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Abstract

We present an algorithm to reconstruct a collection of disjoint smooth closed curves from noisy samples. Our
noise model assumes that the samples are obtained by first drawing points on the curves according to a locally
uniform distribution followed by a uniform perturbation in the normal directions. Our reconstruction is faithful
with probability approaching 1 as the sampling density increases.
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1. Introduction

The combinatorial curve reconstruction problem has been extensively studied recently by computa-
tional geometers. The input consists of sample points on a collection of unknown disjoint smooth closed
curves denoted b¥ . The problem calls for computing a set of polygonal curves that are protaitiijul.

That is, as the sampling density increases, the polygonal curves should convErge to

Several algorithms have been proposed in the geometric modeling and image processing literature thai
achieve good experimental results. Fang and Gossard [11] proposed to fit a deformable curve by mini-
mizing some spring energy function. Dedieu and Favardin [4] described a method to order and connect
sample points on an unknown curve. Taubin and Ronfard [20] proposed to construct a mesh covering the
sample points and then extract a polygonal curve that fits the sample points. Pottmann and Randrup [19]
used a pixel-based technique to thin an input point cloud to a curve. This image thinning technique can
handle noise, but it is difficult to come up with an appropriate pixel size. Goshtasby [15] obtained a
reconstruction by tracing points that locally maximize a certain inverse distance function involving the
noisy sample points. The traced points form the reconstruction. Lee [16] proposed a variant of the mov-
ing least-squares method by Levin [17,18]. Using a weighted regression, a new point is computed for
each noisy sample point such that the new points cluster around some curve. Then the new points are
decimated to produce a reconstruction. Although good experimental results are obtained with the above
methods, there is no guarantee on the faithfulness of the reconstruction.

Amenta, Bern and Eppstein [2] obtained the first provably faithful curve reconstruction algorithm.
They proposed aD crustalgorithm whose output is provably faithful if the input satisfiesakgampling
condition for anys < 0.252. For each point on F, thelocal feature sizef (x) at x is defined as the
distance fromx to the medial axis ofF. For O< ¢ < 1, a setS of samples is am-sampling of F if
for any pointx € F, there exists a samplec § such that|ls — x|| < ¢ - f(x) [2]. The algorithm by
Amenta, Bern, and Eppstein invokes the computation of a Voronoi diagram or Delaunay triangulation
twice. Gold and Snoeyink [14] presented a simpler algorithm that invokes the computation of Voronoi
diagram or Delaunay triangulation only once. Later, Dey and Kumar [6] proposigderustalgorithm
for this problem. Since we will use the NN-crust algorithm, we briefly describe it. For each sample
in S, connects to its nearest neighbor ifi. Afterwards, if a sample is incident on only one edge
connects to the closest sample among all samplesuch thatsu makes an obtuse angle with The
output curve is faithful for anyg < 1/3 [6]. Dey, Mehlhorn and Ramos [7] proposed@nservative-
crustalgorithm to handle curves with endpoints. Funke and Ramos [12] proposed an algorithm to handle
curves that may have sharp corners and endpoints. Dey and Wenger [8,9] also described algorithms anc
implementation for handling sharp corners. Giesen [13] discovered that the traveling salesperson tour
through the samples is a faithful reconstruction, but this approach cannot handle more than one curve.
Althaus and Mehlhorn [1] showed that such a traveling salesperson tour can be constructed in polynomial
time.

Noise often arises in collecting the input samples. For example, when the input samples are obtained
from 2D images by scanning. The noisy samples are typically classified into two types. The first type
are samples that cluster aroufdbut they generally do not lie oR. The second type are outliers that
lie relatively far fromF. No combinatorial algorithm known so far can compute a faithful reconstruction
in the presence of noise. In this paper, we propose a method that can handle noise of the first type for
a set of disjoint smooth closed curves. We assume that the input does not contain outliers. We propose
a probabilistic model of noisy samples and prove that our reconstruction is faithful with probability
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approaching 1 as the number of samples increases. For simplicity and notational convenience, we assum
throughout this paper that mixr- f(x) = 1 andF consists of a single smooth closed curve, although our
algorithm works wherF contains more than one curve.

We prove that our algorithm returns a reconstruction which is faithful with probability at least 1
O(n—(n“n/ frax=1)y “wheren is the number of input samples, is an arbitrary positive constant, and
fmax = Max.cr f(x). The novelty of our algorithm is a method to cluster samples so that each cluster
comes from a relatively flat portion df. This allows us to estimate new points that lie closétoNe
believe that this clustering approach will also be useful for recognizing non-smooth features. Our strategy
resembles Lee’s method [16] in spirit. But we use purely geometric operations to estimate new points
instead of optimizing a weighted regression.

The rest of the paper is organized as follows. Section 2 discusses our sampling and noise model.
Section 3 describes our algorithm. Section 4 states the main theorem of this paper and gives an overview
of the analysis leading to it. Section 5 introduces the basic notations and some basic geometric lemmas.
In Sections 6-10, we give the detailed proofs. We conclude in Section 11 and discuss some related
problems, in particular, the problem of reconstructing surfaces from noisy samples.

2. Sampling and noise model

We use probabilistic sampling and noise models. A sample is generated by drawing a poiit from
followed by randomly perturbing the point in the normal direction. In a sense, it models the location of
points on the curve by an input device, followed by perturbation due to noisd. kef,.(1/ f (x)) dx.

The drawing of points fronF follows the probability density function/{L - f(x)). That is, the proba-
bility of drawing a point from a curve segmenis equal tofn(l/f(x)) dx divided by L. This is known
as thdocally uniform distribution The distribution of each sample is independently identical.

A point p drawn fromF is perturbed in the normal direction. The perturbation is uniformly distributed
within an interval that hag as the midpoint, width & and aligns with the normal direction at Thus
3 models the noise amplitude. Note that the noise amplifuggnains fixed regardless of the number of
points drawn fromF. Although the noise perturbation is restrictive, it isolates the effect of noise from
the sampling distribution which allows an initial study of noise handling. It seems necessasyishat
less than 1. Otherwise, as the minimum local feature size is 1, the perturbed points from different parts
of F will mix up at some place and it seems very difficult to estimate the unknown cduamund that
neighborhood. For our analysis to work, we assumed&hkatl/(2502) wherep > 5 is a constant chosen
a priori by our algorithm. We emphasize that the valué tf unknown to our algorithm.

