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ABSTRACT
It is well known that the complexity, i.e., the number of
vertices, edges and faces, of the 3-dimensional Voronoi dia-
gram of n points can be as bad as Θ(n2). Interest has re-
cently arisen as to what happens, both in deterministic and
probabilistic situations, when the 3-dimensional points are
restricted to lie on the surface of a 2-dimensional object.
In this paper we consider the situation when the points are
drawn from a 2-dimensional Poisson distribution with rate
n over a fixed union of triangles in R

3. We show that with
high probability the complexity of their Voronoi diagram is
Õ (n) .

This implies, for example, that the complexity of the Voronoi
diagram of points chosen from the surface of a general fixed
polyhedron in R

3 will also be Õ (n) with high probability.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability And Statis-
tics; I.3.5 [Computing Methodologies]: Computer Graph-
ics—Computational Geometry and Object Modeling

General Terms
Algorithms

1. INTRODUCTION
Let P be a set of 3-dimensional points. The Voronoi Di-
agram of the points and its dual, the Delaunay triangula-
tion, are extremely well studied structures. The complexity,
|V D(P )| of the Voronoi diagram is the number of lower di-
mensional pieces of which it is composed, i.e., the total num-
ber of vertices, edges and faces and regions that it contains.
It is well known that, in the worst case, the complexity can
be as high as Θ(n2) [6]. It has also been observed that, if
the points are sampled from some types of restricted point
sets, the complexity tends, in practice, to be much lower.

The problem of understanding the structure of the 3-dimensional
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Voronoi diagram of point sets from 2-dimensional surfaces
has begun to be of interest in recent years. This is because,
as described in [1] and [3], Voronoi diagrams and Delaunay
triangulations are of use in several geometric problems, e.g.,
surface reconstruction, mesh generation and surface mod-
eling. In these problems a 2-dimensional surface is often
sampled and then modeled, at least initially, by the Delau-
nay triangulation of the sample. Many parameters of such
algorithms such as their running times and the complexity
of their representations, then depend upon the complexity
of the Delaunay triangulation (which is the same as that of
the Voronoi diagram).

The two results [1] and [3] mentioned above seem to be
the first to try and formally analyze the complexity of such
Voronoi diagrams. In [1] Attali and Boissonnat prove that
if n “well-sampled” points are chosen from a polyhedral sur-
face then the complexity of their Voronoi diagram is O(n7/4)
where “well-sampled” is defined using the concept of local
feature size; if the points are drawn in the same way from the
surface of a convex polytope this reduces down to O(n3/2).1

In [3] Erikson proves that there is a set of n “well-sampled”
points from the cylinder with Voronoi diagram complexity
Ω(n3/2).

Working from a probabilistic perspective the authors of this
work showed [4] that if points are drawn from a 2-dimensional
Poisson distribution with rate n from the surface of a fixed
convex polytope then the expected complexity of the Voronoi
diagram of the points would be O(n) (with the same result
also holding if n points were chosen IID uniformly from the
surface of the polytope).

The major result of this paper is to prove a high probabil-
ity theorem when points are drawn from the surface of a
collection of triangles. More specifically

Theorem 1. Let F = {F1, . . . , Fk} be a collection of k
triangles in R

3. Let Pn be a set of points drawn from a 2-
dimensional Poisson distribution on F with rate n. Then
Pr

(
|VD(Pn)| = Õ (n)

)
= 1 − n−Ω(log n).

1Just prior to submission we learnt of new work [2] by Attali
and Boissonnat that proves a linear bound on the complexity
of the Delaunay Triangulation of n points well-sampled from
a polyhedral surface (using a slightly revised definition of
well-sampled). This seems to be the deterministic analogue
of the result in this current paper.
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Note that since a polyhedron can be decomposed into a finite
set of triangles this immediately implies that if Pn is a set
of points drawn from the standard 2-dimensional Poisson
distribution with rate n on the surface of a fixed polyhedron

then Pr
(
|VD(Pn)| = Õ (n)

)
= 1 − n−Ω(log n).

We start by defining some of the terms used in the theo-
rem. A triangle will denote a closed triangle that contains
its interior and edges.

