Algorithms for Infinite Huffman-Codes*
(Extended Abstract)

Mordecai J. Golin
Dept. of Computer Science
Hong Kong U.S.T.
golin@cs.ust.hk

Abstract

Optimal (minimum cost) binary prefix-free codes for in-
finite sources with geometrically distributed frequencies,
eg., P = {p'(1 —p)}2y, 0 < p < 1, were first (im-
plicitly) suggested by Golomb over thirty years ago in
the context of run-length encodings. Ten years later
Gallager and Van Voorhis exhibited such optimal codes
for all values of p. Just recently Merhav, Seroussi and
Weinberger extended this further to find optimal binary
prefix-free codes for two-sided geometric distributions.

These codes were derived by cleverly “guessing”
optimal codes for finite sources, validating these guesses
by using the sibling property of Huffman encoding, and
then showing that the finite codes converge in a very
specific sense to an optimal infinite one.

In this paper we describe the first algorithmic
approach to constructing optimal prefix-free infinite
codes. Our approach is to define an infinite weighted
graph with the property that the least cost infinite path
in the graph corresponds to the optimal code. We then
show that even though the graph is infinite, the least-
cost infinite path has a repetitive structure and that it
is therefore possible to not only find this path but to
find it relatively efficiently.

This approach will work for even more compli-
cated generalizations of geometric sources where so-
lutions can’t be guessed as well as in extensions of
Huffman-coding for which the Huffman algorithm no
longer works, e.g., non-uniform cost encoding alphabet
characters and/or other restrictions on the codewords.
We illustrate our approach by deriving an algorithm for
constructing optimal prefix free codes with a geomet-
ric source for the telegraph channel. We also implement
our algorithm and show what the constructed codes look
like in this case.
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1 Introduction

In this paper we present the first algorithmic approach
to constructing minimal-cost prefix codes for (general-
ized) geometric distributions.

Due to space considerations we do mnot develop the
approach in its full gemerality. Instead, we illustrate the
technique by developing an algorithm that works for one
variant of Huffman coding and then sketch how this can be
modified to work for many other variants. Some proofs are
also omitted.

1.1 Background Consider a distribution®
P=1{p}i%,

on a set of n letters. The Huffman Encoding problem is
to associate a prefix-free set of n binary words {w; }7-, C
{0,1}* with P such that the expected word length
St o pi - length(w;) is minimized, where length(w;) is
the number of bits in w;, e.g., length(0110) = 4. A
prefiz-free set is one in which Vi # j, w; is not a prefix
of w;j.

It is well known that finding such a code is equiv-
alent to finding a tree with n leaves such that, when [;
is the length of the i-th highest leaf in the tree, then
the expected external path length Y ;" ;p;l; (achieved
by placing the i-th letter (p;) at the i-th highest leaf) is
minimized. Such a tree may easily be found using the
well-known Huffman Encoding Algorithm [13].

Suppose now that the situation is modified slightly
to permit infinite sources, i.e.,

P = {pi}iZo

In this case the problem of finding a prefix-free code,
or equivalently, an infinite tree labelled with the p;,
with minimum weighted external path length, is not

Po=P1L=2P2= - 2 Pt

Po=>Pp1L=>p2 >

TFor this paper a distribution is a sequence such that, Vi, p; > 0

and ), p; < oco. We do not require ), p; = 1.



nearly as well understood. It was proven? in [17]
that optimal trees (codes) exist if and only if the
entropy — >, pilogp;, of P is bounded but there is
no algorithm for constructing optimal codes that works
for all such P with bounded entropy. The reason that
the basic Huffman algorithm can not be modified to
work in such a case is that the Huffman algorithm
starts by identifying the two smallest probabilities in
the distribution and merging them; in the infinite source
case, there is no smallest probability.

