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Abstract

Calculating the permanent of a (0, 1) matrix is a #P -complete problem but there are some
classes of structured matrices for which the permanent is calculable in polynomial time. The most
well-known example is the fixed-jump (0, 1) circulant matrix which, using algebraic techniques,
was shown by Minc to satisfy a constant-coefficient fixed-order recurrence relation.

In this note we show how, by interpreting the problem as calculating the number of cycle-
covers in a directed circulant graph, it is straightforward to reprove Minc’s result using com-
binatorial methods. This is a two step process: the first step is to show that the cycle-covers
of directed circulant graphs can be evaluated using a transfer matrix argument. The second
is to show that the associated transfer matrices, while very large, actually have much smaller
characteristic polynomials than would a-priori be expected.

An important consequence of this new viewpoint is that, in combination with a new re-
cursive decomposition of circulant-graphs, it permits extending Minc’s result to calculating the
permanent of the much larger class of circulant matrices with non-fixed (but linear) jumps.
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Dept. of Computer Science, Hong Kong U.S.T., Clear Water Bay, Kowloon, Hong Kong. Email addresses
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1 Introduction

Definition 1 Let A = (ai,j) be an n × n matrix. Let Sn be the set of permutations of the integers
[1, . . . , n]. The permanent of A is

Perm(A) =
∑

π∈Sn

n∏

i=1

ai,π(i) where π = [π(1), . . . , π(n)].

If A is a (0, 1) matrix, then A can be interpreted as the adjacency matrix of some directed
graph G and Perm(A) is the number of directed cycle-covers in G, where a directed cycle-cover is
a collection of disjoint cycles that cover all of the vertices in the graph. Alternatively, A can be
interpreted as the adjacency matrix of a bipartite graph Ḡ, in which case Perm(A) is the number of
perfect-matchings in Ḡ. The permanent is a classic well-studied combinatorial object (see the book
and later survey by Minc[13, 16]).

Calculating the permanent of a (0, 1) matrix is a #P -Complete problem [19] even when A is
restricted to have only 3 non-zero entries per row [8]. The best known algorithm for calculating
a general permanent is a straightforward inclusion-exclusion technique due to Ryser [13] running
in Θ(n2n) time and polynomial space. By allowing super-polynomial space, Bax and Franklin [1]
developed a slightly faster (although still exponential) algorithm for the (0, 1) case. We point out, in
another direction, that just recently, Jerrum, Sinclair and Vigoda [11] developed a fully polynomial
approximation scheme for approximating the permanent of nonnegative matrices.

On the other hand, for certain special structured classes of matrices one can exactly calculate
the permanent in “polynomial time”. The most studied example of such a class is probably the
circulant matrices, which, as discussed in [7], can be thought of as the borderline between the easy
and hard cases.

An n × n circulant matrix A = (ai,j) is defined by specifying its first row; the (i + 1)st row is
a cyclic shift i units to the right of the first row, i.e., ai,j = a1,1+(n+j−i) mod n. Let Pn denote the
(0, 1) n × n matrix with 1s in positions (i, i + 1), i = 1, . . . , n − 1, and (n, 1) and 0s everywhere
else. Many of the early papers on this topic express circulant matrices in the form

An = a1P
s1

n + a2P
s2

n + · · · + akP
sk
n where 0 ≤ s1 < s2 < · · · < sk < n and ai = a1,si+1. (1)

The first major result on permanents of (0, 1) circulants is due to Metropolis, Stein and Stein [12].
Let k > 0 be fixed and An,k =

∑k−1
i=0 P i

n, be the n×n circulant matrix whose first row is composed
of 1s in its first k columns and 0s everywhere else. Then [12] showed that, as a function of n,
Perm(An,k) satisfies a fixed order constant-coefficient recurrence relation in n and therefore, could
be calculated in polynomial time in n (after a superpolynomial “start-up cost” in k for deriving
the recurrence relation).

This result was greatly improved by Minc who showed that it was only a very special case of a
general rule. Let 0 ≤ s1 < s2 < · · · < sk < n be any fixed sequence and set An = An(s1, . . . , sk) =
P s1

n +P s2
n + · · ·+P sk

n . In [14, 15] Minc proved that Perm(An) always satisfies a constant-coefficient
recurrence relation in n of order 2sk − 1. Minc’s theorem was proven by manipulating algebraic
properties of An. Note, that as mentioned by Minc, this result is difficult to apply for large sk

since, in order to derive the coefficients of the recurrence relation it is first necessary to evaluate
Perm(An) for n ≤ 2(2sk − 1) and, using, Ryser’s algorithm, this requires Ω

(
22sk

)
time.

Later Codenotti, Resta and various coauthors improved these results in various ways; e.g. in
[2] showing how to evaluate sparse circulant matrices of size ≤ 200; in [4, 5] showing that the
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Figure 1: C−1,0,2
n : Circulant matrix (a) is the adjacency matrix of circulant graph C−1,0,2

6 in (b).

