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Abstract

We present an algorithm to reconstruct a collection of disjoint smooth closed curves from noisy sampl
noise model assumes that the samples are obtained by first drawing points on the curves according to
uniform distribution followed by a uniform perturbation in the normal directions. Our reconstruction is fa
with probability approaching 1 as the sampling density increases.
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1. Introduction

The combinatorial curve reconstruction problem has been extensively studied recently by co
tional geometers. The input consists of sample points on a collection of unknown disjoint smooth
curves denoted byF . The problem calls for computing a set of polygonal curves that are provablyfaithful.
That is, as the sampling density increases, the polygonal curves should converge toF .

Several algorithms have been proposed in the geometric modeling and image processing litera
achieve good experimental results. Fang and Gossard [11] proposed to fit a deformable curve
mizing some spring energy function. Dedieu and Favardin [4] described a method to order and
sample points on an unknown curve. Taubin and Ronfard [20] proposed to construct a mesh cove
sample points and then extract a polygonal curve that fits the sample points. Pottmann and Rand
used a pixel-based technique to thin an input point cloud to a curve. This image thinning techniq
handle noise, but it is difficult to come up with an appropriate pixel size. Goshtasby [15] obta
reconstruction by tracing points that locally maximize a certain inverse distance function involvi
noisy sample points. The traced points form the reconstruction. Lee [16] proposed a variant of th
ing least-squares method by Levin [17,18]. Using a weighted regression, a new point is compu
each noisy sample point such that the new points cluster around some curve. Then the new p
decimated to produce a reconstruction. Although good experimental results are obtained with th
methods, there is no guarantee on the faithfulness of the reconstruction.

Amenta, Bern and Eppstein [2] obtained the first provably faithful curve reconstruction algo
They proposed a2D crustalgorithm whose output is provably faithful if the input satisfies theε-sampling
condition for anyε < 0.252. For each pointx on F , the local feature sizef (x) at x is defined as the
distance fromx to the medial axis ofF . For 0< ε < 1, a setS of samples is anε-sampling ofF if
for any pointx ∈ F , there exists a samples ∈ S such that‖s − x‖ � ε · f (x) [2]. The algorithm by
Amenta, Bern, and Eppstein invokes the computation of a Voronoi diagram or Delaunay triang
twice. Gold and Snoeyink [14] presented a simpler algorithm that invokes the computation of V
diagram or Delaunay triangulation only once. Later, Dey and Kumar [6] proposed aNN-crustalgorithm
for this problem. Since we will use the NN-crust algorithm, we briefly describe it. For each sams
in S, connects to its nearest neighbor inS. Afterwards, if a samples is incident on only one edgee,
connects to the closest sample among all samplesu such thatsu makes an obtuse angle withe. The
output curve is faithful for anyε � 1/3 [6]. Dey, Mehlhorn and Ramos [7] proposed aconservative-
crustalgorithm to handle curves with endpoints. Funke and Ramos [12] proposed an algorithm to
curves that may have sharp corners and endpoints. Dey and Wenger [8,9] also described algorit
implementation for handling sharp corners. Giesen [13] discovered that the traveling salespers
through the samples is a faithful reconstruction, but this approach cannot handle more than on
Althaus and Mehlhorn [1] showed that such a traveling salesperson tour can be constructed in pol
time.

Noise often arises in collecting the input samples. For example, when the input samples are o
from 2D images by scanning. The noisy samples are typically classified into two types. The fir
are samples that cluster aroundF but they generally do not lie onF . The second type are outliers th
lie relatively far fromF . No combinatorial algorithm known so far can compute a faithful reconstruc
in the presence of noise. In this paper, we propose a method that can handle noise of the first
a set of disjoint smooth closed curves. We assume that the input does not contain outliers. We
a probabilistic model of noisy samples and prove that our reconstruction is faithful with proba



S.-W. Cheng et al. / Computational Geometry 31 (2005) 63–100 65

assume
our

t 1
d
luster

trategy
points

model.
verview

lemmas.
related

from
tion of

-

ted

of
from
at
nt parts

n

rmation
trongly
y

m
lysis
lly by
approaching 1 as the number of samples increases. For simplicity and notational convenience, we
throughout this paper that minx∈F f (x) = 1 andF consists of a single smooth closed curve, although
algorithm works whenF contains more than one curve.

We prove that our algorithm returns a reconstruction which is faithful with probability at leas−
O(n−�(lnω n/fmax−1)), wheren is the number of input samples,ω is an arbitrary positive constant, an
fmax = maxx∈F f (x). The novelty of our algorithm is a method to cluster samples so that each c
comes from a relatively flat portion ofF . This allows us to estimate new points that lie close toF . We
believe that this clustering approach will also be useful for recognizing non-smooth features. Our s
resembles Lee’s method [16] in spirit. But we use purely geometric operations to estimate new
instead of optimizing a weighted regression.

The rest of the paper is organized as follows. Section 2 discusses our sampling and noise
Section 3 describes our algorithm. Section 4 states the main theorem of this paper and gives an o
of the analysis leading to it. Section 5 introduces the basic notations and some basic geometric
In Sections 6–10, we give the detailed proofs. We conclude in Section 11 and discuss some
problems, in particular, the problem of reconstructing surfaces from noisy samples.

2. Sampling and noise model

We use probabilistic sampling and noise models. A sample is generated by drawing a pointF

followed by randomly perturbing the point in the normal direction. In a sense, it models the loca
points on the curve by an input device, followed by perturbation due to noise. LetL = ∫

F
(1/f (x))dx.

The drawing of points fromF follows the probability density function 1/(L · f (x)). That is, the proba
bility of drawing a point from a curve segmentη is equal to

∫
η
(1/f (x))dx divided byL. This is known

as thelocally uniform distribution. The distribution of each sample is independently identical.
A point p drawn fromF is perturbed in the normal direction. The perturbation is uniformly distribu

within an interval that hasp as the midpoint, width 2δ, and aligns with the normal direction atp. Thus
δ models the noise amplitude. Note that the noise amplitudeδ remains fixed regardless of the number
points drawn fromF . Although the noise perturbation is restrictive, it isolates the effect of noise
the sampling distribution which allows an initial study of noise handling. It seems necessary thδ is
less than 1. Otherwise, as the minimum local feature size is 1, the perturbed points from differe
of F will mix up at some place and it seems very difficult to estimate the unknown curveF around that
neighborhood. For our analysis to work, we assume thatδ � 1/(25ρ2) whereρ � 5 is a constant chose
a priori by our algorithm. We emphasize that the value ofδ is unknown to our algorithm.

One may consider other sampling distributions. A more restrictive model is theuniform distribution,
in which the probability of drawing a point from a curve segmentη is equal to length(η)/length(F ). This
model is attractive because it is natural to sample in a uniform fashion in the absence of any info
about the local feature sizes. Despite the apparent difference, the locally uniform distribution is s
related to the uniform distribution which can be seen as follows. Whenη is short, the Lipschitz propert
of the local feature sizes implies that the probability of drawing a point fromη in the locally uniform
model is�(

∫
η

dx/(L · f (c))) for any pointc ∈ η. This is equivalent to�(length(η)/(L · f (c))). If we
treatL and length(F ) as intrinsic constants forF , the probabilities of sampling in the locally unifor
distribution and the uniform distribution differ only by a factor of local feature size. Thus our ana
for the locally uniform distribution can be adapted easily for the uniform distribution case, basica



66 S.-W. Cheng et al. / Computational Geometry 31 (2005) 63–100

lity at

emon-
plained
is small
bounds

od does
e de-
noise,

blem,
n as an

vably
ese new
n using

is large
d

ocode
ch point

st

e.

hows the
slashing off a factor of local feature size. In particular, the reconstruction is faithful with probabi
least 1− O

(
n−�(lnω n−1)

)
instead of 1− O

(
n−�(lnω n/fmax−1)

)
.

Our algorithm and analysis do not make use of any estimation of local feature sizes. This is d
strated by the fact that our analysis can be adapted to the uniform distribution case as briefly ex
above. Our algorithm constructs a small neighborhood around each noisy sample, and from th
neighborhood, one can extract upper and lower bounds on the local feature size. However, the two
differ by a factor that tends to infinity as the sampling density increases. So the small neighborho
not offer any reliable estimation of the local feature size. (We will elaborate on this point when w
scribe our algorithm.) In fact, we do not know how to obtain such estimation in the presence of
without effectively solving the reconstruction problem first. After solving the reconstruction pro
one may possibly estimate the local feature sizes using the Voronoi diagram of the reconstructio
approximation of the medial axis. This is beyond the scope of this paper though.

3. Algorithm

Our algorithm consists of three main steps, POINT ESTIMATION, PRUNING and OUTPUT. In the
POINT ESTIMATION step, the algorithm filters out the noise and computes new points that are pro
much less noisy than the input samples. Since the sampling density is high, the distances of th
points fromF can still be much larger than the distances among them. Thus a direct reconstructio
all of the new points would produce a highly jagged polygonal curve. As a remedy, in the PRUNING

step, the algorithm decimates the points so that the interpoint distances in the pruned subset
relative to their distances fromF . See Fig. 1. Finally, in the OUTPUT step, we can run any provably goo
combinatorial curve reconstruction algorithm. We choose to run NN-crust [6]. The following pseud
gives a high level description of the above three steps and more details of the pruning step. For ea
x ∈ R

2 that does not lie on the medial axis ofF , we usex̃ to denote the point onF closest tox. That is,
x̃ is the projection ofx ontoF . (We are not interested in points on the medial axis.)

POINT ESTIMATION: For each samples, we construct a thin rectanglerefined(s). The long axis of
refined(s) passes throughs and its orientation approximates the normal ats̃. The center of
refined(s) is the new points∗ desired. The distance‖s∗ − s̃‖ approaches zero asn → ∞.

PRUNING: We sort the pointss∗ in decreasing order of width(refined(s)). Then we scan the sorted li
and select a subset of center points: when we select the current center points∗, we delete all
center pointsu∗ from the sorted list such that‖s∗ − u∗‖ � width(refined(s))1/3.

OUTPUT: We run the NN-crust algorithm on the selected center points and return the output curv

Fig. 1. The left figure shows the noisy samples. The middle figure shows the new points computed. The right figure s
remaining points after pruning.
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The main objective of POINT ESTIMATION is to align the long axis ofrefined(s) with the normal at̃s.
This is instrumental to proving that‖s∗ − s̃‖ approaches zero asn → ∞. The construction ofrefined(s)
is done in three steps. We give a highlight first before providing the details.

First, we compute a small diskinitial (s) centered ats. We prove upper and lower bounds on the rad
of initial (s), but their ratio is�

(
n1/4/ln(1+ω)/4 n

)
which tends to infinity asn → ∞. Soinitial (s) does not

provide a reliable estimate off (s̃). Second, we grow the disk neighborhood arounds until the samples
inside the disk fit inside a strip whose width is small relative to the radius of the disk. The final d
thecoarse neighborhoodof s and it is denoted bycoarse(s). The radius ofcoarse(s) is in the order of
δ + radius(initial (s)). The orientation of the strip approximates the tangent ats̃. SinceF can bend quite
a lot withincoarse(s), the approximation error may be in the order of sin−1 δ. Thus an improved estima
is needed. Third, we shrinkcoarse(s) to a smaller disk. We take a slab perpendicular tostrip(s) bounded
by two parallel tangent lines of the shrunken disk. We rotate the slab arounds to minimize the spread o
the samples inside along the direction of the slab. Because of the minimization of the spread of s
inside, we can show that the orientation of the final slab approximates the normal ats̃ well.

We provide the details of the three steps in POINT ESTIMATION below. Letω > 0 andρ � 5 be two
predefined constants.

INITIAL DISK : We compute a diskD centered ats that contains ln1+ω n samples. Then we setinitial (s)
to be the disk centered ats with radius

√
radius(D). For sufficiently largen, the radius ofD is

less than 1, which implies thatinitial (s) containsD. Fig. 2 shows an illustration.
COARSE NEIGHBORHOOD: We initialize coarse(s) = initial (s) and compute an infinite stripstrip(s)

of minimum width that contains all samples insidecoarse(s). We growcoarse(s) and main-
tain strip(s) until radius(coarse(s))/width(strip(s)) � ρ. The final diskcoarse(s) is thecoarse
neighborhoodof s. Fig. 2 illustrates the growth process.

REFINED NEIGHBORHOOD: Let Ns be the upward direction perpendicular tostrip(s). The candidate
neighborhoodcandidate(s, θ) is the slab that containss in the middle and makes a signed ac
angleθ with Ns . The width ofcandidate(s, θ) is equal to the minimum of

√
radius(initial (s))

and radius(coarse(s))/3. The angleθ is positive (resp. negative) if it is on right (resp. left)
Ns . Fig. 3 shows the initial candidate neighborhood that is perpendicular tostrip(s). We en-
close the samples incandidate(s, θ) ∩ coarse(s) by two parallel lines that are orthogonal to t
direction ofcandidate(s, θ). These two lines form a rectanglerectangle(s, θ) with the bound-
ary lines ofcandidate(s, θ). The width ofrectangle(s, θ) is the width ofcandidate(s, θ). The

Fig. 2. On the left, the white dot is the samples, the inner disk isD, and the outer disk isinitial (s). On the right, we grow
initial (s) until strip(s) has a relatively large aspect ratio. The final disk iscoarse(s).
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Fig. 3. On the left, the initial candidate neighborhood is the one perpendicular tostrip(s). On the right, as we rotate the candida
neighborhood, we maintain the smallest bounding rectangle of all samples inside.

height ofrectangle(s, θ) is its length along the direction ofcandidate(s, θ). We varyθ within the
range[−π/10,π/10] to find an orientation that minimizes the height ofrectangle(s, θ). Fig. 3
illustrates the rotation and the bounding rectangle. Letθ∗ be the minimizing angle. Therefined
neighborhoodof s is rectangle(s, θ∗) and is denoted byrefined(s). We return the center points∗
of refined(s).

A few remarks are in order. Recall that minx∈F f (x) is assumed to be 1. For sufficiently largen (i.e.,
when the sampling is dense enough), the radius ofinitial (s) is less than 1. So in the REFINED NEIGHBOR-
HOOD step,

√
radius(initial (s)) > radius(initial (s)). Clearly,coarse(s) containsinitial (s). So the width

of candidate(s, θ) andrefined(s) is at least radius(initial (s))/3 and at most
√

radius(initial (s)) < 1.

