......

ST @IWILEY)
S InterScience®

DISCOVER SOMETHING GREAT

The Two-Median Problem on Manhattan Meshes

Mordecai J. Golin and Yan Zhang

Department of Computer Science and Engineering, Hong Kong University of Sciences and Technology,
Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China

We investigate the two-median problem on a mesh with
M columns and N rows (M > N), under the Manhattan
(L1) metric. We derive exact algorithms with respect to
m, n, and r, the number of columns, rows, and ver-
tices, respectively, that contain requests. Specifically,
we give an O(mn?logm) time, O(r) space algorithm
for general (nonuniform) meshes (assuming m > n). For
uniform meshes, we give two algorithms both using
O(MN) space. One is an O(MN?) time algorithm, while the
other is an algorithm running in O(MN log N) time with
high probability and in O(MN?) time in the worst case
assuming the weights are independent and identically
distributed random variables satisfying certain natural
conditions. These improve upon the previously best-
known algorithm that runs in O(mn?r) time. © 2007 Wiley
Periodicals, Inc. NETWORKS, Vol. 49(3), 226-233 2007

Keywords: two-median; mesh; probabilistic analysis

1. INTRODUCTION

In the k-median problem we are given a graph G = (V, E)
with nonnegative edge costs. We want to choose k vertices
(the medians) from V to minimize the sum of the distances
between each vertex and its closest median. As motivation,
the vertices can be thought of as customers, the medians as
service centers, and the distance between a customer and a
service center as the cost of servicing the customer from that
center. In this view, the k-median problem is about choos-
ing a set of k service centers that minimizes the total cost
of servicing all customers. In a parallel computing scenario,
the vertices can be thought of as clients and the medians as
servers; the k-median problem then corresponds to a form of
load-balancing.

The k-median problem is often extended so that each cus-
tomer (vertex) has a weight, corresponding to the amount
of service requested. The distance between a customer and
its closest service center (median) then becomes the cost of

Received March 2005; accepted September 2006

Correspondence to: Y. Zhang; e-mail: cszy @cse.ust.hk

Contract grant sponsor: HK CERG; Contract grant numbers: HKUST6082/
01E and HKUST6312/04E.

DOI 10.1002/net.20156

Published online in Wiley InterScience
com).

© 2007 Wiley Periodicals, Inc.

(www.interscience.wiley.

NETWORKS—2007—DOI 10.1002/net

providing one unit of service, that is, the cost of servicing
a customer will then be the weight of the customer-vertex
times its distance from the closest service center.

Lin and Vitter [13] proved that, in general graphs, even
finding an o(In n)-approximate solution to the k-median prob-
lem is NP-hard. They were able to show, though, that it is
possible in polynomial time to achieve a cost within O(1 +¢€)
of optimal if one is allowed to use (1 +1/€)(Inn + 1)k medi-
ans. Guha and Khuller [8] proved that this problem is still
MAX-SNP hard if restricted to metric spaces. Charikar et al.
[3] showed that constant-factor approximations can be com-
puted for any metric space. In the specific case of points
in Euclidean space, Arora et al. [1] developed a polynomial
time approximation scheme (PTAS). There are some special
graph topologies for which fast polynomial time algorithms
for finding exact solutions exist, though. For example, this is
true for trees [15, 17] and lines [9].

In the literature, the k-median problem is also classified
according to the number of medians k. If k = 1, the problem
is known as the one-median problem. If k = 2, the problem is
known as the two-median problem. For & > 3, the problem
is known as the k-median problem. In particular, the two-
median problem was discussed widely on trees [2,5,6, 11].

In this article, we deal with the specific problem of solv-
ing the two-median problem on an M x N orthogonal mesh
(M > N) where the distance function is the Manhattan (L)
metric. This problem was recently introduced by Lau et al.
[12], who were motivated by load-balancing on parallel
machines with mesh-topologies such as the iWarp system
[7]. In [12], they developed an exact algorithm that runs in
O(mnzr) time, where m, n (assume m > n) and r are, respec-
tively, the number of columns, rows, and vertices of the mesh
containing requests. Because r > m, their algorithm, there-
fore, needed at least O(m?n?) time. Recently, Tse and Lau
[16] also developed an approximation algorithm with worst
case ratio 1.5 and running in O(m? + rlogr) time. Both
of their algorithms required that the mesh must be a sub-
set of the uniform mesh. The main result of this article is
an improved exact algorithm that runs in O(mn?® log m) time
and uses O(r) space. The algorithm also works for arbitrary
meshes, dispensing with the requirement that the mesh be
a subset of a uniform one. We also give two algorithms for
uniform meshes. One algorithm runs in O(MN 2) time in the

worst case. The other runs in O(MN log N) time with high
probability if the requests of all vertices of the mesh are
independent and identically distributed (iid) random vari-
ables satisfying certain natural conditions, for example, if
the requests from each vertex are bounded by a constant (that
is, resources needed by a single vertex do not depend on
the size of the mesh) and the number of vertices that have
requests is not too small (say, the proportion of the vertices
having requests being In N/+/N is enough). A natural exam-
ple of such a distribution would be that each vertex requests
i €{0,1,...,B} units of service independently with constant
probability p;, where at least one p; fori > 1 is nonzero. Both
of the two algorithms for uniform meshes use O(MN) space.