In (b), the solid edges are Ln and the dashed edges are Hook(n). (c) illustrates C−1,0,2
n (n = 6, 7)

drawn in lattice graph representation. The bold edges in C−1,0,2
7 are New(n). Note that the Hook(n)

edges for n = 6, 7 are “independent” of n.

permanents of circulants with only three 1s per row can be evaluated in polynomial time; in
[6] showing how the permanents of some special sparse circulants can be expressed in terms of
determinants and are therefore solvable in polynomial time; in [2] showing that the permanents
of dense circulants are hard to calculate and in [7] that even approximating the permanent of an

arbitrary circulant modulo a prime p is “hard” unless P#P = BPP.
In this paper we return to the original problem of Minc. Our first main result will be to

show that if circulant matrix An(s1, . . . , sk) is interpreted as the adjacency matrix of a directed
circulant graph Cn, then counting the number of cycle-covers of Cn using a transfer matrix approach
immediately reproves Minc’s result. As well as reproving Minc’s original result this new technique
will then permit us extend the result to a much larger set of circulant graphs as well as address
other related problems. To explain, we first need to introduce some notation.

Definition 2 See Figure 1. Let Cs1,s2,···,sk
n . be the n-node directed circulant graph with jumps

S = {s1, s2, . . . sk}. (Note that in this definition we allow negative si.) Formally,

Cs1,s2,...,sk
n = (V (n), EC(n))

where
V (n) = {0, 1, . . . , n − 1} and EC(n) =

{
(i, j) : (j − i) mod n ∈ S

}
.

Note: we will assume that S contains at least one non-negative si since if all the si were negative we could

multiply them by −1 and get an isomorphic graph. Also, we will often write Cn as shorthand for Cs1,s2,···,sk

n .

Let G = (V, E) be a graph, T ⊆ E and v ∈ V. Define IDT (v) to be the indegree of v in graph
(V, T ) and ODT (v) to be the outdegree of v in (V, T ). T ⊆ E is a cycle-cover of G if

∀v ∈ V, IDT (v) = ODT (v) = 1.

Definition 3 Let S = {s1, s2, . . . sk} be given. Set

CC(n) = {T ⊆ Cn : T is a cycle-cover of Cn}

and
T (n) = |CC(n)| = No. of cycle-covers of Cn.
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Note that, by the standard correspondence mentioned before, An(s1, . . . , sk) is the adjacency
matrix of Cs1,s2,···,sk

n and T (n) = Perm(An(s1, . . . , sk)). So, calculating T (n) is equivalent to calcu-
lating permanents of An(s1, . . . , sk).

In [9, 10] the authors of this paper were interested in counting spanning trees and other struc-
tures in undirected circulant graphs. The main tool introduced there was a recursive decomposition
of such graphs. In Section 2 we describe a related recursive decomposition of directed circulant
graphs. Our technique will be to use this decomposition to show that for some constant m there is
a m × 1 (column) vector function T̄ (n) such that

∀n ≥ 2s̄, T (n) = β T̄ (n) and T̄ (n + 1) = A T̄ (n) (2)

where s̄ is a constant to be defined later (but reduces to s̄ = sk for the Minc formulation described
previously), β is a 1 × m constant row-vector and A is a constant m × m matrix. Such an A is
known as a transfer-matrix see, e.g., [18].

Let P (x) =
∑t

i=0 pix
i be any polynomial that annihilates A, i.e., P (A) = 0. Then it is easy to

see that ∀n ≥ 2s̄,

t∑

i=0

piT (n + i) = β

(
t∑

i=0

piA
n+i−2s̄

)
T̄ (2s̄) = β An−2s̄

(
t∑

i=0

piA
i

)
T̄ (2s̄) = β An−2s̄ 0 T̄ (2s̄) = 0

where 0 denotes the m × m zero matrix and 0 a scalar; T (n) thus satisfies the degree-t constant
coefficient recurrence relation T (n+ t) =

∑t−1
i=0 − pi

pt
T (n+ i) in n. By the Cayley-Hamilton theorem,

the characteristic polynomial of A, which has degree ≤ m, must annihilate A, so such a polynomial
exists and T (n) satisfies a recurrence relation of at most degree m. In our notation, Minc’s theorem
is that T (n) satisfies a recurrence relation of degree 2s̄ − 1. Unfortunately, in our construction,
m = 22s̄ so the characteristic polynomial does not suffice for our purposes. Our next step will
involve showing that even though A is of size 22s̄ × 22s̄, there is a much smaller P , of degree 2s̄ − 1,
that annihilates A, thus reproving Minc’s theorem. We point out that this degree reduction of the
transfer matrix (to the square-root of the original size) is, a-priori, quite unexpected, and does not
occur in the undirected-circulant counting problems analyzed in [9, 10].

