, we used properties of Chebyshev polynomials to derive closed formulas
for the number of spanning trees in graphs belonging to classes related to circulant graphs.
The first problem we described was to rederive that the number of spanning trees in the
circulant graphCs1,s2,...,sk

n with fixed step sizes has the formT (C
s1,s2,...,sk
n ) = na2n, where

an satisfies a recurrence relation of order 2sk−1. This theorem had previously been proven
in [28]; the method provided here is simpler though and also provides a new more efficient
technique, for deriving asymptotics.
We then discussed how to use a similar approach to derive closed formulas for some

T (C
s1,...,sk,

n
a1

,..., n
al

n ) where the step sizes are not constant. More specifically, the technique
is applicable whenevers1, . . . , sk are constant integers and alla1, . . . , al are in the set
{2,3,4,6} with au|n for anyu, 1�u� l.
We concluded by deriving closed formulas for the number of spanning trees inKn ± S

whereS = C
s1,s2,...,sk
m is a circulant graph. Our key step was to factorize a polynomial of

ordersk and then express the number of spanning trees in terms of Chebyshev polynomials
evaluated at functions of the roots of the polynomial. In particular, whensk �4, we could
explicitly factorize the polynomial and derive a “closed” form for the number of spanning
trees.
One thing that we should point out is that, in all the formulas we derived, we assumed that

s1<s2< · · ·<sk. This was just for the sake of convenience, though, and was not necessary
for our proofs. The techniques above still work for repeatedsi values, e.g., we could use
them to evaluateT (Kn + C

1,1
m ) (m�n) whereC1,1

m is the doubly-linked cycle.
A major open problem still remaining is to devise a technique that would work to derive

closed formulae forT (C
s1,...,sk,

n
a1

,..., n
al

n ), where theai could be arbitrary.

Appendix A

In Section 5 we discussed a general method for calculatingT (Kn − C
s1,s2,...,sk
m ) where

gcd(s1, s2, . . . , sk,m) = 1. For fixed jumpss1, s2, . . . , sk (13) tells us that

T (Kn − Cs1,s2,...,sk
m ) = (−1)sknn−m−1

(
sk∏
i=1

1

4(x2i − 1)

)

×
sk∏
i=1

[(
xi +
√
x2i − 1

)m
−
(
xi −
√
x2i − 1

)m]2
,

where thexi are the roots of a degreesk polynomial defined in terms of thesi andn. In
what follows, fork >1 andsk �4, we give all of theseh(x)s and their roots.

1. For the graphKn − C
1,2
m , the corresponding polynomialh(x) is

n − 4− 12x + 16x2 = 16(x1 − x)(x2 − x),
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wherex1, x2 are as follows:

3
8 + 1

8

√
25− 4n, 3

8 − 1
8

√
25− 4n.

2. For the graphKn − C
1,3
m , the corresponding polynomialh(x) is

n − 8+ 40x − 96x2 + 64x3 = −64(x1 − x)(x2 − x)(x3 − x),

wherex1, x2, x3 are as follows:

1

24
�(1/3) + 1

�(1/3)
+ 1

2
,

− 1

48
�(1/3) − 1

2

1

�(1/3)
+ 1

2
+ 1

8
i
√
3

(
1

6
�(1/3) − 4

1

�(1/3)

)
,

− 1

48
�(1/3) − 1

2

1

�(1/3)
+ 1

2
− 1

8
i
√
3

(
1

6
�(1/3) − 4

1

�(1/3)

)
,

� := 432− 108n + 12
√
1200− 648n + 81n2.

3. For the graphKn − C
1,4
m , the corresponding polynomialh(x) is

n − 4− 60x + 320x2 − 512x3 + 256x4 = 256(x1 − x)(x2 − x)(x3 − x)(x4 − x),

wherex1, x2, x3, x4 are as follows:

1

2
+ 1

48

√
6
√

�2 + 1

48

×
√√√√−−192�(1/3)

1
√

�2 + 6
√

�2�
(2/3)
1 − 192

√
�2 + 288

√
�2n + 72

√
6�(1/3)

1

�(1/3)
1

√
�2

,

1

2
+ 1

48

√
6
√

�2 − 1

48

×
√√√√−−192�(1/3)

1
√

�2 + 6
√

�2�
(2/3)
1 − 192

√
�2 + 288

√
�2n + 72

√
6�(1/3)

