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Abstract

In this paper, we develop a method to count the number of span-

ning trees in certain classes of double fixed-step loop networks with non-

constant steps. More specifically our technique finds the number of span-

ning trees in ~Cp,q
n , the double fixed-step loop network with n vertices and

jumps of size p and q, when n = d1m, and q = d2m + p where d1, d2, p are

arbitrary parameters and m is a variable.

Key words: circulant digraph, spanning tree, Matrix Tree Theorem

1 Introduction

A directed circulant graph ~Cs1,s2,...,sk
n is a digraph on n vertices 0, 1, 2, . . .,

n − 1; for each vertex i (0 ≤ i ≤ n − 1), there are k arcs from i to vertices

i + s1, i + s2, . . . , i + sk (mod n). (Figure 1 illustrates ~C4,5
6 .) A double

fixed-step loop network is a directed circulant graph ~Cp,q
n in which each vertex

has exactly two arcs leaving it. This kind of network appears in the design and

analysis of local area networks, multi-module memory organizations and parallel

processing architectures [1, 6, 9]. Parameters of these graphs such as diameter

and average distance, which are closely related to the network bandwidth, have

been considered recently. For example, the case ~C1,n−1
n and the case ~C1,n−2

n , the

so called daisy-chain loop, were investigated by Liu [12]. Some generalizations

to infinite classes of double fixed-step loop networks with minimum diameter
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were explored by Erdös and Hsu [5]. More recent results can be found in [1, 6, 9]

and their references.
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Figure 1: The directed circulant graph ~C4,5
6 .

In this paper we address the question of counting the number of spanning

trees in such digraphs. A spanning tree in a digraph is a rooted tree with

directed paths from the root to all vertices. The number of spanning trees in

a digraph or graph is an important, well studied quantity [4]. This parameter

characterizes the reliability of networks. There is a classic result known as

the Matrix Tree Theorem [11], which expresses the number of spanning trees

T (G) of a graph G as a function of the determinant of a matrix that can be

easily constructed from G’s incidence matrix. However, in practice, counting

the spanning trees by calculating the determinant is infeasible for large graphs.

For this reason, researchers have paid much attention to developing techniques

or deriving formulas for analyzing the number of spanning trees. For some

special classes of graphs, it is possible to give explicit, simple formulae for the

number of trees. For example, if G is the complete graph Kn, then Cayley’s

tree formula [8] states that T (Kn) = nn−2. Other special cases can be found in

[3, 14, 17].

The asymptotic behavior of T
(

~C1,q
n

)

has been derived in [15]. A closed

formula for T (~C1,2
n ) was proved in [13] where it was also proved that T (~C1,2

n ) ≥

T (~Ck,l
n ) for any different positive integers k, l.

For fixed integers s1, s2, . . ., sk, 1 ≤ s1 < s2 < · · · < sk, it was proved in

[14] and [17] that T (~Cs1,s2,...,sk
n ) = nan, where an satisfies a linear recurrence

relation of order 2sk−1. This recurrence relation can be exactly derived by

using the Matrix Tree Theorem to calculate an = T (~Cs1,s2,...,sk
n )/n for n =

1, 2, 3, . . . , 2sk which gives the initial conditions and enough information to solve
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for the coefficients of the recurrence relation.

The technique is not applicable, though, when the jumps si vary with n. To

the best of our knowledge, only a few very special cases of such graphs, e.g., the

Möbius ladder [3], have been studied. Recently, Golin et al. [7] proved that,

when the jumps are linear in the graph size, the number of spanning trees (as

a function of the graph size) also satisfies a linear recurrence relation. Their

proof was an existence one, though. Constructing the recurrence relation based

on their existence proof would require calculating a very large number of initial

values and is thus infeasible except for a few simple cases. In this paper, we

will consider the number of spanning trees in a class of double fixed-step loop

networks with jumps linear in the graph size. More specifically, we will develop

a method for calculating T
(

~Cp,q
n

)

when n = d1m, and q = d2m + p where

d1, d2, p are arbitrary parameters and m is a variable. In the next section we

introduce our technique by developing all the necessary mathematical tools; in

Section 3 we illustrate the technique by deriving the following series of formulas:

T
(

~C1,m+1
2m

)

= m22m−1,

T
(

~C2,m+2
2m

)

=

{

m22m−1 if 2 ∤ m,

0 otherwise,

T
(

~C1,m+1
4m

)

= m(24m−1 + 23m−1 + 2
7m
2 cos

m− 2

4
π),

T
(

~C1,m+1
3m

)

= m(23m−1 + 2m−1 − 22m cos
m− 2

3
π),

T
(

~C1,2m+1
3m

)

= m(23m−1 + 2m−1 + 22m cos
m− 1

3
π),

T
(

~C2,m+2
3m

)

=

{

m(23m−1 + 2m−1 + 22m cos m−1
3 π) if 2 ∤ m,

0 otherwise.

