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ABSTRACT
We present an algorithm to reconstruct a collection of dis-
joint smooth closed curves from n noisy samples. Our noise
model assumes that the samples are obtained by first draw-
ing points on the curves according to a locally uniform dis-
tribution followed by a uniform perturbation of each point
in the normal direction with a magnitude smaller than the
minimum local feature size. The reconstruction is faithful
with a probability that approaches 1 as n increases. We
expect that our approach can lead to provable algorithms
under less restrictive noise models and for handling non-
smooth features.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

General Terms
Algorithms
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1. INTRODUCTION
The combinatorial curve reconstruction problem has been

extensively studied recently by computational geometers.
The input consists of a set of sample points on an unknown
curve F . The problem calls for computing a polygonal curve
that is provably faithful. That is, as the sampling density in-
creases, each point on a polygonal curve should converge to
F , the normal at each point on the polygonal curve should
converge to the normal at the nearest point on F , and the
polygonal curve is homeomorphic to F . Most of the results
obtained can handle the case where F is a set of disjoint
curves.

Amenta et al. [3] obtained the first results in this prob-
lem. They proposed a 2D crust algorithm to reconstruct a
set of disjoint smooth closed curves. They prove that the
reconstruction is faithful if the input satisfies the ε-sampling
condition for ε < 0.252. For 0 < ε < 1, a set S of samples is
an ε-sampling of F if for any point x ∈ F , there exists s ∈ S
such that ‖s−x‖ ≤ ε ·f(x) [3]. The algorithm by Amenta et
al. invokes the computation of a Voronoi diagram or Delau-
nay triangulation twice. Gold and Snoeyink [11] simplified
the algorithm and their algorithm invokes the computation
of Voronoi diagram or Delaunay triangulation only once.

Later, Dey and Kumar [4] proposed a different NN-crust
algorithm for disjoint smooth closed curves. Since we will
use the NN-crust algorithm, we briefly describe it. For each
sample s in S, connect s to its nearest neighbor in S. Af-
terwards, if a sample s is incident only on edge e, add the
shortest edge incident to s among all the edges that make
an angle more than π/2 with e. Dey and Kumar [4] proved
that the resulting set of edges form a faithful reconstruction
for ε ≤ 1/3.

Dey, Mehlhorn, and Ramos [5] proposed conservative-
crust to handle the case when F has endpoints. Funke
and Ramos [9] proposed an algorithm for the case where F
may have sharp corners and endpoints. Dey and Wenger [6,
7] also described algorithms and implementation for han-
dling sharp corners. Giesen [10] discovered that the travel-
ing salesperson (TSP) tour through the samples is a recon-
struction of the underlying curve. Althaus and Mehlhorn [2]
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showed that such a traveling salesperson tour can be con-
structed in polynomial time.

Noise often arises in collecting the input samples. For ex-
ample, when the input samples are obtained from 2D images
by scanning. The noisy samples are typically classified into
two types. The first type are samples that cluster around
F but they generally do not lie on F . The second type
are outliers that lie relatively far from F . No combinatorial
algorithm is known so far that can compute a faithful recon-
struction in the presence of noise. In this paper, we propose
a method that can handle noise of the first type for a set
of disjoint smooth closed curves. We assume that the input
does not contain outliers. Proving a deterministic theorem
seems difficult as arbitrary noisy samples can collaborate
to form patterns to fool any reconstruction algorithm. In-
stead, we assume a particular model of noise distribution
and prove that our reconstruction is faithful with probabil-
ity approaching 1 as the number of samples increases.

In our model, a sample is generated by drawing a point
from F followed by randomly perturbing the point in the
normal direction. For each point x on F , we denote f(x)
as the local feature size at x, which is the distance from
x to the medial axis of F . Suppose we let L =

�
F

1
f(x)

dx.

The drawing of points from F follows the probability density
function 1

L·f(x)
. This in fact means, the probability of draw-

ing a point from a curve segment η is equal to 1
L
· �

η
1

f(x)
dx.

A point p drawn from F is then perturbed in the normal
direction. The perturbation is uniformly distributed within
an interval that has p as the midpoint, width 2δ, and aligns
with the normal direction at p. δ is a constant no more
than minx∈F f(x). The distribution of each sample is inde-
pendently identical. Throughout this paper, we assume that
minx∈F f(x) = 1. Note that if δ > 1, then the perturbed
points from different parts of F will mix up at some place
and it seems very difficult to estimate the unknown curve F
around that neighborhood. We emphasize that the constant
δ is unknown to our algorithm. Although the perturbation
along the normal direction is restrictive, it isolates the effect
of noise from the distribution of samples on F . This facili-
ties an initial study of curve reconstruction in the presence
of noise.

Our algorithm returns a reconstruction which is faith-

ful with probability at least 1 − O(n−Ω(
√

ln n/f2
max)(f2

max +√
lnn)), where n is the number of noisy samples and fmax

is the maximum local feature size. Therefore, the probabil-
ity approaches 1 as n increases. Our algorithm works for
noisy samples from a collection of disjoint smooth closed
curves. But we will just assume a single unknown curve F
for simplicity. The novelty of our algorithm is a method to
cluster samples so that each cluster comes from a relatively
flat portion of F . This allows us to estimate points that lie
close to F . We believe that this clustering approach will
also be useful for less restrictive noise models and recogniz-
ing non-smooth features. We also expect that this clustering
approach will work for surface reconstruction in 3D.

The rest of the paper is organized as follows. Section 2
describes our algorithm. In Section 3, we introduce the β-
decomposition of the space around F which is the main tool
in our probabilistic argument. Sections 4, 5, and 6 prove
that our reconstruction is faithful with probability approach-
ing 1. Section 7 discusses the possibility of extending the
algorithm to handle curves with non-smooth features.

Figure 1: On the left, a smooth curve segment with
a noise cloud. In the middle, a sufficiently large
neighborhood identifies a strip with relatively large
aspect ratio, which can provide preliminary point
and normal estimates. On the right, concentrating
on smaller neighborhoods, a better estimate of point
and normal is possible.

2. ALGORITHM
We first highlight the key ideas in our algorithm. The

algorithm works by growing a disk neighborhood around
each sample p until a neighborhood coarse(p) is identified in
which the samples it contains fit in a strip with small width
relative to the neighborhood size. coarse(p) provides a first
estimate of the curve locally and of its normal. A better es-
timation is possible by considering a smaller neighborhood
refined(p). A possibility is to shrink coarse(p) by a certain
factor and for each direction to consider all the samples in
the slab bounded by the two lines parallel to the specified
direction and tangent to the shrunken coarse(p); the spread
of the points in the slab (along its direction) is minimized for
a direction that provides a good normal estimation and it
also provides a good point estimate s∗.1 refined(p) is the op-
timal slab. Next, the sampling S is decimated: considering
the samples in arbitrary order, put the current p ∈ S into
the decimated set S′ and remove (decimate) all the points
in a certain neighborhood that depends on refined(p) from
consideration. Finally, we can use any reconstruction algo-
rithm that is correct for a noise free sampling. For example,
the NN-Crust from Dey and Kumar [4] in which each sample
selects its nearest neighbor as its first reconstruction neigh-
bor and its nearest neighbor in a small cone opposite to the
first neighbor (the opposite halfplane in the original paper)
as its second reconstruction neighbor.

We provide the details of our algorithm below. Let n be
the total number of input samples.

Point Estimation: For each sample s, we estimate a point as
follows.