4. Overview of analysis

Our goal is to prove the following result:

Main Theorem. Assume thatδ � 1/(25ρ2) and ρ � 5. Let n be the number of noisy samples from
smooth closed curve. For sufficiently largen, our algorithm computes a polygonal closed curve that
the following properties with probability at least1− O

(
n−�(lnω n/fmax−1)

)
.

• For each output vertexs∗, ‖s∗ − s̃‖ = O
(
(ln1+ω n/n)1/8f (s̃)1/4

)
.

• For each output edger∗s∗, the angle betweenr∗s∗ and the tangent at̃s is O
(
(ln1+ω n/n)1/48f (s̃)25/24

)
.

• The output curve is homeomorphic to the smooth closed curve.

We first give an overview of the proof strategies here before diving into details later. The harde
is to argue that the points∗ that we estimate for the samples indeed lies very closely to the curve. T
illustrate the intuition, we assume that the curve is a flat horizontal segment locally ats̃. See Fig. 4(a)
So the noisy samples in the local neighborhood lie within a bandB of width 2δ. Thus the finalcoarse(s)
must have radius�(ρδ + radius(initial (s))) in order to meet the stopping criterion of growingcoarse(s).
Next, we would like to argue that the slope ofstrip(s) approximates the slope of the tangent ats̃. We
prove this by contradiction and assume thatstrip(s) is tilted a lot. So a significant area ofB lies outside
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Fig. 4. The left figure showscoarse(s), the noise bandB, andF . In the middle figure, the bold strip isstrip(s) and the shaded
area is the significant area ofB outsidestrip(s). The shaded area should be non-empty with high probability. In the right fig
the shaded rectangle is the candidate rectangle.

strip(s) as shown in Fig. 4(b). Our goal is to show that this area contains a noisy sample wit
probability. Therefore, with high probability,strip(s) cannot be much tilted from the horizontal.

Directly discussing the emptiness of an arbitrary area (whether it contains a noisy sample or
quite hard given the continuous distributions. We get around this by decomposing the space arF

into small cells. Since the cells have more regular shape, we can show that each cell is non-em
high probability and we can also bound the diameters of the cells. The cell diameter approaches
the sampling density increases. The bound on the cell diameter enables us to show that the aB

outsidestrip(s) in Fig. 4(b) contains a cell. So the area contains a noisy sample with high probabil
The next step is to construct the refined neighborhood ofs so as to obtain an improved estimate

the normal at̃s. This is done by rotating a candidate rectangle to minimize its height. See Fig. 4(c
width of the candidate rectangle is set to be the minimum of

√
radius(initial (s)) and radius(coarse(s))/3.

Clearly, we want the width to be small in order to generate a large variation in the height even w
have a small angular deviation from the normal ats̃. In fact, we want to show that radius(initial (s))
approaches zero as the sampling density increases. Recall thatinitial (s) is generated by identifying th
ln1+ω n nearest samples tos. We are to show that the number of samples inside a cell is at least ln1+ω n

with high probability. Thus radius(initial (s)) is no more than the cell diameter. In Fig. 4(c), when
rotate the candidate rectangle, its upper and lower sides may invade the interior of the bandB. This
is because there may not be any noisy sample on the band boundary. Still, we want to keep th
and lower sides of the candidate rectangle near the band boundary, otherwise we would not ha
increase in height despite the angular deviation from the normal ats̃. Fortunately, as the cells are no
empty with high probability, the gaps between the upper and lower sides and the band boundary
too narrow for a single cell to fit in.

We have not discussed one important phenomenon so far. Sinceδ is unknown, it may be arbi
trarily small. In this case, radius(coarse(s)) is only lower bounded by radius(initial (s)) as we grow
coarse(s) from initial (s). Thus we need to establish a lower bound on radius(initial (s)), and hence
radius(coarse(s)). We construct another decomposition of the space aroundF into slabs. Then by uppe
bounding the number of samples in each slab, we can lower bound radius(initial (s)) by the slab “width”.

The decompositions of the space aroundF into cells and slabs are introduced in Section 6. The deta
proofs for the radii bound ofinitial (s) and coarse(s), and the angular error betweenstrip(s) and the
tangent at̃s are given in Section 7. In Section 8, we give the detailed proof for the angular error be
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the long axis ofrefined(s) and the normal at̃s, and then we bound‖s∗ − s̃‖. In Section 9, we obtain th
homeomorphism result by extending the NN-crust analysis. In Section 10, we put everything toge
prove the Main Theorem.

5. Notations and preliminaries

We call the bounded region enclosed byF theinsideof F and the unbounded region theoutsideof F .
For 0< α � δ, F+

α (resp.F−
α ) is the curve that passes through the pointsq outside (resp. inside)F such

that‖q − q̃‖ = α. We useFα to meanF+
α or F−

α when it is unimportant to distinguish between ins
and outside.F can be visualized as the boundary of the union of the medial disks enclosed byF . If we
increase the radii of all such medial disks byα, F+

α is the boundary of the union of the expanded dis
F−

α has a similar interpretation after decreasing the radii of all such medial disks byα. It follows thatF
andFα have the same medial axis.

Thenormal segmentat a pointp ∈ F is the line segment consisting of the pointsq on the normal ofF
atp such that‖p −q‖ � δ. Given two pointsx andy onF , we useF(x, y) to denote the curved segme
traversed fromx to y in clockwise direction. We use|F(x, y)| to denote the length ofF(x, y).

The following are some technical lemmas on some geometric properties ofFα. Their proofs can be
found in the appendix. Lemma 5.1 lower bounds the radius of the tangent disk at any pointFα.
Lemma 5.2 shows that a small neighborhood of a pointp onFα is flat enough to fit inside a double con
atp with small aperture. Lemma 5.3 proves the small normal variation between two nearby pointsFα.

Lemma 5.1. Any pointp on Fα has two tangent disks with radiif (p̃) − α whose interior do not inter
sectFα.

For each pointp onFα, take the double cone of pointsq such thatpq makes an angle(π −θ)/2 or less
with the support line of the normal atp. We denote the complement of this double cone bycocone(p, θ).
Note thatcocone(p, θ) is a double cone with apexp and angleθ .

Lemma 5.2. Letp be a point onFα. LetD be a disk centered atp with radius less than2(1− α)f (p̃).

(i) For any pointq ∈ Fα ∩ D, the distance ofq from the tangent atp is at most ‖p−q‖2

2(1−α)f (p̃)
.

(ii) Fα ∩ D ⊆ cocone
(
p,2sin−1 radius(D)

2(1−α)f (p̃)

)
.

Lemma 5.3. Let p be a point onFα . LetD be a disk centered atp with radius at most(1− α)f (p̃)/4.
For any pointu ∈ Fα ∩ D, the acute angle between the normals atp andu is at most

2sin−1 ‖p − u‖
(1− α)f (p̃)

� 2sin−1 radius(D)

(1− α)f (p̃)
.

6. Decompositions

We will use two types of decompositions,β-partition andβ-grid. Let 0< β < 1 be a parameter. W
identify a set ofcut-pointsonF as follows. We pick an arbitrary pointc onF as the first cut-point. The
0
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Fig. 5.β-partition.

Fig. 6.β-grid.

for i � 1, we find the pointci such thatci lies in the interior ofF(ci−1, c0), |F(ci−1, ci)| = β2f (ci−1) and
|F(ci, c0)| � β2f (ci). If ci exists, it is the next cut-point and we continue. Otherwise, we have com
all the cut-points and we stop. Theβ-partition is the arrangement ofF+

δ , F−
δ , and the normal segmen

at the cut-points. Fig. 5 shows an example. We call each face of theβ-partition aβ-slab. Theβ-partition
consists of a row of slabs stabbed byF .

The cut-points for aβ-grid are picked differently. We pick an arbitrary pointc0 on F as the first cut-
point. Then fori � 1, we find the pointci such thatci lies in the interior ofF(ci−1, c0), |F(ci−1, ci)| =
βf (ci−1) and |F(ci, c0)| � βf (ci). If ci exists, it is the next cut-point and we continue. Otherwise,
have computed all the cut-points and we stop. Theβ-grid is the arrangement of the following:

• The normal segments at the cut-points.
• F , F+

δ andF−
δ .

• F+
α andF−

α whereα = iβδ andi is an integer between 1 and	1/β
 − 1.

Theβ-grid has a grid structure. Fig. 6 shows an example. We call each face of theβ-grid aβ-cell. There
are O(1/β) rows of cells “parallel to”F .

Given aβ-partition, we claim that for every consecutive pairs of cut-pointsci−1 andci , β2f (ci−1) �
|F(ci−1, ci)| � 3β2f (ci−1). For almost all consecutive pairs of cut-pointsci−1 and ci , |F(ci−1, ci)| =
β2f (ci−1) by construction. The last pairck and c0 constructed may be an exception. We kn
that |F(ck, c0)| � β2f (ck). When we try to placeck+1, we find that|F(ck+1, c0)| < β2f (ck+1). So
|F(ck, c0)| � β2f (ck) + β2f (ck+1). By the Lipschitz condition,f (ck+1) � f (ck) + ‖ck − ck+1‖ �
f (c ) + β2f (c ). Thus|F(c , c )| � (2β2 + β4)f (c ) � 3β2f (c ).
k k k 0 k k
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Fig. 7. Illustration for Lemma 6.1.

Similarly, given aβ-grid, we can show that for every consecutive pairs of cut-pointsci−1 and ci ,
βf (ci−1) � |F(ci−1, ci)| � 3βf (ci−1).

In Section 6.1, we bound the diameter of aβ-cell. In Section 6.2, we lower bound the width of aβ-
slab. In Section 6.3, we analyze the probabilities of someβ-slabs andβ-cells containing certain numbe
of samples.

6.1. Diameter of aβ-cell

We need a technical lemma before proving an upper bound on the diameter of aβ-cell.

Lemma 6.1. Assume thatβ � 1/12. Let p and q be two points onFα such that|F(p̃, q̃)| � 3βf (p̃).
Then‖p − q‖ � ‖p̃ − q̃‖ + 7βδ.

Proof. Refer to Fig. 7. Letr be the pointq − q̃ + p̃. Without loss of generality, assume that� p̃pr �
� p̃rp. Lemma 5.3 implies that� pp̃r � 2sin−1 3β. Therefore,� p̃rp � π/2 − sin−1 3β. By sine law,

‖p − r‖ = ‖p−p̃‖·sin � pp̃r

sin � p̃rp
� δ sin(2sin−1 3β)

cos(sin−1 3β)
. Note that sin(2sin−1 3β) � 2sin(sin−1 3β) = 6β and sinceβ �

1/12, cos(sin−1 3β) � cos(sin−1(1/4)) > 0.9. So‖p− r‖ � 6βδ/(0.9) < 7βδ. By triangle inequality, we
get‖p − q‖ � ‖q − r‖ + ‖p − r‖ = ‖p̃ − q̃‖ + ‖p − r‖ < ‖p̃ − q̃‖ + 7βδ. �
Lemma 6.2. Assume thatβ � 1/12andδ < 1. LetC be anyβ-cell that lies between the normal segme
at the cut-pointsci andci+1. Then the diameter ofC is at most14βf (ci).

Proof. Let s andt be two points inC. Let p be the projection ofs towardss̃ onto a side ofC. Similarly,
let q be the projection oft towardst̃ onto the same side ofC. Note thatp̃ = s̃ and q̃ = t̃ . The triangle
inequality and Lemma 6.1 imply that

‖s − t‖ � ‖p − q‖ + ‖p − s‖ + ‖q − t‖ � ‖p̃ − q̃‖ + 7βδ + ‖p − s‖ + ‖q − t‖.
Since‖p̃ − q̃‖ = ‖s̃ − t̃‖ � 3βf (ci) and both‖p − s‖ and‖q − t‖ are at most 2βδ, the diameter ofC is
at most 3βf (ci) + 11βδ � 14βf (ci). �
6.2. Slab width

The next lemma lower bounds the width of slab in aβ-partition.
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Lemma 6.3. Assume thatδ � 1/8 and β � 1/6. Let ci and ci+1 be two consecutive cut-points of aβ-
partition. For any point on the normal segment atci+1 (resp.ci), its distance from the support line of th
normal segment atci (resp.ci+1) is at least|F(ci, ci+1)|/6.

Proof. Assume that the normal atci is vertical. Take any two pointsp,q ∈ Fα such thatp̃ = ci and
q̃ = ci+1. We first bound the distance fromq to the support line of the normal segment atci . The same
approach also works for the distance fromp to the support line of the normal segment atci+1.

Let r be the orthogonal projection ofq onto the tangent toFα atp. Observe that the distance ofq from
the support line of the normal segment atci is ‖p−r‖. We are to prove that‖p−r‖ � |F(ci, ci+1)|/6. For
any pointx ∈ Fα(p,q), we useθx to denote the angle between the normals atx̃ andci . By Lemma 5.3, we
haveθx � 2sin−1 ‖ci−x̃‖

f (ci )
. Sincex̃ ∈ F(ci, ci+1), we have‖ci − x̃‖ � |F(ci, x̃)| � |F(ci, ci+1)|. Thusθx �

2sin−1 |F(ci ,ci+1)|
f (ci )

. By our assumption onβ, |F(ci ,ci+1)|
f (ci )

� 3β2 � 1/12. It follows that sin−1 |F(ci ,ci+1)|
f (ci )

<
2|F(ci ,ci+1)|

f (ci )
. Therefore,

θx � 4|F(ci, ci+1)|
f (ci)

(1)

� 12β2. (2)

This implies thatFα(p,q) is monotone along the tangent toFα at p; otherwise, there is a pointx ∈
Fα(p,q) such thatθx = π/2 > 12β2, a contradiction. It follows thatF(ci, ci+1) is also monotone alon
the tangent toF at ci . Refer to Fig. 8. Assume thatp lies belowci , andq lies to the right ofp. Let r ′
be the orthogonal projection ofci+1 onto the tangent toF at ci . The monotonicity ofF(ci, ci+1) implies
that

‖ci − r ′‖ =
∫

F(ci ,ci+1)

cosθx dx
(2)

�
∣∣F(ci, ci+1)

∣∣ · cos(12β2) > 0.8
∣∣F(ci, ci+1)

∣∣,
as cos(12β2) > cos(0.5) > 0.8. Let d be the horizontal distance betweenr and r ′. Observe thatd =
‖ci+1 − q‖ · sinθq � δθq , which is at most 4δ|F(ci, ci+1)| by (1). We conclude that

Fig. 8. Illustration for Lemma 6.3.
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‖p − r‖ � ‖ci − r ′‖ − d � (0.8− 4δ)
∣∣F(ci, ci+1)

∣∣ δ�1/8
>

|F(ci, ci+1)|
4

.