Certain restricted cases of the infinite source prob-
lem are better understood, though. The best known
and earliest such case studied is that of the infinite bi-
nary codes (e.g., using only 0-s and 1-s) for the infinite
geometric source. This is the source that fixes some p,
0 < p < 1, and then defines P, = {(1—p)p*}2,. As was
noted by Golomb [11], such a source arises, for exam-
ple, in the description of run-length encoding. Suppose
we have a string of As and Bs in which each character
occurs independently of every other one; Bs occurring
with probability p and As with probability 1 — p. Now,
fori=0,1,2,...set X; = BB... BB A. FEvery infinite

%./_/
¢ times
string can be written uniquely as the concatenation of
different X;s with the probability of X; occurring being
(1 —p)p’. We thus have a situation in which strings are
composed of words from an infinite source with given
distribution P,. Other problems that can be recast as
finding a min-cost infinite tree with distribution P, arise
in operations research [12] and group testing [14] [19].

This special case of P = P, was studied by Gallager
and Van Voorhis [6] who exhibited an optimal tree for
every p. Their technique was to first define a countable
sequence of finite sources 7319 , P;,’PZ%, PS ,... that were
better and better approximations to P,. They then
“guessed” the structure of the optimum Huffman code
for these sources, verified the correctness of their guess
by using the “sibling” property® of Huffman trees, and
then showed that these codes “converge” to an infinite
tree that is optimal for the infinite source. Their result
can be stated as:

Zsince the set of codes is infinite, existence of an optimal code

is not a-priori obvious.

3Let T be a binary tree with n leaves labelled with the n
probabilities, p1,...,pn. The weight of a leaf will be its assigned
probability; the weight of an internal node is recursively defined to
be the sum of the weights of its children. T has the sibling property
if the weights of its nodes, read left to right, top to bottom, are
nonincreasing. The essential observation is that a tree with the
sibling property can be produced by the Huffman algorithm and
therefore represents an optimal code. The subtle point is that the
sibling property does not construct optimal codes; it verifies that
guessed codes are optimal.

THEOREM 1. (Gallager and Van Voorhis [6]) Given p,
let m be the unique integer that satisfies

pm +pvrz+1 S 1 < pm _i_pm—l.

Let a tree T be described as a sequence I;, i =

0,1,2,3,... where I; is the number of internal nodes on
level i. Then the tree described by

Io, I, 12, I3, . ...
(1.1) =1,2,4,...,2U005m mom m, ...

is optimal for P,.

If we use M,, to denote the mth such tree then Figure
1 contains the tops of Mi, My, Msz, M, and Ms.
For later reference we point out that if ¢, is the
unique real root of 1 — p™ — p™~1 = 0 in (0,1) then
{qm }°_; monotonically increases and converges to 1.
Another way of viewing the theorem is that the intervals
(@ms @m+1)5°—1 partition (0,1) into a countable set of
intervals and that Vp € (¢m—1,Gm ), the optimal tree for
Pp is My,

These optimal codes (trees) were later shown to
be the unique optimal codes for the given sources in
[8]. Gallager and Van Voorhis’ basic technique was
later expanded upon and extended by [1] and [16] who
showed that it could be applied to other families of
infinite sources to show the existence of the optimal
trees. [1] also showed how to extend the theorem to
cover the ternary case in which every parent can have
three children rather than two. This work was recently
pushed even further by [18] who constructed optimal
codes for two-sided geometric distributions (which have
become useful in lossless image compression schemes).
These are distributions P, q consisting of the infinite
sequence

poa=pT x=0,+1, £2, £3,...
where 0 < p < 1 and d € R is fixed?. They showed
that the real (p, d) plane can be subdivided into regions
such that, in each region, all of the P, 4 have the same
optimal tree. A comprehensive survey of the latest
results may be found in [2].

All of these results (except for [8] which was proving
uniqueness) share the same basic approach in that they
construct an optimal code/tree for the infinite source
by (i) constructing a sequence of finite sources that
are better and better approximations to the infinite
source P, (ii) “guessing” the structure of the optimum
Huffman code for these finite sources (iii) verifying

TNote that the p, are not necessarily sorted in decreasing

order.
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Figure 1: The tops of the infinite “optimal” trees My, Ms, M3, M, and Ms. In this figure a filled-in circle
represents an internal node while a square represents a leaf.

the correctness of the guess by using the “sibling”
property of Huffman trees and (iv) showing that the
finite codes/trees “converge” to an infinite tree that
must be optimal for the infinite source.