The article is organized as follows. In Section 1, we give
the notations and the formal definitions. We begin with some
basic observations in Section 2. In Section 3, we show the
algorithm for general nonuniform meshes, which is later
improved in Section 4 for uniform meshes. In Section 5, we
discuss the range query subroutine that is used as a black box
in the preceding sections.

1.1. The Parameters

Let{x; : 1 <i < M}and{y; : 1 <j < N} be two sets of
real numbers sorted increasingly, thatis,x; < xy < -+ < xy
andy; < y» < --- < yy. The two sets define an M x N mesh,
denoted by G, whose vertex setis {(x;,y;) : 1 <i <M,1 <
J < N}, and whose edges consist of those between vertices
(xi,¥j) and (x;, yj41),forl <i <Mandl <j < N,andthose
between vertices (x;,y;) and (x;y1,y;), for 1 < i < M and
1 <j < N.Ingeneral, G is considered to be nonuniform, that
is, the values of the x;’s and y;’s can be arbitrary real values.
A mesh is uniform iff x;11 — x; = yj+1 — y; = constant for
all <i<Mandl <j<N.

Each vertex may or may not have requests. The weight of
a vertex u, denoted by w(u), represents the amount requested
from u. The values of the weights can be arbitrary nonnegative
real values. Denote by r the number of vertices that have
requests, that is, the vertices with nonzero weights, and by
m and n, respectively, the number of columns and rows that
have requests, that is, at least one vertex on it has requests.
We also call these columns and rows nonempty. Without loss
of generality, we assume m > n.

The input consists of the values x; and y;, and a list of
vertices with their nonzero weights. All vertices that are not
given in the list have no requests. In general (i.e., nonuniform
meshes), we would like to bound the algorithm by a function
of m, n and r, because we can throw away empty columns and
rows. But for uniform meshes we cannot, because throwing
away columns or rows in this way will destroy the uniform
property (in general), so the best we can hope for is to bound
the algorithm by a function of M, N and possibly r.

1.2. Problem Definitions

In this section we specify the two-median problem consid-
ered in this article. First, the distance d(u, v) between vertices

8

) e
N

N
%

FIG.1. Anexample of the two-median problem on a uniform mesh. Here,
M = 5 and N = 4. The small black circles indicate the six vertices that
have requests; their labels indicate their weights. Big empty circles indicate
the optimal two-median {s,s2}. In this example, the optimal cost is 13;
s services itself and the other vertex in its row, while s services the other
four requests.

u = (xy,y,) and v = (xy,y,) is defined as the Manhattan,
or L1, distance, which is |x, — x,| + |y, — y|. For a ver-
tex set S, denote by d(u, S) the distance between u and the
closest vertex in S to u, that is, d(u,S) = minyecsd(u,v).
A region is just a subset of the mesh. We define the cost
of vertices in a region R w.r.t. S, denoted by costs(R), as the
weighted sum of the distances from each vertex in R to S, that
is, costs(R) = Y_,cgw(u) - d(u,S). If S contains only one
vertex, say S = {s}, we write cost;(R) instead of cost(s)(R).
The k-median problem is to find a set S with |S| = k that min-
imizes costs(G). In this article, we consider the case k < 2.
An example of the two-median problem is shown in Figure 1.

Throughout the article, we use “point” to denote an arbi-
trary point in the plane, and “vertex” for a vertex of the mesh.
For polygonal regions, we use “corner’ to denote a vertex of
the polygon, which can either be chosen from the vertices of
the mesh or not.

2. PRELIMINARIES
2.1. The One-Median Problem

We start with the one-median problem. Note that in
the optimal k-median set, each median s; is an optimal
one-median for the set of vertices whose nearest median is s;.

Let Wx (xa, xp), Wx (x4, Xp1, Wx[xa, xp), Wx[x4, x5] be the
sum of weights of vertices (x,y) with —oo < y < 400 and,
respectively, X, < X < Xp, Xg < X < Xp, Xg < X < Xp, Xg <
x < xp. Similarly, let Wy (ya,y5), Wy QasY6l, Wylya, ys),
Wylya, y»] be the sum of weights of vertices (x,y) with
—00 < x < 400 and, respectively, vy, <y < yp, Vg <y <
Yoy Va <Y < Yb, Ya <y < yp. Denote by W the total weight
of all vertices in G. We have the following straightforward
lemma from [12].