1

�(1/3)
1

√
�2

,

1

2
− 1

48

√
6
√

�2 + 1

48

×
√√√√−−192�(1/3)

1
√

�2 + 6
√

�2�
(2/3)
1 − 192

√
�2 + 288

√
�2n − 72

√
6�(1/3)

1

�(1/3)
1

√
�2

,
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1

2
− 1

48

√
6
√

�2 − 1

48

×
√√√√−−192�(1/3)

1
√

�2 + 6
√

�2�
(2/3)
1 − 192

√
�2 + 288

√
�2n − 72

√
6�(1/3)

1

�(1/3)
1

√
�2

,

�1 := −2708+ 1152n + 12
√
51153− 44352n + 10752n2 − 768n3,

�2 := 16�(1/3)
1 + �(2/3)

1 − 32+ 48n

�(1/3)
1

.

4. For the graphKn − C
2,3
m , the corresponding polynomialh(x) is

n − 4+ 20x − 80x2 + 64x3 = −64(x1 − x)(x2 − x)(x3 − x),

wherex1, x2, x3 are as follows:

1

24
�(1/3) + 5

3

1

�(1/3)
+ 5

12
,

− 1

48
�(1/3) − 5

6

1

�(1/3)
+ 5

12
+ 1

8
i
√
3

(
1

6
�(1/3) − 20

3

1

�(1/3)

)
,

− 1

48
�(1/3) − 5

6

1

�(1/3)
+ 5

12
− 1

8
i
√
3

(
1

6
�(1/3) − 20

3

1

�(1/3)

)
,

� := 532− 108n + 12
√
1521− 798n + 81n2.

5. For the graphKn − C
3,4
m , the corresponding polynomialh(x) is

n − 4− 28x + 224x2 − 448x3 + 256x4 = 256(x1 − x)(x2 − x)(x3 − x)(x4 − x),

wherex1, x2, x3, x4 are as follows:

7

16
+ 1

48

√
3
√

�2 + 1

48

×
√√√√−−210�(1/3)

1
√

�2 + 6
√

�2�
(2/3)
1 + 24

√
�2 + 288

√
�2n − 126

√
3�(1/3)

1

�(1/3)
1

√
�2

,

7

16
+ 1

48

√
3
√

�2 − 1

48

×
√√√√−−210�(1/3)

1
√

�2 + 6
√

�2�
(2/3)
1 + 24

√
�2 + 288

√
�2n − 126

√
3�(1/3)

1

�(1/3)
1

√
�2

,
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7

16
− 1

48

√
3
√

�2 + 1

48

×
√√√√−−210�(1/3)

1
√

�2 + 6
√

�2�
(2/3)
1 + 24

√
�2 + 288

√
�2n + 126

√
3�(1/3)

1

�(1/3)
1

√
�2

,

7

16
− 1

48

√
3
√

�2 − 1

48

×
√√√√−−210�(1/3)

1
√

�2 + 6
√

�2�
(2/3)
1 + 24

√
�2 + 288

√
�2n + 126

√
3�(1/3)

1

�(1/3)
1

√
�2

,

�1 := −2492+ 1260n + 12
√
43125− 43626n + 10833n2 − 768n3,

�2 := 35�(1/3)
1 + 2�(2/3)

1 + 8+ 96n

�(1/3)
1

.

6. For the graphKn − C
1,2,3
m , the corresponding polynomialh(x) is

n − 8+ 24x − 80x2 + 64x3 = −64(x1 − x)(x2 − x)(x3 − x),

wherex1, x2, x3 are as follows:

1

24
�(1/3) + 7

6

1

�(1/3)
+ 5

12
,

− 1

48
�(1/3) − 7

12

1

�(1/3)
+ 5

12
+ 1

8
i
√
3

(
1

6
�(1/3) − 14

3

1

�(1/3)

)
,

− 1

48
�(1/3) − 7

12

1

�(1/3)
+ 5

12
− 1

8
i
√
3

(
1

6
�(1/3) − 14

3

1

�(1/3)

)
,

� := 784− 108n + 12
√
4116− 1176n + 81n2.