1.2 Our new results The advantage of the approach
used in the previous papers is that, by guessing the code
structures, it at one stroke reports the optimal prefix-
free codes for all of the distributions in the class.

A major disadvantage is that the approach only
works if it is possible to wvalidate the guessed code-
structure. There are many variants of prefix-free coding
for which the Huffman algorithm does not work, e.g.,
when the encoding alphabet has unequal letter costs[15,
10] or has restrictions on the codewords, e.g., the one
ended codes of [3] or the restricted-zero codes of [5]
([2] has a nice survey of other variations); the Huffman
algorithm does not work for any of these variations so it
is impossible to verify guessed trees and the technique
above can not be employed.

Another disadvantage is that, even for normal
prefix-codes, it can be quite difficult to guess and verify
the optimal codes for complicated sources. The two-

sided geometric distributions of [18] seem to be as far
as the technique can be pushed.

In this paper we develop the first algorithmic tech-
nique for constructing optimal prefix codes. It will per-
mit unequal cost encoding alphabets that ‘charge’ more
to transmit a ‘0’ than to transmit a ‘1’ and will also
permit placing restrictions on the structures of the code-
words, e.g., all codewords must end with a ‘1’; the tech-
nique will actually permit any restriction of the type,
“all codewords must belong to given regular language
L.

The technique will also allow many generalizations
of geometric distributions that use finite memory. For
example, it will allow distributions of the type

1,p0417pa27 s 7pai7
D p1+a1 p1+042 p1+04i
’ ) sty )
(12) p2’p2+a17p2+a2, . ’p2+ai’
3 3 3 34+a;
p 7p +a17p +a27"'7p +a7"'

where 0 < a1 < ay < < a; < 1, a natural
generalization of the two sided distribution of [18].

The input to the algorithm will be the costs of the
encoding letters, the restriction £ on the codewords and



the distribution. The output will be a description of the
optimal infinite coding tree.

There are two major ideas behind our algorithm.
The first is the fact, developed for finite-source unequal-
cost coding in [10] and later modified for restricted
coding in [4], that prefix-code trees can be represented
by paths in a weighted graph; a minimal-cost tree
corresponds to a min-cost path. In our problem this
means that we are looking for a minimum cost infinite-
link path in some infinite weighted graph.

The second idea generalizes the observation [8] that
optimum Huffman trees for the geometric source must
be cyclic. That is, the structure of the optimum tree
must be some finite head, followed by a finite part that
infinitely cycles; Figure 1 illustrates the tops of the first
5 optimal infinite trees.

We can translate this into our graph description
to show that a minimum cost infinite-link path must
have a particular finite cyclic structure, i.e., a “head”
followed by an infinitely repeated cycle, and then modify
standard shortest path algorithms to look for a finite
path that generates a minimum cost infinite cycle.

2 (1,2)-lopsided
distributions.

trees for geometric

As mentioned at the beginning of this abstract, due to
space considerations we do not develop the approach
in its full generality. Instead, we restrict ourselves to
developing an algorithm that works for the special case
of (1,2) lopsided trees for geometric distributions. This
example illustrates all of the basic ideas of the general
technique.

In the general unequal-cost or lopsided tree problem,
we are given weights «, § such that length(0) = « and
length(1) = . The length of a word w is the sum of the
lengths of its characters. For example, if length(0) = 1
and length(l) = 2 (this is sometimes known as the
telegraph channel [7]) then length(1000) = 5. Given
a, B the («, B)-lopsided tree problem is to find a prefix-
free set of codewords w; such that . p;length(w;) is
minimized. Equivalently, by setting the length of a left
edge to be « and that of a right edge to be 8 (Figure
5) the problem is equivalent to finding a tree such that
when /; is the length of the i-th highest leaf in the tree
then the expected external path length, Y. p;¢; of the
tree is minimized. For finite source distributions, even
though the Huffman algorithm does not work, there
are algorithms for solving this problem exactly e.g.,
[15, 10] and approximately, e.g., [9]; it is still unknown
though, whether the problem is NP-Hard, polynomial
time solvable, or lies somewhere else.