T
(

~C2,2m+2
3m

)

=

{

m(23m−1 + 2m−1 − 22m cos m−2
3 π) if 2 ∤ m,

0 otherwise.

T
(

~C3,m+3
3m

)

= T
(

~C3,2m+3
3m

)

=

{

m(23m−1 + 2m−1 − 22m cos m
3 π) if 3 ∤ m,

0 otherwise.

We point out that the basis of our method is not the fact that our digraphs

are circulants but two consequences of the fact that they are circulants: (i) they

are regular digraphs and (ii) the jth eigenvalue of the digraph can be expressed

as f(εj), j = 1, 2, . . . n, where f(x) is a polynomial and ε = e
2πi
n [2]. Our

technique could be extended to other graph classes with these properties as well.
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We also point out that our technique is restricted to counting the number of

labeled spanning trees and can not count the number of non-isomorphic spanning

trees. This is because the Matrix Tree Theorem counts the number of labeled

spanning trees and our technique is an application of the Matrix Tree Theorem.

An interesting open question would be to develop a method for counting the

number of non-isomorphic spanning trees for these graph classes.

2 The Basic Idea

Our approach is based on the following result:

Lemma 1 (Zhang and Yong [16]) For any positive integers n, p and q

T
(

~Cp,q
n

)

=
n−1
∏

j=1

(2− εpj − εqj), (1)

where ε = e
2πi
n .

This lemma and similar ones are at the basis of most analyses of the number

of spanning trees of circulant graphs. They come from combining the Matrix

Tree Theorem with observations concerning the eigenvalues of the adjacency

matrices of circulant graphs; see e.g., [17] for more details. While the lemma

does provide a formula for T
(

~Cp,q
n

)

it is not a particularly useful one. The

rest of this paper will be devoted to transforming (1) into something more

interesting.

Lemma 2 Let n, p and q be any positive integers and ε = e
2πi
n . Define δ1, δ2,

. . ., δn so that

f(x) =
n
∏

j=1

(x− εpj − εjq) = xn − δ1x
n−1 + δ2x

n−2 − · · ·+ (−1)nδn.

Then

T
(

~Cp,q
n

)

= f ′(2) = n2n−1 +

n−1
∑

j=1

(−1)jδj(n− j)2n−j−1. (2)

Proof. Note that f(2) = 0, and from Lemma 1 we know

T (~Cp,q
n ) =

n−1
∏

j=1

(2− εpj − εqj)
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= lim
x→2

n−1
∏

j=1

(x− εpj − εqj)

= lim
x→2

f(x)

x− 2
= lim

x→2

f(x)− f(2)

x− 2
= f ′(2).

2

To find T
(

~Cp,q
n

)

our approach will therefore be to find δ1, δ2, . . ., δn−1 and

substitute them into (2). Our main tool in calculating the δi will be Newton’s

formulae [10] which states the following:

• Let x1, x2, . . ., xn be arbitrary values.

• Let δ1, δ2, . . ., δn be the coefficients of

f(x) = (x− x1)(x− x2) · · · (x− xn) = xn − δ1x
n−1 + · · ·+ (−1)nδn.

• For i = 1, 2, . . . , n, define Si = xi
1 + xi

2 + · · ·+ xi
n.

• Then Newton’s formulae are, for i = 1, 2, . . . , n:

Si − δ1Si−1 + δ2Si−2 + · · ·+ (−1)i−1δi−1S1 + (−1)iiδi = 0. (3)

More specifically, Newton’s formulae permit us to derive the δi through

knowledge of the Si. Note that the roots of f(x) in Lemma 2 are (εkp+εkq), k =

1, 2, . . . , n. In the following lemma and the sequel we use Cj
n to denote

(

n

j

)

.

Lemma 3 Let

Si =
n
∑

k=1

(εkp + εkq)i, i = 1, 2, . . . , n,

where ε = e
2πi
n . Then, for 1 ≤ i ≤ n :

Si = n
∑

0≤j≤i

pi+(q−p)j=0 ( mod n)

Cj
i .