7. For the graphKn − C
1,2,4
m , the corresponding polynomialh(x) is

n − 4− 76x + 336x2 − 512x3 + 256x4 = 256(x1 − x)(x2 − x)(x3 − x)(x4 − x),

wherex1, x2, x3, x4 are as follows:

1

2
+ 1

48

√
6
√

�2 + 1

48

×
√√√√−−144�(1/3)

1
√

�2 + 6
√

�2�
(2/3)
1 − 1512

√
�2 + 288

√
�2n + 72

√
6�(1/3)

1

�(1/3)
1

√
�2

,
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1

2
+ 1

48

√
6
√

�2 − 1

48

×
√√√√−−144�(1/3)

1
√

�2 + 6
√

�2�
(2/3)
1 − 1512

√
�2 + 288

√
�2n + 72

√
6�(1/3)

1

�(1/3)
1

√
�2

,

1

2
− 1

48

√
6
√

�2 + 1

48

×
√√√√−−144�(1/3)

1
√

�2 + 6
√

�2�
(2/3)
1 − 1512

√
�2 + 288

√
�2n − 72

√
6�(1/3)

1

�(1/3)
1

√
�2

,

1

2
− 1

48

√
6
√

�2 − 1

48

×
√√√√−−144�(1/3)

1
√

�2 + 6
√

�2�
(2/3)
1 − 1512

√
�2 + 288

√
�2n − 72

√
6�(1/3)

1

�(1/3)
1

√
�2

,

�1 := −5292+ 864n + 12
√
305613− 127008n + 17280n2 − 768n3,

�2 := 12�(1/3)
1 + �(2/3)

1 − 252+ 48n

�(1/3)
1

.

8. For the graphKn − C
1,3,4
m , the corresponding polynomialh(x) is

n − 8− 24x + 224x2 − 448x3 + 256x4 = 256(x1 − x)(x2 − x)(x3 − x)(x4 − x),

wherex1, x2, x3, x4 are as follows:

7

16
+ 1

48

√
3
√

�2 + 1

48

×
√√√√−−210�(1/3)

1
√

�2 + 6
√

�2�
(2/3)
1 − 624

√
�2 + 288

√
�2n + 18

√
3�(1/3)

1

�(1/3)
1

√
�2

,

7

16
+ 1

48

√
3
√

�2 − 1

48

×
√√√√−−210�(1/3)

1
√

�2 + 6
√

�2�
(2/3)
1 − 624

√
�2 + 288

√
�2n + 18

√
3�(1/3)

1

�(1/3)
1

√
�2

,

7

16
− 1

48

√
3
√

�2 + 1

48

×
√√√√−−210�(1/3)

1
√

�2 + 6
√

�2�
(2/3)
1 − 624

√
�2 + 288

√
�2n − 18

√
3�(1/3)

1

�(1/3)
1

√
�2

,
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7

16
− 1

48

√
3
√

�2 − 1

48

×
√√√√−−210�(1/3)

1
√

�2 + 6
√

�2�
(2/3)
1 − 624

√
�2 + 288

√
�2n − 18

√
3�(1/3)

1

�(1/3)
1

√
�2

,

�1 := −5408+ 1260n + 12
√
210912− 105456n + 16017n2 − 768n3,

�2 := 35�(1/3)
1 + 2�(2/3)

1 − 208+ 96n

�(1/3)
1

.

9. For the graphKn − C
2,3,4
m , the corresponding polynomialh(x) is

n − 4− 44x + 240x2 − 448x3 + 256x4 = 256(x1 − x)(x2 − x)(x3 − x)(x4 − x),

wherex1, x2, x3, x4 are as follows:

7

16
+ 1

48

√
3
√

�2 + 1

48

×
√√√√−−162�(1/3)

1
√

�2 + 6
√

�2�
(2/3)
1 − 1296

√
�2 + 288

√
�2n − 198

√
3�(1/3)

1

�(1/3)
1

√
�2

,

7

16
+ 1

48

√
3
√

�2 − 1

48

×
√√√√−−162�(1/3)

1
√

�2 + 6
√

�2�
(2/3)
1 − 1296

√
�2 + 288

√
�2n − 198

√
3�(1/3)

1

�(1/3)
1

√
�2

,

7

16
− 1

48

√
3
√

�2 + 1

48

×
√√√√−−162�(1/3)

1
√

�2 + 6
√

�2�
(2/3)
1 − 1296

√
�2 + 288

√
�2n + 198

√
3�(1/3)

1

�(1/3)
1

√
�2

,

7

16
− 1

48

√
3
√

�2 − 1

48

×
√√√√−−162�(1/3)