One may consider other sampling distributions. A more restrictive model isnifierm distribution
in which the probability of drawing a point from a curve segmeigt equal to lengtty) /length(F). This
model is attractive because it is natural to sample in a uniform fashion in the absence of any information
about the local feature sizes. Despite the apparent difference, the locally uniform distribution is strongly
related to the uniform distribution which can be seen as follows. Whisrshort, the Lipschitz property
of the local feature sizes implies that the probability of drawing a point froim the locally uniform
model is@(f,7 dx/(L - f(c))) for any pointc € n. This is equivalent t@® (length(n) /(L - f(c))). If we
treatL and lengthiF’) as intrinsic constants faF, the probabilities of sampling in the locally uniform
distribution and the uniform distribution differ only by a factor of local feature size. Thus our analysis
for the locally uniform distribution can be adapted easily for the uniform distribution case, basically by
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slashing off a factor of local feature size. In particular, the reconstruction is faithful with probability at
least 1— O(n=*(""7=Y) instead of 1 O(n =21/ JmacD)),

Our algorithm and analysis do not make use of any estimation of local feature sizes. This is demon-
strated by the fact that our analysis can be adapted to the uniform distribution case as briefly explained
above. Our algorithm constructs a small neighborhood around each noisy sample, and from this small
neighborhood, one can extract upper and lower bounds on the local feature size. However, the two bounds
differ by a factor that tends to infinity as the sampling density increases. So the small neighborhood does
not offer any reliable estimation of the local feature size. (We will elaborate on this point when we de-
scribe our algorithm.) In fact, we do not know how to obtain such estimation in the presence of noise,
without effectively solving the reconstruction problem first. After solving the reconstruction problem,
one may possibly estimate the local feature sizes using the Voronoi diagram of the reconstruction as an
approximation of the medial axis. This is beyond the scope of this paper though.

3. Algorithm

Our algorithm consists of three main step®IR®T ESTIMATION, PRUNING and QUTPUT. In the
POINT ESTIMATION step, the algorithm filters out the noise and computes new points that are provably
much less noisy than the input samples. Since the sampling density is high, the distances of these new
points fromF can still be much larger than the distances among them. Thus a direct reconstruction using
all of the new points would produce a highly jagged polygonal curve. As a remedy, inRIbRIRG
step, the algorithm decimates the points so that the interpoint distances in the pruned subset is large
relative to their distances frofi. See Fig. 1. Finally, in the @TPUT step, we can run any provably good
combinatorial curve reconstruction algorithm. We choose to run NN-crust [6]. The following pseudocode
gives a high level description of the above three steps and more details of the pruning step. For each point
x € R? that does not lie on the medial axis Bf we usex to denote the point off closest tax. That is,
X is the projection ofc onto F. (We are not interested in points on the medial axis.)

POINT ESTIMATION: For each sample, we construct a thin rectanglkefineds). The long axis of
refineds) passes through and its orientation approximates the normalsafThe center of
refinedys) is the new poink* desired. The distandg* — §|| approaches zero as— co.

PRUNING: We sort the points* in decreasing order of widtrefineds)). Then we scan the sorted list
and select a subset of center points: when we select the current centes*pouat delete all
center points:* from the sorted list such this* — u*|| < width(refineds))/2.

OuTPUT: We run the NN-crust algorithm on the selected center points and return the output curve.

Fig. 1. The left figure shows the noisy samples. The middle figure shows the new points computed. The right figure shows the
remaining points after pruning.
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The main objective of BINT ESTIMATION is to align the long axis afefineds) with the normal af.
This is instrumental to proving th@it* — §|| approaches zero as— oco. The construction ofefineds)
is done in three steps. We give a highlight first before providing the details.

First, we compute a small diskitial (s) centered at. We prove upper and lower bounds on the radius
of initial (s), but their ratio is® (n*/4/In***//4 ) which tends to infinity as — occ. Soinitial (s) does not
provide a reliable estimate gf(s). Second, we grow the disk neighborhood arosinghtil the samples
inside the disk fit inside a strip whose width is small relative to the radius of the disk. The final disk is
the coarse neighborhoodf s and it is denoted bygoarsds). The radius otoarsés) is in the order of
3 + radiuginitial (s)). The orientation of the strip approximates the tangeft &inceF can bend quite
a lot within coarsés), the approximation error may be in the order of $i#. Thus an improved estimate
is needed. Third, we shrintoarsds) to a smaller disk. We take a slab perpendiculasttgp(s) bounded
by two parallel tangent lines of the shrunken disk. We rotate the slab asdtonmhinimize the spread of
the samples inside along the direction of the slab. Because of the minimization of the spread of samples
inside, we can show that the orientation of the final slab approximates the norimaétt

We provide the details of the three steps mIRT ESTIMATION below. Letw > 0 andp > 5 be two
predefined constants.

INITIAL DISK : We compute a dislD centered at that contains I n samples. Then we satitial (s)
to be the disk centered atwith radius./radiug D). For sufficiently large:, the radius ofD is
less than 1, which implies thatitial (s) containsD. Fig. 2 shows an illustration.

COARSE NEIGHBORHOOD We initialize coarsés) = initial (s) and compute an infinite strigtrip(s)
of minimum width that contains all samples insidearsds). We grow coarsés) and main-
tain strip(s) until radiugcoarses)) /width(strip(s)) > p. The final diskcoarsds) is thecoarse
neighborhoodf s. Fig. 2 illustrates the growth process.

REFINED NEIGHBORHOOD Let N, be the upward direction perpendicularswip(s). The candidate
neighborhoodandidatés, 6) is the slab that containsin the middle and makes a signed acute
angled with N,. The width ofcandidatés, 0) is equal to the minimum of/radiuginitial (s))
and radiugcoarsés))/3. The angle is positive (resp. negative) if it is on right (resp. left) of
N;. Fig. 3 shows the initial candidate neighborhood that is perpendiculsirifiis). We en-
close the samples icandidatés, 6) N coarsés) by two parallel lines that are orthogonal to the
direction ofcandidatés, 6). These two lines form a rectanglectangléds, 6) with the bound-
ary lines ofcandidatés, 6). The width ofrectanglés, 0) is the width ofcandidatés, 6). The

Fig. 2. On the left, the white dot is the samplethe inner disk isD, and the outer disk imitial (s). On the right, we grow
initial (s) until strip(s) has a relatively large aspect ratio. The final diskasrsés).
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Fig. 3. On the left, the initial candidate neighborhood is the one perpendicdaifie). On the right, as we rotate the candidate
neighborhood, we maintain the smallest bounding rectangle of all samples inside.

height ofrectanglds, 6) is its length along the direction cindidatés, 6). We varyd within the
range[— /10, 7 /10] to find an orientation that minimizes the heightre€tanglés, 6). Fig. 3
illustrates the rotation and the bounding rectangle.d*dbe the minimizing angle. Thefined
neighborhoodf s is rectanglds, 6*) and is denoted byefineds). We return the center point
of refineds).