This lower bounds the distance fromq to the support line of the normal segment atci .
Let dp be the distance fromp to the support line of the normal segment atci+1. We can use the sam

approach to lower bounddp. The only difference is that for any pointx ∈ Fα(p,q), the angleφx between
the normals at̃x andci+1 satisfies

φx � 2 sin−1 |F(ci, ci+1)|
f (ci+1)

.

Note that the denominator isf (ci+1) instead off (ci) in (1). Nevertheless, by the Lipschitz conditio
f (ci+1) � f (ci) − ‖ci − ci+1‖ � f (ci) − |F(ci, ci+1)| � (1− 3β2)f (ci), which is at least 11f (ci)/12 as
3β2 � 1/12. Therefore,

φx � 2 sin−1 12|F(ci, ci+1)|
11f (ci)

� 2 · 24|F(ci, ci+1)|
11f (ci)

<
5|F(ci, ci+1)|

f (ci)
� 15β2.

Observe thatφx � 15β2 < π/2. SoFα(p,q) andF(ci, ci+1) are monotone along the tangents toFα at q
andF atci+1, respectively. Also, cosφx � cos(15β2) � cos(0.5) > 0.8. Hence, by imitating the previou
derivation of the lower bound of‖p − r‖, we obtain

dp � (0.8− 5δ)
∣∣F(ci, ci+1)

∣∣ δ�1/8
>

|F(ci, ci+1)|
6

. �
6.3. Number of samples in cells and slabs

We first need a lemma that estimates the probability of a sample point lying inside certainβ-cells and
β-slabs.

Lemma 6.4. Let λk =
√

k2 ln1+ω n/n for some positive constantk. Let r � 1 be a parameter. LetC be a
(λk/r)-slab or (λk/r)-cell. Lets be a sample. There exist constantsκ1 andκ2 such that ifn is so large
thatλk � 1/6, thenκ2λ

2
k/r2 � Pr(s ∈ C) � κ1λ

2
k/r2.

Proof. Recall thatL = ∫
F

1
f (x)

dx. Assume thatC lies between the normal segments at the c
points ci and ci+1. We useη to denoteF(ci, ci+1) as a short hand. By our assumption onλk, for
any point x ∈ η, if C is a λk-cell, then‖x − ci‖ � 3λkf (ci)/r � f (ci)/2; if C is a λk-slab, then
‖x − ci‖ � 3λ2

kf (ci)/r2 � f (ci)/12. The Lipschitz condition implies thatf (ci)/2 � f (x) � 3f (ci)/2.

If C is aλk-slab, then Pr(s ∈ C) = Pr(s̃ lies onη), which is 1
L

· ∫
η

1
f (x)

dx ∈ [ 2λ2
k

3Lr2 ,
6λ2

k

Lr2

]
. If C is λk-cell,

then Pr(s̃ lies onη) = 1
L

· ∫
η

1
f (x)

dx ∈ [ 2λk

3Lr
, 6λk

Lr

]
. Since Pr(s ∈ C | s̃ lies onη) ∈ [

λkδ

2δr
, 2λkδ

2δr

] = [
λk

2r
, λk

r

]
,

Pr(s ∈ C) ∈ [ λ2
k

3Lr2 ,
6λ2

k

Lr2

]
. �

The following Chernoff bound [10] will be needed.

Lemma 6.5. Let the random variablesX1,X2, . . . ,Xn be independent, with0 � Xi � 1 for eachi. Let
Sn = ∑n

i=1 Xi , and letE(Sn) be the expected value ofSn. Then for anyσ > 0, Pr(Sn � (1− σ)E(Sn)) �
exp

(−σ2E(Sn)
)

andPr(S � (1+ σ)E(S )) � exp
(− σ2E(Sn)

)
.
2 n n 2(1+σ/3)
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We are ready to analyze the probabilities of someβ-slabs andβ-cells containing certain numbers
samples.

Lemma 6.6. Let λk =
√

k2 ln1+ω n/n for some positive constantk. Let r � 1 be a parameter. LetC be
a (λk/r)-slab or (λk/r)-cell. Letκ1 andκ2 be the constants in Lemma6.4. Whenevern is so large that
λk � 1/6, the following hold.

(i) C is non-empty with probability at least1− n−�(lnω n/r2).
(ii) Assume thatr = 1. For any constantκ > κ1k

2, the number of samples inC is at mostκ ln1+ω n with
probability at least1− n−�(lnω n).

(iii) Assume thatr = 1. For any constantκ < κ2k
2, the number of samples inC is at leastκ ln1+ω n with

probability at least1− n−�(lnω n).

Proof. Let Xi (i = 1, . . . , n) be a random binomial variable taking value 1 if the sample pointsi is inside
C, and value 0 otherwise. LetSn = ∑n

i=1 Xi . ThenE(Sn) = ∑n
i=1 E(Xi) = n · Pr(si ∈ C). This implies

that

E(Sn) � κ1nλ2
k

r2
= κ1k

2 ln1+ω n

r2
, E(Sn) � κ2nλ2

k

r2
= κ2k

2 ln1+ω n

r2
.

By Lemma 6.5,

Pr(Sn � 0) = Pr
(
Sn � (1− 1)E(Sn)

)
� exp

(
−E(Sn)

2

)
� exp

(
−�

(
ln1+ω n

r2

))
.

Consider (ii). Letσ = κ

κ1k
2 − 1> 0. Sincer = 1, we have

κ ln1+ω n = κ1nλ2
k(1+ σ) � (1+ σ)E(Sn).

By Lemma 6.5,

Pr(Sn > κ ln1+ω n) � Pr
(
Sn > (1+ σ)E(Sn)

)
� exp

(
− σ 2E(Sn)

2+ 2σ/3

)
= exp

(−�(ln1+ω n)
)
.

Consider (iii). Letσ = 1− κ

κ2k
2 > 0. Sincer = 1, we have

κ ln1+ω n = κ2nλ2
k(1− σ) � (1− σ)E(Sn).

By Lemma 6.5,

Pr(Sn < κ ln1+ω n) � Pr
(
Sn < (1− σ)E(Sn)

)
� exp

(
−σ 2E(Sn)

2

)
= exp

(−�(ln1+ω n)
)
. �

7. Coarse neighborhood

In this section, we bound the radii ofinitial (s) andcoarse(s) for each samples. Then we show tha
strip(s) provides a rough estimate of the slope of the tangent toF at s̃. Recall thatλ =

√
k2 ln1+ω n/n.
k
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7.1. Radius of initial(s)

Lemma 7.1. Leth be a constant less than
√

1/(3κ1) and letm be a constant greater than
√

2/κ2, where
κ1 and κ2 are the constants in Lemma6.4. Let ψh = λh/3 and ψm = √

14λm. Let s be a sample. I
δ � 1/8, λh � 1/12 andλm � 1/12, then

ψh

√
f (s̃) � radius

(
initial (s)

)
� ψm

√
f (s̃),

with probability at least1− O
(
n−�(lnω n)

)
.

Proof. Let D be the disk centered ats that contains ln1+ω samples. We first prove the upper bound. T
a λm-grid such thats lies on the normal segment at the cut-pointc0. Let C be theλm-cell between the
normal segments atc0 andc1 that containss. By Lemma 6.6(iii),C contains at least 2 ln1+ω n samples
with probability at least 1−n−�(lnω n). SinceD contains ln1+ω n samples, radius(D) is less than the diam
eter ofC with probability at least 1− n−�(lnω n). By Lemma 6.2, radius(D) � 14λmf (c0) = 14λmf (s̃). It
follows that radius(initial (s)) = √

radius(D) �
√

14λmf (s̃).
Next, we prove the lower bound. Take aλh-partition such thats lies on the normal segment at th

cut-pointc0. Consider the cut-pointscj for −1� j � 1. (We usec−1 to denote the last cut-point picked
We have‖c−1 − c0‖ � |F(c−1, c0)| � 3λ2

hf (c−1) < 0.03f (c−1) asλh � 1/12. The Lipschitz condition
implies that

f (c−1) � f (c0)/1.03> 0.8f (c0). (3)

Let d−1 andd1 be the distances froms to the support lines of the normal segments atc−1 andc1, respec-
tively. By Lemma 6.3,

d−1 � |F(c−1, c0)|
6

� λ2
hf (c−1)

6

(3)
>

λ2
hf (c0)

8
,

d1 � |F(c0, c1)|
6

� λ2
hf (c0)

6
.

By Lemma 6.6(ii), theλh-slabs betweenc−1 andc0 and betweenc0 andc1 contain at most ln1+ω n/3
points with probability at least 1− O(n−�(lnω n)). Hence, forD to contain ln1+ω n points, radius(D) >

max{d−1, d1} � λ2
hf (c0)/6. Note that f (s̃) = f (c0) as s̃ = c0 by construction. It follows tha

radius(initial (s)) = √
radius(D) > λh

√
f (s̃)/3. �

7.2. Radius of coarse(s)

In this section, we prove an upper bound and a lower bound on the radius ofcoarse(s).

Lemma 7.2. Assumeρ � 4 and δ � 1/(25ρ2). Let m be the constant andψm be the parameter in
Lemma7.1. Let s be a sample. Ifλm � 1/(504ρ2), then

radius
(
coarse(s)

)
� 5ρδ + ψm

√
f (s̃)

with probability at least1− O
(
n−�(lnω n)

)
.
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Proof. Let s1 ands2 be points onF+
δ andF−

δ such thats̃1 = s̃2 = s̃. Let D be the disk centered ats with
radius 5ρδ + ψm

√
f (s̃). By Lemma 7.1,ψm

√
f (s̃) � radius(initial (s)), so D containsinitial (s) with

probability at least 1− O
(
n�(lnω n)

)
. We are to show thatcoarse(s) cannot grow beyondD. First, since

λm � 1/(504ρ2),

ψm = √
14λm � 1/(6ρ) � 1/24.

Observe that boths1 ands2 lie insideD. Since 5ρδ � 1/(5ρ) � 1/20 andψm � 1/24, radius(D) < (1−
δ)f (s̃). Thus, the distance between any two points inD∩F+

δ is less than 2(1−δ)f (s̃). By Lemma 5.2(i),
the maximum distance betweenD ∩ F+

δ and the tangent toF+
δ at s1 is at most

(5ρδ + ψm

√
f (s̃) )2

2(1− δ)f (s̃)
� (5ρδ

√
f (s̃) + ψm

√
f (s̃) )2

2(1− δ)f (s̃)
asf (s̃) � 1.

Thus, this distance is upper bounded by(5ρδ + ψm)2/(2(1− δ)) which is less than 0.51(5ρδ + ψm)2 as
δ � 1/(25ρ2). The same is also true forD ∩ F−

δ . It follows that the samples insideD lie inside a strip of
width at most 2δ + 1.1(5ρδ + ψm)2 = 2δ + 1.1(5ρ)2δ2 + 2.2(5ρ)ψmδ + 1.1ψ2

m. Sinceδ � 1/(25ρ2) and
ψm � 1/(6ρ), we have 1.1(5ρ)2δ2 � 1.1δ, 2.2(5ρ)ψmδ < 1.84δ and 1.1ψ2

m < ψm/ρ. We conclude tha
the strip width is no more than 2δ + 1.1δ + 1.84δ +ψm/ρ < 5δ +ψm/ρ � radius(D)/ρ. This shows tha
coarse(s) cannot grow beyondD. �

Next, we bound radius(coarse(s)) from below. We usefmax to denote maxx∈F f (x).

Lemma 7.3. Assume thatδ � 1/8 andρ � 4. Leth be the constant in Lemma7.1. Let s be a sample. I
λh � 1/32, then

radius
(
coarse(s)

)
� max

{
2
√

ρδ, radius
(
initial (s)

)}
with probability at least1− O(n−�(lnω n/fmax)).

Proof. Sincecoarse(s) is grown frominitial (s), radius(coarse(s)) � radius(initial (s)). We are to prove
that radius(coarse(s)) � 2

√
ρδ. LetD be the disk that has centers and radius radius(coarse(s))/

√
ρ. Let

X be the disk centered ats̃ with radiusδ. Note thats ∈ X andX is tangent toF+
δ andF−

δ . Sinceδ � 1/8
andf (s̃) � 1, f (s̃)− δ > δ and so Lemma 5.1 implies thatX lies inside the finite region bounded byF+

δ

andF−
δ .

Suppose that radius(coarse(s)) < 2
√

ρδ. Then radius(D) < 2δ. If D containsX, X is a disk inside
D ∩ X with radius at least radius(D)/2. If D does not containX, then sinces ∈ X, D ∩ X contains
a disk with radius radius(D)/2. The width ofstrip(s) is less than or equal to radius(coarse(s))/ρ =
radius(D)/

√
ρ. Thus,(D ∩ X) − strip(s) contains a diskY such that

radius(Y ) �
(

1

4
− 1

4
√

ρ

)
· radius(D) � radius(D)

8
.

Note thatY is empty andY lies inside the finite region bounded byF+
δ andF−

δ . Take a pointp ∈ Y . Since
p ∈ Y ⊆ D and radius(D) < 2δ, ‖p̃ − s̃‖ � ‖p − p̃‖ + ‖s − s̃‖ + ‖p − s‖ � 4δ � 1/2 asδ � 1/8. The
Lipschitz condition implies thatf (p̃) � 3f (s̃)/2. Observe that radius(D) = radius(coarse(s))/

√
ρ �

radius(initial (s))/
√

ρ. Thus, Lemma 7.1 implies that

radius(Y ) � radius(D)/8 � λh

√
f (s̃)√ >

λh

√
f (p̃)√
24 ρ 30 ρ
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with probability at least 1− O
(
n−�(lnω n)

)
. Let β = λh/(420

√
ρfmax). Then radius(Y ) > 14βf (p̃).

By Lemma 6.2,Y contains aβ-cell. By Lemma 6.6(i), thisβ-cell is empty with probability a
most n−�(lnω n/fmax). This implies that radius(coarse(s)) < 2

√
ρδ occurs with probability at mos

O(n−�(lnω n/fmax)). �
7.3. Rough tangent estimate: strip(s)

In this section, we prove that the slope ofstrip(s) is a rough estimate of the slope of the tangent as̃.
We need the following technical lemma about various properties ofcoarse(s) andFα insidecoarse(s).
Its proof can be found in Appendix A.