Proof. For 1 ≤ i ≤ n

Si =
n
∑

k=1

(εkp + εkq)i

=
n
∑

k=1

i
∑

j=0

Cj
i ε

kpi+k(q−p)j
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=

i
∑

j=0

Cj
i (1 + εpi+(q−p)j + ε2(pi+(q−p)j) + · · ·+ ε(n−1)(pi+(q−p)j))

= n
∑

0≤j≤i

pi+(q−p)j=0 ( mod n)

Cj
i .

2

In the most general case of arbitrary n, p, q this lemma does not help us much

since the sums involved are quite complicated. However, in the particular cases

in which q = d2m + p, n = d1m where p and d2 < d1 are fixed and m grows,

we can greatly simplify this sum, as shown in the next corollary:

Corollary 1 Let p, d1 and d2 with d2 < d1 be fixed, n = d1m, and q = d2m+p.

Set

Si =
n
∑

k=1

(εkp + εkq)i, i = 1, 2, . . . , n,

where ε = e
2πi
n . Further define

α = gcd(p, m), p′ = p/α,

β = gcd(d1, d2),

γ = gcd(β, p′), p′′ = p′/γ,

d′1 = d1/β,

d′2 = d2/β

and let d̄′2 be such that d′2d̄
′
2 ≡ 1 (mod d′1). Then

Si =

{

0 if β
γαm ∤ i,

n
∑⌊(i−x)/d′1⌋

t=0 C
x+td′1
i if i = ℓ β

γαm, ℓ = 1, 2, . . . , d1αγ
β ,

(4)

where x =
(

−ℓp′′d̄′2
)

mod d′1.

Proof. Recall from Lemma 3 that Si = n
∑

0≤j≤i

pi+(q−p)j=0 ( mod n)
Cj

i . In what

follows we examine, for fixed i, which j satisfy the condition

pi + (q − p)j ≡ 0 (mod n). (5)

Relation (5) is equivalent to

pi + d2mj ≡ 0 (mod d1m)
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which can only be satisfied if m|pi or, since α = gcd(m, p), if m
α |i. We may

therefore assume that i = ℓm
α , ℓ = 1, 2, . . . , αd1. Then

(5) is satisfied ⇐⇒ ℓ
m

α
p + d2mj ≡ 0 (mod md1)

⇐⇒ ℓp′ + d2j ≡ 0 (mod d1)

⇐⇒ d2j ≡ (−ℓp′) (mod d1).

Since β = gcd(d1, d2), if β ∤ ℓp′ this last condition can not be satisfied so, if

Si 6= 0, then β|ℓp′ or β
γ |ℓ

p′

γ . Since γ = gcd(β, p′), we may assume that ℓ = β
γ ℓ′

for some integer ℓ′. This in turn implies that

i = ℓ
m

α
= ℓ′

β

γ

m

α

and

(5) is satisfied ⇐⇒ d2j ≡ (−ℓp′) (mod d1)

⇐⇒ d2j ≡

(

−ℓ′β
p′

γ

)

(mod d1)

⇐⇒ d′2j ≡ (−ℓ′p′′) (mod d′1)

⇐⇒ j ≡ (−ℓ′p′′)d̄′2 (mod d′1)

from which (4) follows. 2

We now note that even though we proved the corollary in full generality,

in our spanning tree application we will not need this full generality. More

specifically, we have the following result:

Lemma 4 If gcd(p, q, n) > 1 then

T
(

~Cp,q
n

)

= 0. (6)

In particular, given p, d1, d2, let α = gcd(p, m) and δ = gcd(d1, d2, p). Then, if

either α > 1 or δ > 1,

T
(

~Cp,d2m+p
d1m

)

= 0.

Proof. To prove (6) note that if gcd(n, p, q) > 1 and (u, v) is an arc in ~Cp,q
n

then u ≡ v (mod gcd(n, p, q)). This implies that if u′, v′ are any two vertices

in ~Cp,q
n and there is a path from u′ to v′ then u′ ≡ v′ (mod gcd(n, p, q)). This

in turn implies that there is no one vertex in ~Cp,q
n from which it is possible to

reach all of the vertices so ~Cp,q
n does not contain any spanning tree.
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(An alternative proof would be to note that, setting j = n
gcd(n,p,q) would

give εjp = εjq = 1 so (2 − εjp − εjq) = 0 and, from (1), T
(

~Cp,q
n

)

=
∏n−1

j=1 (2 −

εpj − εqj) = 0.)

To prove the second part of the lemma simply note that if either α > 1 or

δ > 1 then gcd(p, d2m + p, d1m) > 1. 2

In the sequel we may therefore assume that (i) α = gcd(p, m) = 1 so p′ =

p/α = p and therefore (ii) γ = gcd(β, p′) = gcd(d1, d2, p) = 1 as well. This then

implies p′′ = p′/γ = pγ = p. We will use this fact later in Section 3.