Coarse neighborhood: Let initial(s) be the disk that is
centered at s and contains ln2 n samples. We ini-
tialize coarse(s) = initial(s) and compute an infi-
nite strip strip(s) of minimum width that contains
all samples inside coarse(s). We grow coarse(s)
and maintain strip(s) until the ratio of the radius
of coarse(s) to the width of strip(s) is greater than
a predefined constant ρ. The final disk coarse(s)
is the coarse neighborhood of s.

Refined neighborhood: Let Ns be a direction perpen-
dicular to the long side of strip(s). Let λ1 =

1For technical reasons, this is done less elegantly in our prov-
able algorithm.
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lnn/
√
n. The refined neighborhood refined(s) is

the slab that contains s in the middle, parallel to
Ns, and has width equal to

max{√λ1 radius(coarse(s)), radius(initial(s))}.
Divide refined(s) into three subslabs of equal width.
Let a (resp. b) be the sample in the leftmost (resp.
rightmost) subslab furthest from s in the direction
of refined(s). Let line(s) be the line through a and
b. We rotate refined(s) in the clockwise and anti-
clockwise direction and maintain line(s) . The
range of the rotation is [0, π/12]. Within this
range, we position refined(s) such that the angle
between refined(s) and line(s) is maximized.

Center point: Compute the minimum rectangle Rs that
aligns with refined(s) and contains all samples in-
side refined(s). We return the center point s∗ of
Rs.

Pruning: We select an arbitrary center point s∗ and elimi-
nate all center points whose distances from s are less
than or equal to

�
width(refined(s)). We repeat until

no center point is left. The final set of center points
selected is the set of estimated points on which the
NN-crust algorithm will be invoked.

3. β-DECOMPOSITION
We decompose a neighborhood of F into a collection of

cells. The diameter of these cells and the probabilities of
them being non-empty or containing a certain number of
samples will be useful in the analysis of our algorithm.

For each point x ∈ �
2 that does not lie on the medial

axis of F , we use x̃ to denote the point on F closest to x.
(We are not interested in points on the medial axis.) We
call the bounded region enclosed by F the inside of F and
the unbounded region the outside of F . For 0 < α ≤ δ, F+

α

(resp. F−
α ) is the curve that passes through each point q

inside (resp. outside) F such that ‖q − q̃‖ = α. We use Fα

to mean F+
α or F−

α when it is unimportant to distinguish
between inside and outside. The normal segment at a point
p ∈ F is the line segment consisting of points q on the normal
of F at p such that ‖p− q‖ ≤ δ.

Given two points x, y ∈ F , we use F (x, y) to denote the
curved segment from x to y in clockwise direction around
F . We use |F (x, y)| to denote the length of F (x, y). Let

0 < β < 1 be a parameter. If δ ≥ 1/
√

lnn, let κ = βδ,
otherwise let κ = β. We identify a set of cut-points on F
as follows. We pick an arbitrary point c0 on F as the first
cut-point. Then for i ≥ 1, we find the point ci such that
ci lies in the interior of F (ci−1, c0), |F (ci−1, ci)| = κf(ci−1),
and |F (ci, c0)| ≥ κf(ci). If ci exists, it is the next cut-point
and we continue. Otherwise, we have computed all the cut-
points and we stop.

A β-decomposition is the arrangement of the following
curves and line segments:

1. The normal segments at the cut-points.

2. F , F+
δ , and F−

δ .

3. If δ ≥ 1/
√

lnn, we also use F+
α and F−

α where α = iβδ
and i is an integer between 1 and �1/β� − 1.

4

Fδ

−Fδ

f(c  )3κ

F

}

}

βδ

c1
c2 c3 c

+

Figure 2: A β-decomposition.

p

r
C

x
d

(1−α)
D

Fα

tangent to
pat

Fα

p~f ( )

Figure 3: Illustration for Lemma 2.

If δ < 1/
√

lnn, the β-decomposition consists of two rows
of cells on the two sides of F . Otherwise, there are O(1/β)
rows of cells.

3.1 Properties of Fα

Lemma 1 Any point p on Fα has two tangent disks with
radii (1 − α)f(p̃) whose interior do not intersect Fα.

Proof. Let Mα be the medial disk of Fα touching a point
p ∈ Fα. Let M be the medial disk of F touching p̃. By
the definition of Fα, M and Mα have the same center and
radius(Mα) = radius(M) − α ≥ f(p̃) − α. Let D be a disk
of radius (1−α)f(p̃) that touches Fα at p. If int(D)∩Fα 	=
∅, then radius(Mα) < (1 − α)f(p̃) ≤ f(p̃) − α. This is a
contradiction.

Lemma 2 Let p be a point on Fα. For any point q on Fα,
if ‖p − q‖ < 2(1 − α)f(p̃), then the distance of q from the

tangent at p is at most ‖p−q‖2

2(1−α)f(p̃)
.

Proof. Assume that the tangent at p is horizontal. Refer
to Figure 3. Let D be the tangent disk at p that lies above
p and has center x and radius (1 − α)f(p̃). Let C be the
circle centered at p with radius ‖p − q‖. Since ‖p − q‖ <
2(1−α)f(p̃), C crosses D. Let r be a point in C ∩ ∂D. Let
d be the distance of r from the tangent at p. By Lemma 1,
d bounds the distance from q to the tangent at p. Observe
that ‖p− q‖ = ‖p− r‖ = 2(1− α)f(p̃) sin(�pxr/2) and d =
‖p−r‖·sin(�pxr/2). Thus, d = 2(1−α)f(p̃) sin2(�pxq/2) =
‖p− q‖2/(2(1 − α)f(p̃)).
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For each point p on Fα, define cocone(p, θ) to be the dou-
ble cone that has apex p and angle θ such that the normal
at p is the symmetry axis of cocone(p, θ) that lies outside
cocone(p, θ).

Lemma 3 Let p be a point on Fα. Let D be the disk with
center p and radius c · f(p̃) for some c > 0. Assume that
δ ≤ min{1/2, 1 − 2c}. Then Fα ∩ D ⊆ cocone(p, θ), where
θ = min{2 sin−1 c, π/6}.
Proof. Since δ ≤ 1 − 2c, c < 2(1 − δ) ≤ 2(1 − α), Lemma 2
implies that the distance between Fα ∩ D and the tangent
at p is bounded by c2f(p̃)/(2(1 − δ)). Let θ be the smallest
angle such that cocone(p, θ) contains Fα ∩D. Thus,

sin
θ

2
≤ c2

2(1 − δ)
· 1

c

=
c

2(1 − δ)
.

Observe that 2(1− δ) ≥ 1, so c/(2(1− δ)) ≤ c which implies
that θ ≤ 2 sin−1 c. Also, since δ ≤ 1−2c, c/(2(1−δ)) < 1/4
which implies that θ < π/6.

3.2 Diameter of a cell
In this section, we prove an upper bound and lower bound

on the diameter of a β-cell. First, we need a technical
lemma.

Lemma 4 Let p be a point on F and let D be a disk centered
at p with radius c · f(p) where c ≤ 1. F ∩ D consists of
one connected component and for any point q ∈ F ∩D, the
normals at p and q make an angle at most 2 sin−1(c/2).

Proof. If F ∩ D consists of more than one connected com-
ponent, the medial axis of F contains some point inside D.
This contradicts the fact that radius(D) ≤ f(x). From a
result in [3], the angle between the normal at p and pq is
at least π/2 − sin−1(c/2). The same is true for the angle
between the normal at q and pq. It follows that the angle
between the normals at p and q is at most 2 sin−1(c/2).