For the geometric source, there is no known algo-
rithm for finding the tree. The previously developed

techniques can not be applied because they require us-
ing the Huffman algorithm to verify guessed codes and
the Huffman algorithm does not work for lopsided trees.
In what follows we describe an algorithmic technique
for finding the optimal (1,2)-lopsided tree for a given
geometric distribution P,. The technique can easily be
generalized to work for any (a,3)-lopsided tree when
a/f is a rational number.

We first derive theorems describing the structure of
the minimum cost (1, 2)-lopsided trees for the geometric
distribution P,. We then use these theorems to develop
an algorithm which, given fixed p, will output the
corresponding optimal tree for P,. Finally, the section
concludes with the output of our program for various
values of p.

2.1 Notation for describing optimal trees In
this section we generalize the notation introduced in [8]
for infinite Huffman trees so that it can represent infinite
(1,2)-lopsided trees. See Figure 2 for an example.

DEFINITION 2.1. A tree T = {(I;, C}, E})}2, is an in-
finite sequence of tuples of non-negative integers satis-
fying (I, Co, Ep) = (1,0,0) and

Eo+lLiyo=0L1+1

2.3
(2:3) Cr1=1p.

Vi >0,
The I;, C; and E; are called internal nodes, cross nodes
and external (or leaf) nodes respectively. Intuitively I,
and E; are the number of internal nodes and leaves at
level I; C) counts the number of tree edges (of length
2) that pass through level [ without stopping at level .
Given a tree T' we define

Vi>0, L(T)=1I, C(T)=C, FE(T)=E,.

We also define A(T) = 3., E;(T) where A; is the
number of leaves on or above level I. When T is
understood we will simply write A;. We can now define
Cost(.,.) in a way that corresponds to the natural cost
of a tree given a source.

DEFINITION 2.2. Let T be a tree and d;(T),i =
0,1,2,... be the depth of the ith leaf in T, breaking ties
arbitrarily. Thus,

di(T) =min{l : i < A)(T)}.

Let P = {p:}2, be a nonincreasing sequence of nonneg-
ative reals. The cost of T labelled by P is the external
path length of T when its leaves, sorted by increasing
depth, are labelled with the p;, i.e.,

Cost(T,P) =Y pidi(T) = piminf{l : i < A/(T)}.

0<i 0<i
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Figure 2: Two examples of infinite trees and their corresponding {(I;, Ci, E;)}i2, description. For easy reference

we also provide A; = El<j Ey

As examples note that the first tree in Figure 2 has cost

o0

2po +3p1+4pa+... = (i +2)p;
=0

while the second tree has cost

3po + 3p1 + 4p2 + 5ps + 5pa + 6ps + Tps + . ..

oo

= [(27 + 3)(psi + P3iv1) + (20 + 2)p3iy2)
i=0

Note that for geometric distribution P, the cost has
a particularly simple form:

LEMMA 2.1. If p is fized then

Zpi min{l : i < Ay (T)}

0<i

DI B¢

0<l A;<j

1 Ay(T)
 1-p Zp ’
o<l

Cost(T,Pp) =

(2.4) -

Returning to the same examples the first tree in Figure
2 has cost

1 1
— P+ ) = (1
L—p L—-p

Similarly, the second tree has cost

7 P+ + 0"+ P+’ + "+ P )

1 © @ X .
— — <2+sz_zpl+31>
p =0 1=0

1 1
= 2+ - P
1-p 1—-p 1-—p3

DEFINITION 2.3. A tree T is optimal for P, if, for all
trees T',
Cost(T, P,) < Cost(T', Pp).

Our problem is, given p, to find an optimal tree for

Pp.

2.2 The Structure of Optimal Trees In [§] it is
proven that optimal (1,1) trees for geometric distribu-
tions have bounded width. The same idea can be ap-
plied to (1,2) trees as well. We sketch the proofs here:

LEMMA 2.2. (Optimal Trees have bounded width). Let
p be fivzed and B(p) = min{k : p*¥ < 1%1)} IfT
is any optimal tree for P,, then VI,I;(T) < B(p).
Furthermore, V1, E;(T) < 2B(p) and Ci(T) < B(p).