Returning to the corollary we observe from (4) that all of the Si are 0 except

for those that are some multiple of β
αm = βm. We make a further observation.

Lemma 5 Given x1, x2, . . . , xn, let δ1, δ2, . . . , δn be defined by

f(x) = (x− x1)(x− x2) · · · (x− xn) = xn − δ1x
n−1 + · · ·+ (−1)nδn.

For i = 1, 2, . . . , n, set Si = xi
1 + xi

2 + · · · + xi
n. If there exists an integer v

such that

∀i, 1 ≤ i ≤ n, if v ∤ i then Si = 0,

then

∀i, 1 ≤ i ≤ n, if v ∤ i then δi = 0.

Proof. We assume that v > 1 since otherwise the lemma is trivially correct.

Now assume that if v ∤ i then Si = 0. We prove by induction on i that if v ∤ i

then δi = 0.

Note that we can rewrite Newton’s formulae (3) as

δi =
(−1)i+1

i

(

Si +
i−1
∑

t=1

(−1)tδtSi−t

)

. (7)

For i = 1, δ1 = S1 = 0. Suppose now that δj = 0 for all j < i such that v ∤ j.

If v ∤ i then, ∀t < i, at least one of v ∤ t or v ∤ (i− t) is true so δtSi−t = 0 and,

since Si = 0 we have from (7) that δi = 0. 2

Now (recalling from the comment following Lemma 4 that α = 1) set v =
β
γ m = βm. From Corollary 1 we know that if v ∤ i then Si = 0. Lemma 5 then

implies that if v ∤ i then δi = 0. To solve for δi when v|i we can rewrite Newton’s

formulae, simplifying by discarding all zero terms to get

0 = Sv + (−1)vvδv

0 = S2v + (−1)vδvSv + (−1)2v2vδ2v
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0 = S3v + (−1)vδvS2v + (−1)2vδ2vSv + (−1)3v3vδ3v

...
...

...

0 = S(d−1)v + (−1)vδvS(d−2)v + · · ·+ (−1)(d−2)vδ(d−2)vSv + (−1)(d−1)v(d− 1)vδ(d−1)v

0 = Sdv + (−1)vδvS(d−1)v + · · ·+ (−1)(d−1)vδ(d−1)vSv + (−1)dvdvδdv,

where d = d1α
β = d1

β = d′1. Now for i = 1, 2, . . . , d set Yi(v) = Siv to be the known

functions and Xi(v) = δiv to be the functions for which we want to solve. The

system above then becomes

−Y1(v) = (−1)vvX1(v)

−Y2(v) = (−1)vX1(v)Y1(v) + (−1)2v2vX2(v)

−Y3(v) = (−1)vX1(v)Y2(v) + (−1)2vX2(v)Y1(v) + (−1)3v3vX3(v)

...
...

... (8)

−Y(d−1)(v) = (−1)vX1(v)Y(d−2)(v) + · · ·+ (−1)(d−1)v(d− 1)vX(d−1)(v)

−Yd(v) = (−1)vX1(v)Y(d−1)(v) + · · ·+ (−1)(d−1)vX(d−1)vY1(v) + (−1)dvdvXd(v),

which is non-singular and can therefore be solved for Xi(v) in terms of the Yi(v).

In the next section we see examples of this technique.

As pointed out in the comments after Lemma 2 we do not need to know

δn = Xd(v) to calculate T
(

~Cp,q
n

)

so we actually only need to solve for the d−1

functions Xi(v) = δiv, i = 1, 2, . . . , d− 1 and not all the d functions.

Before proceeding to calculate T
(

~Cp,q
n

)

we note that the expression for

Yi(v) = Siv given in equation (4) of Corollary 1 is in the form of a sum of

binomial coefficients of an arithmetic series. While this looks unwieldy we will

actually be able to use the following useful lemma to derive a closed form for

the sums.

Lemma 6 Let n ≥ 0 and let j, d satisfy 0 ≤ j ≤ d− 1. Then

Cj
n + Cd+j

n + C2d+j
n + · · ·+ C

⌊n−j

d
⌋d+j

n =
2n

d

d−1
∑

k=0

cosn k

d
π cos

k(n− 2j)

d
π.

Proof. Let ω = e
2πi
d . So ω is the dth root of unity and

d−1
∑

j=0

(ωk)j =

{

d k = 0 (mod d),

0 otherwise.