Lemma 5 Assume that β ≤ 1/4. Let C be a β-cell. There
is a constant c1 > 0 such that for any point t ∈ C, if δ ≥
1/

√
lnn, the diameter of C is at most c1(βδf(t̃)); otherwise,

it is at most c1βf(t̃) + 2δ.

Proof. Suppose that the cell C lies between the normal
segments at the cut-points ci and ci+1. For any point t ∈ C,
the Lipschitz condition implies f(t̃) ≥ f(ci) − ‖ci − t̃‖ ≥
(1− 2β)f(ci). Symmetrically, we have f(t̃) ≤ (1 + 2β)f(ci).
Assuming that β ≤ 1/4, the above two inequalities imply
that for any points s, t ∈ C

f(t̃)/3 ≤ f(s̃) ≤ 3f(t̃). (1)

If δ < 1/
√

lnn, the diameter of C is clearly at most 2βf(ci)+
2δ which is at most O(βf(t̃)) + 2δ by (1).

Suppose that δ ≥ 1/
√

lnn. Refer to Figure 4. Let p be
the projection of s onto a latitudinal side of C along the
direction normal F to s̃. Similarly, let q be the projection of
t onto the same latitudinal side. Let r be the point q− t̃+ s̃.

Without loss of generality, assume that �s̃pr ≥ �s̃rp. By
sine law,

‖p− r‖ = ‖r − s̃‖ · sin�ps̃r/ sin�s̃pr.

By Lemma 4, the angle between the normals at s̃ and ci

q

sci
i +1c

p

s

~t

r

t

~

Figure 4: Illustration for Lemma 5.

is at most 2 sin−1(β). The same holds for the normals at
t̃ and ci. It follows that the angle between the normals at
s̃ and t̃ is at most 4 sin−1(β) ≤ 8β as β ≤ 1/4. Therefore,
�s̃pr ≥ π/2 − 4β. So we get ‖p− r‖ ≤ δ sin(8β)/ cos(4β) ≤
8βδ/ cos(4β) which is less than 16βδ as cos(4β) ≥ 1/2. By
triangle inequality, we get ‖p − q‖ ≤ ‖p − r‖ + ‖q − r‖ =
‖p− r‖ + ‖s̃− t̃‖ ≤ 16βδ + 2βδf(ci). Hence,

‖s− t‖ ≤ ‖p− s‖ + ‖p− q‖ + ‖q − t‖
≤ βδ + +16βδ + 2βf(ci) + βδ

(1)
= O(βδf(t̃)).

Lemma 6 Assume that δ < 1/16 and β ≤ 1/4. Let C be a
β-cell. There is a constant c2 > 0 such that for any point
t ∈ C, if δ ≥ 1/

√
lnn, the diameter of a β-cell C is at least

c2βδf(t̃); otherwise, it is at least c2βf(t̃).

Proof. We only deal with the case where δ ≥ 1/
√

lnn.

Similar analysis works for the case where δ < 1/
√

lnn.
Let Fα(p, q) be one side of C. Let l = |Fα(p, q)| and let

l̃ = |F (p̃, q̃)|. Observe that

βδf(p̃) ≤ l̃ ≤ 2βδf(p̃). (2)

For any point s ∈ Fα(p, q), we use θs to denote the acute
angle between the normals at s and p. We lower bound the
diameter of C by lower bounding l.

By Lemma 4, we have

θs ≤ 2 sin−1 βδ ≤ 4βδ ≤ 1, (3)

as β ≤ 1/4. Fα(p, q) is monotone with respect to the tangent
at p. Otherwise, there is a point s ∈ Fα(p, q) such that
θs = π/2, contradiction. Refer to Figure 5. Assume that
the tangents at p and p̃ are horizontal. Let r and r′ be the
vertical projections of q and q̃ onto the tangents at p and p̃,
respectively. Let s (resp. s′) be the intersection between the
normal at q and the tangent at p (resp, p̃). The monotonicity
of Fα(p, q) implies the following.

‖p− r‖ ≥
�

Fα(p,q)

cos θs ds ≥ l · cos(4βδ) ≥ l/2, (4)

as β ≤ 1/4. Similarly, we get

‖p̃− r′‖ ≥ l̃/2. (5)
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We lower bound l by lower bounding ‖p−r‖. By equation (1)
in the proof of Lemma 5, it suffices to show that ‖p − r‖ =
Ω(βδf(p̃)).

r

r’

s

s’

i

q
p

F

θq

Fα

p~

q~

Figure 5: Illustration for Lemma 6.

If l ≥ l̃, then ‖p − r‖ ≥ l̃/2 ≥ βδf(p̃)/2. Assume that

l < l̃. So F 	= Fα. By (3), tan θq ≤ 2θq ≤ 8β. We have
‖p−r‖ = ‖p−s‖−‖r−s‖ = ‖p−s‖−‖q−r‖ · tan θq. Thus,

‖p− r‖ ≥ ‖p− s‖ − ‖q − r‖ · 8β (6)

Starting with Lemma 2, we get ‖q − r‖ ≤ l2/(2(1 −
α)f(p̃)) < l̃2/(2(1 − δ)f(p̃)) which is O(β2δ2f(p̃)) by (2).

Consider the similar triangles ips and ip̃s′. We have ‖p̃−
i‖ = ‖p̃−s′‖/ tan θq ≥ ‖p̃−r′‖/8βδ which is at least f(p̃)/16
by (2) and (5). This implies that ‖p− i‖/‖p̃− i‖ = 1−‖p−
p̃‖/‖p̃ − i‖ ≥ 1 − 16δ/f(p̃) ≥ 1 − 16δ. Thus, ‖p − s‖ =
‖p̃ − s′‖ · ‖p− i‖/‖p̃ − i‖ = Ω(‖p̃ − r′‖) which is Ω(βδf(p̃))
by (2) and (5).

Substituting the bounds for ‖p− s‖ and ‖q − r‖ into (6),
we get ‖p− r‖ ≥ Ω(βδf(p̃))−O(β2δ2f(p̃)) = Ω(βδf(p̃)).

3.3 Number of samples in a cell
The following lemma estimates the probability of a sample

point lying inside a cell.

Lemma 7 Let C be a cell in a β-decomposition. There ex-
ists constants c3 and c4 such that if δ ≥ 1/

√
lnn, the prob-

ability that a randomly picked sample falls inside C is at
least c4β

2δ and at most c3β
2δ; otherwise, the probability is

between c4β and c3β.

Proof. Assume that C is bounded by normal segments at
cut-points ci and ci+1. We use η to denote F (ci, ci+1) as a
short hand. For any point s ∈ η, ‖s − ci‖ ≤ |η| ≤ 2βf(ci).
By the Lipschitz property, we have

f(ci) − ‖s− ci‖ ≤ f(s) ≤ f(ci) + ‖s− ci‖
Assume that L =

�
F

1
f(s)

ds. Let p be a randomly picked

sample.
If δ < 1/

√
lnn, the probability that p ∈ C is equal to the

probability that p̃ lies on η, which is

1

L
·
�

η

1

f(s)
ds ∈

�
β

(1 + 2β)L
,

2β

(1 − 2β)L

�
.

If δ ≥ 1/
√

lnn, the probability that p̃ lies on η is

1

L
·
�

η

1

f(s)
ds ∈

�
βδ

(1 + 2βδ)L
,

2βδ

(1 − 2βδ)L

�
.

The probability that p lies inside C on the condition that p̃
lies on η is βδ/δ = β. We conclude that the probability that
p lies inside C is equal to

1

L
·
�

η

β

f(s)
ds ∈

�
β2δ

(1 + 2β)L
,

2β2δ

(1 − 2β)L

�
.