Lemma 1 (Lemma 3.1 of [12]).
optimal one-median iff

Vertex s = (xs,ys) is an

Wx(—00,x5) < W/2 < Wx(—00,x] (D
and

Wy(—00,ys) = W/2 < Wy (=00, ys]. 2

NETWORKS—2007—DOI 10.1002/net 227

Using Lemma 1, we can find all optimal one-medians
in O(r) time. Note that there might be more than one
optimal one-median for some special problem instances: if
Wx (—00,x;] = Wxlxj,+00) = W/2 for some columns x;
and x;, any x; € [x;,x;] will satisfy Inequality (1). This is
also true for the y-direction. In such cases, the set of all opti-
mal one-medians forms an axis-parallel rectangle and we can
always choose the one with the smallest x- and y-coordinates
(lower left corner of the rectangle). Thus, some optimal one-
median is always a vertex of the mesh, and always on a
column and a row that have requests. This means that allow-
ing the one-median to be an arbitrary point in the plane instead
of being restricted to vertices of the mesh will not improve
the solution. The same situation holds for the k-median prob-
lem: recall that, as mentioned before, each median s; in an
optimal k-median set is an optimal one-median for the set
of vertices whose nearest median is s;. Hence, we have the
following result.

Lemma 2. The cost of an optimal k-median of mesh G,
where the medians S are restricted to be the vertices of the
mesh, is the same as that of an optimal k-median where S can
take arbitrary points in the plane, that is,

min costs(G) = min

costs(G)
|S|=k, SCG |S|=k, SCR?

In the sequel we therefore always assume that the k-
medians are vertices of the mesh.

2.2. Basic Regions

Denote the two medians by s; = (x5,,ys,) and 52 =
(x5,,s5,). We can assume x;, < x5, throughout the article.
Denote | = |x5, — x,,| and d = |y5, — y5,|. We will focus on
how to compute an optimal two-median under the constraints
I > dandys, <y;,.Everythingis symmetric when/ > d and
Vs, > Ys,, 50 we will not discuss it. The case / < d is similar,
and we will discuss it briefly before Lemma 10.

Define the Voronoi cell of s; to be the set of points for
which the nearest median is s;. If a point (x,y) has equal
distance to both s; and sp, we can assign it arbitrarily to
either cell, but in this article, we will always assign it to the
Voronoi cell of 51 if x < x;, and assign it to the Voronoi
cell of s, otherwise. We call the boundary curve between
two Voronoi cells the bisector. Note that by the tie-breaking
rule, the bisector always belongs to the Voronoi cell of s;
(see Fig. 2). The following lemma describes the shape of the
bisectors under the L; distance.

Lemma 3. Assume | > d and y;, < ys,. The bisector
between s and sy consists of the following three segments:
the vertical radial from p1 = (xs2 - %, ysl) downward, the
vertical radial fromp, = (Xs. + %, ySZ) upward, and the line
segment, whose slope is always —1, connecting p1 and p».

Lemma 3 implies that the Voronoi cells under the L; met-
ric can be partitioned into very simple shapes, as follows.

228 NETWORKS—2007—DOI 10.1002/net

T
a
=9
N
o

52
P2

$1

X

FIG. 2. The bisector between s1 and s2. We assume [> d and y;, < ys,.

Define R to be a basic region iff R is either an axis-parallel
rectangle (possibly unbounded) or an axis-parallel triangle
with a hypotenuse slope —1. Furthermore, we call a region
R separable from a point s = (x;, ys) iff x; > max,ecg x, or
Xy < minyeg X, and yy > maxyeg Yy Or ys < minyeg y,. That

is, R is separable from s if R falls in exactly one of the four
quadrants around s.

Property 1. The Voronoi cell of s; can be partitioned into
O(1) basic regions that are separable from s;.

Proof. We can partition the Voronoi cell in such a way
that the line segment connecting p; and p; is the hypotenuse
of the triangular basic region. The rest of the area can be
partitioned easily into four rectangular basic regions that are
separable from s;. .

The reason for introducing separability is that the cost
of a region w.r.t. any separable point can be computed effi-
ciently. Denote by w(R) the total weight of vertices in R.
Define ¢x(R) =) ,cpg W) -x, and ¢y (R) =)Y, cp w(ut) - yu.

Property 2. If region R is separable from a point s, the
value of costg(R) can be computed in O(1) time given the
values of w(R), cx(R) and cy(R).

Proof. costy(R) =) ,cpw(u) - Xy — Xs| + D, cg wu) -
[yu — ys|. We will only show how to compute), _p w(u) -
X — Xs|. The computation of), ., w(u) - [y, — ys| is similar.
Because R is separable from s, either x; > maxyecg X, or
Xy < minyeg x,. If x; > maxy,eg x,, we have |x, — x5| =
xg — x,, for all vertices u € R. Then)", .o w(u) - |x, — xs| =
W(R) - x5 — cx(R). If xg < minyep x,,, then |x, — x5 = x, — X,
and)", g w() - |xy — x| = cx(R) — w(R) - xs. .

Combining Properties 1 and 2, if we can compute w(R),
¢x(R), and ¢y (R) of any basic region R efficiently, we can
compute costs(G) efficiently.

It turns out that the complexity of calculating w, ¢, and
¢y will depend upon the model in which we are working, for
example, uniform versus nonuniform meshes and the data
structures that we are willing to introduce. We therefore post-
pone these computations to Section 5 and, for the time being,

introduce a parameter Q to denote the calculation time. More
formally see the following.