A few remarks are in order. Recall that mip f(x) is assumed to be 1. For sufficiently largéi.e.,
when the sampling is dense enough), the radiusitiél (s) is less than 1. So in theERINED NEIGHBOR-
HOOD step,+/radiuginitial (s)) > radiuginitial (s)). Clearly,coarsés) containsinitial (s). So the width
of candidatés, ) andrefinedys) is at least radiugnitial (s)) /3 and at most/radiuginitial (s)) < 1.

4. Overview of analysis
Our goal is to prove the following result:

Main Theorem. Assume thas < 1/(25p02) and p > 5. Letn be the number of noisy samples from a
smooth closed curve. For sufficiently largeour algorithm computes a polygonal closed curve that has
the following properties with probability at leagt— O(n ="/ /macD),

e For each output vertex®, [|s* — 5[ = O((In*** n/n)¥8 £ (5)1/4).
o Foreachoutput edge's*, the angle betweerts* and the tangent atis O((In** n/n) Y48 f (5)25/24).
e The output curve is homeomorphic to the smooth closed curve.

We first give an overview of the proof strategies here before diving into details later. The hardest part
is to argue that the point* that we estimate for the samplandeed lies very closely to the curve. To
illustrate the intuition, we assume that the curve is a flat horizontal segment locallpae Fig. 4(a).

So the noisy samples in the local neighborhood lie within a edwidth 25. Thus the finatoarsés)
must have radiu® (pd + radiuginitial (s))) in order to meet the stopping criterion of growiogarses).
Next, we would like to argue that the slope sifip(s) approximates the slope of the tangenf awe
prove this by contradiction and assume thi@ip(s) is tilted a lot. So a significant area 8flies outside
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(b) (©

Fig. 4. The left figure showsoarsds), the noise band, and F. In the middle figure, the bold strip &rip(s) and the shaded
area is the significant area Bfoutsidestrip(s). The shaded area should be non-empty with high probability. In the right figure,
the shaded rectangle is the candidate rectangle.

strip(s) as shown in Fig. 4(b). Our goal is to show that this area contains a noisy sample with high
probability. Therefore, with high probabilitgtrip(s) cannot be much tilted from the horizontal.

Directly discussing the emptiness of an arbitrary area (whether it contains a noisy sample or not) is
quite hard given the continuous distributions. We get around this by decomposing the spaceraround
into small cells. Since the cells have more regular shape, we can show that each cell is non-empty with
high probability and we can also bound the diameters of the cells. The cell diameter approaches zero as
the sampling density increases. The bound on the cell diameter enables us to show that theBarea of
outsidestrip(s) in Fig. 4(b) contains a cell. So the area contains a noisy sample with high probability.

The next step is to construct the refined neighborhood €6 as to obtain an improved estimate of
the normal af. This is done by rotating a candidate rectangle to minimize its height. See Fig. 4(c). The
width of the candidate rectangle is set to be the minimuryi@diuginitial (s)) and radiugcoarses))/3.

Clearly, we want the width to be small in order to generate a large variation in the height even when we
have a small angular deviation from the normakatn fact, we want to show that radi@sitial (s))
approaches zero as the sampling density increases. Recallitizts) is generated by identifying the

In**® n nearest samples &0 We are to show that the number of samples inside a cell is at |da&tn

with high probability. Thus radiusitial (s)) is no more than the cell diameter. In Fig. 4(c), when we
rotate the candidate rectangle, its upper and lower sides may invade the interior of th8.b&nid

is because there may not be any noisy sample on the band boundary. Still, we want to keep the upper
and lower sides of the candidate rectangle near the band boundary, otherwise we would not have a big
increase in height despite the angular deviation from the normalfatrtunately, as the cells are non-
empty with high probability, the gaps between the upper and lower sides and the band boundary must be
too narrow for a single cell to fit in.

We have not discussed one important phenomenon so far. Simgeainknown, it may be arbi-
trarily small. In this case, radigsoarses)) is only lower bounded by radidgsitial (s)) as we grow
coarses) from initial (s). Thus we need to establish a lower bound on rgdhitsal (s)), and hence
radiugcoarséds)). We construct another decomposition of the space aréuimdo slabs. Then by upper
bounding the number of samples in each slab, we can lower bound (iadiak(s)) by the slab “width”.

The decompositions of the space arodhihto cells and slabs are introduced in Section 6. The detailed
proofs for the radii bound oinitial (s) and coarsés), and the angular error betwestrip(s) and the
tangent af are given in Section 7. In Section 8, we give the detailed proof for the angular error between
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the long axis ofefineds) and the normal &, and then we bounflls* — 5]|. In Section 9, we obtain the
homeomorphism result by extending the NN-crust analysis. In Section 10, we put everything together to
prove the Main Theorem.

5. Notationsand preliminaries

We call the bounded region enclosed Byheinsideof F and the unbounded region thatsideof F.
ForO<a <6, F; (resp.F,) is the curve that passes through the pointatside (resp. insidely such
that |lg — gl = «. We useF, to meanF," or F; when it is unimportant to distinguish between inside
and outsideF can be visualized as the boundary of the union of the medial disks enclogedibye
increase the radii of all such medial disksdyF' is the boundary of the union of the expanded disks.
F, has a similar interpretation after decreasing the radii of all such medial diskslbfollows that ¥
and F, have the same medial axis.

Thenormal segmerdt a pointp € F is the line segment consisting of the poigten the normal of
at p such that| p — ¢|| < 8. Given two pointsc andy on F, we useF (x, y) to denote the curved segment
traversed fronx to y in clockwise direction. We usg (x, y)| to denote the length of (x, y).