One interesting consequence of this new derivation is that, unlike in Minc’s proof, to derive the

recurrence relation it is no longer necessary to start by spending Ω
(
22s̄
)

time calculating the first

2s̄ values of T (n) using Ryser’s method. Instead one only has to calculate A, β, the polynomial P
and the first 2s̄ values of T̄ (n) which, as we will see later, can all be done in O(s̄25s̄) time, reducing
the start-up complexity from doubly-exponential in s̄ to singularly exponential.

Another, albeit minor, consequence of this new derivation is that it can also handle non (0, 1)
circulants. That is, given any matrix An of the form (1), even when the ai are not restricted to be
in {0, 1} the technique shows that Perm(An) satisfies a recurrence relation of degree 2s̄ − 1. This is
only a minor consequence, though, since working through the details of Minc’s original proof it is
possible to modify it to get the same result.

A much more important new consequence, and the major motivation for this paper, is the fact
that the proof can be extended to evaluate the permanents of non-constant jump circulant matrices,
something which has not been addressed before. To explain this, we generalize Definition 2 to

Definition 4 See Figure 2(a). Let p, s, p1, p2, . . . , pk and s1, s2, . . . , sk be fixed integral constants
with such that ∀i, 0 ≤ pi < p. Set S = {p1n + s1, p2n + s2, · · · , pkn + sk}. Denote the (pn + s)-node
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(c) C
1,n,2n
3n (n = 5)

Figure 2: C1,n,2n
3n , a non-constant jump circulant: Dashed edges are Hook(n). Solid edges are Ln.

(a) and (b) are two representations of the graph when n = 4. Note the lattice representation in (b).
(c) is is the case n = 5. The bold solid edges on the right are New(n). The 3 vertices on the right
are V N(n). Note that the dashed Hook(n) edges for both n = 4, 5 are “independent” of n.

directed circulant graph with jumps S by

Cn = Cp1n+s1,p2n+s2,···,pkn+sk

pn+s = (V (n), EC(n))

where

V (n) = {0, 1, . . . , pn + s − 1} and EC(n) =
{

(i, j) : (j − i) mod (pn + s) ∈ S
}

.

Note that Apn+s(p1n + s1, p2n + s2, · · · , pkn + sk) is the adjacency matrix of Cn so, counting the
cycle-covers in Cn is equivalent to evaluating Perm(Apn+s(p1n + s1, p2n + s2, · · · , pkn + sk)). Our
method of counting the cycle covers in Cn will be to derive a new recursive decomposition of Cn

(which might be of independent interest) and use it to show that an analogue of (2) holds in the
non-constant jump case as well; thus T (n) still satisfies a constant-coefficient recurrence relation
in n. For example, in Table 1, we show the recurrence relation for the number of cycle covers in
C1,n+1,2n

3n and C0,n,2n−1
3n .

In the next section we describe the new recursive decompositions of Cn, for both constant and
non-constant jumps, upon which our technique is based. In Section 3 we show how this permits
easily reproving Minc’s result for non-constant circulants. We then describe the minor modifications
that are needed to extend the proof to non-constant circulants.

Note: Due to space limitations in this extended abstract only the proof skeleton is given, with
many of the details omitted. Also, when reproving Minc’s result, we only prove that Perm(An)
satisfies a degree 2s̄ recurrence relation and not a 2s̄ − 1 one.

2 A Recursive Decomposition of Directed Circulant Graphs

The main conceptual difficulty with deriving a recurrence relation for T (Cn) is that larger circulant
graphs can not be built recursively out of smaller ones. The crucial observation, though, is that,
there is another graph, Ln, the lattice graph, that can be built recursively, and Cn can then be
constructed from Ln through the addition of a constant number of edges1. In [9, 10] the authors

1To put this into context, this is very similar to the definition of Recursive families for undirected graphs [3, 17].

4



C−1,0,1
n T (n) = 2T (n − 1) − T (n − 3) T (n) ∼ φn

C0,1,2
n initial values 9, 13, 12 for n = 4, 5, 6 φ = (1 +

√
5)/2

C1,n+1,2n
3n T (n) = 5T (n − 1) − 5T (n − 2) − 5T (n − 3) + 6T (n − 4)

C0,n,2n−1
3n initial values 17, 45, 113, 309 for n = 2, 3, 4, 5 T (n) ∼ 3n

Table 1: The number of cycle-covers T (n) in directed circulant graphs with constant jumps C−1,0,1
n

and C0,1,2
n , and with non-constant jumps C1,n+1,2n

3n and C0,n,2n−1
3n , as derived by the technique in

this paper. Note that inside each pair of graphs, the number of cycle covers is the same. This is
to be expected, since their adjacency matrices are just linear circular shifts of each other so the
permanents of their adjacency matrices are the same.

of this paper developed such a recursive decomposition for undirected circulant graphs as a tool for
counting the number of spanning trees in such graphs. In what follows we develop a corresponding
decomposition for directed circulants that will permit counting cycle-covers.