For each k, 0 ≤ k ≤ d − 1, multiply both sides of the following identity by

ωk(d−j):
n
∑

l=0

C l
n(ωk)l = (1 + ωk)n.
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Summing up the d identities for k = 0, 1, . . . , d− 1 yields

d

(

Cj
n + Cd+j

n + C2d+j
n + · · ·+ C

⌊n−j

d
⌋d+j

n

)

=
d−1
∑

k=0

ωk(d−j)(1 + ωk)n. (9)

Since

d−1
∑

k=0

ωk(d−j)(1 + ωk)n =
d−1
∑

k=0

e
2k(d−j)πi

d (1 + e
2kπi

d )n

=
d−1
∑

k=0

e
2k(d−j)πi

d (2 cos
k

d
πe

kπi
d )n

= 2n
d−1
∑

k=0

cosn k

d
πe

k(n−2j)πi

d ,

taking the real part of (9) proves the lemma. 2

3 The Technique and Examples

In this section we use the facts developed in the previous section to derive

formulas for T
(

~Cp,q
n

)

as a function of m when n = d1m and q = d2m + p.

Recall that from Lemma 4, we may assume that both α = gcd(p, m) = 1 and

γ = gcd(d1, d2, p) = 1 since, if not, T
(

~Cp,d2m+p
d1m

)

= 0. Furthermore, from

the comments following the lemma, we may also assume that p′′ = p′/γ =

(p/α) /γ = p.

3.1 The Technique

Gathering together all of the facts from the previous section yields the following

four step technique.

1. Calculate β = gcd(d1, d2), d′1 = d1/β, d′2 = d2/β and d̄′2 such that d′2d̄
′
2 ≡

1 (mod d′1).

2. Set v = mβ. For ℓ = 1, 2, . . . , d′1 − 1 use Corollary 1 and Lemma 6 to

calculate

Yℓ(v) = Sℓv

= n

⌊(ℓv−xℓ)/d′1⌋
∑

t=0

C
xℓ+td′1
ℓv (10)
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= n
2ℓv

d′1

d′1−1
∑

k=0

(

cosℓ k

d′1
π

)v

cos
k(ℓv − 2xℓ)

d′1
π

= v2ℓv

d′1−1
∑

k=0

(

cos
k

d′1
π

)ℓv

cos
k(ℓv − 2xℓ)

d′1
π,

where xℓ = (−ℓp′′d̄′2) mod d′1 = (−ℓpd̄′2) mod d′1.

3. Use (8) to solve for δℓv = Xℓ(v), ℓ = 1, 2, . . . , d′1 − 1.

4. Substitute the derived δℓv values into (2) and use the fact that if v ∤ i then

δi = 0 to derive

T
(

~Cp,q
n

)

= f ′(2) = n2n−1 +

d′1−1
∑

ℓ=1

(−1)ℓβm(n− ℓβm)δℓβm2n−ℓβm−1. (11)

We also make two observations that can reduce the number of cases that

need to be examined. The first is simply that if β = gcd(d1, d2), d′1 = d1/β

and d′2 = d2/β, then setting g(m) = T
(

~C
p,d′2m+p

d′1m

)

and h(m) = T
(

~Cp,d2m+p
d1m

)

gives h(m) = g(βm). Since, in our technique, solving for both g(m) and h(m)

involve the ‘same amount of work’, i.e., solving for d′− 1 unknowns from d′− 1

equations, we might as well solve for g(m). For example, instead of solving for

T
(

~C1,4m+1
6m

)

we can solve for T
(

~C1,2m+1
3m

)

.

The second more interesting observation is stated next.

Lemma 7 Let β = gcd(d1, d2), d′1 = d1/β and d′2 = d2/β. If p1 ≡ p2 (mod d′1),

gcd(p1, m) = gcd(p2, m) = 1, and gcd(β, p1) = gcd(β, p2) = 1, then

T
(

~Cp1,d2m+p1

d1m

)

= T
(

~Cp2,d2m+p2

d1m

)

.

Proof. Examining our technique for deriving T
(

~Cp,d2m+p
d1m

)

we note that the

only place in which p is used is in the definition of xℓ = (−ℓpd̄′2) (mod d′1)

in Step 2. This value is the same for all ℓ if p1 ≡ p2 (mod d′1) so the proof

follows. The reason for the requirement that gcd(p1, m) = gcd(p2, m) = 1 is

that in Step 2 we were explicitly using the fact that gcd(p, m) = 1 to force

p′′ = p. As seen before, if gcd(p, m) 6= 1 then the graph has no spanning trees

so this is not an interesting case. 2

As an example this lemma would imply that

if 2 ∤ m then T
(

~C1,2m+1
3m

)