The following are some technical lemmas on some geometric propertiEs dtheir proofs can be
found in the appendix. Lemma 5.1 lower bounds the radius of the tangent disk at any pdipt on
Lemma 5.2 shows that a small neighborhood of a ppioh F,, is flat enough to fit inside a double cone
at p with small aperture. Lemma 5.3 proves the small normal variation between two nearby pakjts on

Lemma 5.1. Any pointp on F, has two tangent disks with radfi(p) — « whose interior do not inter-
SectF,.

For each poinp on F,, take the double cone of poinjssuch thaipg makes an angléer —6)/2 or less
with the support line of the normal at We denote the complement of this double conetgonép, 9).
Note thatcoconép, 0) is a double cone with apex and angle).

Lemmab.2. Let p be a point onF,. Let D be a disk centered gt with radius less tha2(1 — «) f(p).

(i) For any pointg € F, N D, the distance of from the tangent ap is at most, 12=4I”

_ -0 /(D)
(i) F,N D Ccocondp,2sin? %).

Lemma 5.3. Let p be a point onF,. Let D be a disk centered gt with radius at mostl — «) f (p)/4.
For any pointu € F, N D, the acute angle between the normalgandu is at most

lp —ull si? radiug D)
A—a)f(p) 1—a)f(p)

2sint

6. Decompositions

We will use two types of decompositiong;partition and 8-grid. Let 0< 8 < 1 be a parameter. We
identify a set ottut-pointson F as follows. We pick an arbitrary poiag on F as the first cut-point. Then
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Bf(cy)

Fig. 5. B-partition.

Bfics)

Fig. 6. 8-grid.

fori > 1, we find the point; such that; lies in the interior ofF (c;_1, co), | F (ci—1, ¢;)| = B2 f (ci—1) and
|F(ci,co)| = B2f(c;). If ¢; exists, itis the next cut-point and we continue. Otherwise, we have computed
all the cut-points and we stop. Thepartition is the arrangement &', F;, and the normal segments
at the cut-points. Fig. 5 shows an example. We call each face @f-ffaatition ag-slab. The 8-partition
consists of a row of slabs stabbed By

The cut-points for g-grid are picked differently. We pick an arbitrary poifgton F as the first cut-
point. Then fori > 1, we find the point; such that; lies in the interior ofF (¢; 1, co), |F(¢ci_1,¢i)| =
Bf (ci—1) and|F(c;,co)| = Bf (¢c;). If ¢; exists, it is the next cut-point and we continue. Otherwise, we
have computed all the cut-points and we stop. Bkagrid is the arrangement of the following:

e The normal segments at the cut-points.
e F,Fy andF; .
e F andF, wherex =ifé andi is an integer between 1 and/S| — 1.

The B-grid has a grid structure. Fig. 6 shows an example. We call each face pfdghid as-cell. There
are Q'1/8) rows of cells “parallel to"F'.

Given ag-partition, we claim that for every consecutive pairs of cut-points andc;, 82 f (ci_1) <
|F(ci—1, ¢ci)| <3B%f(ci_1). For almost all consecutive pairs of cut-poirts; andc;, |F(ci_1,ci)| =
B2f(ci—1) by construction. The last pai;, and ¢ constructed may be an exception. We know
that | F(cx, co)| = B%f (ck). When we try to placey, 1, we find that| F(ci 1, co)l < B2f(cky1). SO
|F(cks co)l < B?f(ci) + B?f(c+a). By the Lipschitz condition,f (cev1) < f(er) + llex — cxpall <
fck) + B2 f (c). ThUS|F (ci. co)| < (287 + B*) f (cx) < 3B2f (cr)-
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Fig. 7. lllustration for Lemma 6.1.

Similarly, given ag-grid, we can show that for every consecutive pairs of cut-paintg andc;,
Bf(ci—1) <|F(ci—1,¢)| <3Bf(ci—1).

In Section 6.1, we bound the diameter oBaell. In Section 6.2, we lower bound the width ofa
slab. In Section 6.3, we analyze the probabilities of sgrstabs angB-cells containing certain numbers
of samples.

6.1. Diameter of g3-cell
We need a technical lemma before proving an upper bound on the diametgraafiia

Lemma 6.1. Assume thap < 1/12. Let p and g be two points orF, such that|F(p, ¢)| < 38f(p).
Then|lp —qll <P —qll + 7Bs.

Proof. Refer to Fig. 7. Let be the pointy — g + p. Without loss of generality, assume thaipr <
/prp. Lemma 5.3 implies that p jr < 2sin*38. Therefore,/prp > /2 — sin 1 38. By sine law,

Sisin/ v in2sin-13 o o .
lp—r| =12 s’i’r‘]'f;’rp”’” < ‘S;')”s((sf‘r:flgﬁ’f). Note that sii2 sin"*38) < 2sin(sin"*38) = 68 and sinceB <

1/12, cogsin 13p) > cogsin~1(1/4)) > 0.9. So||p — r| < 688/(0.9) < 7B5. By triangle inequality, we
getlp—qli<lig—rii+lp—rii=lp—ql+lp—rli<lp—qll+785. O

Lemma6.2. Assume thag < 1/12and$ < 1. LetC be anyg-cell that lies between the normal segments
at the cut-points; andc;, 1. Then the diameter af is at mostLl48f (c;).

Proof. Lets andt be two points inC. Let p be the projection of towardss onto a side of”. Similarly,
let ¢ be the projection of towards? onto the same side a@f. Note thatp = § andg = . The triangle
inequality and Lemma 6.1 imply that

Is =t <llp—qll+llp=sl+lg—tll<Ip—qll+ 788+ 1p—sl+lg—1l.

Since||p — gl =I5 — 7]l <3Bf(c;) and both||p — s|| and|lg — ¢|| are at most B8, the diameter o€ is
atmost Bf(¢;) +1186 < 148f(¢c;). O

6.2. Slab width

The next lemma lower bounds the width of slab ig-partition.
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Lemma 6.3. Assume thas < 1/8 and 8 < 1/6. Let¢; and¢; 1 be two consecutive cut-points offa
partition. For any point on the normal segmentcat; (resp.c;), its distance from the support line of the
normal segment at; (resp.c; 1) is at least| F(c;, ¢;11)|/6.