Lemma 7.4. Assumeρ � 5 and δ � 1/(25ρ2). Let m be the constant andψm be the parameter in
Lemma7.1. Let s be a sample. If2

√
ρδ � radius(coarse(s)) � 5ρδ + ψm

√
f (s̃) andψm � 1/100, then

for anyFα and for any pointx ∈ Fα ∩ coarse(s), the following hold:

(i) 5ρδ + ψm � 0.05, 5ρδ+ψm

2(1−δ)
� 0.03 and 5ρδ+ψm+2δ

2(1−δ)
� 0.03,

(ii) Fα ∩ coarse(s) consists of one connected component,
(iii) the angle between the normals ats andx is at most2sin−1 5ρδ+ψm+2δ

(1−δ)
� 2sin−1(0.06),

(iv) x ∈ cocone(s1,2sin−1 5ρδ+ψm+2δ

2(1−δ)
) ⊆ cocone(s1,2sin−1(0.03)) wheres1 is the point onFα such that

s̃1 = s̃,
(v) 0.9f (s̃) < f (x̃) < 1.1f (s̃),
(vi) if x lies on the boundary of coarse(s), the distance betweens and the orthogonal projection ofx

onto the tangent ats is at least0.8 · radius(coarse(s)), and
(vii) for anyy ∈ Fα ∩ coarse(s), the acute angle betweenxy and the tangent atx is at mostsin−1(6ρδ +

1.2ψm)) � sin−1(0.06).

We highlight the key ideas before giving the proof of Lemma 7.5. LetB be the region betweenF+
δ and

F−
δ insidecoarse(s). If strip(s) makes a large angle with the tangent ats̃, strip(s) would cut throughB in

the middle. In this case, ifB ∩ strip(s) is narrow, there would be a lot of areas inB outsidestrip(s). But
these areas must be empty. Such areas occur with low probability. Otherwise, ifB ∩ strip(s) is wide, we
show thatstrip(s) can be rotated to reduce its width further, a contradiction. We give the detailed
below.

Lemma 7.5. Assume thatρ � 5 and δ � 1/(25ρ2). Let m be the constant andψm be the parameter in
Lemma7.1. Let s be a sample. For sufficiently largen, the acute angle between the tangent ats̃ and the
direction of strip(s) is at most3sin−1 5ρδ+ψm+2δ

(1−δ)
+ sin−1(6ρδ + 1.2ψm) � 4sin−1(0.06) with probability

at least1− O(n−�(lnω n/fmax)).

Proof. Let �1 and�2 be the lower and upper bounding lines ofstrip(s). Without loss of generality, we
assume that the normal ats̃ is vertical, the slope ofstrip(s) is non-negative,F−

δ ∩ coarse(s) lies below
F+

δ ∩ coarse(s), andψm � 1/100 for sufficiently largen. Let h and m be the constants andψh and
ψ be the parameters in Lemma 7.1. We first assume that max{2√

ρδ,ψ
√

f (s̃)} � radius(coarse(s)) �
m h
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Fig. 9. (a) Illustrates thatF−
δ (p, q) lies below�1; (b) illustrates our choice of a cellC that lies below�1.

5ρδ + ψm

√
f (s̃) and take the probability of its occurrence into consideration later. As a short han

useη1 to denote5ρδ+ψm+2δ

(1−δ)
andη2 to denote 6ρδ + 1.2ψm.

Observe that both�1 and�2 must intersect the space that lies betweenF+
δ andF−

δ insidecoarse(s).
Otherwise, we can squeezestrip(s) and reduce its width, a contradiction. If�1 intersectsFα ∩ coarse(s)
twice for someα, then�1 is parallel to the tangent at some point onFα ∩ coarse(s). By Lemma 7.4(iii),
the direction ofstrip(s) makes an angle at most 2sin−1 η1 with the horizontal and we are done. Similar
we are done if�2 intersectsFα ∩ coarse(s) twice for someα. The remaining case is that both�1 and�2

intersectFα ∩ coarse(s) for anyα at most once. Suppose that the acute angle between the direct
strip(s) and the horizontal is more than 3sin−1 η1 + sin−1 η2. We show that this occurs with probabili
O(n−�(lnω n/fmax)).

Let q be the right intersection point betweenF−
δ and the boundary ofcoarse(s). If �1 intersectsF−

δ ∩
coarse(s), let p denote the intersection point; otherwise, letp denote the leftmost intersection poi
betweenF−

δ and the boundary ofcoarse(s). Refer to Fig. 9(a). We claim thatF−
δ (p, q) lies below�1.

If �1 does not intersectF−
δ ∩ coarse(s), then this is clearly true. Otherwise, by Lemma 7.4(iii),

magnitude of the slope of the tangent atp is at most 2sin−1 η1. Since the slope of�1 is more than
3sin−1 η1 + sin−1 η2, F−

δ crosses�1 atp from above to below. SoF−
δ (p, q) lies below�1.

We show that‖p − q‖ � ψh

√
f (s̃)/2 with probability at least 1− n−�(lnω n/fmax). Notice thatpq is

parallel to the tangent toF−
δ at some point onF−

δ (p, q). By Lemma 7.4(iii), the tangent toF−
δ (p, q)

turns by an angle at most 4sin−1(0.06) < π/2 fromp to q. This implies thatF−
δ (p, q) is monotone with

respect to the direction perpendicular topq. We dividepq into three equal segments. Letu andv be the
intersection points betweenF−

δ (p, q) and the perpendiculars ofpq at the dividing points. Assume thatv

follows u alongF−
δ (p, q). Refer to Fig. 9(b). Suppose that‖p − q‖ > ψh

√
f (s̃)/2. Then

∣∣F−
δ (u, v)

∣∣ � ‖p − q‖
3

� ψh

√
f (s̃)

6
. (4)

Sincef (ũ) < 1.1f (s̃) by Lemma 7.4(v),|F−
δ (u, v)| > ψh

√
f (ũ)/7. Consider a(λk/

√
fmax)-grid where

k = h/294 andũ is a cut-point. (Note thatλk = ψh/98.) Let C be the(λk/
√

fmax)-cell that touches
F−

δ (u, v) and the normal segment throughu. By Lemma 6.2, the diameter ofC is at most 14λk

√
f (ũ) =

ψh

√
f (ũ)/7 < |F−

δ (u, v)|. So the bottom side ofC lies within F−
δ (u, v). Let R be the region inside

coarse(s) that lies below� and aboveF−(p, q). From any pointx ∈ F−(u, v) ∩ C, if we shoot a ray
1 δ δ
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Fig. 10. The shaded region denotesR in both figures. In (a),q is the closest point inR to x. In (b),p or q is the closet point in
R to x.

along the normal atx into R, either the ray will leaveC first or the ray will hit�1 or the boundary o
coarse(s) in R. We are to prove that the distances fromx to �1 and the boundary ofcoarse(s) in R are
more than 2λkδ � 2λkδ/

√
fmax. This shows that the ray always leavesC first, soC lies completely inside

R. Then the upper bound on‖p − q‖ follows asC is empty with probability at mostn−�(lnω n/fmax) by
Lemma 6.6(i).

Consider the distance from any pointx ∈ F−
δ (u, v) to �1. By Lemma 7.4(iii), the angle between�1 and

the tangent atp (measured by rotating�1 in the clockwise direction) is at least 3sin−1 η1 + sin−1 η2 −
2sin−1 η1 = sin−1 η1+sin−1 η2 and at mostπ/2+2sin−1 η1. By Lemma 7.4(vii), the acute angle betwe
px and the tangent atp is at most sin−1 η2. So the angle betweenpx and �1 is at least sin−1 η1 and
at mostπ/2 + 2sin−1 η1 + sin−1 η2. This implies that the distance fromx to �1 is at least‖p − x‖ ·
min{η1 , cos(2sin−1 η1+sin−1 η2)}. By Lemma 7.4(i),η1 � 0.06< cos(3sin−1(0.06)) � cos(2sin−1 η1+
sin−1 η2). Therefore, the distance fromx to �1 is at least‖p − x‖ · η1 > 5ρδ · ‖p − x‖ � 25δ · (‖p −
q‖/3)

(4)
> 4δψh

√
f (s̃). Sinceλk = ψh/98, this distance is greater than 2λkδ.

Next, we consider the distanced from any pointx ∈ F−
δ (u, v) to the boundary ofcoarse(s) in R.

Take a radiussy of coarse(s) that passes throughx. Suppose thaty lies outsideR. Refer to Fig. 10. If
�1 intersectsF−

δ ∩ coarse(s) atp (Fig. 10(a)), thend = ‖q − x‖. If �1 does not intersectF−
δ ∩ coarse(s)

(Fig. 10(b)), thend = min{‖p − x‖,‖q − x‖}. Thus, by (4),d � ‖p − q‖/3 � ψh

√
f (s̃)/6 > 2λkδ.

The remaining possibility is thaty lies on the boundary ofR. Then eithersy is tangent toF−
δ at x

or sy intersectsF−
δ ∩ coarse(s) at least twice. Soxy is parallel to the tangent at some point onF−

δ ∩
coarse(s). By Lemma 7.4(iii), the acute angle betweenxy and the tangent atx is at most 4sin−1 η1. By
Lemma 7.4(vii), the acute angle betweenqx and the tangent atx is at most sin−1 η2. So the angle betwee
qx andxy is at most 4sin−1 η1 + sin−1 η2. It follows that

d = ‖x − y‖ � ‖q − x‖ · cos(4sin−1 η1 + sin−1 η2) � ‖q − x‖ · cos
(
5sin−1(0.06)

)
> 0.9 · ‖q − x‖ � 0.9 · (‖p − q‖/3

)
� 0.15ψh

√
f (s̃) > 2λkδ.

In all, C lies insideR. SoC must be empty which occurs with probability at mostn−�(lnω n/fmax) by
Lemma 6.6(i). It follows that‖p − q‖ � ψh

√
f (s̃)/2 with probability at least 1− n−�(lnω n/fmax). By

Lemma 7.4(vi), the horizontal distance betweenq and the left intersection point betweenF− and the
δ
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Fig. 11. Rotating�1 and�2 slightly in the clockwise direction decreases the width ofstrip(s).

boundary ofcoarse(s) is at least 1.6 · radius(coarse(s)) � 1.6ψh

√
f (s̃) > ‖p − q‖. We conclude that�1

intersectsF−
δ ∩ coarse(s) exactly once atp.

Refer to Fig. 11. Lety be the leftmost intersection point betweenF+
δ and the boundary ofcoarse(s).

Symmetrically, we can also show that�2 intersectsF+
δ ∩coarse(s) exactly once at some pointz, F+

δ (y, z)

lies above�2, and‖y − z‖ � ψh

√
f (s̃)/2 with probability at least 1− n−�(lnω n/fmax).

Consider the projections ofF+
δ (y, z) andF−

δ (p, q) onto the horizontal diameter ofcoarse(s) through
s. By Lemma 7.4(vi), the projections ofy andq are at distance at least 0.8 · radius(coarse(s)) from s.
Thus, the distance between the projections ofF+

δ (y, z) andF−
δ (p, q) is at least

1.6 · radius
(
coarse(s)

) − ‖p − q‖ − ‖y − z‖ � 1.6 · radius
(
coarse(s)

) − ψh

√
f (s̃)

� 1.6 · radius
(
coarse(s)

) − radius
(
coarse(s)

)
> radius

(
coarse(s)

)
/ρ.

That is, this distance is greater than the width ofstrip(s). But then we can rotate�1 and �2 around
p and z, respectively, in the clockwise direction to reduce the width ofstrip(s) while not losing any
sample insidecoarse(s). See Fig. 11. This is impossible. It follows that, under the condition
max{2√

ρδ,ψh

√
f (s̃)} � radius(coarse(s)) � 5ρδ +ψm

√
f (s̃), the acute angle between the direction

strip(s) and the tangent at̃s is at most 3sin−1 η1 + sin−1 η2 with probability at least 1− O(n�(lnω n/fmax)).
By Lemmas 7.1, 7.2, and 7.3, the inequalities max

{
2
√

ρδ,ψh

√
f (s̃)

}
� radius(coarse(s)) � 5ρδ +

ψm

√
f (s̃) hold with probability at least 1− O(n�(lnω n)/fmax). So the lemma follows. �

8. Refined neighborhood

The results in Section 7 show that after the step COARSENEIGHBORHOOD, the algorithm already ha
a normal estimate at each noisy sample with an error in the order ofδ + ψm. However, this error boun
does not tend to zero as the sampling density increases. This explains the need for the step REFINED

NEIGHBORHOODin the algorithm. This step will improve the normal estimate so that the error ten
zero as the sampling density increases. This will allow us to prove the pointwise convergence.

We introduce some notations. In the step REFINED NEIGHBORHOOD, we aligncandidate(s, θ) with
the normal at̃s by varyingθ within [−π/10,π/10]. Recall thatθ is the signed acute angle between
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upward direction ofcandidate(s, θ) andNs , whereNs is the upward direction perpendicular tostrip(s).
Let angle(strip(s)) denote the signed acute angle betweenNs and the upward normal ats̃. If Ns points
to the right of the upward normal ats̃, angle(strip(s)) is positive. Otherwise,angle(strip(s)) is negative.
We defineθs = θ + angle(strip(s)). That is,θs is the signed acute angle between the upward d
tion of candidate(s, θ) and the upward normal ats̃. The sign ofθs is determined in the same way
angle(strip(s)). For anyFα and for any pointp ∈ Fα ∩ candidate(s, θ), let γp be the signed acute ang
between the upward direction ofcandidate(s, θ) and the upward normal at̃p. The sign ofγp is deter-
mined in the same way asangle(strip(s)).

We need the following two technical lemmas. Their proofs can be found in Appendix A. There a
main results in Lemma 8.1. First, we show that the range of rotation[−π/10,π/10] of candidate(s, θ)

covers the normal direction ats̃. Second, we relateγp to θs . This is useful because we will see that
a proper choice ofp, the height ofcandidate(s, θ) is directly related toγp (and hence toθs). We will
need to focus on a smaller area insidecandidate(s, θ). Lemma 8.2 bounds distances and angles involv
points onFα inside this smaller area.

Lemma 8.1. Assume thatδ � 1/(25ρ2) and ρ � 5. Let s be a sample. LetWs be the width of
candidate(s, θ). For sufficiently largen, the following hold with probability at least1−O

(
n−�(lnω n/fmax)

)
throughout the variation ofθ within [−π/10,π/10].

(i) Ws � 0.1f (s̃).
(ii) θs ∈ [−π/5,π/5] andθs = 0 for someθ ∈ [−π/10,π/10].

(iii) Any line, which is parallel to candidate(s, θ) and inside candidate(s, θ), intersectsFα ∩ coarse(s)
for anyα exactly once.