= T
(

~C4,2m+4
3m

)

,

if 2 ∤ m and 5 ∤ m then T
(

~C2,2m+2
3m

)

= T
(

~C5,2m+5
3m

)

,

for all m T
(

~C3,2m+3
3m

)

= T
(

~C6,2m+6
3m

)

.
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Note that if 2|m then T
(

~C4,2m+4
3m

)

= 0, T
(

~C2,2m+2
3m

)

= 0 and T
(

~C6,2m+6
3m

)

=

0; if 5|m then T
(

~C5,2m+5
3m

)

= 0; while if 3|m then T
(

~C3,2m+3
3m

)

= T
(

~C6,2m+6
3m

)

=

0.

3.2 Examples

We illustrate this technique by first evaluating the simplest case.

Example 1: T
(

~C1,m+1
2m

)

.

In this case p = d2 = 1, d1 = 2 so β = 1, v = m and d′
1 = d1/β = 2.

Since d′
1 = 2 we only need to find δv = X1(v). Note that d̄′

2 = d′
2 = 1 so

x1 = (−1) mod 2 = 1. Substituting into (10) gives

Y1(v) = Sm = 2m

⌊m−1
2

⌋
∑

t=0

C2t+1
m = 2m2m−1. (12)

The system of equations (8) in this case is only the one equation

−Y1(v) = (−1)vvX1(v)

or

−2m2m−1 = −Y1(v) = (−1)vvX1(v) = (−1)mmδm,

so

δm = (−1)m+12m.

Substituting into (11) yields

T
(

~C1,m+1
2m

)

= (2m)22m−1 + (−1)mmδm2m−1 = m22m−1. (13)

Example 2: T
(

~C2,m+2
2m

)

.

In this case p = d1 = 2, d2 = 1, β = 1 so v = m, d′
1 = d1/β = 2.

The major difference in this case is that we must note that if α =

gcd(m, p) 6= 1, i.e., m is even, then T
(

~C2,m+2
2m

)

= 0. So, for the rest of the

derivation we assume that m is odd.
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Since d′
1 = 2 we only need to find δv = X1(v). Note that d̄′

2 = d′
2 = 1

so x1 = (−1 · 2) mod 2 = 0. Substituting into (10) gives

Y1(v) = Sm = 2m

⌊m
2
⌋

∑

t=0

C2t
m = 2m2m−1.

Y1(v) = 2m2m−1 is exactly the same as (12) so following the same

derivation as in (12)-(13) we find, that if m is odd then

T
(

~C2,m+2
2m

)

= (2m)22m−1 + (−1)mmδm2m−1 = m22m−1.

Thus

T
(

~C2,m+2
2m

)

=

{

m22m−1 if m is odd,

0 if m is even.

Example 3: T
(

~C1,m+1
4m

)

.

In this case p = d2 = 1, d1 = 4, β = 1 so v = m, d′
1 = d1/β = 4. We

therefore only need to derive the three functions δℓv = Xℓ(v), ℓ = 1, 2, 3.

As before d̄′
2 = d′

2 = 1. We therefore find x1 = 3, x2 = 2, x3 = 1.

Substituting into (10) yields

Y1(v) = v(2v + 2
v
2
+1 cos

v − 6

4
π),

Y2(v) = v(22v + 2v+1 cos
v − 2

2
π),

Y3(v) = v(23v + 2
3v
2

+1 cos
3v − 2

4
π).

The system of equations (8) in this case is

−Y1(v) = (−1)vvX1(v)

−Y2(v) = (−1)vX1(v)Y1(v) + (−1)2v2vX2(v)

−Y3(v) = (−1)vX1(v)Y2(v) + (−1)2vX2(v)Y1(v) + (−1)3v3vX3(v),

and solving for Xℓ(v) yields

X1(v) = (−1)v(−2v + 2
v
2
+1 cos

v − 2

4
π),

X2(v) = (−1)2v(2v − 2
3v
2

+1 cos
v − 2

4
π),

X3(v) = (−1)3v(−22v).
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Equation (11) states

T
(

~C1,m+1
4m

)

= 4m24m−1+(−1)m3mδm23m−1+(−1)2m2mδ2m22m−1+(−1)3mmδ3m2m−1.

Substituting in the values δℓm = Xℓ(m) and simplifying yields

T
(

~C1,m+1
4m

)

= m

(

24m−1 + 23m−1 + 2
7m
2 cos

m− 2

4
π

)

.

Example 4: T
(

~Cp,d2m+p
3m

)

where 1 ≤ p ≤ 3, 1 ≤ d2 ≤ 2.