A Poisson distribution on F with rate n is the distribution
in which, for every measurable M ⊂ ∪iFi, we have that
N(M), the number of points in M , satisfies Pr(N(M) =

k) = (nArea(M))ke−(nArea(M))

k!
and for M,M ′ ⊂ F with

M ∩ M ′ = ∅, N(M) and N(M ′) are independent. The
expected number of points in Pn will be Area(F) · n.

g(n) = Õ (f(n)) denotes that g(n) = O(f(n) logi n) for some
fixed i., i.e., it “hides” log n factors. In Theorem 1 as proved
in this paper the Õ (n) is actually a O(n log6 n) term. The
reason for using the tilde notation is that it vastly simplifies
the proofs by allowing us to lump many cases together and
makes them more readible.

Also, with slight modifications to the proofs, all of the prob-
abilistic results given in this paper will hold if we change
the distribution so that Pn, instead of being drawn from
a Poisson distribution, is a set of n points independently
identically distributed uniformly from F .

In the next section we discuss how to reduce the proof of
Theorem 1 to a case-by-case analysis of a simpler problem.
In Section 3 we introduce some tools that we will need in our
proof and in Section 4 we perform the case-by-case analysis.

Before ending this section we review some notation that we
will be using: For a point p ∈ R

3 and any set X ⊆ R
3

extend the Euclidean distance function so that d(p,X) =
infq∈X d(p, q). Also set NN(p,X) to be a nearest neighbor
to p in X, i.e., a q ∈ X such that d(p, q) = d(p,X). In this
paper X will always be a closed polygonal piece so NN(p,X)
will be unique.

For r > 0 define

S(p, r) = {q ∈ R
3 : d(q, p) ≤ r}

to be the closed ball of radius r around p.

Let Π be a plane and p ∈ Π. Then define CΠ(p, r) = {q ∈
Π : d(q, p) ≤ r} to be the closed disc of radius r on Π
centered at p.

Finally, for F1, F2 triangles and Π1, Π2 their supporting
planes, we say that F1 ‖ F2 if Π1 is parallel to Π2 and
F1 �‖ F2 otherwise.

Important Note: In this extended abstract we only provide
the upper level description of some of the proofs and omit
some details.

2. REDUCTIONS
Instead of calculating the complexity |V D(Pn)| directly we
will instead bound the number of Voronoi spheres corre-
sponding to Voronoi faces:

A Voronoi sphere is a sphere that has at least one point of
Pn on its boundary and no other points of Pn in its interior.
We count the number of combinatorially different spheres
where spheres are considered to be different only if they have
different set of points of Pn on the boundary. Also, since the
event of points in a Pn chosen from the Poisson distribution
being in general position has probability 1, we can assume
that each Voronoi sphere has at most 4 points on its surface.
Thus every vertex/edge/face/region of VD(Pn) corresponds
to Voronoi sphere S = S(p, r) with 4/3/2/1 points of Pn

on its boundary, i.e., the complexity of VD(Pn) is bounded
by the number of possible Voronoi spheres having different
4/3/2/1 tuple of points of Pn on its boundary.

Noting that every edge corresponds to a triple of points cho-
sen from the 4 points corresponding to some Voronoi vertex
and every face corresponds to a pair of points chosen from
the 4 points corresponding to some Voronoi vertex, we see
the complexity of VD(Pn) is proportional to the number of
Voronoi vertices. It therefore suffices to count the number
of Voronoi vertices.

Furthermore, as recently pointed out by Attali and Boisson-
nat [2], Euler’s relations imply that the number of tetrahedra
in the 3-D Delaunay triangulation of n sites is linear in the
number of edges in this triangulation; by taking the dual we
have that the number of Voronoi vertices in the 3-D Voronoi
diagram is actually linear in the number of Voronoi faces.
So, the size of VD(Pn) is bounded by the number of Voronoi
spheres defining Voronoi faces, i.e., the Voronoi spheres de-
fined by exactly two points. To simplify matters, in the rest
of this paper we will therefore assume that V D(Pn) is not
the full set of Voronoi spheres but only those corresponding
to Voronoi faces, i.e., those defined by two points in Pn.