(iv) For anyFα and for any pointp ∈ Fα ∩candidate(s, θ), θs −0.2|θs |−3Ws/f (s̃) � γp � θs +0.2|θs |+
3Ws/f (s̃).

Lemma 8.2. Assume thatδ � 1/(25ρ2) andρ � 5. Lets be a sample. LetH be a strip that is parallel to
candidate(s, θ) and lies inside candidate(s, θ). Whenn is sufficiently large, for anyFα and for any two
pointsu andv onFα ∩ H , the following hold with probability at least1− O

(
n−�(lnω n/fmax)

)
.

(i) ‖u − v‖ < 3width(H).
(ii) The angle between the normals atu andv is at most9width(H).

(iii) The acute angle betweenuv and the tangent toFα at u is at most5width(H).

8.1. Normal approximation

We show that our algorithm alignsrefined(s) approximately well with the normal ats̃. Our algorithm
variesθ so as to minimize the height ofrectangle(s, θ). Let θ∗ denote the minimizing angle. Recall th
refined(s) = rectangle(s, θ∗). Let θ∗

s denoteθ∗ + angle(strip(s)). We apply Lemmas 8.1 and 8.2 to sho
thatθ∗

s is very small.

Lemma 8.3. Assume thatδ � 1/(25ρ2) andρ � 5. Let s be a sample. LetWs be the width of refined(s).
For sufficiently largen, |θ∗| � 23W with probability at least1− O

(
n�(lnω n/fmax)

)
.
s s
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Proof. We rotate the plane such thatcandidate(s, θ∗) is vertical. Suppose that|θ∗
s | > 23Ws . We first

assume that Lemmas 7.1, 7.2, 7.3, 8.1 and 8.2 hold deterministically and show that a contradictio
with probability at least 1− O

(
n�(lnω n/fmax)

)
. The contradiction is that we can rotatecandidate(s, θ∗)

slightly to reduce its height further. Since these lemmas hold with probability at least 1−O
(
n�(lnω n/fmax)

)
,

we can then conclude that|θ∗
s | > 23Ws occurs with probability at most O

(
n�(lnω n/fmax)

)
.

Without loss of generality, we assume thatθ∗
s > 0. That is, the upward normal ats points to the left.

Also, we assume thatF−
δ ∩ coarse(s) lies belowF+

δ ∩ coarse(s). Let L be the left boundary line o
candidate(s, θ∗). By Lemma 8.1(iii),L intersectsF−

δ ∩ coarse(s) exactly once. We usep to denote the
pointL ∩ F−

δ ∩ coarse(s). We first prove a general claim which will be useful later.

Claim 1. Orient space such that candidate(s, θ) is vertical. If θs > 23Ws , then for anyα, Fα ∩
candidate(s, θ) increases strictly from left to right.

Proof. Take any pointz ∈ Fα ∩ candidate(s, θ). By Lemma 8.1(iv),γz � 0.8θs − 3Ws , which is positive
asθs � 23Ws by assumption. Therefore, the upward normal atz points to the left, so the slope of th
tangent toFα at z is positive. �

We highlight the proof strategy before giving the details. Ifθs > 23Ws , by Claim 1, bothF−
δ and

F+
δ increase from left to right insidecandidate(s, θ). Then we dividecandidate(s, θ∗) into three smaller

slabs of equal width in left to right order, and show that the lower side ofrectangle(s, θ∗) intersectsF−
δ

at a pointa inside the leftmost slab. Similarly, the upper side ofrectangle(s, θ∗) intersectsF+
δ at a point

b inside the rightmost slab. Since bothF−
δ andF+

δ increase from left to right, this allows us to rota
rectangle(s, θ∗) arounda andb in the anti-clockwise direction to reduce its height. This contradicts
minimality of the height ofrectangle(s, θ∗). We give the details in the following.

We first prove that the lower side ofrectangle(s, θ∗) intersectsF−
δ within the leftmost slab. Leth and

m be the constants in Lemma 7.1. Letk = h/3240. LetH1 be the slab insidecandidate(s, θ∗) such that
H1 is bounded byL on the left and width(H1) = Ws/3. Let H be the slab insidecandidate(s, θ∗) that
is bounded byL on the left and has width 30λk

√
f (s̃). Refer to Fig. 12. Since radius(initial (s)) �

ψm

√
f (s̃), radius(initial (s)) < 1 for sufficiently largen. So

√
radius(initial (s)) > radius(initial (s)).

Fig. 12. Illustration for Lemma 8.3.
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SinceWs = min{√radius(initial (s)), radius(coarse(s))/3}, Ws � radius(initial (s))/3 � λh

√
f (s̃)/9. We

get

width(H) = 30λk

√
f (s̃) = λh

√
f (s̃)

108
� Ws

12
. (5)

Thus,H lies insideH1. By Lemma 8.1(iii),F−
δ crossesH completely. Letr be the intersection poin

betweenF−
δ and the center line ofH . Take the(λk/

√
fmax)-grid in which r̃ is the first cut point. LetC be

the(λk/
√

fmax)-cell such thatC containsr andC lies between the normal segments atr̃ and the second
cut point. The distance fromr to the boundary ofH is 15λk

√
f (s̃). By Lemma 6.2, the diameter ofC is

at most 14λkf (r̃)/
√

fmax � 14λk

√
f (r̃). Sincef (r̃) � 1.1f (s̃) by Lemma 7.4(v), the diameter ofC is

less than 15λk

√
f (s̃). It follows thatC lies insideH .

Let u be the rightmost vertex ofC onF−
δ . Let v be the vertex ofC different fromu on the normal seg

ment atu. Let x be the intersection point betweenF−
δ and the right boundary line ofH1. We are to prove

thatx lies aboveC. SinceC is non-empty with very high probability, the lower side ofrectangle(s, θ∗)
should intersectF−

δ insideH1 at a point belowx then.
By Claim 1, v is the highest point inC and x is the highest point onF−

δ (p, x). Let dv and dx

be the height ofv and x from p, respectively. Letφ be the acute angle betweenpu and the hori-
zontal line throughp. Sinceφ is at most the sum ofγp and the angle betweenpu and the tangen
at p, by Lemma 8.2(iii), we haveφ � γp + 5width(H). By Lemma 8.2(i),‖p − u‖ � 3width(H).
Observe thatdv � ‖p − u‖ · sinφ + ‖u − v‖. So dv < 3φ width(H) + 2λkδ < 3γp width(H) +
15width(H)2 + 2λkδ. By (5), we getdv < Wsγp/4+ 5W 2

s /48+ 2λkδ. We bound 2λkδ as follows. Recal
that Ws = min{√radius(initial (s)), radius(coarse(s))/3}. If Ws = √

radius(initial (s)), by Lemma 7.1,
Ws �

√
λh/3f (s̃)1/4 �

√
λh/3. So 2λkδ < 2λk = λh/1620< 0.002W 2

s . If Ws = radius(coarse(s))/3, by
Lemmas 7.1 and 7.3,Ws � 2

√
ρδ/3 andWs � λh

√
f (s̃)/9 � λh/9. We getλk = λh/3240� Ws/360 and

2δ � 3Ws/
√

ρ � 3Ws/
√

5, so 2λkδ < 0.004W 2
s . We conclude that

dv <
Wsγp

4
+ 0.2W 2

s .

Observe thatpx is parallel to the tangent at some pointz on F−
δ (p, x). By Lemma 8.2(ii),γz � γp −

9width(H1) = γp − 3Ws . Sincedx = width(H1) · tanγz = (Ws/3) · tanγz, we get

dx � Wsγz

3
� Wsγp

3
− W 2

s .

Sinceθ∗
s > 23Ws by our assumption, Lemma 8.1(iv) implies thatγp � 0.8θ∗

s − 3Ws > 15Ws . Therefore,
dx − dv > Wsγp/12− 1.2W 2

s > 0. It follows thatx lies aboveC.
Since C is a

(
λk/

√
fmax

)
-cell, by Lemma 6.6(i),C contains some sample with probability

least 1− n�(lnω n/fmax). Thus, the lower side ofrectangle(s, θ∗) lies belowx with probability at least
1 − n�(lnω n/fmax). On the other hand, the lower side ofrectangle(s, θ∗) cannot lie belowF−

δ ∩ H1, oth-
erwise it could be raised to reduce the height ofrectangle(s, θ∗), a contradiction. So the lower side
rectangle(s, θ∗) intersectsF−

δ ∩ H1 at some pointa. See the left figure in Fig. 13.
Let H2 be the slab insidecandidate(s, θ∗) such thatH2 is bounded by the right boundary line

candidate(s, θ∗) on the right and width(H2) = Ws/3. By a symmetric argument, we can prove that
upper side ofrectangle(s, θ∗) intersectsF+

δ ∩ H2 at a pointb.
Consider an angleθ that is slightly less thanθ∗. As shown in the right figure in Fig. 13, this is equiv

lent to rotating the candidate neighborhood in the anti-clockwise direction. By Lemma 8.1(ii),θ can
s
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Fig. 13. In the right figure, the middle bold rectangle is the one obtained by a slight anti-clockwise rotation. Its height is
than that of the middle dashed rectangle.

reach zero during the variation ofθ . Thus, asθ∗
s > 0, decreasingθ from θ∗ is legal. Moreover, as

θ∗
s > 23Ws , the small rotation keepsθs greater than 23Ws . Correspondingly, we rotate the lower a

upper sides ofrectangle(s, θ∗) arounda andb, respectively, to obtain a rectangleR. Orient the plane
such that the new candidate neighborhood becomes vertical. By Claim 1,F−

δ increases strictly from lef
to right, soF−

δ crosses the lower side ofR at most once ata from below to above. Similarly,F+
δ crosses

the upper side ofR at most once atb from below to above. This implies thatR contains all the samples in
side the new candidate neighborhood. Sincea is on the left ofb and belowb, the anti-clockwise rotation
makes the height ofR strictly less than the height ofrectangle(s, θ∗). This contradicts the assumptio
that the height ofrectangle(s, θ∗) is already the minimum possible.�
8.2. Pointwise convergence

Once refined(s) is aligned well with the normal at̃s, it is intuitively true that the center point o
refined(s) should lie very close tõs. The following lemma proves this formally.

Lemma 8.4. Assume thatδ � 1/(25ρ2) andρ � 5. Let s be a sample. LetWs be the width of refined(s).
For sufficiently largen, the distance between the center points∗ of refined(s) and s̃ is at most(138δ +
3)Ws with probability at least1− O

(
n−�(lnω n/fmax)

)
.

Proof. We first assume that Lemmas 7.1, 7.2, 7.3, 8.1, 8.2 and 8.3 hold deterministically and sh
the lemma is true with probability at least 1− O(n�(lnω n/fmax)). Since these lemmas hold with probabil
at least 1− O(n�(lnω n/fmax)), the lemma follows.

Assume thats lies onF+
α , the normal at̃s is vertical, andF+

δ ∩ coarse(s) is aboveF−
δ ∩ coarse(s).

Let rd (resp.ru) be the ray that shoots downward (resp. upward) froms and makes an angleθ∗
s with the

vertical. Letx andy be the points onF+
δ andF hit by ru andrd respectively. Letz be the point onF−

δ

hit by rd . Let s1 be the point onF−
δ such thats̃1 = s̃. Without loss of generality, we assume thatθ∗

s � 0.
Refer to Fig. 14.

Our strategy for bounding‖s̃ −s∗‖ is as follows. By triangle inequality,‖s̃ −s∗‖ � ‖s∗ −y‖+‖s̃ −y‖.
Thus it suffices to bound‖s∗ −y‖ and‖s̃ −y‖. While‖s̃ −y‖ can be bounded directly, a few intermedia
steps are needed to bound‖s∗ − y‖. If the upper and lower sides ofrefined(s) pass throughx andz,
respectively, then‖s∗ − y‖ is just the distance between the midpoint ofxz andy. Then we consider th
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Fig. 14. Illustration for Lemma 8.4.

cases that the upper and lower sides ofrefined(s) do not pass throughx andz, and bound the maximum
displacement ofs∗ from the midpoint ofxz. This yields the bound on‖s∗ − y‖. We give the details in
the following.

First, we bound the distance between the midpoint ofxz andy. By Lemma 7.4(iv), the acute ang
betweens1z and the tangent ats1 (the horizontal) is at most sin−1(0.03). It follows that � ss1z � π/2 +
sin−1(0.03). So � szs1 = π − θ∗

s − � ss1z � π/2− θ∗
s −sin−1(0.03), which is greater than 0.9 asθ∗

s � π/5
by Lemma 8.1(ii). By applying sine law to the shaded triangle in Fig. 14, we get

‖s1 − z‖ = ‖s − s1‖ · sinθ∗
s

sin � szs1
� (δ + α)θ∗

s

sin(0.9)
< 2(δ + α)θ∗

s . (6)

Similarly, we get

‖s̃ − y‖ = ‖s − s̃‖ · sinθ∗
s

sin � sys̃
� αθ∗

s

sin(0.9)
< 2αθ∗

s . (7)

By triangle inequality,‖s − s1‖ − ‖s1 − z‖ � ‖s − z‖ � ‖s − s1‖ + ‖s1 − z‖. Then (6) yields

(δ + α) − 2(δ + α)θ∗
s � ‖s − z‖ � (δ + α) + 2(δ + α)θ∗

s . (8)

We can use a similar argument to show that

(δ − α) − 2(δ − α)θ∗
s � ‖s − x‖ � (δ − α) + 2(δ − α)θ∗

s , (9)

α − 2αθ∗
s � ‖s − y‖ � α + 2αθ∗

s . (10)

Let dx anddy be the distances from the midpoint ofxz to x andy, respectively. Since‖x−z‖ = ‖s−x‖+
‖s − z‖, by (8) and (9), we get 2δ − 4δθ∗

s � ‖x − z‖ � 2δ + 4δθ∗
s . Therefore,δ − 2δθ∗

s � dx � δ + 2δθ∗
s .

Since‖x −y‖ = ‖s −x‖+‖s −y‖, by (9) and (10), we getδ −2δθ∗
s � ‖x −y‖ � δ +2δθ∗

s . We conclude
that

dy = ∣∣dx − ‖x − y‖∣∣ � 4δθ∗
s . (11)

Second, we bound the displacement ofs∗ from the midpoint ofxz. There are two cases.
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Case1: the upper side ofrefined(s) lies abovex. The upper side ofrefined(s) must intersectF+
δ ∩

candidate(s, θ∗) at some pointv, otherwise we could lower it to reduce the height ofrefined(s),
a contradiction. Since‖x − v‖ � 3Ws by Lemma 8.2(i), the distance betweenx and the uppe
side ofrefined(s) is at most 3Ws .