The following Chernoff bound [8] will be needed.

Lemma 8 Let the random variables X1, X2, . . . ,Xn be in-
dependent, with 0 ≤ Xk ≤ 1 for each k. Let Sn =

�
Xk,

and let E(Sn) be the expected value of Sn. Then for any

σ > 0, Pr(Sn ≤ (1 − σ)E(Sn)) ≤ exp(−σ2E(Sn)
2

), and

Pr(Sn ≥ (1 + σ)E(Sn)) ≤ exp(− σ2E(Sn)
2(1+σ/3)

).

Lemma 9 Let λk = k lnn/
√
n. Assume that δ ≥ 1/

√
lnn.

Let C be a cell in a β-decomposition. Let c3 and c4 be the
constants in Lemma 7.

(i) If β = λk/r for some k, r > 0, then C is non-empty

with probability at least 1 − n−Ω(
√

ln n/r2).

(ii) If β = λk/r for some k, r > 0, then for any constant
c > c3k

2/r2, the number of samples in C is at most

c ln2 n with probability at least 1 − n−Ω(
√

ln n/r2).

(iii) If β = λk/r for some k, r > 0, then for any constant
c < c4k

2/r2, the number of samples in C is at least

c ln3/2 n with probability at least 1 − n−Ω(
√

ln n/r2).

Proof. Let C be a (λk/r)-cell. Let Xi(i = 1, . . . , n) be a
random binomial variable taking value 1 if the sample point
pi is inside C, and value 0 otherwise. Let Sn =

�n
i=1Xi.

Then E(Sn) =
�n

i=1E(Xi) = n · Pr(pi lies inside C). This
implies E(Sn) ≤ c3nλ

2
kδ/r

2 and E(Sn) ≥ c4nλ
2
kδ/r

2 ≥
c4k

2 ln3/2 n/r2.
By Lemma 8, Pr(Sn ≤ 0) = Pr(Sn ≤ (1 − 1)E(Sn)) ≤

exp(−E(Sn)
2

) = exp(−Ω( ln3/2 n
r2 )) = n−Ω(

√
ln n/r2). This

proves (i). Consider (ii). Let σ = (cr2/(c3k
2)) − 1 >

0. Then c ln2 n = c3nλ
2
k(1 + σ)/r2 ≥ (1 + σ)E(Sn). By

Lemma 8, Pr(Sn > c ln2 n) ≤ Pr(Sn > (1 + σ)E(Sn)) ≤
exp(−σ2E(Sn)

2+2σ/3
) = exp(−Ω( ln3/2 n

r2 )) = n−Ω(
√

ln n/r2). Con-

sider (iii). Let σ = 1 − (cr2/(c4k
2)) > 0. Then c ln3/2 n =

c4k
2 ln3/2 n(1−σ)/r2 ≤ (1−σ)E(Sn). By Lemma 8, Pr(Sn <

c ln3/2 n) ≤ Pr(Sn < (1 − σ)E(Sn)) ≤ exp(−σ2E(Sn)
2

) =

exp(−Ω( ln3/2 n
r2 )) = n−Ω(

√
ln n/r2).

Lemma 10 Let λk = k lnn/
√
n. Assume that δ < 1/

√
lnn.

Let C be a cell in a β-decomposition. Let c3 and c4 be the
constants in Lemma 7.

(i) If β = λ2
k for some k > 0, then C is non-empty with

probability at least 1 − n−Ω(ln n).

(ii) If β = λ2
k for some k > 0, then for any constant c >

c3k
2, the number of samples in C is at most c ln2 n

with probability at least 1 − n−Ω(ln n).
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(iii) If β = λ2
k for some k > 0, then for any constant c <

c4k
2, the number of samples in C is at least c ln2 n with

probability at least 1 − n−Ω(ln n).

Proof. Let C be a λk-cell. Let Xi(i = 1, . . . , n) be a random
binomial variable taking value 1 if the sample point pi is
inside C, and value 0 otherwise. Let Sn =

�n
i=1Xi. Then

E(Sn) =
�n

i=1E(Xi) = n·Pr(pi lies inside C). This implies
c4nλ

2
k ≤ E(Sn) ≤ c3nλ

2
k.

Consider (i). By Lemma 8, Pr(Sn ≤ 0) = Pr(Sn ≤ (1 −
1)E(Sn)) ≤ exp(−E(Sn)

2
) = exp(−Ω(ln2 n)) = n−Ω(ln n).

Consider (ii). Let σ = (c/(c3k
2)) − 1 > 0. Then c ln2 n =

c3nλ
2
k(1 + σ) ≥ (1 + σ)E(Sn). By Lemma 8, Pr(Sn >

c ln2 n) ≤ Pr(Sn > (1 + σ)E(Sn)) ≤ exp(−σ2E(Sn)
2+2σ/3

) =

exp(−Ω(ln2 n)) = n−Ω(ln n). Consider (iii). Let σ = 1 −
(c/(c4k

2)) > 0. Then c ln2 n = c4nλ
2
k(1−σ) ≤ (1−σ)E(Sn).

By Lemma 8, Pr(Sn < c ln2 n) ≤ Pr(Sn < (1 − σ)E(Sn)) ≤
exp(−σ2E(Sn)

2
) = exp(−Ω(ln2 n)) = n−Ω(ln n).

4. COARSE NEIGHBORHOOD
In this section, we prove an upper bound and a lower

bound on the radius of coarse(s) for each sample s. Recall
that λk = k lnn/

√
n.

Lemma 11 Assume δ ≤ 1/(6ρ + 2). Let s be a sample.
There exists n0 such that when n > n0, radius(coarse(s)) ≤
3ρδf(s̃)+radius(initial(s)) and the following hold with prob-

ability at least 1 − n−Ω(
√

ln n)
√

lnn.

• If δ ≥ 1/
√

lnn, radius(initial(s)) = O(λ1δf(s̃)
√

lnn);

• If δ < 1/
√

lnn, radius(initial(s)) = O(λ2
1f(s̃)) + 2δ.

Proof. If δ < 1/
√

lnn, by Lemma 10(iii), initial(s) does not
contain the cell C containing s in some λ2

k-decomposition
with probability at least 1−n−Ω(ln n). So radius(initial(s)) is
at most the diameter of C, which is at most c1λ

2
kf(s̃)+2δ =

O(λ2
1f(s̃))+ 2δ. (The big-Oh constant absorbs the constant

k.)

If δ ≥ 1/
√

lnn, by Lemma 9(iii), initial(s) does not con-

tain more than
√

lnn cells in some λk-decomposition with

probability at least 1−n−Ω(
√

ln n)
√

lnn. So radius(initial(s))

is at most the sum of diameters of
√

lnn contiguous cells,
including the one containing s. By the Lipschitz condition,
the local feature sizes differ by constant factors within these
cells. It follows from Lemma 5 that radius(initial(s)) ≤
c′λkδf(s̃)

√
lnn for some constant c′, which isO(λ1δf(s̃)

√
lnn).

(The big-Oh constant absorbs the constant k.)