To further simplify matters we will also assume that the
pair p, p′ ∈ Pn defining the Voronoi spheres are not both
on the same triangle. The justification for this assumption
is that if p, p′ were on the same triangle Fi then the inter-
section of their empty Voronoi sphere with Fi would be an
empty circle in Fi. This implies that p, p′ are Voronoi neigh-
bors, i.e., define an edge, in the two-dimensional Voronoi
diagram of Pn ∩ Fi on Πi, the supporting plane of Fi. The
two dimensional Voronoi diagram is linear in the number
of sites so the number of such faces is O(|Pn ∩ Fi|). Sum-
ming over all Fi we have that the total number of Voronoi
spheres defined by p, p′ with both points on the same tri-
angle is

∑
i O(|Pn ∩ Fi|) = O(|Pn|). Let A = Area(F) =∑

i Area(Fi). From the Poisson distribution it is easy to

work out that Pr(|Pn| ≥ 2An) = n−Ω(log n) so, with proba-

bility 1−n−Ω(log n), the number of such faces is O(n). Thus,
in the sequel, we will assume that VD(Pn) is the set of
Voronoi spheres defined by two points in Pn such that the
two points do not lie on the same triangle Fi.

Bounding the probabilistic complexity of VD(Pn) directly
can be quite difficult since the conditionality of assuming
that certain spheres are Voronoi skews the rest of the distri-
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bution. In this section we show how to reduce the problem to
a more manageable one. This will require introducing new
definitions and utility lemmas. In everything that follows it
is implicitly assumed that n is fixed.

Definition 1. Let F ⊂ R
3 be a triangle, p ∈ R

3 and
r ≥ 0. Then S(p, r) is an F -good sphere if Area(S(p, r) ∩
F ) ≤ log2 n

n
.

If F = {F1, . . . , Fk} is a collection of triangles then S(p, r)
is an F-good sphere if S(p, r) is an Fi-good sphere for every
triangle Fi.

The important observation is

Lemma 1. Let F = {F1, . . . , Fk} be a collection of k tri-
angles in R

3. Let Pn be a set of points drawn from a 2-
dimensional Poisson distribution on F with rate n. Then

Pr(all Voronoi spheres in VD(Pn) are F-good)
= 1 − n−Ω(log n).

The inituition behind this proof is that if a given sphere is
not F-good then the probability that it contains no points

of the Poisson distributed Pn is no more than e−
log2 n

n
n =

n−Ω(log n). This intuition can be formalized into a rigorous
proof (a similar lemma was proved in [4] for F the boundary
of a convex polygon.

We now define something easier to bound than Voronoi
spheres:

Definition 2. Let F = {F1, . . . , Fk} be a collection of
triangles, X ⊆ R

3 and P ⊆ ∪iFi. Now define

D(P ) =


{p1, p2} :

p1, p2 are not on the same face Fi

and {p1, p2} ⊆ P ∩ S(p, r)

for some F-good sphere S(p, r)




DX(P ) =


{p1, p2} :

p1, p2 are not on the same face Fi

and {p1, p2} ⊆ P ∩ S(p, r)for some

F-good sphere S(p, r) with p ∈ X




Note that if some Voronoi Sphere S = S(p, r) in VD(Pn)
containing 2 points {p1, p2} on its boundary is a F-good
sphere then {p1, p2} ∈ D(Pn) (recall that we defined VD(Pn)
so that the two defining points can not lie on the same tri-
angle). So, if all Voronoi spheres in V D(Pn) are F-good
spheres then |V D(Pn)| ≤ |D(Pn)|. Combining this with
Lemma 1 gives that

Pr
(
|D(Pn)| = Õ (n)

)
= 1 − n−Ω(log n)

implies Pr
(
|VD(Pn)| = Õ (n)

)
= 1 − n−Ω(log n).

We will now devote ourselves to proving

Theorem 2. Let F = {F1, . . . , Fk} be a collection of k
triangles in R

3. Let Pn be a set of points drawn from a 2-
dimensional Poisson distribution on F with rate n. Then

Pr
(
|D(Pn)| = Õ (n)

)
= 1 − n−Ω(log n).

From the discussion above, proving Theorem 2 implies The-
orem 1.

We can actually go one step further and notice that, since (i)
if S(p, r) is a F-good sphere with respect to Pn then S(p, r)
is a {Fi1 , Fi2}-good sphere for any 1 ≤ i1, i2 ≤ k and (ii)
D(Pn) is defined by a pair of points, we have

D(Pn) ⊆
⋃

1≤i1,i2≤k

D(Pn ∩ (Fi1 ∪ Fi2)).

so

|D(Pn)| ≤
∑

1≤i1,i2≤k

|D(Pn ∩ (Fi1 ∪ Fi2))| (1)

Suppose we had

Theorem 3. Let F = {F1, F2} be a pair of triangles in
R

3. Let Pn be a set of points drawn from a 2-dimensional
Poisson distribution on F with rate n. Then

Pr
(
|D(Pn)| = Õ (n)

)
= 1 − n−Ω(log n).