1
√

�2 + 6
√

�2�
(2/3)
1 − 1296

√
�2 + 288

√
�2n + 198

√
3�(1/3)

1

�(1/3)
1

√
�2

,

�1 := −5400+ 972n + 12
√
272484− 119556n + 16929n2 − 768n3,

�2 := 27�(1/3)
1 + 2�(2/3)

1 − 432+ 96n

�(1/3)
1

.
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10. For the graphKn − C
1,2,3,4
m , the corresponding polynomialh(x) is

n − 8− 40x + 240x2 − 448x3 + 256x4 = 256(x1 − x)(x2 − x)(x3 − x)(x4 − x),

wherex1, x2, x3, x4 are as follows:

7

16
+ 1

48

√
3
√

�2 + 1

48

×
√√√√−−162�(1/3)

1
√

�2 + 6
√
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(2/3)
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√
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√
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16
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√√√√−−162�(1/3)

1
√
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[12] D. Cvetkovič, M. Doob, H. Sachs, Spectra of Graphs: Theory andApplications, third ed., JohannAmbrosius

Barth, Heidelberg, 1995.
[13] B. Gilbert,W. Myrvold, Maximizing spanning trees in almost complete graphs, Networks 30 (1997) 97–104.
[14] M.J. Golin, Y. Zhang, Further applications of Chebyshev polynomials in the derivation of spanning tree

formulas for circulant graphs, in: Mathematics and Computer Science II: Algorithms, Trees, Combinatorics
and Probabilities, Proceedings of the International Colloquium on Mathematics and Computer Science,
Versailles, France, September 16–19, Birkhäuser-Verlag, Basel, 2002, pp. 541–552.

[15] Z.J. Huang, X.M. Li, A general method for finding the number of spanning trees of some types of composite
graphs, Acta Math. Sci. 15 (3) (1995) 259–268 (Chinese).

[16] A.K. Kel’mans, V.M. Chelnokov, A certain polynomial of a graph and graphs with an extremal number of
trees, J. Combin. Theory (B) 16 (1974) 197–214.

[17] G. Kirchhoff, Über die Auflösung der Gleichungen auf, welche man bei der Untersuchung der linearen
Verteilung galvanischer Ströme geführt wird, Ann. Phys. Chem. 72 (1847) 497–508.

[18] D.J. Kleitman, B. Golden, Counting trees in a certain class of graphs, Amer. Math. Monthly 82 (1975)
40–44.

[19] S.D. Nikolopoulos, P. Rondogiannis, On the number of spanning trees of multi-star related graph, Inform.
Process. Lett. 65 (1998) 183–188.

[20] P.V. O’Neil, The number of spanning trees in a certain network, Notices Amer. Math. Soc. 10 (1963) 569.
[21] P.V. O’Neil, Enumeration of spanning trees in certain graphs, IEEE Trans. Circuit Theory CT-17 (1970) 250.
[22] P.V. O’Neil, P. Slepian, The number of trees in a network, IEEE Trans. Circuit Theory CT-13 (1966)

271–281.
[24] L. Weinberg, Number of trees in graph, Proc. IRE 46 (1958) 1954–1955.
[25] W.M.Yan,W.Myrvold, K.L. Chung,A formula for the number of spanning trees of amulti-star related graph,

Inform. Process. Lett. 68 (1998) 295–298.
[26] X.Yong, Talip, Acenjian, The numbers of spanning trees of the cubic cycleC3

N
and the quadruple cycleC4

N
,

Discrete Math. 169 (1997) 293–298.
[27] X. Yong, F.J. Zhang, A simple proof for the complexity of square cycleC2

p , J. Xinjiang Univ. 11 (1994)
12–16.

[28] Y.P. Zhang, X.Yong,M.J. Golin, The number of spanning trees in circulant graphs, DiscreteMath. 223 (2000)
337–350.


	Chebyshev polynomials and spanning tree formulas for circulant and related graphs62626262
	Introduction
	Basic concepts and lemmas
	Recurrence relations for fixed step circulant graphs
	The number of spanning trees in some non fixed-jump circulant graphs
	The number of spanning trees in T(KT(KT(KT(Knnnn=2ptS)S)S)S) with SSSS a circulant graph
	Conclusion and open problems
	Appendix A 
	References