We use K to denote c1λ
2
kf(s̃) + 2δ or c′λkf(s̃)

√
lnn. Let

n0 be the constant such that K ≤ 1/2 whenever n > n0.
Let s1 and s2 be points on F+

δ and F−
δ such that s̃1 = s̃2 =

s̃. Let D be the disk centered at s with radius 3ρδf(s̃) +
radius(initial(s)). So both s1 and s2 lie inside D. Since
δ ≤ 1/(6ρ + 2) and K ≤ 1/2, 3ρδ +K < (1 − δ). Thus, the
distance between any two points in D∩F+

δ is less than 2(1−
δ)f(s̃). By Lemma 2, the maximum distance between D ∩
F+

δ and the tangent at s1 is at most (3ρδ+K)2f(s̃)/(2(1−
δ)) ≤ (3ρδ + K)f(s̃)/(2(1 − δ)). The same is also true for
D ∩ F−

δ . It follows that the samples inside D lie inside a
strip of width at most 2δ+(3ρδ+K)f(s̃)/(1− δ). This is at

X

D

strip(  )s

F

empty disk

r

~

+Fα

−Fδ−α

s

s

Figure 6: For the proof of Lemma 12.

most 3δf(s̃) as δ ≤ 1/(6ρ+2) and K ≤ 1/2. Thus, coarse(s)
cannot grow beyond D.

Lemma 12 Let fmax be the maximum local feature size. Let
s be a sample. There exists n0 such that whenever n > n0,
radius(coarse(s)) ≥ √

ρδ and one of the following holds with

probability at least 1 −O(f2
maxn

−Ω(
√

ln n/f2
max)).

• If δ ≥ 1/
√

lnn, radius(initial(s)) = Ω(λ1δ
�
f(s̃)).

• If δ < 1/
√

lnn, radius(initial(s)) = Ω(λ2
1f(s̃)).

Proof. Let D be the disk that has center s and radius
radius(coarse(s))/

√
ρ. The width of strip(s) is less than or

equal to radius(coarse(s))/ρ = radius(D)/
√
ρ. Refer to Fig-

ure 6. Assume that s ∈ F+
α . Let r be the point on F−

δ−α such
that r̃ = s̃. There is a disk X with radius δ/2 that is tan-
gent to F+

α at s and F−
δ−α at r. If radius(coarse(s)) <

√
ρδ,

then radius(D) < δ and so D ∩X contains a disk with ra-
dius radius(D)/2. Thus, (D ∩X) − strip(s) contains a disk
Y with radius (( 1

4
− 1

2
√

ρ
)radius(D)). Note that Y must be

empty. We seek a lower bound on radius(Y ) in order to
apply Lemma 9(i) or Lemma 10(i) to conclude that Y is
empty with small probability. This will complete the proof.
Let R = radius(initial(s)).

Consider the case where δ ≥ 1/
√

lnn. Assume that R <
λ1δf(s̃). Let c be some constant to be determined later.
Take some λk-decomposition such that each cell has at most
c ln2 n samples with probability at least 1 − n−Ω(ln n). Let
Ci be any cell intersected by initial(s). Assume that Ci

projects onto F (ci, ci+1). We divide Ci into boxes with
normal segments at distance λkδ apart. By adapting the
proof in Lemma 9(ii), one can show that each box con-
tains at most c ln2 n/f(ci) points with probability at least

1 − n−Ω(
√

ln n/f(ci)) ≥ 1 − n−Ω(
√

ln n/fmax). By the Lip-
schitz condition, c ln2 n/f(ci) ≤ c ln2 n/(µf(s̃)) for some
0 < µ < 1. Each box has diameter Θ(λkδ) and bounded
aspect ratio. Assume that the box containing s and others
at no more than µf(s̃)/c boxes away all contain at most
c ln2 n/(µf(s̃)) points. This event happens with probabil-

ity at least 1 − O(f2
maxn

−Ω(
√

ln n/fmax)). If initial(s) does
not contain any box completely, then initial(s) intersects
at most K boxes for some constant K. Therefore, if we
choose c such that cK/(µfmax) < 1, then in order that
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initial(s) contains ln2 n points, initial(s) must contain some
box. Since initial(s) contains some box, all boxes intersected
by initial(s) are contained by some constant factor expansion
of initial(s). Since initial(s) contains ln2 n points, initial(s)
intersects at least µf(s̃)/c boxes, including the one contain-

ing s. A packing argument implies thatR = Ω(λ1δ
�
f(s̃)) =

Ω(λ1δ). Since radius(Y ) = Ω(R), Y contains a cell in some
(λl/fmax)-decomposition. By Lemma 9(i), Y is non-empty

with probability at least 1 − n−Ω(
√

ln n/f2
max).

Consider the case where δ < 1/
√

lnn. Take some λ2
k-

decomposition such that each cell contains at most ln2 n/3

points with probability at least 1−n−Ω(ln n). Assume that s̃
lies on F (ci, ci+1). If initial(s) intersects normal segments at
two cut points or more, then clearly R = Ω(|F (ci, ci+1)|) =
Ω(λ2

kf(s̃)) = Ω(λ2
1f(s̃)), If initial(s) intersects normal seg-

ments at one cut point or less, then initial(s) intersects at
most two cells. It follows that initial(s) contains less than

2 ln2 /3 points with probability at least 1−O(n−Ω(ln n)). So

R = Ω(λ2
1f(s̃)) with probability at least 1 − O(n−Ω(ln n)).

Given this lower bound on R, Y contains a cell in some λ2
r-

decomposition and so Y is non-empty with probability at
least 1 − n−Ω(ln n).

5. CRUDE ANGLE ESTIMATES

Lemma 13 Assume that δ ≤ 1/(40ρ3/2). Let s be a sam-
ple. Let γ be the angle between the normal at s̃ and the
normal of the long side of strip(s). There exists n0 such
that whenever n > n0, γ ≤ sin−1(5/

√
ρ) with probability at

least 1 − n−Ω(
√

ln n/fmax).

Proof. Assume that the tangent at s is horizontal and s ∈
Fα. Let � be the lower boundary of strip(s). Let w be the
width of strip(s). Let x be the intersection between � and
the tangent at s. Let R denote radius(coarse(s)). Without
loss of generality, assume that the slope of � is positive. Let
γ be the acute angle between � and the horizontal. Refer to
Figure 7

tangent at s x y

s

l

γ

coarse (s)

Fα

(s ,θ)cocone

Figure 7: Illustration for Lemma 13.

Consider the case where ‖s − x‖ ≥ R/16. The width of
strip(s) is equal to ‖s − x‖ sin γ. It follows that sin γ ≤
16/ρ. Consider the case where ‖s − x‖ < R/16. Sup-
pose that sin γ > 5/

√
ρ. Let y be the point on the tan-

gent at s such that ‖s − y‖ = 15R/16 and x lies between
s and y. By Lemma 3, Fα lies inside cocone(s, θ) where
θ ≤ 2 sin−1(R/f(s̃)). By Lemma 11, for sufficiently large
n, θ ≤ 2 sin−1(4ρδ) ≤ 16ρδ which is at most 2/(5

√
ρ) as

δ ≤ 1/(40ρ3/2).

In Figure 7, the length of the dashed arc above cocone(s, θ)
and below � is at least ‖x − y‖ · γ − 15Rθ/16 ≥ 7Rγ/8 −
3R/(8

√
ρ) > 4R/

√
ρ. This implies that we can find a point

r ∈ Fα ∩ coarse(s) such that the disk Dr centered at r with
radius min{4R/√ρ,R/32} lies inside coarse(s) and below �.