One of the properties of the Poisson distribution is that if
Pn is a set of points drawn from a 2-dimensional Poisson dis-
tribution on F with rate n and X ⊂ F is measurable, then
Pn ∩ X has the same distribution as a set of points drawn
from a 2-dimensional Poisson distribution on X with rate
n. Therefore, combining Theorem 3 and (1) would imply
Theorem 2. Thus, to prove Theorem 2 it suffices to prove
Theorem 3.

From now on we will therefore assume that F = {F1, F2} is
composed of two triangles. Our approach to proving Theo-
rem 3 will be to split D(Pn) up into managable pieces. We
do this as follows:

Definition 3. Let F ⊂ R
3 be a triangle. Set V (F ), E(F )

and I(F ), to be, respectively, the vertices, edges and interior
of F. That is, V (F ) are the three vertices of F, E(F ) the
three edges minus the vertices and I(F ), the triangle without
its edges.

For any p ∈ R
3 set

rp = max{r : S(p, r) is a F-good sphere}.
For i = 1, 2, define Li(p) ∈ {∅, V, E, I} such that

Li(p) =




∅ if S(p, rp) ∩ Fi = ∅
V if S(p, rp) ∩ Fi �= ∅ and NN(p, Fi) ∈ V (Fi)
E if S(p, rp) ∩ Fi �= ∅ and NN(p, Fi) ∈ E(Fi)
I if S(p, rp) ∩ Fi �= ∅ and NN(p, Fi) ∈ I(Fi)
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Figure 1: Different ways for spheres to intersect tri-
angles: (a) L = (V,E); (b) L = (E,E); (c) L = (I, I);
(d) L = (I, E). The cases L = (V, I) and L = (V, V ) are
not illustrated.

L = (L1, L2) will be the label of p. Figure 1 illustrates ways in
which a sphere can intersect two triangles and their labels.
For any given label L = (L1, L2) ∈ {∅, V, E, I}2 we can
define

RL =
{
p ∈ R

3 : L(p) = L
}
.

Since every p ∈ R
3 has a unique label L(p) the RL form a

partition of R
3 into 15 regions (label (∅, ∅) can trivially not

occur). Note that this partition depends upon F and n but
not on the Poisson distribution.

Now, let Pn be any finite set of points in R
3 (not necessarily

a random one). Since every pair {p1, p2} ∈ D(Pn) is con-
tained in at least one F-good sphere S(p, r) that intersects
both F1 and F2 and every p is in exactly one RL, we have

D(Pn) =
⋃

L∈{V,E,I}2

DRL(Pn)

so |D(Pn)| ≤ ∑
L∈{V,E,I}2 |DRL(Pn)|. Our major theorem

is:

Theorem 4. Let F = {F1, F2} be a pair of triangles in
R

3 and Pn a set of points drawn from a 2-dimensional Pois-
son distribution on F with rate n. Let L ∈ {V,E, I}2 be an
arbitrary fixed label. Then

Pr
(
|DRL(Pn)| = Õ (n)

)
= 1 − n−Ω(log n). (2)

Since this is true for all labels L and there are only 9 different

labels, summing them gives

Pr
(
|D(Pn)| = Õ (n)

)
= 1 − n−Ω(log n)

proving Theorem 3 which, as discussed before, implies The-
orem 1.

We have therefore just demonstrated that to prove Theorem
1 it suffices to prove Theorem 4. The sequel of this paper
will be devoted to proving this.

3. TOOLS
In this section we introduce the major tools that we will
use in our proof. In what follows we always assume that
F = {F1, F2} is a pair of triangles.

Definition 4. Let F ⊂ R
3 be a triangle, p′ ∈ F and

X ⊆ F. Define

GF (p′) =

{
S(p, r) :

NN(p, F ) = p′ and

S(p, r) is an F -good sphere

}

MF (p′) =
⋃

S(p,r)∈GF (p′) (S(p, r) ∩ F )

MF (X) =
⋃

p′∈X MF (p′).

Intuitively MF (p′) is the set of all points in F that can
belong to some F -good sphere such that if p is the center of
the sphere then NN(p, F ) = p′.

Definition 5. Let p ∈ R
3 be fixed. For i = 1, 2, set

Gi(p) =

{
MFi(NN(p, Fi)) Li(p) �= ∅
∅ Li(p) = ∅

and define G(p) = ∪2
i=1Gi(p).