Case2: the upper side ofrefined(s) lies belowx. Let h be the constant in Lemma 7.1. Letk = h/270.
Take the(λk/

√
fmax)-grid in whichx̃ is the first cut point. LetC be the cell such thatC contains

x andC lies between the normal segments atx̃ and the second cut point.
We claim thatC lies insidecandidate(s, θ∗). Since radius(initial (s)) � ψm

√
f (s̃), we have

radius(initial (s)) < 1 for sufficiently largen. So
√

radius(initial (s)) > radius(initial (s)). Thus,
Ws = min{√radius(initial (s)), radius(coarse(s))/3} � radius(initial (s))/3, which is at leas
λh

√
f (s̃)/9. By Lemma 6.2, the diameter ofC is at most 14λkf (x̃)/

√
fmax � 14λk

√
f (x̃).

Sincef (x̃) � 1.1f (s̃) by Lemma 7.4(v), the diameter ofC is less than 15λk

√
f (s̃). Since

Ws � λh

√
f (s̃)/9= 30λk

√
f (s̃), C must lie insidecandidate(s, θ∗).

SinceC is a(λk/
√

fmax)-cell, by Lemma 6.6(i),C contains some sample with probability
least 1− n−�(lnω n/fmax). Thus, the upper side ofrefined(s) cannot lie belowC. It follows that the
distance betweenx and the upper side ofrefined(s) is at most the diameter ofC, which has been
shown to be less thanWs/2.

Hence, the position of the upper side ofrefined(s) may causes∗ to be displaced from the midpoint ofxz

by a distance of at most 3Ws/2. The position of the lower side ofrefined(s) has the same effect. So th
distance betweens∗ and the midpoint ofxz is at most 3Ws . It follows that‖s∗ − y‖ � dy +3Ws . By (11),
we get‖s∗ − y‖ � 4δθ∗

s + 3Ws . Starting with triangle inequality, we obtain

‖s̃ − s∗‖ � ‖s∗ − y‖ + ‖s̃ − y‖ � 4δθ∗
s + 3Ws + ‖s̃ − y‖ (7)

� 6δθ∗
s + 3Ws.

Sinceθ∗
s � 23Ws by Lemma 8.3, we conclude that‖s̃ − s∗‖ � (138δ + 3)Ws . �

9. Homeomorphism

In this section, we prove more convergence properties which lead to the proof that the outpu
of the NN-crust algorithm is homeomorphic toF . For each samples, we uses∗ to denote the cente
point of refined(s). We briefly review the processing of the center points. We first sort the center p
in decreasing order of the widths of their corresponding refined neighborhoods. Then we scan th
list to select a subset of center points. When the current center points∗ is selected, we delete all cent
pointsp∗ from the sorted list such that‖p∗ − s∗‖ � width(refined(s))1/3.

In the end, we call two selected center pointss∗ andt∗ adjacentif F(s̃, t̃) or F(t̃, s̃) does not contain
ũ for any other selected center pointu∗. We useG to denote the polygonal curve that connects adja
selected center points. Note that the degree of every vertex inG is exactly two. Clearly, if we connects̃
and t̃ for every pair of adjacent selected center pointss∗ andt∗, we obtain a polygonal curveG′ that is
homeomorphic toF . Our goal is to show that the output curve of the NN-crust algorithm is exactlG.
Since there is a bijection betweenG andG′, the homeomorphism result follows.

Throughout this section, we assume that width(initial (s)) < 1 for any samples, which is true
for sufficiently largen. There are a few consequences. First, it implies that

√
radius(initial (s)) �
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radius(initial (s)). Second, since width(refined(s)) = min{√radius(initial (s)), radius(coarse(s))/3}, we
have width(refined(s)) �

√
radius(initial (s)) < 1. This implies that for any constantsa > b > 0,

width(refined(s))a < width(refined(s))b. Lastly, width(refined(s)) � radius(initial (s))/3.
We need the technical results Lemmas 9.1–9.6. The proofs of Lemmas 9.1, 9.3, 9.4 and 9.5 a

in Appendix A.

Lemma 9.1. There exists a constantµ1 > 0 such that whenn is sufficiently large, for any two
center pointsp∗ and q∗, if ‖p̃ − q̃‖ � f (p̃)/2, then Wq � µ1f (p̃)

√
Wp with probability at least

1− O(n−�(lnω n/fmax)).

Lemma 9.2. Letp∗ andq∗ be two selected center points. Then‖p∗ − q∗‖ > max{W 1/3
p ,W

1/3
q }.

Proof. Assume without loss of generality thatp∗ was selected beforeq∗. Sinceq∗ was selected subse
quently,q∗ was not eliminated by the selection ofp∗. Thus,‖p∗ − q∗‖ > W

1/3
p � W

1/3
q . �

Lemma 9.3. Whenn is sufficiently large, for any two center pointsx∗ andy∗ such that‖x̃ − ỹ‖ � f (ỹ)/2
and‖x∗ − y∗‖ � W

1/3
y , the acute angle betweenx∗y∗ and x̃ỹ is O(f (ỹ)W

1/6
y ) with probability at least

1− O(n−�(lnω n/fmax)).

Lemma 9.4. Whenn is sufficiently large, for any three center pointsx∗, y∗, andz∗ such thatỹ ∈ F(x̃, z̃),
‖x̃ − z̃‖ � max{f (x̃)/5, f (z̃)/5}, ‖x∗ −y∗‖ � W

1/3
y , and‖y∗ − z∗‖ � W

1/3
y , the angle� x∗y∗z∗ is obtuse

with probability at least1− O(n−�(lnω n/fmax)).

Lemma 9.5. There exists a constantµ2 > 0 such that whenn is sufficiently large, for any edgee in G

connecting two center pointsp∗ and q∗, length(e) � µ2f (p̃)W
1/3
p + µ2f (q̃)W

1/3
q with probability at

least1− O(n−�(lnω n/fmax)).

Lemma 9.6. Whenn is sufficiently large, for any two selected center pointsp∗ andq∗ such thatp∗ andq∗
are not adjacent inG and‖p∗ −q∗‖ � f (p̃)/5, there is an edgee in G incident top∗ such that the angle
betweene andp∗q∗ is acute andlength(e) < ‖p∗ − q∗‖ with probability at least1− O(n−�(lnω n/fmax)).

Proof. Sincep∗ andq∗ are not adjacent inG, there is some selected center pointu∗ adjacent top∗ such
thatũ lies onF(p̃, q̃) or F(q̃, p̃), sayF(p̃, q̃). By Lemma 9.2,‖p∗ −u∗‖ > W

1/3
u and‖q∗ −u∗‖ > W

1/3
u .

By Lemma 9.4, the angle� p∗u∗q∗ is obtuse with probability at least 1−O(n−�(lnω n/fmax)). It follows that
� u∗p∗q∗ is acute and‖p∗ − u∗‖ < ‖p∗ − q∗‖. �

We apply the above technical lemmas to show that the output curve of the NN-crust algori
exactlyG. Then this allows us to show that the output curve is homeomorphic to the underlying s
closed curve.

Lemma 9.7. For sufficiently largen, the output curve obtained by running the NN-crust algorithm on

selected center points is exactlyG with probability at least1− O
(
n

−�( lnω n
fmax

−1)
)
.

Proof. We first prove the lemma assuming that Lemmas 8.4, 9.4, 9.5 and 9.6 hold deterministica
will discuss the probability bound later.
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Let p∗ be a selected center point. Letp∗u∗ andp∗v∗ be the edges ofG incident top∗. Without loss of
generality, we assume thatp̃ lies onF(ũ, ṽ). By Lemma 9.2,‖p∗ − u∗‖ > W

1/3
p and‖p∗ − v∗‖ > W

1/3
p .

Let k = 138δ + 3. By Lemmas 8.4 and 9.5,‖p̃ − ũ‖ � ‖p̃ − p∗‖ + ‖ũ − u∗‖ + ‖p∗ − u∗‖ � kWp +
kWu + µ2f (p̃)W

1/3
p + µ2f (ũ)W

1/3
u , which is less than(f (p̃) + f (ũ))/30 for sufficiently largen. The

Lipschitz condition implies that

0.9f (p̃) < f (ũ) < 1.1f (p̃).

So we get

‖p̃ − ũ‖ � f (p̃) + f (ũ)

30
< 0.07f (p̃), ‖p∗ − u∗‖ � f (p̃) + f (ũ)

30
< 0.07f (p̃).

Similarly, we can show that

‖p̃ − ṽ‖ < 0.07f (p̃), ‖p∗ − v∗‖ < 0.07f (p̃).

Let p∗q∗ be an edge computed by the NN-crust algorithm when it processes the vertexp∗. Assume to
the contrary thatp∗q∗ is not an edge inG. If p∗q∗ is computed in step 1 of the NN-crust algorithm, th
q∗ is the nearest neighbor ofp∗. So‖p∗ −q∗‖ � ‖p∗ −u∗‖ < 0.07f (p̃). By Lemma 9.6, there is anoth
edgee in G such that length(e) < ‖p∗ −q∗‖, a contradiction. Suppose thatp∗q∗ is computed in step 2 o
the NN-crust algorithm. As we have just shown, the step 1 of the NN-crust algorithm already outp
edge, sayp∗u∗, of G whereu∗ is the nearest neighbor ofp∗. Observe that‖ũ− ṽ‖ � ‖p̃− ũ‖+‖p̃− ṽ‖ <

0.14f (p̃) < 0.2f (ũ). By Lemma 9.4,� u∗p∗v∗ is obtuse. By the NN-crust algorithm,� u∗p∗q∗ is also
obtuse. Since the NN-crust algorithm prefersp∗q∗ to p∗v∗, ‖p∗ − q∗‖ � ‖p∗ − v∗‖ < 0.07f (p̃). By
Lemma 9.6,G has an edgee incident top∗ that is shorter thanp∗q∗ (p∗v∗ too) and makes an acute ang
with p∗q∗. The edgee is notp∗v∗ ase is shorter thanp∗v∗. The edgee is notp∗u∗ as � u∗p∗q∗ is obtuse.
But then the degree ofp in G is at least three, a contradiction.

We have shown that each output edge belongs toG. Since the NN-crust algorithm guarantees t
each vertex in the output curve has degree at least two, the output curve andG have the same number
edges. So the output curve is exactlyG.

Since Lemmas 8.4, 9.4, 9.5 and 9.6 hold with probability at least 1− O(n−�(lnω n/fmax)), the output
edges incident top∗ are edges ofG with probability at least 1− O(n−�(lnω n/fmax)). Since there are O(n)

output vertices, the probability that this holds for all vertices is at least 1− O(n−�(lnω n/fmax−1)). �
Corollary 9.1. For sufficiently largen, the output curve obtained by running the NN-crust algorithm
the selected center points is homeomorphic to the underlying smooth closed curve with proba
least1− O

(
n−�(lnω n/fmax−1)

)
.

Proof. We have shown that the output curve isG. Let G′ be the curve obtained by connectingp̃ and
q̃ for each edgep∗q∗ of G. G′ is homeomorphic to the underlying smooth closed curve asp∗ andq∗
are adjacent inG. Clearly,G is homeomorphic toG′ as there is a bijection between the edges oG

andG′. �
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10. Finale

We make use of the lemmas in the previous subsections to prove the key result of this paper, s
the Main Theorem in Section 4.

Proof of the Main Theorem. First of all, for any noisy samples, let Ws denote the width ofrefined(s).
By construction,Ws �

√
radius(initial (s)). By Lemma 7.1, radius(initial (s)) = O((ln1+ω n/n)1/4f (s̃)1/2).

ThusWs = O((ln1+ω n/n)1/8f (s̃)1/4).
By Lemma 8.4, asn tends to∞, for each output vertexs∗, ‖s∗ − s̃‖ = O(Ws) with probability at least

1 − O(n−�(lnω n/fmax)). Since there are O(n) output vertices, the distance bounds hold simultaneo
with probability at least 1− O(n−�(lnω n/fmax−1)). Next, we analyze the angular differences between
tangents of the smooth closed curve and the output curve.

Let r∗s∗ be an output edge. By Lemma 9.5, with probability at least 1− O(n−�(lnω n/fmax)), we have

‖r∗ − s∗‖ � µ2f (r̃)W 1/3
r + µ2f (s̃)W 1/3

s . (12)

Let k = 138δ + 3. Using the above, the triangle inequality, and Lemma 8.4, we get

‖r̃ − s̃‖ � ‖r̃ − r∗‖ + ‖s̃ − s∗‖ + ‖r∗ − s∗‖ (13)

� kWr + kWs + µ2f (r̃)W 1/3
r + µ2f (s̃)W 1/3

s . (14)

By (12), ‖r∗ − s∗‖ < f (r̃)/5 + f (s̃)/5 for sufficiently largen. The Lipschitz condition implies tha
f (r̃) < 1.5f (s̃). So‖r∗ − s∗‖ < f (s̃)/2. Thus, Lemma 9.1 applies and yieldsWr � µ1f (s̃)

√
Ws with

probability at least 1− O(n−�(lnω n/fmax)). Substituting into (14), we conclude that

‖r̃ − s̃‖ � µ3f (s̃)4/3W 1/6
s , (15)

for some constantµ3 > 0.

Let θ be the angle betweeñrs̃ and the tangent ats̃. By Lemma 5.2(ii), we haveθ � sin−1 µ3f (s̃)1/3W
1/6
s

2 .
Let θ ′ be the acute angle betweenr∗s∗ andr̃ s̃. By (15),‖r̃ − s̃‖ � f (s̃)/2 for sufficiently largen. Thus,
by Lemma 9.3,θ ′ = O

(
f (s̃)W

1/6
s

)
with probability at least 1− O

(
n−�(lnω n/fmax)

)
for sufficiently largen.

We conclude that the angle betweenr∗s∗ and the tangent at̃s, which is upper bounded byθ + θ ′, is
O

(
f (s̃)W

1/6
s

)
. Since there are O(n) output edges, the angular difference bounds hold simultaneo

with probability at least 1− O
(
n−�(lnω n/fmax−1)

)
.

The output curve is homeomorphic to the smooth closed curve by Corollary 9.1.�

11. Conclusion

Curve reconstruction is a popular task in computer vision and image processing, and quite a
of algorithms have been developed by researchers in these areas [4,10,11,15–20]. Despite the
ness of these algorithms as demonstrated by experiments, no guarantee of the output quality is
This makes it difficult to gauge one’s confidence on the output’s correctness as well as how w
output approximates the unknown curve. Recently, significant progress has been made and seve
reconstruction algorithms with quality guarantees have been proposed [1,2,6–9,12–14]. Howeve
them assume that the input sample points are noiseless, i.e., they lie exactly on the unknown cu
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assumption fails in a practical environment as input devices inevitably make some measuremen
This paper presents the first theoretical study of how to guarantee a faithful output in the pres
noise.