We first show this for the restricted case in which S, the set of jumps, is constant (independent of
n), where it is easy to visualize. After deriving the relevant properties we extend the decomposition
to the more complicated case in which the set of jumps can depend upon n.

Definition 5 See Figure 1. Let S = {s1, s2, . . . sk}, where the si are fixed integers. Define the
n-node lattice graph with jumps S

Ls1,s2,...,sk
n = (V (n), EL(n)) where EL(n) =

{
(i, j) : j − i ∈ S

}
.

Now set
Hook(n) = EC(n) − EL(n) and New(n) = EL(n + 1) − EL(n),

so that
Ln+1 = Ln ∪ New(n) and Cn = Ln ∪ Hook(n). (3)

The simple but important observation is that, when n is viewed as a label rather than as a number,
Hook(n) and New(n) are independent of the actual value of n.

Lemma 1 Set S+ = {s ∈ S : s ≥ 0} and S− = {s ∈ S : s < 0}. Then

Hook(n) =




⋃

s∈S+

{ (n − j, s − j) : 1 ≤ j ≤ s}



 ∪




⋃

s∈S−

{ (j, n + s + j) : 0 ≤ j < |s|}





New(n) =




⋃

s∈S+

{(n − s, n)}



 ∪




⋃

s∈S−

{(n, n + s)}





Further set s+ = maxs∈S+ s, and s− = maxs∈S− |s| (if S− = ∅ set s− = 0).
For later use we define s̄ = s+ + s−. Now define

L+(n) = {0, . . . s+ − 1}, R+(n) = {n − s+, . . . , n − 1},
L−(n) = {0, . . . s− − 1}, R−(n) = {n − s−, . . . , n − 1}.
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Then
Hook(n) ⊆ (R+(n) × L+(n)) ∪ (L−(n) × R−(n))
New(n) ⊆ (R+(n) × {n}) ∪ ({n} × R−(n)) ∪ {(n, n)} (4)

Important Note: In this section and the next we will always assume that n ≥ 2s̄ since this will
guarantee that (L+(n)∪L−(n))∩(R+(n)∪R−(n)) = ∅. Without this assumption some of our proofs
would fail. Also note that the {(n, n)} term in New(n) is only needed when 0 ∈ S.

We now extend the above definitions and lemmas to the case of non-constant circulants. This
will require a change in the way that we visualize the nodes of Cn; until, now, as in Figure 1(c), we
visualized them as points on a line with the edges in Hook(n) connecting the left and right endpoints
of the line. In the non-constant jump case it will be convenient to visualize them as points on a
bounded-height lattice, where Hook(n) connects the left and right boundaries of the lattice. We
start by introducing a new graph:

Definition 6 See Figure 2. Let p, s, p1, p2, . . . , pk and s1, s2, . . . , sk be given integral constants
such that ∀i, 0 ≤ pi < p. Set S = {p1n + s1, p2n + s2, · · · , pkn + sk}. For u, v and integer n, set
f(n; u, v) = un + v. Define

Ĉn =
(
V̂C(n), ÊC(n)

)

where

V̂ (n) = { (u, v) : 0 ≤ u ≤ p − 1, 0 ≤ v ≤ n − 1} ∪ { (p − 1, v) : n ≤ v ≤ n + s − 1}

ÊC(n) =

{
((u1, v1), (u2, v2)) : (u1, v1), (u2, v2) ∈ V̂ (n) and

f(n;u2, v2) − f(n;u1, v1) mod (pn + s) ∈ S

}

Directly from the definition we see Ĉn is isomorphic to Cn = Cp1n+s1,p2n+s2,···,pkn+sk

pn+s . In par-

ticular, cycle-covers of Ĉn are in 1-1 correspondence with cycle covers of Cn so we can restrict
ourselves to counting cycle covers of Ĉn. We now introduce the generalization of Definition 5.

Definition 7 Let p, s, p1, p2, . . . , pk and s1, s2, . . . , sk and S, f be as in Definition 6. Define the
pn + s-node lattice graph with jumps S

Ln = (V̂ (n), ÊL(n))

where

ÊL(n) =

k⋃

i=1






((u1, v1), (u2, v2)) : (u1, v1), (u2, v2) ∈ V̂ (n) and
f(n; u2, v2) − f(n; u1, v1) = pin + si mod (pn + s) and
u2 − u1 = pi mod p




 .