Proof. (Sketch) If there is some optimal 7" and [ such
that I;(T) > B(p) simply replace I;(T) — B(p) of the
internal nodes on level | with leaves. It is a relatively
straightforward calculation to show that the resulting
tree has lower cost than 7', contradicting optimality.
The second part of the lemma follows from the fact that
\%> ].,EI(T) < Il_l(T) +Il_2(T) and CI(T) = Il_l(T)

An immediate consequence of this lemma is that
there are at most 2B3(p) different possible {(I;, C, E;)}
triples that can appear in any optimal tree for P,. This
means that somewhere in the first 2B3(p) levels of an
optimal tree T', some level must repeat.

THEOREM 2. (Cycle Theorem) Let p be fized. Let T be
an optimal tree for. Lett be the smallest index such that
there exists an i’ such that

(Ie(T),C(T), Ex(T)) =
(It4ir(T), Cryir (1), Eryir (T')).

For this t let i be the smallest i’ such that (2.5) is
satisfied. Now define tree T’ to be the tree that has the

(2.5)



same first t levels as T and then infinitely repeats the
next i levels. That is

(L(T"), C(T"), Ey(T"))

(L(T),C(T), Ex(T)) ifl<t.
= (Lt(1—t) moa i (T,
Cit(1—) mod i (T), if 1 >t

By (1—t) moa (1))
Then T" is also an optimal tree for P,.

Proof.  (Sketch) Split T into three parts; levels
0,...,t—1are Head(T), levelst,...,t+i—1 are Mid(T)
and levels t + i,...,00 are Tail(T). Let T? be the in-
finite tree composed of Head(T) followed by j copies
of Mid(T) followed by Tail(T) (it is not difficult to see
that TV satisfies (2.3) and is therefore really a tree). The
optimality of 7' can be shown to imply that each 77 is
also optimal; otherwise T' could be modified to build a
lower cost tree. The trees T7 are all optimal and, as a
sequence, converge levelwise to tree T’. Standard con-

vergence theorems [17, 8] then imply that 7" is optimal.
O

The theorem and Lemma 2.1 together tell us, at
least, theoretically, that our problem is solvable. Given
any p we can simply construct the exponentially huge
but bounded number of cyclic trees restricted to I; <
B(p) and compare all of their costs for that value of p,
returning the minimum one. In the next section we will
see a much more efficient procedure.

Before doing so we first remark on one almost
immediate result on the structure of the solution space
of optimal trees.

COROLLARY 2.3. The cost of any optimal tree T for
p is a rational function in which the degrees of the
numerators and denominators are upper-bounded by a
function of B(p).

Proof. Let M = At+si — At+(s—1)i = At+i — At. From
equation (2.4) and theorem 2,

Cost(T, P,)
1
(26) = ;> »"
pogz
- | Xt 3
L—p 1—pM ,
o<i<t t<I<t+i
A+M

A
Do<i<t+i P = 2o<i<t P
1—p— pM 4 pM+1

How large can M be? As seen before t+i < 2B3(p) and
E(l) < 2B(p). Therefore M < 4B*(p). By definition

A; < 2B(p)l. Putting this all together we see that
both the degrees of the numerators and denominators
are upper-bounded by 8B%(p). Ul

Now, note that given p, the number of cyclic trees
that could possibly be optimal trees for any p’ €
(0,p] is bounded by a function of p. The cost of the
optimal tree is therefore the lower envelope of a finite
number of rational functions in p’. The numerators and
denominators of the rational functions are also bounded
by some universal constant in p so any pair of such
functions only intersects a constant number of times.
This implies that the lower envelope of these functions
has complexity bounded by a function in p. Putting all
of this together we see that the interval (0,p] can be
subdivided into a finite number of subintervals, each
with an associated tree which is optimal for every p’ in
the subinterval. This implies

THEOREM 3. (Partition theorem) There exists a mono-
tonically increasing sequence of real numbers {q;}52,
such that go = 0 and lim; .. q¢; = 1 and a countable
sequence of trees {T;}52, such that tree T; is optimal

for ¥p € (4, qit1]-

As mentioned earlier, Gallager and Voorhis’ result (The-
orem 1) implies this result for the standard Huffman
case. Their proof was constructive. We have just seen
that the result is not specific to the Huffman case but
is also correct for the (1,2)-lopsided case (and as dis-
cussed, can be extended to all of the other generaliza-
tions mentioned).