Proof. Assume that the normal at is vertical. Take any two pointp, ¢ € F, such thatp = ¢; and
g = ci+1. We first bound the distance frogmto the support line of the normal segmentatThe same
approach also works for the distance frento the support line of the normal segmentat;.

Letr be the orthogonal projection gfonto the tangent té,, at p. Observe that the distancegpfrom
the support line of the normal segmentais || p —r||. We are to prove thatp —r|| > | F (¢;, ¢ci+1)|/6. For
any pointx € F,(p, g), we usé, to denote the angle between the normalsamdc;. By Lemma 5.3, we

haved, < 2sin? ”j;( ’;“ Sincex € F(c;, cit1), We havellc; — || < |F(c;, )| < |F(c;, ciy1)]. Thust, <

2sint [Heaall By our assumption op, Htl < 382 < 1/12. It follows that sin® Heaanl <
2aaall Therefore,
< AlF (ci, citd)| 1)
T Sl
< 1282 (2)

This implies thatF, (p, ¢) is monotone along the tangent K at p; otherwise, there is a point €
F,(p, q) such tha®, = w/2 > 1282, a contradiction. It follows thaF (c;, c;+1) is also monotone along
the tangent taF at ¢;. Refer to Fig. 8. Assume that lies belowc;, andg lies to the right ofp. Let
be the orthogonal projection of 1 onto the tangent t& atc;. The monotonicity ofF (c;, ¢; 1) implies
that

”Ci - }"/H = / COS@ dX |F(Clv Ct+l)| COSlZIBZ) > 0. 8|F(cz,
F(ci.ciy1)

as co$1282) > cog0.5) > 0.8. Letd be the horizontal distance betweerandr’. Observe thatl =
lciv1 — qll - Sin6, < 86,, which is at most 8| F (c;, ¢;+1)| by (1). We conclude that

Fig. 8. lllustration for Lemma 6.3.
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5<1/8 | F (¢, ci41)]
2 .
This lower bounds the distance fraprto the support line of the normal segmentat
Letd, be the distance fromp to the support line of the normal segmentat;. We can use the same
approach to lower bound,. The only difference is that for any pointe F;(p, g), the anglep, between
the normals at andc; ., satisfies

lp =7l =lle; = r'll —d > (0.8 = 48)| F(ci, ciya) | >

1 |F(Cl9 cl+1)|

f(cl+1)
Note that the denominator is(c; 1) instead off (¢;) in (1). Nevertheless, by the Lipschitz condition,
fleiv)) = f(e) = llei = cipall = f(ei) = [F(ci, cirn)| = (L= 3B7) f(c;), which is at least 1(c;)/12 as
382 < 1/12. Therefore,
1 12/ F (ci, ciy1)] <2. 24|F (ci, ci+1)l - S|F(ci, cit1)l < 1582,

117 (ci) 117 (ci) f(e)

Observe thap, < 1582 < /2. SOF,(p, q) andF(c;, c;+1) are monotone along the tangentsipat g
andF atc, 1, respectively. Also, cag, > cog1582) > cog0.5) > 0.8. Hence, by imitating the previous
derivation of the lower bound dfp — r||, we obtain

¢, <2sim

¢, <2sin

§<1/8 | F(ci, civ1)]

> (0.8—50)|F(ci, ciyn)| > 5

6.3. Number of samples in cells and slabs

We first need a lemma that estimates the probability of a sample point lying inside ¢e«alls and
B-slabs.

Lemma 6.4. Let 1, = /k2In** n/n for some positive constaht Letr > 1 be a parameter. Lef be a
(Ax/r)-slab or (A /r)-cell. Lets be a sample. There exist constartsand «, such that ifn is so large
that A, < 1/6, thenkaA2/r? < Pr(s € C) < k1h2/r2.

Proof. Recall thatL = [, fl dx. Assume thatC lies between the normal segments at the cut-
points ¢; and ¢; 1. We usen to denoteF(c;, c;11) as a short hand. By our assumption by for
any pointx € n, if C is a A¢-cell, then|x — ¢;|| < 3hf(c)/r < f(c;)/2; if C is a At-slab, then
lx — ¢l < 3A,ff(ci)/r2 < f(¢;)/12. The Lipschitz condition implies that(c;)/2 < f(x) < 3f(c;)/2.

2
If C is ax-slab, then Rs € C) = Pr(3 lies ony), which is £ - [ L dx e [ 25, 251, 1f C is el
then P(5 liesonp) = 7 - [, 75 dx € [2£, %4]. Since P¢s € C | § lies ony) € [42, 260] = [, 2],

3Lr’ Lr 26r° 2r 2r’ r
612
PrseC) e [3Lr2’ er]

O
The following Chernoff bound [10] will be needed.

Lemma 6.5. Let the random variableXq, X», ..., X,, be independent, witQ < X; < 1 for eachi. Let
S, =Y " ,X:,and letE(S,) be the expected value §f. Then for any > 0, Pr(S, < (1—0)E(S,)) <

exp(—ZES)) andPr(S, > (1+ o) E(S,)) < exp(— za(lif/"s))
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We are ready to analyze the probabilities of sgfrglabs andg3-cells containing certain numbers of
samples.

Lemma 6.6. Let A, = +/k2In*** n/n for some positive constait Letr > 1 be a parameter. Le€ be
a (A¢/r)-slab or (A, /r)-cell. Letk; andk, be the constants in Lemn@ad. Whenever is so large that
A < 1/6, the following hold.