Definition 1. Ler Q = QWM,N,m,n,r) be a function
depending on the various parameters, such that the values of
w(R), cx(R), and cy(R) of any basic region R can be computed
in O(Q) time.

Lemma 4. We can compute costs(G) for any given two-
median set S in O(Q) time.

Proof. We first partition the Voronoi cells into separable
basic regions as we did in Property 1, and then we compute
the cost of each basic region w.r.t. the corresponding median.
The total cost costs(G) is simply the sum of the costs of all
the basic regions. This approach takes O(Q) time because the
number of basic regions is constant. n

3. ALGORITHMS FOR NONUNIFORM MESHES

In this section, we consider general (nonuniform) meshes.
As previously mentioned, in nonuniform meshes, we can
throw away empty columns and rows. So, in this section,
we will assume the size of the given mesh is m x n and all
columns and rows are nonempty. The following lemma gen-
eralized from [12] is a key to the two-median problem. We
repeat the proof here in our notation because we will need it
later.

Lemma 5 (Lemma 4.2 of [12]). Suppose s1 = (x;,,Ys,)
and sy = (xs,,s,) form an optimal two-median set under the
constraint | > d. Then (we can assume x5, < Xy,)

Wx (=00, x5,) + Wx (xs,, +00) < W/2
< Wx(—00,x5,] + Wx[xy,, +00). (3)

Proof. Recall the shape of the bisector from Lemma 3.
Vertices (x,y) with x € (—00,xy,] are in the Voronoi cell
of s1 and those with x € [x,,, 400) are in the Voronoi cell
of s7. Denote by W; the sum of the weights of vertices in
the Voronoi cell of s;, for i = 1,2. Because s; is an optimal
one-median for the vertices in the Voronoi cell of s;, using
Lemma 1, we have

Wx (—00,x5,) < W1/2 < Wx(—00,Xxy,] “)
and

Wx (xs,, +00) < W2/2 < Wx[xy,, +00). &)
The lemma follows by summing Inequalities (4) and (5). =

We call (x;,,x5,) a candidate column-pair if it satisfies
Inequality (3). Lemma 5 says we only need to consider the
two-medians on the candidate column-pairs to find an optimal
one. Lemma 2 tells us that there exists an optimal two-median
set on some columns of the mesh. So we will only con-
sider the candidate column-pairs on the columns of the mesh.

As mentioned in [12], there are only O(m) such candidate
column-pairs. We write this as a lemma and give a formal
proof (recall that r is the total number of vertices with nonzero
requests).

Lemma 6 (Lemma 4.4 of [12]). There are O(m) candidate
column-pairs, and they can be found in O(r) time.

Proof. We first bound the number of candidate column-
pairs. As discussed above, we assume we have thrown away
the empty columns and rename the nonempty columns as
XlseeesXm.

For each column x;, 1 < i < m, note that Inequality (3)
implies that if i < i; < iz and both {(x;,x;) and (x;,x;,)
are candidate column-pairs then, for every i/, ij < i’ < iy,
(xi, x;7) is also a candidate column-pair. Now let [/;, r;], where
i < Il; < r;, be the interval of the columns that can form
candidate column-pairs with x;, that is, (x;, xy) is a candidate
column-pair iff ; < i’ < r;. From Inequality (3),

Wx (—00,x;) + Wx(x,, +00) < W/2
< Wx (=00, x;] + Wx[x/,, +00). (6)

Because Wy (—00, x;] = Wx(—00, x;41) and Wx[x,,, +00) =
Wx (xy,—1, +00),

W/2 < Wx(—00,xiy1) + Wx (x,—1,+00), @)

which means /;;1 > r; — 1. So the total number of candidate
column-pairsis Y ;o (r; — i+ 1) < Y7 (ri—ric1 +2) =
O(m).

To compute these candidate column-pairs, we first per-
form an O(r) time preprocessing step such that, given (x;, x;),
we can check in constant time whether it is a candidate
column-pair. Then, finding [/;, 1] requires O(m) time by
scanning through all columns. After that, we can find each
[Li, ri], fromi = 2toi = m, in O(r; — ri—1 + 1) time by scan-
ning the columns from r;_; — 1 to r; + 1. So the scanning
steps take O(m) time in total. Together with the preprocess-
ing step, we have found all O(m) candidate column-pairs in
O(r) time. "

Lemma 6 leads to the following algorithm.

Lemma 7. An optimal two-median of an m X n nonuniform
mesh can be computed in O(mn®Q) time.

Proof. We first show how to compute the optimal two-
median under the constraint [> d. We calculate the O(m)
candidate column-pairs in O(r) time as in Lemma 6. For
each candidate column-pair, we simply compute the costs
of all O(n?) possible two-medians on those columns. So the
running time for the case [> d is O(man).