Now set
Hook(n) = ÊC(n) − ÊL(n) and New(n) = ÊL(n + 1) − ÊL(n),

so that
Ln+1 = Ln ∪ New(n) and Ĉn = Ln ∪ Hook(n). (5)

It is now straightforward to derive an analogue of Lemma 1 showing that Hook(n) and New(n)
are independent of the actual value of n. Let NV (n) = VL(n + 1) − VL(n). NV (n) will be the new
vertices in VL(n + 1). Note that we did not define this for fixed-jump circulant graphs since in the
fixed-jump case there is only the one new vertex VL(n + 1) − VL(n) = {n} and NV (n) would be
constant.
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Lemma 2 Set S+ = {si ∈ S : si ≥ 0}, S− = {si ∈ S : si < 0}, and
s+ = maxsi∈S+ si, s− = maxsi∈S− |si| (if S− = ∅ set s− = 0).
Let t1 = s+ − 1, t2 = s− − 1 and r = min{−s, 0}.
Now let 0 ≤ u ≤ p − 1 and define

L+(n) = {(u, v) : 0 ≤ v ≤ max{t1, t1 + s}}, R+(n) = {(u, n − 1 − v) : r ≤ v ≤ max{t1, t1 − s}},
L−(n) = {(u, v) : 0 ≤ v ≤ max{t2 + s, t2 + 2s}}, R−(n) = {(u, n − 1 − v) : r ≤ v ≤ max{t2, t2 + s}}.

Then

Hook(n) ⊆ (R+(n) × L+(n)) ∪ (L−(n) × R−(n))
New(n) ⊆ (R+(n) × NV (n)) ∪ (NV (n) × R−(n)) ∪ (NV (n) × NV (n))

(6)

3 A New Proof of Minc’s result

Let CC be a cycle-cover of Cn. Then, in T = CC − Hook(n), almost all vertices v except possibly
those that have an edge of Hook(n) hanging off of them, have IDT (v) = ODT (v) = 1. Referring to
(4) this motivates

Definition 8 T ⊆ EL(n) is a legal cover of Ln if

• ∀v ∈ V, IDT (v) ≤ 1 and ODT (v) ≤ 1.

• ∀v ∈ V − (L+(n) ∪ R−(n)) , IDT (v) = 1.

• ∀v ∈ V − (L−(n) ∪ R+(n)) , ODT (v) = 1.

Then, from (4) we have

Lemma 3

(a) If T ⊆ EC(n) is a cycle-cover of Cn, then T − Hook(n) is a legal-cover of Ln.
(b) If T ⊆ EL(n + 1) is a legal-cover of Ln+1, then T − New(n) is a legal-cover of Ln.

From the definition of legal covers we can classify and partition legal covers by the appropriate
in/out degrees of their vertices in L+(n), L−(n), R+(n), R−(n).

Definition 9 A is a binary r-tuple if A = (A(0), A(1), . . . , A(r − 1)) where ∀i, A(i) ∈ {0, 1}.
Let P be the set of 22s̄ tuples (L+, L−, R+, R−) where L+, L−, R+, R− are, respectively, binary

s+, s−, s+, s− tuples.
Let T be a legal-cover of Ln. The classification of T will be C(T ) = (LT

+, LT
−, RT

+, RT
−) ∈ P where

∀0 ≤ i < s+, LT
+(i) = IDT (i), RT

+(i) = ODT (n − 1 − i),
∀0 ≤ i < s−, RT

−(i) = IDT (n − 1 − i), LT
−(i) = ODT (i).

If T is not a legal-cover then we will use the convention that C(T ) = ∅. Finally, set

L(n) = {T ⊆ EL(n) : T is a legal cover of Ln}
LX(n) = {T ∈ L(n) : C(T ) = X}
TX(n) = |LX(n)|

so TX(n) is the number of legal-covers of Ln with classification X.
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0 21 3 4 5

(a) CC1 and T1

0 21 3 4 5

(b) CC2 and T2

0 21 3 4 5

(c) CC3 and T3

Figure 3: All of the figures are in C−1,0,2
6 . Dashed edges are Hook(n). The solid plus dashed edges

are three different cycle covers CCi, i = 1, 2, 3 in C6. Removing the dashed Hook(n) edges leaves
three legal covers Ti, i = 1, 2, 3, in L6. Note that s+ = 2 and s− = 1 so classifications are of the
form (LT

+, LT
−, RT

+, RT
−) where LT

+ and RT
+ are pairs and LT

− and RT
− are singletons. Calculation

gives C(T1) = C(T2) = X ′
1 = ( (1, 0), (0), (0, 1), (0) ) and C(T3) = X ′

3 = ( (0, 0), (1), (0, 0), (1) ).