(i) C is non-empty with probability at leagt— n—2n"n/r)
(i) Assume that = 1. For any constank > «1k2, the number of samples @ is at mostc In** n with
probability at leastl — n =",
(iii) Assume that = 1. For any constank < k»k?, the number of samples @is at leastc In*™ n with
probability at leastl — np=2m

Proof. LetX; (i =1,...,n) be arandom binomial variable taking value 1 if the sample pgiistinside
C, and value 0 otherwise. L&, =>""_, X;. ThenE(S,) =Y ", E(X;) =n - Pr(s; € C). This implies
that

KnA? gkl Intten

onA? ik Intte
2 2 = :

E(S,) < - >

’ E(Sn) 2

By Lemma 6.5,

1+w
PI(S, < 0) = Pr(S, < (1 - DE(S)) < exp(— E(ZS")) < eXp<_sz('” "))

72

Consider (ii). Leto = kaz —1> 0. Sincer =1, we have

kI n =knA2(L+0) = (L+0)E(S,).
By Lemma 6.5,

o2E(S,)

PICS, > K IN™n) <PI(S, > (14 0)E(S,)) < eX'°<_2+ 20/3

) = exp(—Q(In**n)).
Consider (iii). Leto =1 — 1(2”7 > 0. Sincer =1, we have

kIn*en = Kzn)\.]%(l —0)<(A—-0)E(S,).
By Lemma 6.5,

=exp(—Q(n**’n)). O

2
PIS, <k In**n) <PI(S, < (1= 0)E(S)) < exp<‘%(sn)>

7. Coarse neighborhood

In this section, we bound the radii ofitial (s) andcoarsés) for each sample. Then we show that
strip(s) provides a rough estimate of the slope of the tangetit & 5. Recall that, = /k2In** n/n.
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7.1. Radius of initials)

Lemma7.1. Leth be a constant less thay1/(3k;) and letm be a constant greater thay2/«,, where
k1 and k, are the constants in Lemn@&4. Lety, = A,/3 and ¢, = +/14,,. Lets be a sample. If
§<1/8, A, <1/12andx,, < 1/12 then

Y/ f (5) < radiuginitial (s)) < Yy £ (5),

with probability at leastl — O(n=""m).

Proof. Let D be the disk centered athat contains Ih™ samples. We first prove the upper bound. Take
a A,-grid such that lies on the normal segment at the cut-paigntLet C be thea,,-cell between the
normal segments at andc; that containg. By Lemma 6.6(iii),C contains at least 211 n samples
with probability at least - »~%!“"_ SinceD contains IA* n samples, radiu®) is less than the diam-
eter ofC with probability at least - n~%1“" By Lemma 6.2, radiu®) < 144, f (co) = 144, £ (5). It
follows that radiuginitial (s)) = /radiugD) < /141, f (5).

Next, we prove the lower bound. Takeig-partition such that lies on the normal segment at the
cut-pointcq. Consider the cut-points; for —1 < j < 1. (We user_; to denote the last cut-point picked.)
We have|lc_1 — ¢l < |F(c_1,co)| < 3k,22f(c_1) < 0.03f(c_1) asA, < 1/12. The Lipschitz condition
implies that

flc-1) = f(co)/1.03> 0.8f(co). €))

Letd_; andd; be the distances fromto the support lines of the normal segments_atandc;, respec-
tively. By Lemma 6.3,

|Fle,col | Aife) @ A f (o)
6 ~ 6 8
4> [Fleoenl A f (co)

By Lemma 6.6(ii), ther,-slabs betweer_; andco and betweer, andc; contain at most < n/3
points with probability at least + O(n~2“"). Hence, forD to contain I n points, radiuéD) >
max{d_1,d1} > A%f(co)/G. Note that f(5) = f(co) as § = ¢o by construction. It follows that

radiuginitial (s)) = +/radiugD) > A,/ f(5)/3. O

d_1>

7.2. Radius of coarse)
In this section, we prove an upper bound and a lower bound on the radiosucs).

Lemma 7.2. Assumep > 4 and § < 1/(250%). Let m be the constant ang),, be the parameter in
Lemma7.Ll Lets be a sample. Ik, < 1/(50402), then

radiugcoarsés)) <508 + Y/ f(5)
with probability at leastl — O(n=""m).
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Proof. Lets; ands; be points onFj andF; such that; = s, =5. Let D be the disk centered atwith
radius é + ¥,/ f(5). By Lemma 7.1,/ f(5) > radiuginitial (s)), so D containsinitial (s) with
probability at least - O(nQ('”‘”")). We are to show thatoarsés) cannot grow beyond. First, since
Am < 1/(5040%),

Observe that botly, ands; lie inside D. Since %8 < 1/(50) < 1/20 andyr,, < 1/24, radiusD) < (1 —
8) £ (5). Thus, the distance between any two point®in F;' is less than 2L — §) £ (5). By Lemma 5.2(i),
the maximum distance betweénn F;* and the tangent t&;" ats; is at most

(508 + Y/ f(3))? < (508 f(5) + Ymy/ f(5))? asf(G) > 1
21-8) () 2(1-8)f(5) -

Thus, this distance is upper bounded®ys + ,,)?/(2(1 — §)) which is less than 81(5p8 + ¥,,)? as
8 < 1/(25p?). The same is also true fd» N F; . It follows that the samples insid@ lie inside a strip of
width at most 3 + 1.1(508 + ¥,,)? = 28 + 1.1(50)%8% + 2.2(50) 8 + 1.1y:2. Sinces < 1/(2502) and
Ym < 1/(6p), we have 11(5p)%82 < 1.18, 2.2(50)¥,8 < 1.848 and 11y2 < v,/ p. We conclude that
the strip width is no more thars2+- 1.15 + 1.845 + v, /p < 56 + ¥,/ p < radiug D)/ p. This shows that
coarsds) cannot grow beyond. O

Next, we bound radiusoarsés)) from below. We usegfnax to denote max.r f(x).

Lemma 7.3. Assume that < 1/8 and p > 4. Leth be the constant in Lemm@al Lets be a sample. If
An < 1/32, then

radiugcoarses)) > max{2,/ps, radiuginitial (s)) }
with probability at leastl — O(n~ 2”7/ fmax))

Proof. Sincecoarsés) is grown frominitial (s), radiugcoarsés)) > radiuginitial (s)). We are to prove
that radiugcoarsés)) > 2,/p6. Let D be the disk that has centeand radius radiugoarses))/./p. Let
X be the disk centered &with radiuss. Note thats € X andX is tangent taF;" and F; . Sinces < 1/8
andf(3) > 1, f(5) — 8 > § and so Lemma 5.1 implies thatlies inside the finite region bounded By
andFy .