For X ⊆ R
3 set Gi(X) = ∪p∈XGi(p) and G(X) = ∪2

i=1Gi(X) =
∪p∈XG(p).

The important thing to notice is that G(p) contains all
points that can be contained by some Fi-good sphere cen-
tered at p. More formally, if S(p, r) is an Fi-good sphere
then, by definition, S(p, r) ∩ Fi ⊆ Gi(p); thus, if {p1, p2} ⊂
S(p, r) for some F-good sphere then {p1, p2} ⊂ G(p). This
in turn implies

Lemma 2. Let Pn ⊂ R
3 be finite and X ⊆ R

3. Then

|DX(Pn)| ≤ |Pn ∩G(X)|2.

Noting the fact that if X ⊂ R
3 is measurable in R

3 then
G(X) is measurable in F and using the definition of the
Poisson distribution we can then prove:

Corollary 3. Let X ⊂ R
3 be measurable and f > 0

such that Area(G(X)) ≤ f/n. Let Pn be a set of points drawn
from a 2-dimensional Poisson distribution on F with rate n.
Then

Pr
(|DX(Pn)| ≥ (f logn)2

)
= n−Ω(log n). (3)
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Figure 2: Illustration of Lemma 4 (1) and (2) for B
far from the boundary of F : ∀ good sphere S(p, r)
such that NN(p, F ) = p′ ∈ B, S(p, r) ∩ F must be con-
tained in the weakly shaded region.

NN(p,Π)

)Π

F

supporting plane
Π

.

s

. NN(p,

(a)

F

v

(b)

Figure 3: Illustration of Lemma 4 (3) and (4): Each
solid circular arc is the boundary of S(p, r) ∩ F for
some good sphere S(p, r) such that in (a) NN(p, F ) =
p′ ∈ s and in (b) NN(p, F ) = v, respectively. Note
that the centers of the arcs are NN(p,Π) where Π is
the supporting plane of F . The union of all possible
regions S(p, r)∩F , i.e., MF (s) in (a) and MF (v) in (b),

respectively, has area ≤ cF
log3 n

n
.

This Corollary will be our major tool in proving Theorem 4.
To employ it properly we will need to be able to efficiently
bound G(X). We will do this using the following:

Lemma 4. Let F ⊂ R
3 be a triangle. Then There exists

constant cF > 0 such that

(1) Let p′ ∈ I(F ). Then

Area(MF (p′)) =
log2 n

n
.

(2) Let B ⊂ I(F ) be an 1√
n
× 1√

n
square. Then

Area(MF (B)) ≤ cF
log2 n

n
.

(3) Let s ⊂ E(F ) be an edge segment 2 with length(s) ≤
log n√

n
. Then

Area(MF (s)) ≤ cF
log3 n

n
.

(4) Let v ∈ V (F ) be a vertex of F. Then

Area(MF (v)) ≤ cF
log3 n

n
.

In this extended abstract we do not give the full proof of
this lemma. To provide the intuition as to why it is correct
suppose that p′ ∈ I(F ). Let Π be the supporting plane of F .
Then MF (p′) is exactly CΠ(p′, r) ∩ F where r is the unique

value such that Area(CΠ(p′, r)∩F ) = log2 n
n

. This proves (1).
To prove (2) we examine the union of all such discs whose
center can be in the small square B. See Figure 2. The
proofs of (3) and (4) are much more tedious and require a
detailed case-by-case analysis. This analysis can be found
in the proof of Lemma 3 in [5]. See Figure 3.

As a first consequence of Lemma 4 let X = S(p′, r) be any
ball; we will find a general bound on |DX(Pn)|. For all i
let Πi be the supporting plane of Fi and p′′i = NN(p′,Πi).
Now let p ∈ X. If NN(p, Fi) ∈ I(Fi) then NN(p, Fi) ∈
CΠi(p

′′
i , r), i.e., the projection of X on Πi. See Figure 4.

Such a disk can be covered by 4nr2 squares of size 1√
n
× 1√

n
.

So, from part (2) of the Lemma,

Area (
⋃ {Gi(p) : p ∈ X and NN(p, Fi) ∈ I(Fi)})

≤ 4nr2cFi

log2 n
n

= 4cFir
2 log2 n.