We will first work through the six different (p, d) cases, stating our

results and showing that there are actually only three distinct cases (with

the remaining three being isomorphic to the others except, possibly, when

they are equal to 0). We will then derive the formulas for the three distinct

cases at the end of the section.

(i) T
(

~C1,m+1
3m

)

.

T
(

~C1,m+1
3m

)

= m(23m−1 + 2m−1 − 22m cos
m− 2

3
π).

(ii) T
(

~C1,2m+1
3m

)

.

T
(

~C1,2m+1
3m

)

= m(23m−1 + 2m−1 + 22m cos
m− 1

3
π).

(iii) T
(

~C3,2m+3
3m

)

.

T
(

~C3,2m+3
3m

)

=

{

m(23m−1 + 2m−1 − 22m cos m
3
π) if 3 ∤ m,

0 otherwise.

(iv) T
(

~C2,m+2
3m

)

.

When m is even T
(

~C2,m+2
3m

)

= 0.

When m is odd ~C2,m+2
3m is isomorphic to ~C1,2m+1

3m . More explicitly,

~C1,2m+1
3m ⇐⇒ ~C2,m+2

3m

with the trivial vertex mapping i←→ 2i. Therefore

T
(

~C2,m+2
3m

)

=

{

m(23m−1 + 2m−1 + 22m cos m−1
3

π) if 2 ∤ m,

0 otherwise.
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(v) T
(

~C2,2m+2
3m

)

.

When m is even T
(

~C2,2m+2
3m

)

= 0.

When m is odd ~C2,2m+2
3m is isomorphic to ~C1,m+1

3m using the mapping

~C1,m+1
3m ⇐⇒ ~C2,2m+2

3m

with the same trivial vertex mapping i←→ 2i.

Therefore

T
(

~C2,2m+2
3m

)

=

{

m(23m−1 + 2m−1 − 22m cos m−2
3

π) if 2 ∤ m,

0 otherwise.

(vi) T
(

~C3,m+3
3m

)

.

If 3|m then T
(

~C3,m+3
3m

)

= 0. If 3 ∤ m then ~C3,m+3
3m is isomorphic to ~C3,2m+3

3m .

To see this note that if 3 ∤ m then gcd(3m,m + 3) = 1 so there exists

x < 3m such that x(m + 3) ≡ 1 (mod 3m). We can then define the

isomorphism

~C3,m+3
3m ⇐⇒ ~C3,2m+3

3m

using the vertex mapping i←→ ix(2m+3). To see this is an isomorphism

let

f(i) = ix(2m + 3) (mod 3m)

= ix(m + 3 + m) (mod 3m)

= i (1 + xm) (mod 3m).

Then

f(i + 3) = (i + 3) (1 + xm) (mod 3m)

= f(i) + 3 (mod 3m)

and

f(i + m + 3) = (i + m + 3)x(2m + 3) (mod 3m)

= ix(2m + 3) + (m + 3)x(2m + 3) (mod 3m)

= f(i) + 2m + 3 (mod 3m).

So, if (i, i+3) ∈ ~C3,m+3
3m then (f(i), f(i+3)) ∈ ~C3,2m+3

3m and if (i, i+m+3) ∈

~C3,m+3
3m , then (f(i), f(i+m+3)) ∈ ~C3,2m+3

3m . Since f(i) is a one-one function

from [0, 3m− 1] into itself we have exhibited an isomorphism.
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Note that if 3|m, then T
(

~C3,2m+3
3m

)

= 0. We have thus proved

T
(

~C3,m+3
3m

)

= T
(

~C3,2m+3
3m

)

=

{

m(23m−1 + 2m−1 − 22m cos m
3
π) if 3 ∤ m,

0 otherwise.

Derivations of (i), (ii), (iii), (iv), (v), (vi)

In (a), (b), and (c) below we derive the formulas for the numbers of

spanning trees in the above six graphs to verify the validity of our claim.

(a) T
(

~C2,2m+2
3m

)

and T
(

~C1,m+1
3m

)

. ((i) and (v))

We already saw that when m is even T
(

~C2,2m+2
3m

)

= 0. We also saw

that when m is odd ~C2,2m+2
3m is isomorphic to ~C1,m+1

3m . We therefore only

have to evaluate the number of spanning trees for ~C1,m+1
3m .

In this case p = 1, d1 = 3, d2 = 1, β = 1 so v = m, d′
1 = d1/β = 3.