We propose a probabilistic model of noisy samples. In a sense, it models the location of points
curve by an input device, followed by perturbation due to noise. We assume that the perturbati
to noise) moves the points in the normal directions randomly and uniformly within an interval of
unknown width. Based on this model, we develop an algorithm that returns a faithful reconstructio
probability approaching 1 as the number of noisy samples increases. A straightforward impleme
of our algorithm runs in cubic time. This is the first theoretical result known for handling noise,
under some restrictive assumptions.

We expect that our approach will also help in reconstructing curves with features such as c
branchings and terminals (with or without noise). Another research direction is to study the reco
tion of surfaces from noisy samples. Recently, we have extended our algorithm and its guara
reconstructing surfaces in three dimensions for a deterministic noise model which is strongly re
the probabilistic noise model in this paper [3]. When the sample size is sufficiently large, the ou
homeomorphic to the unknown surface. As the sample size tends to infinity, the distance betw
reconstruction and the surface tends to zero and the normals of the triangles converge to the tru
normals. Independently, Dey and Goswami [5] have proposed another surface reconstruction a
for points that follow a different noise model. Their experiments show that the algorithm works in
tice. In their model, the noise amplitude is proportional to the local feature size. This has the adv
that a larger noise can be accommodated in areas of larger local feature sizes. On the other han
our model, their noise amplitude decreases as the sampling density increases. They prove that t
is homeomorphic to the unknown surface and the distance between the reconstruction and the
is bounded by the noise amplitude. A constant bound is given on the angles between the norma
triangles and the true surface normals, which can be reduced for smaller noise amplitude.

It is open whether more general noise models are amenable to theoretical analysis.
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Appendix A

Proof of Lemma 5.1. Let Mα be the medial disk ofFα touching a pointp ∈ Fα. By the definition of
Fα, there is a medial diskM of F touchingp̃ such thatM andMα have the same center. Moreov
radius(Mα) = radius(M) − α � f (p̃) − α. �
Proof of Lemma 5.2. Assume that the tangent atp is horizontal. Consider (i). Refer to Fig. A.1(a). L
B be the tangent disk atp that lies abovep and has centerx and radius(1− α)f (p̃). Let C be the circle
centered atp with radius‖p − q‖. Since‖p − q‖ < 2(1 − α)f (p̃), C crossesB. Let r be a point in
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Fig. A.1. Illustration for Lemma 5.2.

C ∩ ∂B. Let d be the distance ofr from the tangent atp. By Lemma 5.1,d bounds the distance fromq to

the tangent atp. Observe that‖p−q‖ = ‖p− r‖ = 2(1−α)f (p̃)sin
( � pxr

2

)
andd = ‖p− r‖ ·sin

( � pxr

2

)
.

Thus,d = 2(1− α)f (p̃)sin2
( � pxr

2

) = ‖p−q‖2

2(1−α)f (p̃)
.

Consider (ii). Refer to Fig. A.1(b). By (i), the distance between any point inFα ∩ D and the tangent a
p is bounded byradius(D)2

2(1−α)f (p̃)
. Let θ be the smallest angle such thatcocone(p, θ) containsFα ∩ D. Then

sin
θ

2
� radius(D)2

2(1− α)f (p̃)
· 1

radius(D)
= radius(D)

2(1− α)f (p̃)
. �

Proof of Lemma 5.3. Take any pointu onFα ∩ D. Let � be the tangent toFα atu. Let �′ be the line that
is perpendicular to� and passes throughu. Let C be the circle centered atp with radius‖p − u‖. Let
A andB be the two tangent circles atp with radius(1− α)f (p̃)/2. Let x be the center ofA. Without
loss of generality, we assume that the tangent toFα at p is horizontal,A is belowB, u lies to the left of
p, and the slope of� is positive or infinite. (We ignore the case where the slope of� is zero as there i
nothing to prove then.) It follows that the slope of�′ is zero or negative. Refer to Fig. A.2.

By Lemma 5.1,u lies outsideA and B. Let q be the intersection point betweenC and A on the
left of p. Since‖p − q‖ = ‖p − u‖ � (1− α)f (p̃)/4 = radius(A)/2, q lies abovex. Also, � pxq =
2sin−1 ‖p−u‖

(1−α)f (p̃)
.

Suppose that�′ does not lie abovex, see Fig. A.2(a). Sinceu lies above the support line ofqx, the
angle between�′ and the vertical is less than or equal to� pxq = 2sin−1 ‖p−u‖

(1−α)f (p̃)
.

Suppose that�′ lies abovex but not abovep, see Fig. A.2(b). We show that this case is impossi
Let w the intersection point betweenA and �′ on the right ofp. Note thatp lies betweenu and w

and � upw > π/2. If we grow a disk that lies belowl and remains tangent tol at u, the disk will hit
Fα at some point different fromu when the disk passes throughp or earlier. It follows that there is
medial diskMu of Fα that touchesu and lies belowl. Observe that the center ofMu lies on the half
of �′ on the right ofu. Furthermore, the center ofMu lies on the line segmentuw; otherwise, since
� upw > π/2, Mu would containp, a contradiction. Thus, the distance from̃p to the center ofMu is less
than max{‖p −u‖,‖p −w‖}+‖p − p̃‖ � 2 · radius(A)+α = (1−α)f (p̃)+α � f (p̃). However, since
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Fig. A.2. Illustration for Lemma 5.3.

the center ofMu is also a point on the medial axis ofF , its distance fromp̃ should be at leastf (p̃), a
contradiction.

The remaining case is that�′ lies abovep, see Fig. A.2(c). Sinceu lies outsideB and the slope of�′
is zero or negative,�′ lies betweenp and the center ofB. The situation is similar to the previous ca
where�′ lies betweenp andx. So a similar argument shows that this case is also impossible.�
Proof of Lemma 7.4. A straightforward calculation shows (i).

If Fα ∩ coarse(s) consists of more than one connected component, the medial axis ofFα intersects the
interior of coarse(s). SinceF andFα have the same medial axis, the distance froms̃ to the medial axis
is at most 2 radius(coarse(s)) � 2(5ρδ + ψm

√
f (s̃)) � 2(5ρδ + ψm)f (s̃) < f (s̃) by (i), a contradiction.

This proves (ii).
Let s1 be the point onFα such thats̃1 = s̃. The distance‖s1 − x‖ � ‖s − x‖ + ‖s − s1‖ � 5ρδ +

ψm

√
f (s̃) + 2δ � (5ρδ + ψm + 2δ)f (s̃). By Lemma 5.3, the angle between the normals ats1 andx is at

most 2sin−1 ‖s1−x‖
(1−δ)f (s̃)

� 2sin−1 5ρδ+ψm+2δ

(1−δ)
� 2sin−1(0.06) by (i). This proves (iii).

By Lemma 5.2(ii),x ∈ cocone
(
s1,2sin−1 ‖s1−x‖

2(1−δ)f (s̃)

) ⊆ cocone(s1,2sin−1(0.03)). This proves (iv).
The distance

‖s̃ − x̃‖ � ‖s − s̃‖ + ‖s − x‖ + ‖x − x̃‖ � 5ρδ + ψm

√
f (s̃) + 2δ

� (5ρδ + ψm + 2δ)f (s̃) < 0.1f (s̃).

Then the Lipschitz condition implies (v).
Consider (vi). Refer to Fig. A.3. Assume that the tangent ats is horizontal. By sine law,

sin � sxs1 = ‖s − s1‖ · sin � ss1x

‖s − x‖ � 2δ

radius(coarse(s))

as‖s − s1‖ � 2δ and‖s − x‖ = radius(coarse(s)). Since radius(coarse(s)) � 2
√

ρδ andρ � 5, we have
� sxs � sin−1 1√ < sin−1(0.5). By (iv), � s sx � π − � sxs − (π/2+sin−1(0.03)) > π/2−sin−1(0.5)−
1 ρ 1 1
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Fig. A.3. Illustration for Lemma 7.4.

Fig. A.4. Illustration for Lemma 8.1(iii).

sin−1(0.03). Thus, the horizontal distance betweens andx is equal to‖s − x‖ · sin � s1sx � ‖s − x‖ ·
cos(sin−1(0.5) + sin−1(0.03)) > 0.8 · ‖s − x‖.

Consider (vii). Sincey ∈ Fα ∩coarse(s), ‖x −y‖ � 2 radius(coarse(s)) � 2
(
5ρδ +ψm

√
f (s̃)

)
which

is at most 0.1f (s̃) by (i). So Lemma 5.2(ii) applies and the acute angle betweenxy and the tangent atx
is at most sin−1 ‖x−y‖

2(1−δ)f (x̃)
� sin−1 (5ρδ+ψm)f (s̃)

(1−δ)f (x̃)
. Sincef (x̃) � 0.9f (s̃) by (v) andδ � 1/(25ρ2), the acute

angle is less than sin−1(1.2(5ρδ + ψm)), which is less than sin−1(0.06) by (i). �
Proof of Lemma 8.1. We first assume that max

{
2
√

ρδ,ψh

√
f (s̃)

}
� radius(coarse(s)) � 5ρδ +

ψm

√
f (s̃) and radius(initial (s)) � ψm

√
f (s̃). We will take the probabilities of their occurrences la

into consideration.
SinceWs �

√
radius(initial (s)) �

√
ψmf (s̃)1/4 andψm � 0.01 for sufficiently largen, Ws � 0.1f (s̃).

This proves (i).
By Lemma 7.5, for sufficiently largen, |angle(strip(s))| � 4sin−1(0.06) < π/10. Since θ ∈

[−π/10,π/10], θs = θ + angle(strip(s)) ∈ [−π/5,π/5] andθs = 0 for someθ . This proves (ii).
Consider (iii). Let� be a line that is parallel tocandidate(s, θ) and insidecandidate(s, θ). We first

prove that� intersectsFα . Refer to Fig. A.4. Without loss of generality, assume that the normal as̃ is
vertical, the slope ofcandidate(s, θ) is positive, and� is below s. Let s1 and s2 be the points onF+

δ

andF−
δ , respectively, such that̃s1 = s̃2 = s̃. Shoot two rays upward froms1 with slopes±sin−1(0.03).

Also, shoot two rays downward froms2 with slopes±sin−1(0.03). LetR be the region insidecoarse(s)
bounded by these four rays. By Lemma 7.4(iv),Fα ∩ coarse(s) lies insideR. Let x be the upper righ
vertex ofR. Let y be the right endpoint of a horizontal chord throughs . Let L be the line that passe
1
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throughx and is parallel to�. Let L′ be the line that passes throughs and is parallel to�. Let z be the
point onL such thats1z is perpendicular toL.

We claim thatL′ is aboveL and L and L′ intersect both the upper and lower boundaries ofR.
By Lemma 7.4(iv),� xs1y � sin−1(0.03), so � xsy � 2sin−1(0.03). Observe that cos� s1sy = ‖s−s1‖

‖s−y‖ �
2δ

radius(coarse(s)) . Since radius(coarse(s)) � 2
√

ρδ, cos� s1sy � 1/
√

ρ � 1/
√

5 which implies that� s1sy >

π/3. Since� s1sx = � s1sy − � xsy, we get

� s1sx � π/3− 2sin−1(0.03) > π/5� |θs |. (A.1)

SoL′ cuts through the angle betweenss1 andsx. It follows thatL′ is aboveL. Observe thatL′ intersects
s1x. By symmetry,L′ intersects the left downward ray froms2 too. We conclude thatL andL′ intersect
both the upper and lower boundaries ofR.

Since|θs | � π/5 and � sxz = � s1sx − |θs |, by (A.1), � sxz � π/3 − 2sin−1(0.03) − π/5 > 0.3. The
distance froms to L is equal to‖s − x‖ · sin � sxz > ‖s − x‖ · sin(0.3) > 0.2 · radius(coarse(s)). Recall
that� lies belows by our assumption. The distance between� ands is at mostWs/2 and our algorithm
enforces thatWs/2 � radius(coarse(s))/6. So� lies betweenL′ andL. SinceL andL′ intersect both the
upper and lower boundaries ofR, so does�. It follows that� must intersectFα ∩ coarse(s).

Next, we show that� intersectsFα ∩ coarse(s) exactly once. If not,� is parallel to the tangent a
some point onFα ∩ coarse(s). By Lemma 7.4(iii), the angle between� and the vertical is at leastπ/2−
2sin−1(0.06) > π/5, contradicting the fact that|θs | � π/5.

Consider (iv). Let� be a line that is parallel tocandidate(s, θ) and passes throughs. By (iii), � inter-
sectsFα at some pointb. We first prove thatθs − 0.2|θs | � γb � θs + 0.2|θs |. Let s1 be the point onFα

such that̃s = s̃1. Assume that the tangent ats is horizontal,s is aboves1, andb is to the left ofs. LetC be
the circle tangent toFα at s1 that lies belows1, is centered atx, and has radiusf (s̃) − δ. By Lemma 5.1,
Fα does not intersect the interior ofC. Refer to Fig. A.5(a). Letsa be a tangent toC that lies on the
left of x. We claim that� asx > |θs |. Otherwise,‖s − x‖ � ‖a − x‖/sin(π/5) = (f (s̃) − δ)/sin(π/5) >

(a) (b)

Fig. A.5. Illustration for Lemma 8.1(iv).
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f (s̃) + δ � ‖s − x‖, a contradiction. Sosb lies betweensa andsx. Let sr be the extension ofsb such
thatr lies onC. We have

‖a − s‖ =
√

‖s − x‖2 − ‖a − x‖2 �
√

(f (s̃) + δ)2 − (f (s̃) − δ)2 = 2
√

δf (s̃).

Thus,‖r − s‖ � ‖a − s‖ � 2
√

δf (s̃). Observe that

� rxs = sin−1 ‖r − s‖ · sin|θs |
‖r − x‖ � sin−1 2

√
δf (s̃) · |θs |
‖r − x‖ .