If δ ≥ 1/
√

lnn, then Lemma 12 implies that radius(Dr) =

Ω(λ1δ
�
f(s̃)). By Lemma 5 and the Lipschitz condition, Dr

contains a cell C in some (λk/
√
fmax)-decomposition. But

then C must be empty as C lies outside strip(s). This occurs

with probability at most n−Ω(
√

ln n/fmax).
If δ < 1/

√
lnn, then Lemma 12 implies that radius(Dr) ≥

max{Ω(λ2
1f(s̃)), 4

√
ρδ/

√
ρ} ≥ Ω(λ2

1f(s̃)) + 2δ. By Lemma 5

and the Lipschitz condition, Dr contains a cell C in some λ2
k-

decomposition. But then C must be empty as C lies outside
strip(s). This occurs with probability at most n−Ω(ln n).

Lemma 14 For any two points p and s on Fα, if ‖p− s‖ ≤
λf(s̃) for some λ > 0, then ‖p̃− s̃‖ ≤ 2

2−3δ−λ
· ‖p− s‖.

Proof. Triangle inequality implies that ‖p̃ − s̃‖ ≤ ‖s− s̃‖ +
‖p − s‖ ≤ (α + λ)f(s̃). Assume that ‖p̃ − s̃‖ = µf(s̃) for
some µ ≤ α+λ. Assume that the normal at s̃ is vertical and
p̃ lies below s̃. Let x be the center of the disk that touches
F at s̃, lies below s̃, and has radius f(s̃).

Then sin(�p̃xs̃/2) ≤ µ/2. So the horizontal distance be-
tween p̃ and s̃ is at least ‖p̃−s̃‖ cos(�p̃xs̃/2) ≥ (1−µ/2)·‖p̃−
s̃‖. By Lemma 4, the angle between the normals at p̃ and s̃
is at most 2 sin−1(µ/2). So the horizontal distance between
p and s is at least (1−µ/2) · ‖p̃− s̃‖−α sin(2 sin−1(µ/2)) ≥
(1−µ/2)·‖p̃−s̃‖−αµ = ‖p̃−s̃‖·(1−µ/2−α/f(s̃)). Since µ ≤
α+λ and f(s̃) ≥ 1, we get ‖p−s‖ ≥ ‖p̃−s̃‖·(1−3α/2−λ/2).

To guarantee that we will rotate and align refined(s) ap-
proximately well with the normal at s̃, we must show that
any other orientation of refined(s) will yield a significant
error, i.e., a significantly smaller angle between refined(s)
and line(s). This depends on the directions of the nor-
mals at the intersections between refined(s) and Fδ as we
rotate refined(s). The following lemma shows that if a line
� through s makes an angle θ with the normal at s̃, then for
any point q ∈ Fα that � passes through, the angle between
� and q̃ cannot be much smaller or larger.

Lemma 15 Assume that δ ≤ 1/80. Let � be a line through
a sample s. Let θ ≤ π/4 be the angle that � makes with the
normal at s̃. Suppose that � intersects Fα at a point q. Then
the angle between � and the normal at q̃ is at least θ/2 and
at most 3θ/2.

Proof. Assume that s ∈ F+
α0 , s lies above s̃, and the tangent

at s̃ is horizontal. Let r be the point on Fα such that r̃ = s̃.
Without loss of generality, assume that r lies below s̃ since
this maximizes ‖q − r‖ which in turn maximizes the angle
between the normals at q̃ and s̃. So Fα = F−

α . Let D
be the disk that touches F−

α at r, has center x and radius
(1 − α)f(s̃), and lies below r. Let γ denote �qxr. Without
loss of generality, assume that q lies below r and let d denote
the vertical distance between q and r. Refer to Figure 8.

We have (1− α− d) tan γ = (α0 +α+ d) tan θ. Since θ ≤
π/4, it can be shown that d ≤ α0+α. It follows that tan γ ≤
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Figure 8: Illustration for Lemma 15.

2(α0+α)
1−α0−2α

· tan θ ≤ 4δ
1−3δ

· tan θ. Note that ‖q − r‖ ≤ (1 −
α)f(s̃) tan γ < f(s̃) tan γ ≤ 4δ

1−3δ
f(s̃) tan θ. Since θ ≤ π/4,

tan θ ≤ 2θ. Also, since δ ≤ 1/80, 4/(1−3δ) < 5. So ‖q−r‖ <
10δθf(s̃). By Lemma 14, ‖q̃ − r̃‖ ≤ 20δθ

2−3δ−10δθ
· f(s̃), which

is at most 20δθf(s̃) ≤ θf(s̃)/4. By Lemma 4, the angle
between the normals at q̃ and s̃ is at most 2 sin−1(θ/8) ≤
θ/2. Hence, the angle between � and the normal at q̃ is at
least θ/2 and at most 3θ/2.

6. GUARANTEES
In this section, we prove that the reconstruction returned

by our algorithm is faithful with high probability. Recall
that we rotate refined(s) in clockwise and anti-clockwise di-
rections to identify the normal at s̃. The range of rotation is
[0, π/12]. We first show that the rotation will align refined(s)
approximately well with the normal at s̃.

Lemma 16 Assume that δ ≤ 1/(40ρ3/2). Let s be a sam-
ple. There exists n0 such that whenever n > n0, the angle be-
tween refined(s) and the normal at s̃ is bounded by a function

F (s, n) with probability at least 1−O(n−Ω(
√

ln n/f2
max)(f2

max+√
lnn)), where F (s, n) tends to zero as n→ ∞.

Proof. Take a particular orientation of refined(s) within
the rotation range [0, π/12]. For convenience, we rotate
the plane such that refined(s) is vertical. Assume that F−

δ

lies below F . It can be verified that each boundary line of
refined(s) intersects F−

δ exactly once inside coarse(s).

s

F

a

p

b

q

r

π/6 π/6

srefined( )

Fδ
−

s~

lbla

Figure 9: Illustration for Lemma 16.

Refer to Figure 9. Recall that we divide refined(s) into
three subslabs of equal width. Let a and b be the lowest
samples in the leftmost and rightmost subslabs respectively.
Let �a (resp. �b) be the vertical line that passes through a
(resp. b). Let p (resp. q) be the intersection between �a
(resp. �b) and F−

δ inside coarse(s). Assume that p is to the
left of q.

Let θ be the angle between the vertical and the normal at
s̃. Let γ be the angle between the vertical and the normal
at q̃. We first bound θ and γ. By Lemma 13, the angle
between the normal at s̃ and the initial refined(s) is at most
sin−1(5/

√
ρ). By a proper choice of ρ, this is bounded by

π/12. Since the range of rotation is [0, π/12], we conclude
that θ ∈ [0, π/6]. By Lemma 15, θ/2 ≤ γ ≤ 3θ/2 ≤ π/4.

Second, we lower bound the vertical distance between p
and q. Let t be the intersection between the tangent to F−

δ

at q and �a. The vertical distance between t and q is at
least (width(refined(s))/3) · tan γ ≥ (width(refined(s))/3) ·
tan(θ/2) ≥ width(refined(s))·(θ/6). It remains to bound the
distance of p from the tangent at q. By Lemma 3, p lies in-
side cocone(q, π/6). So ‖p− q‖ ≤ width(refined(s))/ cos(γ+
π/6). Since γ ≤ π/4, we have ‖p−q‖ = O(width(refined(s))).
By Lemma 2, the distance from p to the tangent to F−

δ at
q is at most O(‖p − q‖2) = O(width(refined(s))2). So ‖p −
t‖ = O(width(refined(s))2/ cos γ) = O(width(refined(s))2)
as γ ≤ π/4. In all, the vertical distance between p and q is
at least width(refined(s)) · (θ/6) −O(width(refined(s))2).

Third, the horizontal distance between a and b is at most
width(refined(s)).