By symmetry, the optimal two-median under the con-
straint / < d can be computed in a similar way. There are
O(n) candidate row-pairs, and for each candidate row-pair,
there are O(mn) possible two-medians because [< d < n.
So the running time for the case [/ < d is also O(mn’>Q). =

NETWORKS—2007—DOI 10.1002/net 229

In Section 5 we will prove in Lemma 13 that, for nonuni-
form meshes, 0 = O(logm). Combining Lemma 7 with
Lemma 13, we have

Theorem 1. An optimal two-median on an m X n nonuni-
formmesh can be computed in O(mn? log m) time in the worst
case, using O(r) space.

4. ALGORITHMS FOR UNIFORM MESHES

In this section, we consider uniform meshes. The algo-
rithm in Lemma 7 runs in O(MN?Q) time for an M x N
uniform mesh. From Lemma 12, we have Q@ = O(1) for
uniform meshes, which immediately gives

Theorem 2. An optimal two-median on an M x N uniform
mesh can be computed in O(MN 2) time in the worst case,
using O(MN) space.

We will improve Lemma 7 and Theorem 2 in the proba-
bilistic case. We assume the request weights of all the MN
vertices are iid random variables with the same distribu-
tion X. Denote u = E(X), the expectation of X. We will
show that our algorithm runs in O(MNQ log N) time with
high probability if X satisfies certain natural conditions; at
the same time the algorithm will also run in O(MN?Q) time
in the worst case.

The technique we use is a simple binary search. Assume
I > d and fix a candidate column-pair (x;,, X,). We consider
all possible two-medians on those two columns that arise
by allowing all possible values of y,, and ys,. In Lemma 7,
we simply tried all O(N?) possible two-medians in arbitrary
order. However, if we group the O(N?) possibilities according
to the vertical distance d = |ys, — Js,|, We can use a binary
search, as follows.

Consider the set of two-medians with fixed vertical dis-
tance d > 0 on the candidate column-pair (x;,,xs,). We
assume ys, + d = ys, (the case y;, > Yy, is symmetric).
In this case, the locations of the two-medians are completely
determined by the value of y;,. From the proof of Lemma 5,
we only need to compute costs for those two-medians satis-
fying Inequality (4). Recall that W; is the sum of the weights
of the vertices in the Voronoi cell of s;, for i = 1,2. Note
from Figure 2 that W increases when the two-medians move
upward, thatis, y,, increases, while all other values in Inequal-
ity (4) are fixed. Computing W for a given two-median takes
O(Q) time. So a binary search can, in O(Q log N) time, find
the upper and lower bounds of the value of ys, for which
the corresponding two-median sets satisfy Inequality (4). We
call these two-medians valid and the range of y,, in which
the two-medians are valid the valid interval. Denote the
valid interval by [Vmin, Ymax], Where ymin and ymax are the
minimum and maximum values of y,, over all the valid two-
medians. From the argument above we find that, instead of
checking all n possibilities for yy,, as was essentially done in
Lemma 7, we only need to examine the valid two-medians
to find the optimal one. What remains is to bound the length

230 NETWORKS—2007—DOI 10.1002/net

of the valid interval. In the worst case this could be as bad
as Q(N) but, in the random case, it will usually be much
smaller.

Lemma 8. Assume | > d > 1. We consider the two-
medians with fixed vertical distance d on a fixed candidate
column-pair. Let [Ymin, Ymax] be the valid interval of these
two-medians. If X < B for some constant B, then for any
c>2,

Pr(Ymax — Ymin = 8cN/d) < 46_261\’/12/32 (8)

Proof. From Inequality (4), we see that, for a fixed
column-pair (xy,,Xs,), the maximum difference among
the possible W; values of valid two-medians is at most
2(Wx(—00,x5,] — Wx(—00,x5)) = 2Wx[x,,,x5], which
has the same distribution as 2Y, where Y is the sum of N
independent copies of X.

We will only consider the case y;, < ys,, because the case
¥s, > Vs, is symmetric. Refer to Figures 2 and 3. Note that if
we move the two medians upward by one row, the Voronoi
cell of s; will contain at least d new vertices (recall from
Lemma 3 that all the vertices on the bisector belong to the
Voronoi cell of s1). Denote by Wi (y) the sum of weights of
vertices in the Voronoi cell of s; when y;, = y. Let Z, =
W1 (Ymin + 1) — Wi min)- Therefore, Z, is the sum of d - ¢
independent copies of X. Note that Y and Z; are independent
since Y only depends upon requests in column x,, while Z;
only depends upon requests in columns to the right of column
Xs,. Our goal is to prove that when t = 8cN /d, Pr(Z, <2Y) <
4672cN,u2/BZ.

Let X’ = X/B, so that X’ € [0, 1]. Denote ' = E(X’) =
w/B. Similarly, let Y/ = Y/B and Z; = Z,/B. From the
discussion above, E(Y') = Ny and E(Z)) = dtj' = 8cN i/
when = 8¢N/d. Because Y and Z; are independent, ¥ and
Z/ are also independent. So we have

Pr(Z, <2Y)
= Pr(Z, <2Y')
=Pr(Y' > 2cNp,Z, <2Y') + Pr(Y'<2cNu', Z) <2Y)

151
!
<)
Y
N
N
\\
Fany
o 82
P ~d
N
~
\ Van
\u £y
~
\\ '
\ P2
! M
8 YJ H
]
1
1
81 I
p2

FIG. 3. The change of the Voronoi cell when the two-median moves
upward by one row. We can see d new vertices (with big circles on them)
are added to the Voronoi cell of s; when the two-median {s1, s>} moves to
{s],85}.