Suppose that radigsoarsés)) < 2,/pé. Then radiusD) < 25. If D containsX, X is a disk inside
D N X with radius at least radiu®)/2. If D does not contairk, then sinces € X, D N X contains
a disk with radius radiu®)/2. The width ofstrip(s) is less than or equal to radiic®arses))/p =
radiugD)/,/p. Thus,(D N X) — strip(s) contains a disk’ such that

. 1 1 . radiugD)
Ne;-77) D)> — .
radiugy) <4 4ﬁ> radiug D) 3
Note thatY is empty and’ lies inside the finite region bounded By and ;. Take a poinp € Y. Since
peY CDandradiusD) <25, |[p—5SI<llp—pl+lls—=5+1lp—sll <45 <1/2ass <1/8. The
Lipschitz condition implies thaf (p) < 3f(s)/2. Observe that radig®) = radiugcoarseés))/./p >
radiuginitial (s))/,/p. Thus, Lemma 7.1 implies that

. . A/ F(S) A/ f(P)
radiugY) > radiugD)/8 > 24/p > 300
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with probability at least - O(n=2""m). Let B = 1,/(420y/pfmax). Then radiusY) > 148/ (p).
By Lemma 6.2,Y contains ag-cell. By Lemma 6.6(i), thisg-cell is empty with probability at

most n~2(N“n/fma0 - This implies that radiugoarses)) < 2,/p8 occurs with probability at most
O(n—Q(mw”/fmax)). 0

7.3. Rough tangent estimate: stip

In this section, we prove that the slopesifip(s) is a rough estimate of the slope of the tangerit at
We need the following technical lemma about various propertiepafsés) and F, insidecoarsés).
Its proof can be found in Appendix A.

Lemma 7.4. Assumep > 5 and § < 1/(25p2). Let m be the constant ang),, be the parameter in
Lemma7.1 Lets be a sample. I2,/pé < radiugcoarsés)) < 508 + ¥,/ f(5) andy,, < 1/100, then
for any F, and for any pointx € F, N coarsés), the following hold

(i) 508 + ¥ < 0.05, 5;5;_‘5;;1 < 0.03and #5n2 < 0,03,
(i) F, Ncoarsds) consists of one connected component,

(i) the angle between the normalssaand x is at most2 sin™ 222¥ut2 5 5in-1(0.06),

1-5)
(iv) x € cocongsy, 2sin* %jf‘s) C coconésy, 2 sin1(0.03)) wheres; is the point onF, such that

s1=17,

(V) 0.9f(5) < f(¥) <L1f(5),

(vi) if x lies on the boundary of coarég, the distance betweenand the orthogonal projection of
onto the tangent at is at least0.8 - radiugcoarsés)), and

(vi) foranyy e F, Ncoarsés), the acute angle betweety and the tangent at is at mostin 1(6p5 +
1.2¢,,)) < sin~1(0.06).

We highlight the key ideas before giving the proof of Lemma 7.5 be the region betweef," and
Fy insidecoarsés). If strip(s) makes a large angle with the tangeng atrip(s) would cut through3 in
the middle. In this case, I N strip(s) is narrow, there would be a lot of areasBroutsidestrip(s). But
these areas must be empty. Such areas occur with low probability. Otherwse stirip(s) is wide, we
show thatstrip(s) can be rotated to reduce its width further, a contradiction. We give the detailed proof
below.

Lemma 7.5. Assume thap > 5 and$ < 1/(25p2). Letm be the constant ang,, be the parameter in
Lemmar.l Lets be a sample. For sufficiently large the acute angle between the tangeni and the

direction of strifis) is at mosBsin ' 22 et 4 sin~!(6p8 + 1.2y,,) < 4sin(0.06) with probability

at leastl — O(n 2 (n*n/fmaxy

Proof. Let ¢, and{, be the lower and upper bounding linesstfip(s). Without loss of generality, we
assume that the normal &is vertical, the slope aftrip(s) is non-negativeF; N coarsés) lies below
F;" N coarsds), andy,, < 1/100 for sufficiently larger. Let h andm be the constants angl, and
¥, be the parameters in Lemma 7.1. We first assume thafaggé, v,/ f (5)} < radiugcoarsés)) <
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coarse (s) Iy

3

(b)

Fig. 9. (a) lllustrates thak (p, q) lies below¢y; (b) illustrates our choice of a cell that lies belowe; .

508 + ¥/ f(5) and take the probability of its occurrence into consideration later. As a short hand, we
508+ +25

usen; to denotew andn; to denote 66 + 1.2v,,.

Observe that botld; and ¢, must intersect the space that lies betwéghand F; insidecoarsés).
Otherwise, we can squeegtip(s) and reduce its width, a contradiction.Zif intersectsF, N coarses)
twice for somex, thent is parallel to the tangent at some point BnN coarsds). By Lemma 7.4(iii),
the direction ofstrip(s) makes an angle at most 2sfy; with the horizontal and we are done. Similarly,
we are done i, intersectsF, N coarsds) twice for somex. The remaining case is that bothand ¢,
intersectF,, N coarsds) for any o at most once. Suppose that the acute angle between the direction of
strip(s) and the horizontal is more than 35fm; + sin ! 7,. We show that this occurs with probability
O(n =" n/fmax)

Let g be the right intersection point betweéll and the boundary afoarsés). If £ intersectsF; N
coarsds), let p denote the intersection point; otherwise, jetdenote the leftmost intersection point
betweenF; and the boundary afoarses). Refer to Fig. 9(a). We claim thaf; (p, ¢) lies below/;.

If £, does not intersecF; N coarsds), then this is clearly true. Otherwise, by Lemma 7.4(iii), the
magnitude of the slope of the tangentais at most 2sin!7;. Since the slope of; is more than
3sintn +sin iy, F; crossed; at p from above to below. S&; (p, q) lies below¢;.

We show thatp — ¢|| < ¥,/ f(5)/2 with probability at least - n=2n“»//mad Notice thatpg is
parallel to the tangent té; at some point onFy (p, q). By Lemma 7.4(iii), the tangent t&; (p, q)
turns by an angle at most 4 s5i(0.06) < /2 from p to ¢. This implies thatF; (p, ¢) is monotone with
respect to the direction perpendicularitg. We divide pg into three equal segments. Leindv be the
intersection points betwedh) (p, ¢) and the perpendiculars pf; at the dividing points. Assume that

follows u along F; (p, q). Refer to Fig. 9(b). Suppose thigt — gl > ¥/ f(5)/2. Then

Py, )| > Ip ;qll > wh\/ef(S)' 4)