Fourth, we claim that ‖q−r‖ = O(δθ) and f(q̃) = O(f(s̃)).
Let r be the point on F−

δ such that r̃ = s̃. It can be ver-
ified that q lies inside cocone(r, π/6). Since ‖r − s‖ ≤ 2δ
and the angle between rs and the vertical is θ, it can be
shown using the sine law that ‖q − r‖ ≤ 2δ sin(θ)/ cos(θ +
π/6) ≤ 2δθ/ cos(π/6) < 3δθ. So by Lemma 14, ‖q̃ − r̃‖ =
O(‖q − r‖) = O(δ). Then the Lipschitz condition implies
that f(q̃) ≤ f(r̃) +O(δ) = O(f(s̃)).

Fifth, we lower bound the vertical distance between a
and b and bound the angle θ. We first consider the case
where δ ≥ 1/

√
lnn. Let C be the cell containing q in some

(λk/fmax)-decomposition. By Lemma 5, C has diameter
O(λkδ). Lemma 11 and Lemma 12 imply that for suffi-
ciently large n, width(refined(s)) =

√
λ1 radius(coarse(s)) =

Ω(
√
λ1δ). So we can choose a small enough k such that C

lies inside the rightmost subslab. Since b is the lowest point
in the rightmost subslab, if ‖b−q‖ is greater than the diame-
ter of C, then C must be empty. By Lemma 9(i), C is empty

with probability at most n−Ω(
√

ln n/f2
max). Thus, ‖b − q‖ =

O(λkδ). Similarly, one can show that ‖a−p‖ = O(λ1δ). The
vertical distance between a and b is at least the vertical dis-
tance between p and q minus the absolute value of ‖a−p‖−
‖b−q‖. This implies that the vertical distance between a and
b is at least width(refined(s))·(θ/6)−O(width(refined(s))2)−
O(λ1δ). Finally, let ψ denote the angle between ab and the
horizontal. From the previous discussion, tanψ is at least
θ/6−O(width(refined(s)))−O(λ1δ/width(refined(s))). The
angle between the vertical and the line through ab is at least
π/2−ψ. This bound is maximum when ψ is minimum, i.e.,
θ = O(width(refined(s)) + λ1δ/width(refined(s))). Since
width(refined(s)) = Ω(

√
λ1δ), O(λ1δ/width(refined(s))) =

O(
√
λ1). The upper bound on O(width(refined(s))) follows

from Lemma 11.
The analysis of the fifth step for the case where δ <
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1/
√

lnn is similar. We consider the cell C containing q in
some λ2

k-decomposition. The difference is that we need to
use Ω(λ2

1f(s̃)) instead of Ω(
√
λ1δ) as the lower bound for

width(refined(s)), since δ can be very small. If we straight-
forwardly bound ‖b − q‖ and ‖a − p‖ by the diameter of C
which isO(λ2

kf(s̃)). Then we get ‖b−q‖/width(refined(s)) =
O(1), which does not tend to zero. Instead, observe that
the angle between the normals at q and r is O(‖q − r‖) =
O(δθ). Thus, the normal at q makes an angle θ + O(δθ)
with the vertical. Since C is roughly perpendicular to the
normal at q, the upper bound for ‖b − q‖ can be improved
to O(λ2

kf(s̃)(1 + δ)θ). We choose k small enough such that
‖b − q‖/width(refined(s)) is at most θ/20. One can bound
‖a − p‖ similarly. The normal at p makes an angle θ +
O(δθ)+O(width(refined(s)) with the vertical. So ‖a− p‖ =
O(λ2

kf(s̃)θ + λ2
kf(s̃) · width(refined(s))). Like before, we

can choose k such that ‖a − p‖/width(refined(s)) is θ/20 +
O(λ2

kf(s̃)). In all, we can conclude as before that tanψ is at
least θ/6 − O(width(refined(s))) − θ/10 − O(λ2

kf(s̃)). This
yields θ = O(width(refined(s)) + λ2

kf(s̃)), which tends to
zero as n→ ∞.

LetRs be the minimum rectangle that aligns with the final
refined(s) and contains all samples inside refined(s). Our
algorithm works with the center point of Rs. We show that
the center point of Rs indeed converges to s̃ as n increases.

Lemma 17 Assume that δ ≤ 1/(40ρ3/2). Let s be a sample.
There exists n0 such that whenever n > n0, the distance
between the center point of Rs and s̃ is bounded by a function

G(s, n) with probability at least 1−O(n−Ω(
√

ln n/f2
max)(f2

max+√
lnn)), where G(s, n)/

�
width(refined(s)) tends to zero as

n→ ∞.

Proof. Assume that s lies on F+
α and the normal at s̃ is

vertical. Let θ be the angle between the final refined(s)
and the vertical. Let rd (resp. ru) be the ray that shoots
downward (resp. upward) from s and makes an angle θ with
the vertical. Let x and y be the points on F+

δ and F hit by
ru and rd respectively. Let z be the point on F−

δ hit by rd.
Refer to Figure 10.

F

s

Fα

s~

z

y

θ
x+Fδ

+

Fδ
−

ru

rd

= π/3 − θ

Figure 10: For the proof of Lemma 17.

First, we calculate the location of the midpoint of xz. By
Lemma 3, y lies inside cocone(s̃, π/6). By applying sine law
to the shaded triangle in Figure 10, ‖s̃ − y‖ ≤ α sin θ

sin(5π/12−θ)
.

By Lemma 16, 5π/12 − θ > π/3 with probability at least

1−O(n−Ω(
√

ln n)) whenever n ≥ n0. So ‖s̃− y‖ < 2α sin θ ≤
2αθ with probability at least 1−O(f2

maxn
−Ω(

√
ln n/fmax)) for

sufficiently large n. By triangle inequality, ‖s−s̃‖−‖s̃−y‖ ≤
‖s − y‖ ≤ ‖s − s̃‖ + ‖s̃ − y‖ which yields α − 2αθ ≤ ‖s −
y‖ ≤ α+ 2αθ. We can use a similar argument to show that
(δ−α)−2(δ−α)θ ≤ ‖s−x‖ ≤ (δ−α)+2(δ−α)θ. Combining
them yields δ − 2δθ ≤ ‖x− y‖ ≤ δ + 2δθ. Similarly, we can
show that δ − 2δθ ≤ ‖y − z‖ ≤ δ + 2δθ. Combining the last
two inequalities yields 2δ − 4δθ ≤ ‖x − z‖ ≤ 2δ + 4δθ. So
the distance of the midpoint of xz from x is at most δ+2δθ.
Thus, the distance of the midpoint of xz from y is at most
δ + 2δθ − ‖x− y‖ ≤ 4δθ.

Second, we calculate the location of the center point of
Rs. Although the center point of Rs lies on the line con-
taining xz, it may not coincide with the midpoint of xz. The
top side of Rs may lie above or below x. Within refined(s),
Lemma 3 implies that F+

δ lies inside cocone(x, π/6) around
x. Therefore, if the top side of R(s) is above x, its dis-
tance from x is O(width(refined(s))). Suppose that the
top side of R(s) is below x. We consider the case where

δ ≥ 1/
√

lnn. The analysis for the case where δ < 1/
√

lnn
is similar. As in the proof of Lemma 16, one can show
that f(x̃) = O(f(s̃)). Let C be the cell containing x in
some (λk/fmax)-decomposition. By Lemma 5, C has diam-
eter O(λkδ). Lemma 11 and Lemma 12 imply that for suffi-
ciently large n, width(refined(s)) =

√
λ1 radius(coarse(s)) =

Θ(
√
λ1δ). So we can choose a small enough k such that C

lies inside refined(s). If the top side of Rs lies below C,
then C must be empty. By Lemma 9(i), C is empty with

probability at most n−Ω(
√

ln n/f2
max). Thus, the actual posi-

tion of the top side of Rs may move the center point of Rs

away from the midpoint of xz. However, the displacement
is O(width(refined(s)) + λkδ). The actual position of the
bottom side of Rs has the same effect.