S2

LN
g
o~

a
Nl

S
! 1

FIG. 4. The bisector between s and s, when [< d.

< Pr(Y >2cNp') +Pr(Y' <2cNu') - Pr(Z <4cNu')
< Pr(Y' = 2eNp') + Pr(Z; <4cNu')

<Pr(Y —EQY')>cNu') +Pr(Z — E(Z) < —4cNu)
<2 2NU” 4 94N

< 4o 2eNK”

— 4_6—26N;,L2/B2

The fourth inequality comes from the Hoeffding bound [10],
. 2

which says Pr(|S, — E(S,)| = dn) < 2¢ 215" where S, =

Y i—1 Xk and X € [0, 1] are mutually independent. .

Lemma 8 will be used in Lemma 10 to bound the length
of valid intervals. Before continuing, we quickly look at the
symmetric case [< d. Figure 4 shows the bisector and the
Voronoi cells when [< d. As stated in the proof of Lemma 7,
when [/ < d, there are O(n) candidate row-pairs, and on
each candidate row-pair, there are O(mn) possibilities for
the two-medians. In the probabilistic algorithm, we group
these O(MN) possible two-medians according to the hori-
zontal distance [, and for each group, we use a binary search
to find the valid interval [Xmin, Xmax |, Where xmin and xmax are
the minimum and maximum values of x,, over all the valid
two-medians. Similar to Lemma 8, we also have the follow-
ing lemma to bound the length of the valid intervals when
I <d.

Lemma 9. Assume 1 < | < d. We consider the two-
medians with fixed horizontal distance [l on a fixed candidate
row-pair. Let [Xmin, Xmax] be the valid interval of these two-
medians. If X < B for some constant B, then for any
c>2,

Pr(xmax — Xmin > 8CM/Z) S 46—25MM2/BZ (9)

The proof of Lemma 9 is very similar to that of Lemma 8,
and is therefore omitted. With Lemma 8 and Lemma 9, we
have the following algorithm.

Lemma 10. Arn optimal two-median of an M x N uniform
mesh can be computed in O(MNQ log N) time with probabil-
ity at least 1 — 16MNe=2Nw /B’ if the weight values of all
vertices are iid random variables with some distribution X,
where X < B for some constant B and E(X) = L.

Proof. We first consider the case [> d. Fix a candidate
column pair. For d = 0, there are O(N) possible two-medians
on a fixed candidate column-pair, and we simply compute the
costs of all of them in O(NQ) time. For d > 1, we partition
the set of two-medians on the fixed candidate column-pair
into 2N groups classified according to the vertical distance
d, where 1 < d < N, and whether y;, < ys, or not. For each
group, finding the valid interval takes O(Qlog N) time by
binary search, and according to Lemma 8, we can compute
the costs of all the valid two-medians in at most 8cNQ/d =
O(NQ/d) time with probability at least 1 —4¢=2N1*/B* Sym-
ming over all 2N groups and the d = 0 case, the time to find
an optimal two-median on a fixed candidate column-pair is
O(NQ) + O(NQlog N) + O(X_)_, (NQ/d)) = O(NQlog N)
with probability at least 1 — 8Ne 2N#'/B’ So for all M
candidate column-pairs, computing an optimal two-median
under the constraint / > d requires O(MNQ log N) time with
probability at least 1 — 8MNe™ >N w/B

Next we consider the case [< d. Fix a candidate row-pair.
For [= 0, there are O(M) possible two-medians, and we
compute the costs of all of them in O(MQ) time. For [> 1,
we classify the set of two-medians on the fixed candidate
row-pair into 2N groups according to the horizontal distance
[, where 1 <[< N, and whether x;, < x, or not. For each
group, finding the valid interval takes O(Q log M) time, and
by Lemma 9, computing the costs takes O(MQ/I) time with
probability at least 1 — de=2M1*/B* o a fixed candidate
row-pair takes O(MQ) + O(NQlogM) + O(Z?Izl MQ/I) =
O(MQ log N) time with probability at least 1 —8Ne~2cMn’/B*,
Thus, all N candidate row-pairs take O(MNQlogN) time
with probability at least 1 — 8N2e=2cMn’/B’,

Therefore, the running time of the algorithm is
O(MNQ log N) with probability at least 1 — 16MNe 2N /B,
as the lemma states. "

Before proceeding to Lemma 11, we clarify some nota-
tions used below. We say an event happens with high prob-
ability iff the probability is 1 — O(M~¢") for some constant
¢* > 0. To bound the algorithm with high probability, we also
need that the value of M is polynomially bounded by the value
of N, thatis, M = O(Nﬁ) for some constant 8 > 1. In what
follows, g(N) = w(f(IN)) denotes that g(N)/f(N) — oo as
N — oo.