2.3 Algorithm In this section we will present an
algorithm that, given p, finds an optimal (1, 2)-lopsided
tree for P,. The idea behind our algorithm will be
to modify the top-down algorithm developed in [10]
that found a min-cost lopsided tree for a finite source
by finding a min-cost path in a directed graph. That
algorithm worked by starting from a node corresponding
to the tree “root” and building trees top down. An
edge in the graph corresponded to adding a level to
the bottom of a tree; the cost of the edge corresponded
to the “contribution” of that level to the tree’s cost.
Thus every path in the graph starting at the “root
node” corresponded to some tree (a length k path
corresponding to a depth k tree) with the cost of a
path equaling the cost of the corresponding tree. After
defining an appropriate destination node the algorithm
for finding a min-cost lopsided tree was simply to find
a min-cost root-destination path in the graph.
Although the trees, and associated paths, that we
are now constructing, are infinite, we know from the
previous subsection that optimal trees have the pattern
of a head followed by cycles. Therefore our search



space is actually finite and we will be able to modify
the algorithm of [10] to find a min-cost infinite path.
Before discussing the algorithm we need to introduce
some definitions.

We construct an infinite directed weighted graph
G = (V,E) where V = {(m;e,c) : m,e,c integers > 0};
Each vertex (m;e, c) has e+ 1 directed edges leaving it.
For 0 < g < e the edges in E leaving the vertex are

(2.7) ((m;e,c), (m+e—qc+q.q)).
The weight of all of the edges leaving (m;e, ) will be
pmt!

pThe reason for introducing this definition is that
if we consider the vertices as corresponding to levels
in a tree and edges as corresponding to the possibility
of one level following another we can create a 1 — 1
correspondence between trees and paths in G starting
from (0; 1, 1); in this correspondence a length k path will
correspond to a depth k tree and an infinite path to an
infinite tree.

Intuitively, vertex (m;e,c) will correspond to the
level of a tree that has m leaves above it, ¢ cross edges
passing through it, and e leaves plus internal nodes on
it. More formally, recall our definition of an infinite
tree as a sequence T' = {(I;,C}, Ey)}i°, with A)(T) =
> j<1 E;(T) being the number of leaves on or above level
I. Working through the details (omitted in this extended
abstract) we can find that given tree T we can associate
a path {(my; e, ¢)}2, in G with (mi;eq,¢1) = (0;1,1)
and, for i > 1, (myec) = (A4-1,0; + E;,C). In
the other direction, given a path {(m; e, ¢)}i°, in G
with (my;e1,¢1) = (0;1,1) we can associate a tree such
that, (Io,CQ,Eo) = (1,0,0) and for i > 1 (Il,CZ;El) =
(141, i, my+1 —my). Furthermore, using Lemma 2.1 we
can work out that the cost of a tree for P, will be exactly
equal to the cost of the associated infinite path. Thus,
our problem of trying to find a minimum-cost tree is
equivalent to finding a minimum-cost infinite path in G
that starts at node (0;1,1).

Of course, since the graph is infinite, we can not
explicitly run a shortest path algorithm. Instead we
use the structural properties from section 2.2 to restrict
our search. The first thing to note is that Lemma 2.2
permits us to restrict e,¢c < B(p). After doing this we
run Dijkstra’s shortest path algorithm starting at node
(0;1, 1), building a shortest path tree in the graph.

The main observation is that the paths that we
are building in the shortest-path-tree can considered as
prefizes of an infinite path (these prefixes correspond
to the top levels of an infinite tree). From Theorem
2 (the cycle theorem) we know that if some path
{(mu; e, ¢1)}] is a finite prefix of an optimal path and,
for some i < n, (e;,¢;) = (en,cy), then the path must

cycle starting from n + 1 and we can figure out exactly
what the corresponding cyclic tree is; applying Lemma
2.1 will give its cost.