In all, the distance between the center point of Rs and y is
bounded by 4δθ+O(width(refined(s))+λkδ). Since ‖s̃−y‖ ≤
2αθ, we conclude that the distance between the center point
of Rs and s̃ is bounded by 6δθ + O(width(refined(s)) +
λkδ). The proof of Lemma 16 reveals that θ is bounded
by O(width(refined(s)) +

√
λ1). Since width(refined(s)) =

Θ(
√
λ1δ), δθ/

�
width(refined(s)) = O(δ

�
width(refined(s))+

λ
1/4
1

√
δ), which tends to zero as n → ∞. Similarly, the di-

vision of O(width(refined(s)) + λkδ) by
�

width(refined(s))
tends to zero as n→ ∞.

Theorem 1 Assume that δ ≤ 1/(40ρ3/2). There exists n0

such that given n > n0 noisy samples from a smooth curve
F , our algorithm computes a reconstruction that is faithful

with probability at least 1−O(n−Ω(
√

ln n/f2
max)(f2

max+
√

lnn)).

Proof. By Lemma 17, the center points converge to F with

probability at least 1 − O(f2
maxn

−Ω(
√

ln n/fmax)). After the
pruning step, for each surviving center point s∗, the dis-
tance between s∗ and the nearest surviving center points is
Θ(
�

width(refined(s))). NN-crust will connect s∗ to a neigh-
boring center point r∗. The Lipschitz condition implies that
f(r̃) = Θ(f(s̃)). Examining the proof of Lemma 17 reveals
that G(r, n) = Θ(G(s, n) when f(r̃) = Θ(f(s̃)). So the
distance of r∗ from r̃ is O(G(s, n)). Thus, r∗s∗ makes an

angle O(G(s, n)/
�

width(refined(s))) with the tangent to F

at s̃. Moreover, within a distance of O(
�

width(refined(s)))
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F may turn an angle O(
�

width(refined(s))). In all, the

normal of r∗s∗ makes an angle of O(
�

width(refined(s)) +

G(s, n)/
�

width(refined(s))) with the normal at any point

q ∈ F between r̃ and s̃. Since both
�

width(refined(s)) and

G(s, n)/
�

width(refined(s))) tend to zero as n → ∞, the
normalwise convergence follows. Pointwise convergence and
the pruning step guarantee that s∗ is connected to r∗ only
when r̃ is adjacent to s̃ on F . Thus, the reconstructed curve
is homeomorphic to F .

A straightforward implementation gives a running time
of O(n2 log n). We believe that the running time can be
improved.

7. DISCUSSION
We expect that the approach will also work for handling

curves with features: the sampled “curve” consists of a col-
lection of simple curve segments that may only share end-
points, thus forming features like corners, branchings and
terminals. Some previous works have already considered
terminal and corner points. Allowing branchings extends
this to the most general problem. Furthermore, we aim to
handle features in the presence of noise. A motivation for
allowing branchings is that if we consider surfaces in 3-d
with features like sharp edges and corners, then these form
a curve graph (in 3-d) with corners, branchings and termi-
nals. The output reconstruction is expected to identify the
features as part of the reconstruction. As in previous works,
the definition of local feature size is modified to avoid a zero
local feature size in corners and branchings points, by prun-
ing the medial axis near the features. The shape fitting can
be done by finding a branching of k slabs – the Minkowski
sum of a disk and k rays originating from a common apex
(see figure) – with smallest width that contains the points.
Almost brute force algorithms for these fitting problems run
in polynomial time. Linear time approximation algorithms
seem possible by adapting recent work on k-line centers [1].

Figure 11: Degree 3 branching, Noisy sampling and
Fitting.

We also need a Modified NN-Crust that works correctly
for a noise free locally uniform sampling from a curve with
features. Such a variant is possible if we assume that for
each feature in the curve, the sampling should include a
sample s which is identified and provided with a k cones
corresponding to the incident curve branches. This is the
case for us, since this is information is obtained from the
feature fitting step. In the Modified NN-Crust, each feature
sample s selects the nearest neighbor in each of its cones,
then each non-feature sample s that was not selected by a
feature sample proceeds as in the NN-Crust, and each non-
feature s that was selected by a feature sample s′ selects the
nearest neighbor in a cone opposite to s′

To guarantee that the original curve is reconstructed, a
very restricted (locally uniform) sampling condition is needed:
as it has been pointed out before, the sampling can “sim-
ulate” non-existing features and “destroy” real ones. So, a
witness guarantee as in [5] is desirable. Beyond this, we also
use uniformity of the sampling to assure that the type of
the neighborhood can be determined locally. To avoid this,
the steps of neighborhood identification and global recon-
struction should be interconnected. For example, though at
a small scale, a neighborhood may seem to contain a ter-
minal, it may be that this is not the case and that this is
only realized when a global consistent reconstruction is not
possible under this assumption. Appropriate rules for the
interaction between feature fitting and reconstruction need
to be explored.

An integration of fitting and reconstruction is also neces-
sary to avoid our current assumption of dense noise. In a
different direction, it seems possible to handle outliers if the
algorithm uses shape fitting with outliers.

8. REFERENCES

[1] P. K. Agarwal, C. M. Procopiuc and K. Varadarajan.
Approximation algorithms for k-line center. Proc. 10th
Annu. European Sympos. Alg., 2002.

[2] E. Althaus and K. Mehlhorn. Traveling salesman
based curve reconstruction in polynomial time. SIAM
J. Comput., 31 (2001), 27–66.

[3] N. Amenta, M. Bern and D. Eppstein. The crust and
the beta-skeleton: combinatorial curve reconstruction,
Graphical Models and Image Processing, 60 (1998),
125–135.

[4] T. K. Dey and P. Kumar. A simple provable
algorithm for curve reconstruction. Proc. 10th. Annu.
ACM-SIAM Sympos. Discrete Alg., 1999, 893–894.

[5] T. K. Dey, K. Mehlhorn and E. Ramos. Curve
reconstruction: connecting dots with good reason.
Comput. Geom. Theory & Appl., 15 (2000), 229–244.

[6] T. K. Dey and R. Wenger. Reconstructing curves with
sharp corners. Comput. Geom. Theory & Appl., 19
(2001), 89–99.

[7] T. K. Dey and R. Wenger. Fast reconstruction of
curves with sharp corners. Comput. Geom. Theory &
Appl., 12 (2002), 353–400.

[8] M. Habib, C. McDiarmid, J.Ramirez-Alfonsin and
B.Reed. Probabilistic Methods for Algorithmic
Discrete Mathematics. Springer Verlag Belin
Heidelberg, 1998, 198-200.

[9] S. Funke and E. A. Ramos. Reconstructing a
collection of curves with corners and endpoints. Proc.
12th Annu. ACM-SIAM Sympos. Discrete Alg., 2001,
344–353.

[10] J. Giesen. Curve reconstruction, the Traveling
Salesman Problem and Menger’s Theorem on length.
Discrete & Comp. Geom., 24 (2000), 577–603.

[11] C. Gold and J. Snoeyink. A one-step crust and
skeleton extraction algorithm. Algorithmica, 30
(2001), 144–163.

311