Lemma 11. Assume M = O(N®) for some constant p > 1.

An optimal two-median of an M x N uniform mesh can be
computed in O(MNQ log N) time with high probability if the

NETWORKS—2007—DOI 10.1002/net 231

weight values of all vertices are iid random variables with
some distribution X, where X < B for some constant B and

EX) = o (VTN N/N).

Proof. Substituting M = O(N#) and u > ¢;/InN/N,
where ¢ is a constant, into Lemma 10, the running time
of the algorithm is O(MNQ log N) with probability at least
1 — M'+1/B=2ci/BB \yhich satisfies the definition of high
probability by taking a large enough value of c. .

In the next section we will see in Lemma 12 that, for
uniform meshes, Q = O(1). Combining Lemma 11 with
Lemma 12, we have the following.

Theorem 3. Assume M = O(NP) for some constant p > 1.
An optimal two-median on an M x N uniform mesh can
be computed in O(MN log N) time with high probability if
the weights of all vertices of the mesh are iid random vari-
ables with some distribution X, where X < B and E(X) =
w(/InN/N). The algorithm also runs in O(MN?) time in
the worst case and uses O(MN) space.

Intuitively, the requirement X < B is the natural condi-
tion that the request from any single vertex does not depend
on the size of the network, that is, the requests cannot get
unlimited when the network becomes large. The require-
ment E(X) = w(+/InN/N) implies that the vertices having
requests can not be too small, for example, if the requests
come in integral units and the probability of some nonzero
request is always greater than some constant p > 0, then
E(X) > p = w(+/InN/N) and the condition is satisfied.

An example of using the probabilistic algorithm is as fol-
lows. Assume M = N, so we have an N x N square mesh, and
suppose the requests are mutually independent unit requests,
that is, X = 1 with probability p = InN/+/N, and X = 0
otherwise. Then E(X) = w(y/InN/N) and the conditions of
Theorem 3 are satisfied. Note that for these parameters, with
high probability, every row and every column of the uniform
mesh will contain at least one request, that is, m = M and
n = N. Therefore, with high probability, applying the worst-
case algorithm of Theorem 2 would require O(MN 2) time.
On the other hand, with high probability, the algorithm of
Theorem 3 requires only O(MN log N) time.

5. RANGE QUERIES ON MESHES

In this section we will discuss appropriate values for Q, the
time for computing w(R), cx(R), and ¢y (R) of a basic region
R. Because all the three values w, cy, and ¢, are calculated in
some commutative groups, this problem is the classic range
searching problem. In particular, all the three operations of the
groups are simply ordinary arithmetic addition. For example,
cx(R) = Y ,cg W) - x,. The value cx(u) = w(u) - x, can
be regarded as a property of u represented by a constant, and
the value of ¢, (R) is just the arithmetic sum of the values of
cx(u) forall u € R.

The basic rectangular regions are orthogonal ranges. See,
for example, [4]. The basic triangular regions can also be

232 NETWORKS—2007—DOI 10.1002/net

A
P
! B A
B C
P
C D
Q2 Q1 Q1 Q2 Py
FIG.5. The decomposition of rectangular and triangular regions into two-

sided regions. Py, P, Q1, Q> are points at infinity of the corresponding
directions.

treated as orthogonal ranges, as follows. Because the slopes
of the hypotenuses are always a constant, we could apply an
affine transformation such that all the hypotenuses become
parallel to some axis. For example, as we will see in the next
paragraph, in our specific problem, we will need to query
vertices (x,y) in the two-sided triangular region x > ¢; and
x +y < c¢p. We could transform each vertex (x,y) to a new
coordinate (x, z) where z = x +y, and then apply the orthog-
onal range searching x > ¢; and z < ¢ under the new
coordinate.

Our problem only need counting-type queries, that is, we
do not need to /ist all vertices in the query range. In the count-
ing case, orthogonal range searching is equivalent to solving
the two-sided case, also known as dominance search, where
two of the four boundaries of the search region is infinity.
Refer to Figure 5. The basic rectangular region ABCD (the
left figure) can be decomposed into the sum/difference of
four two-sided rectangle regions P1AQ1, P1BQ>, P2 DQ1 and
P>CQ». If we can make the two-sided queries efficiently, we
can make the four-sided query as well up to a constant factor.
Similarly, a basic triangular region ABC (the right figure) can
be decomposed into two two-sided triangular regions P1AQ1
and P1CQ» plus a three-sided rectangular region Q1BCQ».
The three-sided rectangles can be further decomposed into
the difference of two two-sided rectangles. So we only need
to find efficient ways to query two-sided triangular regions,
as discussed in the previous paragraph.

Therefore, we have reduced our problem to the two-sided
orthogonal range counting problem. The range counting algo-
rithm depends on whether the mesh is uniform or not. We
first deal with the uniform case. Range counting on a uni-
form mesh is easy. A simple “table lookup” approach can do
everything optimally in constant time.