0 21 3 4 5 6

(a) T1 ∪ {(n − 2, n)}

0 21 3 4 5 6

(b) T2 ∪ {(n − 2, n)}

0 21 3 4 5 6

(c) T3 ∪ {(n − 2, n)}

Figure 4: n was increased from 6 to 7 and S = {(4, 6)} ⊆ New(6) was added to the Ti of the
previous figure. Note that, in L7, C(T1 ∪ S) = C(T2 ∪ S) = ∅ since they are no longer legal covers.
Also, C(T3∪S) = X3(= X ′

3) = ( (0, 0), (1), (0, 0), (1) ). Thus, C(X ′
1∪S) = ∅ and C(X ′

3∪S) = X ′
3.

The main reason for introducing these definitions is that checking whether a legal cover T of Ln

can be completed to a cycle-cover of Cn doesn’t depend upon all of T but only on its classification
C(T ). Furthermore, how a legal-cover in Ln expands to a legal cover in Ln+1 will also only depend
upon C(T ).

Lemma 4 See Figures 3 and 4.
(a) Let X = (LX

+ , LX
− , RX

+ , RX
− ) ∈ P and S ⊆ Hook(n). Let T be a legal cover in Ln with C(T ) = X.

Then whether T ∪ S is a cycle cover of Ln depends only upon X and S (and not at all on n).
In particular, if T is a legal-cover of Ln and T ′ is a legal cover of Ln′ with C(T ) = C(T ′) then

T ∪ S is a cycle-cover of Cn iff T ′ ∪ S is a cycle-cover of Cn′

Note: We will write X ∪ S is a cycle cover to denote that T ∪ S, with C(T ) = X, is a cycle cover.

(b)Let T ′ be a legal cover in Ln with C(T ) = X ′ ∈ P. and S ⊆ New(n).

Then whether C(T ′ ∪S) = X depends only upon X ′ and S (and not at all on n). In particular,
if T ′ is a legal-cover of Ln and T ′′ is a legal cover of Ln′ with C(T ′) = C(T ′′) then

C(T ′ ∪ S) = C(T ′′ ∪ S)
Note: We will write (X ′ ∪ S) = X to denote that, when C(T ′) = X ′, C(T ′ ∪ S) = X.

Proof. To prove (a) recall that T ∪ S is a legal-cover of Ln if and only if,
∀v ∈ V, IDT∪S(v) = ODT∪S(v) = 1 or

∀v ∈ V, IDS(v) = 1 − IDT (v) and ODS(v) = 1 − ODT (v) (7)

From Lemma 1 and the definition of a legal cover we have that this is true if and only if

∀i ≤ s+, IDS(i) = 1 − LX
+ (i), ODS(i) = 1 − LX

− (i)
∀i ≤ s−, IDS(n − 1 − i) = 1 − LX

+ (i), ODS(n − 1 − i) = 1 − LX
− (i),
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and this is only dependent upon X and S and not n or any other properties of T.
The proof of (b) is similar and omitted here.

2

Definition 10 For X, X ∈ P, S ⊆ Hook(n) and S′ ⊆ New(n) set

βX,S =

{
1 if X ∪ S is a cycle cover
0 otherwise

, αX,X′,S =

{
1 if C(X ′ ∪ S) = X
0 otherwise

.

Now set
βX =

∑

S⊆Hook(n)

βX,S , αX,X′ =
∑

S⊆New(n)

αX,X′,S .

Note that βX and αX,X′ are constants that can be mechanically calculated. Then Lemmas 3 and
4 immediately imply our main technical result, which is equivalent to (2).

Lemma 5

T (n) =
∑

X∈P

βXTX(n) and TX(n + 1) =
∑

X,X′∈P

αX,X′TX(n)

Let m = |P| = 22s̄. Take any arbitrary ordering of P and define the 1×m constant vector β =
(βX)X∈P and m×m constant matrix A = (αX,X′)X,X′∈P . Finally, set T̄ (n) = col(TX(n))X∈P to be
a m×1 column vector. Then, Lemma 5 is exactly equation (2) which immediately implies that T (n)
satisfies a fixed-degree constant coefficient recurrence relation where the degree of the recurrence is
at most the degree of any polynomial P (x) such that P (A) = 0. By the Cayley-Hamilton theorem,
Q(A) = 0, Q(x) is the degree m = 22s̄ characteristic polynomial Q(x) = det(IX − A).

We will now see that it is possible to reduce this degree from 22s̄ down to below 2s̄.

Lemma 6 Let A = (αX,X′). Then there is a degree 2s̄ − 1 polynomial P (x) such that P (A) = 0.

Proof. Recall that s̄ = s+ + s−. Suppose X = (LX
+ , LX

− , RX
+ , RX

− ) and X ′ = (LX′

+ , LX′

− , RX′

+ , RX′

− ).
Recall that αX,X′ =

∑
S⊆New(n) αX,X′,S where αX,X′,S = 1 if and only if C(X ′ ∪ S) = X, and

is otherwise 0.