This motivates us to modify Dijkstra’s algorithm so
that, at the time we add node (m;e, ¢) into the tree, we
walk backwards in the tree from (m;e, ¢) until we either
reach some other node (m/, e, ¢) if such a node exists, or
the root. If we find the root we just continue normally
with Dijkstra’s algorithm. If we find a node (m/,e,c)
then we have found a cycle corresponding to a candidate
cyclic tree. We calculate the cost of this tree; if it has the
minimum cyclic tree cost found so far we keep it as the
new minimum, otherwise, we throw it away. In neither
case do we continue processing (m; e, ¢) by updating its
neighbors’ costs since we know that it can not contribute
to any other candidate trees. Note that the algorithm
must terminate since any path that gets longer than
2B?(p) edges will contain some repeated (e,c) value.
Furthermore, given any tree path {(mi;e;, c)}], we
have m,, < /., e; < n2B(p). Since n < 2B%(p) we
have that m,, < 4B3(p) so we can use this restriction to
make our graph finite. Figure 3 gives the pseudocode
for the algorithm.

To prove that the algorithm gives the correct answer
we must show that it finds an optimal cyclic tree.
Let p be fixed and {(m;e;, ¢;)}{2,; correspond to some
optimal cyclic tree T. Let (¢,7) be the minimum pair
(lexicographically) such that (e¢, ¢:) = (¢4, Ct+i)- Since
the prefix of a shortest path is a shortest path we know
that {(my;er,¢;)}i2t is a shortest path. If this is the
path to (my4i, €4, crys) found by the algorithm then
the algorithm will, by definition, find 7. A difficulty
might arise if there are two possible shortest paths
to (Mmyyq, €ryi, ciri) and the algorithm did not find
{(my; ey, Cl)}fii It is possible to prove by contradiction,
though, that if this happens, then the algorithm will find
another cyclic tree that has the same cost as T (proof
omitted in this extended abstract) and therefore it will
always find some optimal cyclic tree.

2.4 Results As an illustration of the technique we
implemented the algorithm in the previous section for
finding optimal (1,2) lopsided trees and ran it for p
ranging from 0.001 to 0.960 with 0.001 increments.
Figure 6 shows the ranges such that all p sampled in the
same range share the same optimal tree. Note that this
seems to correspond to the statement of the Partition
theorem, Theorem 3 (but see the comment at the end
of the next section).

Figure 4 shows the path expansions of the optimal
trees found and Figure 5 gives realizations of the actual
trees (when we write P~g.755 the ~ denotes that our
sampling indicates the boundary of interval to be close



Input: p
1. Initialization
Set COST[m; e, c] := oo for all entries
with m < 4B*(p) and e, c < B(p).
Set C0OST[0;1,1] := 0. PUSH(Q, (0;1,1)).
/* The current minimum cost of infinite path. */
Set min_cost := o0.
2. while Q # 0 do
2a. (m;e, c) «— EXTRACTMIN(Q).
/* Check for repetition of (e, c) */
for each vertex (m’;e’,c’) on the
path from the root to (m;e,c) do
if (e’,c') = (e,c) then
/* Calculate cyclic tree cost */
2b. cost := COST[m'; ¢’, ]
+cusr[m;e,c]—COST[m’;e’,c/] )

l_p‘VTL*TrL/
if min_cost >cost then
min_cost :=cost.
minpath <+ a list of vertices on the path.

Goto 2.
end for
/* Relaxation */
2c. new_cost := COST[m;e,c| +p™ /(1 — p).
2d. for ¢ :=0to e do
2e. Let (m';e’,c) == (m+e—q;c+q,q).
if COST[m/'; ¢/, ¢'] > new_cost then
COST[m/; ¢, '] := new_cost.

if (m’;¢€’,c’) is not in Q
AND €0ST[m’; €', '] < min_cost then
PUSH(Q, (m/; ¢, c')).
end for
end while
3. Extract tree from minpath.

Figure 3: Modified Dijkstra algorithm for finding opti-
mal infinite tree

to 0.755 but we do not know the exact boundary).
Note that there are many (uncountable) ways to realize
the trees given the corresponding path expansions.
We choose the presented ones because of their easily
observable recursive structures.