Lemma 12. In an M x N uniform mesh, the values of
W(R), ¢x(R) and cy(R) of any basic region R can be computed
in O(1) time using O(MN) preprocessing time and O(MN)
additional space.

Proof. We can always shrink a basic region such that it
contains the same set of vertices of the mesh and the corners of
the basic region are on some vertices of the mesh. So we only
need to query the regions whose corners are the vertices of
the mesh.

Let the corner A in Figure 5 be the location of a vertex u.
We denote by R («) the two-sided rectangular region P1AQ
in the left figure, and by R> (1) the two-sided triangular region
P1AQ in the right figure. The table lookup approach is to
simply precompute the values of w(u), c,(u) and cy(u) for
both regions R (x) and R>(u) for each vertex u. It is easy to
do this in O(MN) time; hence, the lemma follows. n

The table lookup approach does not work well on nonuni-
form meshes. If we use table lookup, we need to precompute
O(mn) two-sided rectangular regions and O(mb ™) two-sided
triangular regions, where b~ is the number of slope —1 diag-
onals that have requests. The value of b~ is bounded by r,
which results in a preprocessing time larger than the bound in
Lemma 7. Moreover, the query time is still O(log m) because
we need a binary search.

There are many results on range searching on meshes,
but to the best of the authors’ knowledge, none of them can
do better than O(logm) in counting-type queries while at
the same time keeping the preprocessing time low enough
compared to the bound in Lemma 7 to be useful to us. Hence,
we will therefore use the classic priority search tree [14] data
structure. This data structure is not only practical, but also
allows arbitrary real values instead of only integers.

Lemma 13 ([14]). In an m X n nonuniform mesh, the values
of w(R), cx(R) and cy(R) of any basic region R can be com-
puted in O(logm) time using O(r) preprocessing time and
O(r) additional space.

Finally, as we did in Section 3 and 4, combining Lemma 13
with Lemma 7 gives Theorem 1. Combining Lemma 12 with
Lemma 7 gives Theorem 2, while combining Lemma 12 with
Lemma 11 gives Theorem 3.

REFERENCES

[1] S. Arora, P. Raghavan, and S. Rao, Approximation schemes
for Euclidean k-medians and related problems, Proc. 30th
Ann ACM Symp Theory Comput, 1998, pp. 106-113.

[2] R.E.Burkard, E. Cela, and H. Dollani, 2-medians in trees with
pos/neg weights, Discrete Appl Math 105 (2000), 51-71.

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

M. Charikar, S. Guha, E. Tardos, and D.B. Shmoys,
A constant-factor approximation algorithm for the k-median
problem, J Comput Syst Sci 65 (2002), 129-149.

M. de Berg, M. van Kreveld, M. Overmars, and O.
Schwarzkopf, Computational geometry—Algorithms and
applications, Springer-Verlag, Berlin, 2000, 2nd ed.

E. Erkut, R.L. Francis, and T.J. Lowe, Locating two facilities
on a tree subject to distance constraints, Transportation Sci
22 (1988), 199-208.

B. Gavish and S. Sridhar, Computing the 2-median on tree
networks in O(nlgn) time, Networks 26 (1995), 305-317.
T. Gross and D.R. O’Hallaron, iWarp: Anatomy of a parallel
computing system, MIT Press, Cambridge MA, 1998.

S. Guha and S. Khuller, Greedy strikes back: Improved facil-
ity location algorithms, Proc. 9th Ann ACM-SIAM Symp
Discr Algorithms, 1998, pp. 649-657.

R. Hassin and A. Tamir, Improved complexity bounds for
location problems on the real line, Oper Res Lett 10 (1991),
395-402.

W.J. Hoeffding, Probability inequalities for sums of bounded
random variables,] Am Stat Assoc 58 (1963), 713-721.
S.C. Ku, C.J. Lu, B.F. Wang, and T.C. Lin, Efficient algo-
rithms for two generalized 2-median problems on trees,
Proc. 12th Ann Int Symp Algorithms Computation, 2001,
pp. 768-778.

F.C.M. Lau, PK.W. Cheng, and S.S.H. Tse, An algorithm for
the 2-median problem on two-dimensional meshes, Comput
J 44 (2001), 101-108.

J.H. Lin and J.S. Vitter, e-approximations with minimum
packing constraint violation, Proc. 24th Ann ACM Symp
Theory Comput, 1992, pp. 771-782.

E.M. McCreight, Priority search trees, SIAM J Comput 14
(1985), 257-276.

A. Tamir, An O(pn?) algorithm for the p-median and related
problems on tree graphs, Oper Res Lett 19 (1996), 59-64.
S.S.H. Tse and F.C.M. Lau, An approximation solution for the
2-median problem on two-dimensional meshes, Proc. 19th
Int Conference Advanced Informat Networking Appl, 2005,
Vol. 2, pp. 457-460.

A. Vigneron, L. Gao, M.J. Golin, G.F. Italiano, and B. Li, An
algorithm for finding a k-median in a directed tree, Informat
Process Lett 74 (2000), 81-88.

NETWORKS—2007—DOI 10.1002/net 233