If NN(p, Fi) ∈ E(Fi) it is not hard to see that all such
nearest neighbors must be contained in the projection of X
on the three edges of Fi which can be composed of at most
three segments, each of length at most 2r. These can be

partitioned into 6r
√

n
log n

segments of length ≤ log n√
n
. From part

(3) of the Lemma,

Area (
⋃ {Gi(p) : p ∈ X and NN(p, Fi) ∈ E(Fi)})

≤ 6r
√

n
log n

cFi

log3 n
n

=
6rcFi

log2 n√
n

.

2an edge segment can be either closed, open, or half open,
half closed.

5
213



F

1

.
( 2

e
)r
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Figure 4: Illustrating DX(Pn) for X = S(p′, r) with

r = Õ
(

1√
n

)
. Recall that DX(Pn) is the set of pairs

(p1, p2) ∈ Pn s.t. p1 ∈ F1, p2 ∈ F2 and (p1, p2) are
on some F good sphere S(p′′, r′′) with p′′ ∈ X. The
claim is that p1, p2 must be in the shaded regions
on, respectively, F1, F2. The smaller disk in F1 is
the projection of S(p′, r) onto F , more precisely
X1 = ∪p∈S(p′,r)NN(p, F1); the bigger disk in F1 is
MF1(X1). The shaded region in F2 is MF2(X2) where
X2 = ∪p∈S(p′,r)NN(p, F ).

Finally, from part (4) of the Lemma and the fact that V (Fi)
contains only 3 vertices,

Area (
⋃ {Gi(p) : p ∈ X and NN(p, Fi) ∈ V (Fi)})

≤ 3cFi

log3 n
n

.

Combining the above we have

Area(Gi(X)) = O

(
r2 log2 n +

r log2 n√
n

+
log3 n

n

)
.

In particular, if r = Õ
(

1√
n

)
then Area(Gi(X)) = Õ

(
1
n

)
and Area(G(X)) ≤ ∑2

i=1 Area(Gi(X)) = Õ
(

1
n

)
as well.

Applying Corollary 3, we have just proven:

Lemma 5. If X = S(p′, r) with r = Õ
(

1√
n

)
then

Pr
(
|DX(Pn)| = Õ (1)

)
= 1 − n−Ω(log n).

4. PROOF OF THEOREM 4
We will now prove Theorem 4 by doing a case-by-case analy-
sis for the 9 different possible labels L = (L1, L2) ∈ {V,E, I}2

and proving (2) for each one. As we will see, after symmetry
and other reductions, there will only be three distinct cases.

In what follows let Π1 and Π2, respectively, be the support-
ing planes of F1 and F2.

Case 1: L1 = V. (The case L2 = V is symmetric.)

This case is very simple and can be proven directly without
using the tools developed in the previous section. Suppose

2F
1F

p.

m’t
ms

Figure 5: The case L = (E,E). Knowing NN(p, F1)
is on segment sm and NN(p, F2) is on segment tm′
restricts the locations of p1 and p2 to, respectively,
the shaded regions MF1(sm) and MF2(tm′).

(p1, p2) ⊆ Pn ∩ S(p, r) for some F-good sphere S(p, r) with
L1(p) = V and L2(p) ∈ {V,E, I}.

By definition we have that p1 ∈ MF1(V (F1)). From Lemma

4 (4), we know that Area(∪v∈V (F1)MF1(v)) ≤ 3cF1
log3 n

n
.

Plugging into the formula for the Poisson distribution, this
gives

Pr(|Pn ∩MF1(V (F1))| ≥ 6cF1 log3 n) = n−Ω(log n).

Again directly from the formula for the Possion distribu-
tion and simple calculations we get that Pr(|Pn ∩ F2| ≥
2nArea(F2)) = n−Ω(log n).

Therefore, with probability 1− n−Ω(log n), the total number
of such (p1, p2) is ≤ (

6cF1 log3 n
)
(2nArea(F2)) = Õ (n) and

we are done.

Case 2: L1 = L2 = E.

See Figure 5. Partition the edges of F1, F2 into, respec-

tively, l1 = O
( √

n
log n

)
smaller segments s1, s2, . . . , sl1 and

l2 = O
( √

n
log n

)
segments t1, t2, . . . , tl2 , each of length ≤ log n√

n
.

∀m1 ≤ l1, ∀m2 ≤ l2, set

Xm1,m2 = {p ∈ RL : NN(p, F1) ∈ sm1 , NN(p, F2) ∈ tm2}.
Since RL = ∪1≤m1≤11,1≤m2≤12Xm1,m2 we have

|DRL(Pn)| ≤
∑

1≤m1≤11,1≤m2≤12

|DXm1,m2
(Pn)|.