Now let L+, L− be any 2s+

and 2s− binary tuples and partition P up into 2s̄ sets of size 2s̄,
PL+,L−

= {X ∈ P : LX
+ = L+, LX

− = L−}.

Note that, if S ⊆ New(n), none of S’s edges have endpoints in L+(n) or L−(n). Intuitively, this
is because edges in New(n) only connect vertices near the right side of the lattice and do not touch
any vertices on the left side of the lattice.

Thus, if αX,X′,S = 1, then LX
+ = LX′

+ and LX
− = LX′

− . In particular this means that if αX,X′,S = 1
then X, X ′ are both in the same partition set PL+,L−

.

Now suppose that αX,X′,S = 1. Let L̄+, L̄− be any other 2s+

and 2s− binary tuples and set

X̄ = (L̄+, L̄−, RX
+ , RX

− ) and X̄ ′ = (L̄+, L̄−, RX′

+ , RX′

− ). (8)

Then, again using the fact that none of the endpoints of S are in L+(n) or L−(n) we have that
C(X ′ ∪ S) = X if and only if C(X̄ ′ ∪ S) = X̄ so αX,X′ = αX̄,X̄′ .
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When constructing matrix A = (αX,X′)X,X′∈P we previously allowed any arbitrary ordering
of P. Now order the X ∈ P lexicographically; this groups all of the X in a particular PL+,L−

consecutively. The observations above imply that A is partitioned into 2s̄ × 2s̄ blocks where each
block is of size 2s̄ × 2s̄. The non-diagonal blocks correspond to αX,X′ where X, X ′ are in different
partitions so all of the non-diagonal blocks are 0. On the other hand, the fact that αX,X′ = αX̄,X̄′

for the X̄, X̄ ′ defined in (8), tells us that all the diagonal blocks are copies of each other.

Let Ā be one of the 2s̄×2s̄ diagonal blocks in A. A can then be denoted as A = diag(Ā, Ā, . . . , Ā)
where A contains 2s̄ copies of Ā on its diagonal. Thus, ∀i, Ai = diag(Āi, Āi, . . . , Āi). In particular,
this means that any polynomial P (x) that annihilates Ā also annihilates A. Since Ā is a 2s̄ × 2s̄

matrix, the Cayley-Hamilton theorem says that the characteristic polynomial P̄ (x) of Ā, which is
of degree 2s̄, annihilates Ā.

By a more careful analysis of the structure of Ā it is possible to show that P̄ (x) actually has
degree 2s̄ − 1 but, as mentioned in the introduction, that further analysis will be omitted here. 2

Lemma 5 tells us that (2) holds while Lemma 6 tells us that matrix A is annihilated by poly-
nomial P (x) of degree 2s̄ − 1. Combining them gives that T (n) satisfies a degree-(2s̄ − 1) constant
coefficient recurrence relation. In order to actually derive the recurrence relation, though, it is
necessary to calculate the αX,X′ , βX , T̄ and P as well as the first 2s̄ − 1 values of T (n) = β T̄ (n).
It is relatively straightforward (but omitted in this extended abstract) to see how to evaluate all of
these in O(s̄25s̄) time by evaluating O(22s̄) permanents of size 2s̄ and O(24s̄) of size s̄.

We just saw how to calculate the number of cycle-covers in constant-jump circulant graphs.
Reviewing the proof, everything followed directly as a consequence from the recursive decomposition
of circulant graphs in (3) combined with the structural properties of the decomposition given
in Lemma 1. But, as also derived in Section 2, non-constant jump circulants have exactly the
same structural properties, given in (5) and Lemma 2. Therefore, the entire proof developed
in Section 3 can be rewritten for non-constant jump circulants. The only difference is in the
degree of the recurrence relation for the number of cycle-covers. Reviewing the proof for the
constant-jump case we can see that the order of the recurrence relation is really 2|R

+(n)|+|R−(n)|

which worked out to 2s̄ − 1. In the non-constant case, from Lemma 2, we can calculate that
|R+(n)| + |R−(n)| = p(|s| + s+ + s−) + 2s so the order of the recurrence relation will then be
2p(|s|+s++s−)+2s. Note that in the constant jump case we had p = s = 0 so this collapses down to
2s++s− = 2s̄ which is what we had previously derived. For an example of such a recurrence relation,
see the second set of graphs in Table 1.
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Appendices

A Worked example for C
0,1,2
n

As discussed in the paper we have that T (n), the number of cycle covers in C0,1,2
n , satisfies

∀n ≥ 2s̄, T (n) = β T̄ (n) and T̄ (n + 1) = A T̄ (n)

where β = (βX)X∈P and A = (αX,X′)X,X′∈P .