3 Extensions, conclusions and open problems

Previous work on constructing minimum-cost prefix-free
codes for infinite source alphabets were non-algorithmic
and very restricted in their applicability. In this ex-
tended abstract we developed the first algorithmic tech-
nique for constructing minimum-cost prefix-free codes.
This new technique is applicable to many generaliza-
tions of Huffman coding, e.g., unequal cost letters and
restrictions on codewords, that the previously known
technique could not work on. This new technique also

works for a larger set of generalizations of geometric
sources than could be solved for previously.

In this abstract we only described an algorithm
for constructing an optimum (1, 2)-lopsided tree for a
standard geometric source. Modifying the algorithm
to work for other («,/3)-lopsided trees only requires
changing the tuple definition of a tree given in Definition
2.3 to reflect the («, ), i.e., instead of only saying
how many edges are crossing a level the tuple has
to encode how many edges are crossing the level at
1 unit into their length, how many at 2 units into
their length, etc.. Similarly, the technique can be
modified to deal with regular language restrictions
on the codewords (for regular languages described by
Deterministic Finite Automatons) by modifying the
tuple definition to indicate how many nodes in each
DFA state there are per level. Once these definition
modifications are made all of the other lemmas and
theorems can be modified to work as well. Similarly,
for modifications of the geometric source such as (1.2)
we can have the tuple encode at which a; the labellings
of the leaves on a particular level start and modify
everything else accordingly.

The big open question in this area is to design
a technique that would work for non-geometric-like
sources. Unfortunately, this problem has been open for
a long time and nothing seems to be known about how
to attack it [2].

Another, more technical problem, would be to im-
prove the Partition Theorem (Theorem 3). This theo-
rem states that, for all the generalizations of Huffman
coding discussed, the unit interval can be decomposed
into a countable union of subintervals such that if p,p’
are in the same subinterval then the same tree is opti-
mal for both p and p’. This was a generalization of a
theorem due to Gallager and Voorhis (Theorem 1) for
the standard Huffman case. Gallager and Voorhis’s re-
sult actually implies something much stronger for the
standard Huffman case which is that if tree T is opti-
mal for both p and p' with p < p’ then T is also op-
timal for all ¢ € [p,p’]. The question is whether this
statement holds for the general cases addressed by the
partition theorem. If it did then our algorithm’s results
would be much stronger. For example, in Section 2.4
we presented the optimal trees for sampled values of p
and found that all sampled p in the given intervals had
the same optimal tree. If the italicized statement above
held in the general case then we would know that those
trees were optimal for all p in the given intervals, not
just the sampled ones.



Interval Expansion

Po.oo1 — Po.500 (0;1,1) = (1;1,0) — (1;1,1)

Po.s00 — Proess | (051,1) — (0;2,1) — (1;2,1)

Po.683 — Puoss | (0;1,1) — (0;2,1) — (0;3,2) — (2;3,1) — (3;3,2)

Po.755 — Po.soo | (0;1,1) — (0;2,1) — (0;3,2) — (1;4,2) — (3;4,2)

Pro.g09 — Puosgss | (031,1) — (0;2,1) — (0;3,2) — (0;5,3) — (3;5,2) — (5;5,3)
PN(),838 - PN(].864 (0; 1, 1) — (0; 2, 1) — (0; 3, 2) — (0; 5, 3) — (2, 67 3) ( 3 )

Figure 4: Signature expansions for the first 6 intervals. Underlined signatures are where level repetitions occur.

A VOV ON

A v O

4 4 /\ ; /&\
Po.001 — Po.500 Po.500 — Pro.683 Pro.683 — Pro.755

: AR E /(\ j \ \

AN SR ;

; \A\K\ ; K\\X%g\ K\j \ /\\\ | \>\ (\
Pro.755 — Pro.809 Pro.809 — Pro.g3s Pro.83s — Pro.s6a

Figure 5: Optimal trees for the first 6 intervals. The two horizontal lines show the two levels that form the
repetition.

Figure 6: Partition of (0,1) so that all sampled ps in the same interval share the same tree.
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