We only need to derive the two functions δℓv = Xℓ(v), ℓ = 1, 2. Now

d′
2 = d2/β = 1, d̄′

2 = 2. We therefore find x1 = 1, x2 = 2. Substituting

into (10) yields

Y1(v) = v(2v + 2 cos
v − 2

3
π),

Y2(v) = v(22v + 2(−1)v cos
v − 2

3
π).

The system of equations (8) in this case is

−Y1(v) = (−1)vvX1(v),

−Y2(v) = (−1)vX1(v)Y1(v) + (−1)2v2vX2(v)

and solving for Xℓ(v) yields

X1(v) = −(−1)v(2v + 2 cos
v − 2

3
π),

X2(v) = (2v+1 − (−1)v) cos
v − 2

3
π + 2 cos2 v − 2

3
π.

Equation (11) states

T
(

~C1,m+1
3m

)

= 3m23m−1 + (−1)m2mδm22m−1 + (−1)2mmδ2m2m−1.
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Substituting in the values δℓm = Xℓ(m) and simplifying yields

T
(

~C1,m+1
3m

)

= m

(

23m−1 + 2m−1 − 22m cos
m− 2

3
π

)

,

proving (i) and (v).

(b ) T
(

~C1,2m+1
3m

)

and T
(

~C2,m+2
3m

)

((ii) and (iv))

We already saw that when m is even T
(

~C2,m+2
3m

)

= 0 and, when m is

odd, ~C2,m+2
3m is isomorphic to ~C1,2m+1

3m . We therefore only have to calculate

the number of spanning trees in ~C1,2m+1
3m . In this case p = 1, d1 = 3,

d2 = 2, β = 1 so v = m, d′
1 = d1/β = 3. We therefore only need to derive

the two functions δℓv = Xℓ(v), ℓ = 1, 2. Now d′
2 = d2/β = 2, d̄′

2 = d′
2 = 2.

We find x1 = 2, x2 = 1. Substituting into (10) yields

Y1(v) = v(2v + 2 cos
v − 4

3
π),

Y2(v) = v(22v + 2(−1)v cos
v − 4

3
π).

The system of equations (8) in this case is again

−Y1(v) = (−1)vvX1(v),

−Y2(v) = (−1)vX1(v)Y1(v) + (−1)2v2vX2(v)

and solving for Xℓ(v) yields

X1(v) = −(−1)v(2v + 2 cos
v − 4

3
π),

X2(v) = (2v+1 − (−1)v) cos
v − 4

3
π + 2 cos2 v − 4

3
π.

Equation (11) states

T
(

~C1,2m+1
3m

)

= 3m23m−1 + (−1)m2mδm22m−1 + (−1)2mmδ2m2m−1.

Substituting in the values δℓm = Xℓ(m) and simplifying yields

T
(

~C1,2m+1
3m

)

= m

(

23m−1 + 2m−1 − 22m cos
m− 4

3
π

)

= m

(

23m−1 + 2m−1 + 22m cos
m− 1

3
π

)
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where the last equality comes from the fact cos(x − π) = − cos x. This

proves (ii) and (iv).

(c ) T
(

~C3,2m+3
3m

)

and T
(

~C3,m+3
3m

)

((iii) and (vi))

We already saw that when 3|m both graphs have no spanning trees and

when 3 ∤ m the two graphs are isomorphic. We therefore only consider

T
(

~C3,2m+3
3m

)

. In this case p = 3, d1 = 3, d2 = 2, β = 1 so v = m,

d′
1 = d1/β = 3. We therefore only need to derive the two functions

δℓv = Xℓ(v), ℓ = 1, 2. Now d′
2 = d2/β = 2, d̄′

2 = d′
2 = 2. We find

x1 = 0, x2 = 0. Substituting into (10) yields

Y1(v) = v(2v + 2 cos
v

3
π),

Y2(v) = v(22v + 2(−1)v cos
v

3
π)

The system of equations (8) in this case is yet again

−Y1(v) = (−1)vvX1(v),

−Y2(v) = (−1)vX1(v)Y1(v) + (−1)2v2vX2(v)

and solving for Xℓ(v) yields

X1(v) = −(−1)v(2v + 2 cos
v

3
π),

X2(v) = (2v+1 − (−1)v) cos
v

3
π + 2 cos2 v

3
π.

Equation (11) states

T
(

~C3,2m+3
3m

)

= 3m23m−1 + (−1)m2mδm22m−1 + (−1)2mmδ2m2m−1.

Substituting in the values δℓm = Xℓ(m) and simplifying yields (if 3 ∤ m)

T
(

~C3,2m+3
3m

)

= m
(

23m−1 + 2m−1 − 22m cos
m

3
π
)

,

proving (iii) and (vi).
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