For C0,1,2
n we have s+ = 2, s− = 0 so s̄ = s+ + s− = 2. Definition 9 then says that every X ∈ P

is in the form X = (LX
+ , LX

− , RX
+ , RX

− ) where LX
+ , RX

+ ∈ {0, 1}2 and LX
− , RX

− are empty. We can
therefore represent every X by a four-bit binary vector in which the first two bits represent LX

+

and the last two RX
+ ; there are 16 such X ∈ P. Ordering the X lexicographically we calculate

β =
(

1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1
)
,

T̄ (4) =
(

1 0 0 0 0 2 1 0 0 3 2 0 0 0 0 1
)t

(where the t denotes taking the transpose) and

A(X) =





1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




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As predicted by Lemma 6, A is partitioned into 16 4 × 4 blocks where all but the diagonal blocks
are 0 and all of the diagonal blocks are equal to some 4 × 4 matrix Ā which in this case is

Ā =





1 0 0 0
0 1 1 0
0 1 0 0
0 0 0 1





This means that Q(x) = det(Ix − Ā) = (x2 − x − 1)(x − 1)2 the characteristic polynomial of Ā,
annihilates A.

Working through the details we can then solve to find that C0,1,2
n = 2T (n− 1)− T (n− 3) with

initial values T (4) = 9, T (5) = 13, and T (6) = 12.

B Other Applications

In this appendix we quickly mention two other applications of the technique introduced in this
paper.

The first is in analyzing the number of cycles in certain classes of random restricted permu-
tations. Using the standard cycle-decomposition of a permutation there is 1-1 correspondence
between permutations π ∈ Sn and cycle-covers of the complete directed graph on n-vertices. For
given parameters p, s, pi, si and S as in Definition 4 define

Spn+s(S) = {π ∈ Spn+s : π[i] − i mod (pn + s) ∈ S} (9)

to be the set of permutations in which π[i] is restricted by (9). Now suppose that we pick a
permutation π uniformly at random from Spn+s(S) and set X = # of cycles in π. What can be
said about the distribution of X?

By the 1-1 correspondence between permutations and cycle-covers, π ∈ Spn+s(S) if and only if
the corresponding cycle-cover is in Cn. Thus, the number of such permutations satisfies |Spn+s(S)| =
T (n) where T (n) is the number of cycle-covers in Cn. Suppose now that for cycle cover T ∈ CC(n)
we define #C(T ) to be the number of cycles composing cover T and set

TCi(n) =
∑

T∈CC(n)

(#C(T ))i .

That is, TC0(n) = T (n) while TC1(n) is the total number of cycles summed over all cycle-covers
in Cn. Then, again by the correspondence, we have that the moments of X are given by

∀i ≥ 0, E(Xi) =
TCi(n)

TC0(n)
.

The interesting point is that the transfer matrix approach introduced in this paper can mechanically
be extended to counting the total number of cycles in the cycle-covers, to show that for every i,
TCi(n) satisfies a fixed-order constant coefficient recurrence relation. For given, p, s, p1, p2, . . . , pk

and s1, s2, . . . , sk this permits, for example, calculating E(X) and V ar(X).
As an illustration recall the results from Table 1 counting the number of cycle covers in C−1,0,1

n

and C0,1,2
n . Even though these two graphs are not isomorphic they had the same number of cycle-

covers because the adjacency matrix of the second is just the adjacency matrix of the first with
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every row (cyclicly) shifted over one step. Since permanents are invariant under cyclic shifts both
matrices have the same permanent which is ∼ φn where φ = (1 +

√
5)/2.

Using our technique we calculated TC1(n) for both cases with the results given in the table.

T1(n) = 3T (n − 1) − T1(n − 2) − 3T1(n − 3)

C−1,0,1
n +T1(n − 4) + T1(n − 5) T1(n) ∼ φ4

φ2+φ4 nφn T1(n)
T0(n) ∼ .7236n

initial values 22, 42, 80, 149, 274 ∼ .7236nφn

for n = 4, 5, 6, 7, 8

T1(n) = 3T (n − 1) − 6T1(n − 3) + 2T1(n − 4)

C0,1,2
n +4T1(n − 5) − T1(n − 6) − T1(n − 7) T1(n) ∼ φ2

φ2+φ4 nφn T1(n)
T0(n) ∼ .2764n

initial values 21, 32, 56, 93, 161, 275, 475 ∼ .2764nφn

for n = 4, 5, . . . , 10

In both cases we have that TC1(n) ∼ cnφn. This means that if a permutation on n items is

chosen at random from the corresponding distribution then, on average, it will have T1(n)
T0(n) ∼ cn

cycles. It is interesting to note that that c is different for the two cases.
The second application of the technique we note is that a minor modification permits using it

to show that the number of Hamiltonian Cycles in a directed circulant graph Cn also satisfies a
constant-coefficient recurrence relation in n. This fact was previously known for undirected circulant
graphs [9, 10] but doesn’t seem to have been known for directed circulants, with the exception of
the special case of in(out)-degree 2 circulants [20].
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