By definition G1(Xm1,m2) ⊆ MF1(sm1) and G2(Xm1,m2) ⊆
MF2(tm2). By Lemma 4,

Area(G(Xm1,m2)) ≤
2∑

i=1

Area(Gi(Xm1,m2)) = O

(
log3 n

n

)
,

so applying Corollary 3 gives

Pr
(
|DXm1,m2

(Pn)| = Õ (1)
)

= 1 − n−Ω(log n).

Summing over all m1,m2 yields

Pr
(
|DRL(Pn)| = Õ (n)

)
= 1 − n−Ω(log n).
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Figure 6: In the top figure we see half of the plane
Π′

1 which is one of the bisecting planes of Π1 and Π2.
Π′

1(h) is the sandwich of width 2h around Π′
1, In the

bottom figure we take a square bm on Π1 and look
at X1

m, the intersection of the infinite square prism
through bm perpendicular to Π1 and the sandwich.
If NN(p, F1) ∈ bm and there is some r such that S(p, r)
is good sphere that intersects both F1 and F2, then
p ∈ X1

m.

Case 3(a): L1 = L2 = I and F1 � ‖F2.

See Figure 6. Recall that Π1,Π2 are the supporting planes
of F1 and F2. Define Π′

1 and Π′
2 to be the bisecting planes

of Π1,Π2, i.e., the two planes that contain the line Π1 ∩Π2

and satisfy

Π′
1 ∪ Π′

2 = {p : d(p,Π1) = d(p,Π2)}.
(Π′

1, Π′
2 exist because Π1 and Π2 are not parallel). For

arbitrary plane Π define the h-sandwich around Π as

Π(h) = {p : d(p,Π) ≤ h}.

Straightforward geometric arguments (omitted in this ex-
tended abstract) show that

if p �∈ Π′
1

(
log2 n√

n

)
∪ Π′

2

(
log2 n√

n

)
,

then |d(p,Π1) − d(p,Π2)| = Ω
(

log2 n√
n

)
.

Now suppose that p is such that L1(p) = L2(p) = I and

p �∈ Π′
1

(
log2 n√

n

)
∪ Π′

2

(
log2 n√

n

)
. If S(p, r) is any sphere that

intersects both F1 and F2, then

r ≥ max(d(p,Π1), d(p,Π2)).

This would imply that S(p, r) would have to contain at least
one of the two closed disks CΠ1 (NN(p, F1), r

′)

or CΠ2 (NN(p, F2), r
′) for some r′ = Ω

(
log2 n√

n

)
. By defini-

tion, S(p, r) can therefore not be both F1-good and F2-good
and can therefore not be F-good.

We have therefore just seen that if S(p, r) is a F-good sphere

then p ∈ Π′
1

(
log2 n√

n

)
∪Π′

2

(
log2 n√

n

)
. In particular, this implies

RL ∈ Π′
1

(
log2 n√

n

)
∪ Π′

2

(
log2 n√

n

)
.

We now cover the interior of F1 by l = O(n) squares b1, b2, . . . , bl,
each of size 1√

n
× 1√

n
. ∀m ≤ l, set

Xm = {p ∈ RL : NN(p, F1) ∈ bm}.
By definition, RL = ∪l

m=1Xm, so

|DRL(Pn)| ≤
l∑

m=1

|DXm(Pn)|.

From the argument above we know that Xm ⊂ Π′
1

(
log2 n√

n

)
∪

Π′
2

(
log2 n√

n

)
. For j = 1, 2, set Xj

m = Xm ∩Π′
j

(
log2 n√

n

)
. Each

Xj
m is contained in the intersection of an infinite square

prism with 1√
n
× 1√

n
crossection and a sandwich of width

log2 n√
n

so there exists pj
m, rj

m with rj
m = O

(
log2 n√

n

)
such that

Xj
m ⊂ S(pj

m, rj
m). Applying Lemma 5 shows that

Pr
(
|D

X
j
m
(Pn)| = Õ (1)

)
= 1 − n−Ω(log n).

Since |DRL(Pn)| ≤ ∑
m,j |DX

j
m
(Pn)|, summing over all m, j

yields

Pr
(
|DRL(Pn)| = Õ (n)

)
= 1 − n−Ω(log n).