Sinceδ � 1/(25ρ2) and|θs | � π/5, we have

2
√

δf (s̃) · |θs |
‖r − x‖ = 2

√
δf (s̃) · |θs |
f (s̃) − δ

= 2
√

δ · |θs |√
f (s̃) − δ/

√
f (s̃)

� 2
√

δ · |θs |
1− δ

< 0.06. (A.2)

Combing (A.2) with the following fact

x � 0.6⇒ sin−1 x < 1.1x, (A.3)

we get� rxs <
2.2

√
δf (s̃)·|θs |

‖r−x‖ . Since‖b − s1‖ � ‖r − s1‖ = ‖r − x‖ · 2sin
� rxs

2 , we get

‖b − s1‖ � ‖r − x‖ · � rxs � 2.2
√

δf (s̃) · |θs |.
Let γ ′ be the acute angle between the normals atb ands1. By Lemma 5.3,

γ ′ � 2sin−1 ‖b − s1‖
(1− α)f (s̃)

� 2sin−1 2.2
√

δ · |θs |
1− α

� 2sin−1 2.2
√

δ · |θs |
1− δ

.

By (A.2) and (A.3), we conclude thatγ ′ < 4.84
√

δ·|θs |
1−δ

< 0.2|θs |. It follows that

θs − 0.2|θs | � θs − γ ′ � γb � θs + γ ′ � θs + 0.2|θs |.
Next, we prove the upper and lower bounds forγp for any pointp ∈ Fα ∩candidate(s, θ). Letη be the

acute angle betweenbp and the line that passes throughb and is perpendicular tocandidate(s, θ). See
Fig. A.5(b). By Lemma 7.4(vii), the acute angle betweenbp and the tangent atb is at most sin−1(0.06).
It follows thatη � γb + sin−1(0.06) � θs + 0.2|θs | + sin−1(0.06) � 1.2(π/5) + sin−1(0.06) < 0.9. Thus,

‖b − p‖ � Ws

2cosη
< 0.9Ws.

Note thatWs � radius(coarse(s))/3� (5ρδ +ψm)f (s̃)/3, which is less than 0.02f (s̃) by Lemma 7.4(i).
Also, by Lemma 7.4(v),f (p̃) � 0.9f (s̃). It follows that

‖b − p‖ < 0.9Ws � 0.02f (p̃). (A.4)

So we can invoke Lemma 5.3 to bound the angleγ ′′ between the normals atb andp:

γ ′′ � 2sin−1 ‖b − p‖
(1− α)f (p̃)

� 2sin−1 0.9Ws

(1− α)f (p̃)
� 2sin−1 Ws

f (p̃)
.

By (A.4), Ws/f (p̃) < 0.03. So by (A.3), we getγ ′′ � 2.2Ws/f (p̃). Sincef (p̃) � 0.9f (s̃), we conclude
thatγ ′′ < 3Ws/f (s̃). This implies that

θ − 0.2|θ | − 3W /f (s̃) � γ − γ ′′ � γ � γ + γ ′′ � θ + 0.2|θ | + 3W /f (s̃).
s s s b p b s s s



S.-W. Cheng et al. / Computational Geometry 31 (2005) 63–100 97

h

on-

t

rmin-

t

Finally, we have proved the lemma under the conditions that max{2√
ρδ,ψh

√
f (s̃)} �

radius(coarse(s)) � 5ρδ + ψm

√
f (s̃) and radius(initial (s)) � ψm

√
f (s̃). These conditions hold wit

probabilities at least 1− O(n−�(lnω n/fmax)) by Lemmas 7.1, 7.2 and 7.3. So the lemma follows.�
Proof of Lemma 8.2. Let φ be the acute angle betweenuv and the tangent toFα at u. Let η be the
acute angle betweenuv and the direction ofcandidate(s, θ). By Lemma 7.4(vii),φ � sin−1(0.06). So
η � π/2 − γu − φ � π/2 − γu − sin−1(0.06). By Lemma 8.1(i), (ii) and (iv),η � π/2 − 1.2(π/5) −
3(0.1) − sin−1(0.06) > 0.4. Thus,

‖u − v‖ � width(H)

sinη
� width(H)

sin(0.4)
< 3width(H).

This proves (i).
Consider (ii). Note thatWs � radius(coarse(s))/3 � (5ρδ + ψm)f (s̃)/3. So by (i),‖u − v‖ � 3Ws �

(5ρδ + ψm)f (s̃). By Lemma 7.4(i) and (v), 5ρδ + ψm � 0.05 andf (ũ) � 0.9f (s̃). It follows that

‖u − v‖ < 0.06f (ũ). (A.5)

Thus, we can invoke Lemma 5.3 to bound the angleξ between the normals atu andv:

ξ � 2sin−1 ‖u − v‖
(1− α)f (ũ)

� 2sin−1 3width(H)

0.9(1− α)f (s̃)
< 2sin−1 4width(H)

f (s̃)
.

Since 4width(H)/f (s̃) � 4Ws/f (s̃) which is at most 0.4 by Lemma 8.1(i), we can apply (A.3) to c
clude thatξ < 9width(H)/f (s̃) � 9width(H). This proves (ii).

Finally, by (A.5), we can invoke Lemma 5.2(ii) to bound the acute angle betweenuv and the tangen
atu. This angle is at most sin−1 ‖u−v‖

2(1−α)f (ũ)
which is less thanξ/2. �

Proof of Lemma 9.1. We prove the lemma by assuming that Lemma 7.1, 7.2 and 7.3 hold dete
istically. The probability bound then follows from the probability bounds in these lemmas. Fori = p

or q, let Ri = radius(coarse(i)) and let ri = radius(initial (i)). The Lipschitz condition implies tha
f (p̃)/2� f (q̃) � 3f (p̃)/2. Leth andm be the constants in Lemma 7.1.

Suppose thatWp = √
rp. By Lemma 7.1, we have

Wp = √
rp �

√
λh

√
f (p̃)

3
=

√
hλm

√
f (p̃)

3m
.

Note thatWq � √
rq andrq �

√
14λmf (q̃) by Lemma 7.1. So we get

Wp �

√
h
√

f (p̃)

42mf (q̃)
· rq �

√
h

63m
√

f (p̃)
· W 2

q �
√

h

63m
· W 2

q

f (p̃)
.

Suppose thatWp = Rp/3. First, sinceRp � 2
√

ρδ by Lemma 7.3, we getρδ � 3
√

ρWp/2. Second,Wp =
Rp/3 � rp/3 which is at leastλh

√
f (p̃)/9 by Lemma 7.1. So we get

√
λmf (p̃) = √

mλhf (p̃)/h �
3
√

mWp/h · f (p̃)1/4 � 3
√

mWp/h · f (p̃). Finally, sinceWq � Rq/3, by Lemma 7.2, we get

Wq � 5ρδ +
√

14λmf (q̃) � 5ρδ +
√

7λmf (p̃) �
5
√

ρWp +
√

21mWp · f (p̃). �

3 3 3 3 2 h
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Proof of Lemma 9.3. We prove the lemma by assuming that Lemmas 8.4 and 9.1 hold determinist
The probability bound then follows from the probability bounds in these lemmas.

We translatex∗y∗ to aligny∗ with ỹ. Let z denote the pointx∗ + ỹ −y∗. Let k = 138δ +3. By triangle
inequality and Lemma 8.4,‖x̃ − z‖ � ‖x∗ − x̃‖ + ‖y∗ − ỹ‖ � kWx + kWy . Since‖x̃ − ỹ‖ � f (ỹ)/2,
by Lemma 9.1,Wx � µ1f (ỹ)

√
Wy . So‖x̃ − z‖ � kµ1f (ỹ)

√
Wy + kWy , which is smaller thanW 1/3

y �
‖x∗ −y∗‖ for sufficiently largen. Thus,x̃z is not the longest side of the trianglex̃ỹz. It follows that � x̃ỹz

is acute. Since‖x̃ − z‖ is an upper bound on the height ofz from x̃ỹ, we have

� x̃ỹz � sin−1 ‖x̃ − z‖
‖ỹ − z‖ = sin−1 ‖x̃ − z‖

‖x∗ − y∗‖ � sin−1
(
kµ1f (ỹ)W 1/6

y + kW 2/3
y

)
.

We conclude that� x̃ỹz is O(f (ỹ)W
1/6
y ) asn tends to∞. �

Proof of Lemma 9.4. We first show that‖x̃ − z̃‖ � min{f (x̃)/4, f (z̃)/4}. Assume that‖x̃ − z̃‖ �
f (x̃)/5. By the Lipschitz condition, we havef (z̃) � 4f (x̃)/5. Therefore,‖x̃ − z̃‖ � f (x̃)/5� f (z̃)/4.

Let D be the disk centered at̃x with radiusf (x̃)/4. Observe thatF(x̃, z̃) lies completely inside
D. Otherwise, the medial axis ofF intersects the interior ofD which implies thatf (x̃) � f (x̃)/4, a
contradiction. So‖x̃ − ỹ‖ � f (x̃)/4. The Lipschitz condition implies thatf (ỹ) � 3f (x̃)/4.

We claim that the angle� x̃ỹz̃ is obtuse. The line segmentsx̃ỹ and ỹz̃ are parallel to the tangents
some points onF(x̃, ỹ) andF(ỹ, z̃), respectively. Lemma 5.3 implies that� x̃ỹz̃ � π − 4sin−1 radius(D)

f (x̃)
=

π − 4sin−1(1/4) > π/2.
Since‖x̃ − ỹ‖ � f (x̃)/4� f (ỹ)/3, by Lemma 9.3, the angle betweenx∗y∗ andx̃ỹ is negligible with

probability at least 1− O(n−�(lnω n/fmax)) asn tends to∞. A symmetric argument shows that the an
betweeny∗z∗ andỹz̃ is negligible with probability at least 1− O(n−�(lnω n/fmax)) asn tends to∞. Thus,
� x∗y∗z∗ converges to� x̃ỹz̃ which is obtuse. �
Proof of Lemma 9.5. Note thatp∗ and q∗ are adjacent and they are selected by the algorithm.
k = 138δ + 3. Let Dp be the disk centered atp∗ with radius(1 + kµ1f (p̃))W

1/3
p . Let Dq be the disk

centered atq∗ with radius(1+ kµ1f (q̃))W
1/3
q . By Lemma 8.4,‖p̃ −p∗‖ � kWp which is less thanW 1/3

p

for sufficiently largen. Sop̃ lies insideDp. Similarly, q̃ lies insideDq .
If Dp intersectsDq , then‖p∗ − q∗‖ � (1 + µ1f (p̃))W

1/3
p + (1 + µ1f (q̃))W

1/3
q and we are done

Suppose thatDp does not intersectDq . We claim thatF(p̃, q̃) ∩ Dp is connected. Otherwise, the med
axis of F intersects the interior ofDp which implies thatf (p̃) � radius(Dp) which is less thanf (p̃)

for sufficiently largen, a contradiction. Similarly,F(p̃, q̃) ∩ Dq is connected. It follows thatF(p̃, q̃) −
(Dp ∪ Dq) is also connected. There are two cases.

Case1: F(p̃, q̃) − (Dp ∪ Dq) does not contaiñu for any sampleu. Let y be the endpoint ofF(p̃, q̃) −
(Dp ∪ Dq) that lies onDp. Let h be the constant in Lemma 7.1. Take aλh-partition such tha
y is the first cut-point. SinceF(p̃, q̃) − (Dp ∪ Dq) does not contaiñu for any sampleu, by
Lemma 6.6(i),F(p̃, q̃)− (Dp ∪Dq) does not containF(y, c1), wherec1 is the second cut-poin
with probability at least 1− O(n−�(lnω n)). It follows that∣∣F(p̃, q̃) − (D ∪ D )

∣∣ < λ2f (y). (A.6)
p q h
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Since‖p̃ − y‖ � 2 radius(Dp) = 2(1+ kµ1f (p̃))W
1/3
p , ‖p̃ − y‖ � f (p̃)/2 for sufficiently large

n. Thus,f (y) � 3f (p̃)/2, soλ2
hf (y) < 3λ2

hf (p̃)/2. SinceWp � radius(initial (p))/3 which is
at leastλh

√
f (p̃)/9 by Lemma 7.1, we haveλ2

hf (ỹ) � 243W 2
p/2. Substituting into (A.6), we ge∣∣F(p̃, q̃)

∣∣ � 243W 2
p/2+ 2 radius(Dp) + 2 radius(Dq).

By Lemma 8.4,‖p̃ − p∗‖ � kWp and‖q̃ − q∗‖ � kWq . We conclude that‖p∗ − q∗‖ � ‖p̃ −
p∗‖ + |F(p̃, q̃)| + ‖q̃ − q∗‖ � µ2f (p̃)W

1/3
p + µ2f (q̃)W

1/3
q for some constantµ2 > 0.

Case2: F(p̃, q̃) − (Dp ∪ Dq) containsũ for some sampleu. We show that this case is impossib
if Lemmas 9.1 and 9.4 hold deterministically. It follows that case 2 occurs with proba
at most O(n−�(lnω n/fmax)). We first claim that‖p∗ − u∗‖ > W

1/3
p . If not, Lemma 9.1 implies

thatWu � µ1f (p̃)
√

Wp for sufficiently largen. But then‖p∗ − ũ‖ � ‖p∗ − u∗‖ + ‖ũ − u∗‖ �
W

1/3
p + kWu � W

1/3
p + kµ1f (p̃)

√
Wp. This is a contradiction as̃u lies outsideDp. Similarly,

‖q∗ − u∗‖ > W
1/3
q . Sou∗ is not eliminated by the selection ofp∗ andq∗.

Next, take any selected center pointz∗ different fromp∗ andq∗ such thatq̃ ∈ F(ũ, z̃). We
show thatu∗ is not eliminated by the selection ofz∗. Assume to the contrary that this is false.
‖u∗ − z∗‖ � W

1/3
z . By Lemma 9.1,Wu � µ1f (z̃)

√
Wz for sufficiently largen. Let k′ = 1+ k +

kµ1. Then

‖ũ − z̃‖ � ‖u∗ − z∗‖ + ‖z∗ − z̃‖ + ‖u∗ − ũ‖
� W 1/3

z + kWz + kWu � W 1/3
z + kWz + kµ1f (z̃)

√
Wz � k′f (z̃)W 1/3

z .

For sufficiently largen, k′f (z̃)W
1/3
z � f (z̃)/5. By Lemma 9.4, the angle� u∗q∗z∗ is obtuse. It

follows that‖q∗ − z∗‖ < ‖u∗ − z∗‖ � W
1/3
z , contradicting Lemma 9.2.

Symmetrically, we can show thatu∗ is not eliminated by any selected center pointz∗ different
from p∗ andq∗ such thatp̃ ∈ F(z̃, ũ). In all, our algorithm should select another center poinu∗
such that̃u ∈ F(p̃, q̃) − (Dp ∪ Dq). This contradicts the assumption thatp∗ andq∗ are adjacen
in G. �
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