Case 3(b): Li = Lj = I and Fi‖Fj .

As before, let Π1,Π2 be the supporting planes of F1, F2.
Now, let Π3 be the plane parallel to Π1,Π2 that is equidis-
tant from both. If p has L1(p) = L2(p) = I then a straight-
forward geometric argument similar to the one in Case 3
(a) shows that if, for some r ≥ 0, S(p, r) is F-good, then

p ∈ Π3

(
log2 n√

n

)
.

We now repeat the same procedure. Ccover the interior of
F1 by l = O(n) squares b1, b2, . . . , bl each of size 1√

n
× 1√

n
.

∀m ≤ l, set Xm = {p ∈ RL : NN(p, F1) ∈ bm}. Since
RL = ∪l

m=1Xm, we have

|DRL(Pn)| ≤
l∑

m=1

|DXm(Pn)|.

Note that, from our discussion above, Xm ∈ Π3

(
log2 n√

n

)
so Xm is contained in the intersection of an infinite rect-
angular prism with 1√

n
× 1√

n
crossection and a sandwich

7
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Figure 7: The cone that is the bisecting surface of
Π1 and E2 and its h-sandwich.

of width log2 n√
n

. It therefore must be contained in some

ball of radius O
(

log2 n√
n

)
. Applying Lemma 5 shows that

Pr
(
|DXm(Pn)| = Õ (1)

)
= 1−n−Ω(log n). Summing over all

m yields

Pr
(
|DRL(Pn)| = Õ (n)

)
= 1 − n−Ω(log n).

Case 4: L1 = I and L2 = E. (The case L1 = E and L2 = I
is symmetric)

See Figure 7. Fix e to be one of the three edges of F2 and
assume that NN(p, F2) ∈ e.

We will prove the theorem for each fixed e separately; sum-
ming over the three edges will prove it for the full case

Let E2 be the full line of which e is a segment. Define the
bisecting surface (Figure 7) of Π1 and E2 to be

Π := {p : d(p,Π1) = d(p,E2)}.
If Π1 ‖ E2, then Π is a paraboloid; otherwise (Π1 �‖ E2), Π
is an infinite double cone passing through the intersection
point Π1 ∩ E2. Define the h-sandwich around Π to be

Π(h) = {p : d(p,Π) ≤ h}.

Using straightforward geometric arguments (omitted in this
extended abstract) we can show that ∀p such that L1(p) =

I, L2(p) = E, and NN(p, F2) ∈ e, if p �∈ Π
(

log n√
n

)
then

|d(p,Π1) − d(p,E2)| = Ω
(

log n√
n

)
. So ∀p such that L1(p) =

I, L2(p) = E and NN(p, F2) ∈ e, if p �∈ Π
(

log n√
n

)
and

S(p, r) is any sphere that intersects both F1 and e, then
r ≥ max(d(p,Π1), d(p,E2)). This would imply that S(p, r)
would have to contain at least one of CΠ1 (NN(p, F1), r

′)

or CΠ2 (NN(p,E2), r
′) for some r′ = Ω

(
log n√

n

)
. S(p, r) can

therefore not be both F1-good and F2-good and can therefore
not be F-good.

We have just seen that if S(p, r) is a F-good sphere, then

p ∈ Π
(

log n√
n

)
. In particular, this implies RL ∈ Π

(
log n√

n

)
.

As in Case 2, we now cover the interior of F1 by l = O(n)
squares b1, b2, . . . , bl, each of size 1√

n
× 1√

n
. ∀m ≤ l, set

Xm = {p ∈ RL : NN(p, F1) ∈ bm}.
By definition, RL = ∪l

m=1Xm so |DRL(Pn)| ≤ ∑l
m=1 |DXm(Pn)|.

From the argument above we know that Xm ⊂ Π
(

log n√
n

)
.

More precisely, each Xm is contained in the intersection of
an infinite square prism with 1√

n
× 1√

n
cross-section bm and

a sandwich of width log n√
n
. So there exists pm, rm with rm =

O
(

log n√
n

)
such that Xm ⊂ S(pm, rm). Applying Lemma 5

shows that Pr
(
|DXm(Pn)| = Õ (1)

)
= 1 − n−Ω(log n). Since

|DRL(Pn)| ≤ ∑
m |DXm(Pn)|, summing over all m yields

Pr
(
|DRL(Pn)| = Õ (n)

)
= 1 − n−Ω(log n).
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