Sincef (u) < 1.1f(5) by Lemma 7.4(V)| F; (u, v)| > ¥,/ f ()/7. Consider &iy/+/ fmax)-grid where
k = h/294 andu is a cut-point. (Note that, = v,/98.) LetC be the(A;/+/ fmax)-cell that touches
Fy (u, v) and the normal segment throughBy Lemma 6.2, the diameter @f is at most 14,/ f (i) =
Y/ f)/7 < |Fy (u,v)]. So the bottom side of" lies within Fy (u, v). Let R be the region inside
coarsés) that lies below¢; and aboveF; (p, ¢). From any pointx € Fy («,v) N C, if we shoot a ray
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coarse (5)

<

(@) (b)

Fig. 10. The shaded region denof@sn both figures. In (a)g is the closest point iR to x. In (b), p or ¢ is the closet point in
Rtox.

along the normal at into R, either the ray will leave” first or the ray will hit¢; or the boundary of
coarséds) in R. We are to prove that the distances frano ¢, and the boundary afoarséds) in R are
more than 2,8 > 21,8/+/ fmax- This shows that the ray always leavedirst, soC lies completely inside
R. Then the upper bound dfp — ¢| follows asC is empty with probability at mosi=?n“»/fma) py
Lemma 6.6(i).

Consider the distance from any pomg F; (u, v) to £1. By Lemma 7.4(iii), the angle betweén and
the tangent ap (measured by rotating, in the clockwise direction) is at least 35fy; + sin" 17, —
2sinm !y, =sin"y,+sin"ty, and at mostr /2+ 2 sin! 1. By Lemma 7.4(vii), the acute angle between
px and the tangent gt is at most sin,. So the angle betweepx and ¢, is at least sin'n; and
at mostr /2 4+ 2sin 1y, + sin~5,. This implies that the distance fromto ¢; is at least||p — x|| -
min{n1, cog2sin 1y +sin~1n,)}. By Lemma 7.4(i)y: < 0.06 < cog3sin 1(0.06)) < cog2sin 1y, +
sin~19,). Therefore, the distance fromto ¢; is at least|p — x| - n1 > 5p8 - ||[p — x|| > 255 - (|p —

qll/3) (i) 45y,\/ 1 (§). Sincer, = v, /98, this distance is greater thak,2.

Next, we consider the distaneefrom any pointx € Fy (1, v) to the boundary otoarsés) in R.
Take a radiusy of coarsés) that passes through Suppose thap lies outsideR. Refer to Fig. 10. If
¢y intersectsF; N coarsés) at p (Fig. 10(a)), then! = ||g — x||. If £1 does not intersedt; N coarses)
(Fig. 10(b)), thend = min{||p — x||, lg — x[[}. Thus, by (4),d > |Ip — qll/3 = ¥ny/ f(5)/6 > 218.
The remaining possibility is that lies on the boundary oR. Then eithersy is tangent toF; at x
or sy intersectsF; N coarsés) at least twice. Say is parallel to the tangent at some point 8 N
coarsés). By Lemma 7.4(iii), the acute angle betweenand the tangent at is at most 4 sin 1. By
Lemma 7.4(vii), the acute angle betwepnand the tangent atis at most sifii ,. So the angle between
gx andxy is at most 4 sin' 51 + sin~2 n,. It follows that

d=|lx —y| > llg — x| - cog4sin ™ ny +sin nz) > [lg — x| - cog5sin*(0.06))
>0.9:llg —x[ =0.9-(Ip —qll/3) > 015/ f (5) > 2:8.

In all, C lies insideR. SoC must be empty which occurs with probability at mast?"*//mad py
Lemma 6.6(i). It follows that|p — gl < ¥/ f(5)/2 with probability at least L n~?n"7//mad By
Lemma 7.4(vi), the horizontal distance betweeand the left intersection point betweéiy and the
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coarse (5)

Fig. 11. Rotating/1 and¢» slightly in the clockwise direction decreases the widtistoip(s).

boundary ofcoarsds) is at least 16 - radiugcoarses)) > 1.6v,./ f (5) > || p — ¢||. We conclude that;
intersectsF;” N coarsés) exactly once ap.

Refer to Fig. 11. Lew be the leftmost intersection point betweEji and the boundary afoarses).
Symmetrically, we can also show thatintersectsF;" Ncoarsés) exactly once at some point F (v, z)
lies abovet,, and||y — z|| < ¥u+/ f (5)/2 with probability at least L =7/ fma0

Consider the projections df;" (v, z) and F; (p, ¢) onto the horizontal diameter abarsés) through
s. By Lemma 7.4(vi), the projections of andg are at distance at least80 radiugcoarsés)) from s.
Thus, the distance between the projectiongdfy, z) andF; (p, q) is at least

1.6 - radiugcoarsés)) — |p — gll — ly — z|l > 1.6 - radiugcoarsés)) — ¥,/ 1 (5)
> 1.6 radiugcoarsés)) — radiugcoarsés))
> radiugcoarsés))/p.

That is, this distance is greater than the widthstip(s). But then we can rotaté; and ¢, around

p andz, respectively, in the clockwise direction to reduce the widthstoip(s) while not losing any
sample insidecoarsds). See Fig. 11. This is impossible. It follows that, under the condition that
max{2,/pé, Y/ f(5)} < radiugcoarsés)) < 506 + ¥,/ f (5), the acute angle between the direction of
strip(s) and the tangent dtis at most 3sin* 51 + sin~t 5, with probability at least - O(n® " 7/fma0)

By Lemmas 7.1, 7.2, and 7.3, the inequalities §i#axps, v,/ f(5)} < radiugcoarses)) < 5p8 +
Y/ f(§) hold with probability at least + O(n®("“"/fmax) So the lemma follows. O

8. Refined neighborhood

The results in Section 7 show that after the stepARSENEIGHBORHOOD the algorithm already has
a normal estimate at each noisy sample with an error in the orde#-af,,. However, this error bound
does not tend to zero as the sampling density increases. This explains the need for therstep R
NEIGHBORHOODIN the algorithm. This step will improve the normal estimate so that the error tends to
zero as the sampling density increases. This will allow us to prove the pointwise convergence.

We introduce some notations. In the stepARNED NEIGHBORHOOD, we aligncandidatés, ) with
the normal af by varyingé within [—m /10, 7 /10]. Recall tha® is the signed acute angle between the
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upward direction otandidatés, 8) and Ny, whereN; is the upward direction perpendicularstip(s).

Let angle(strip(s)) denote the signed acute angle betwagrand the upward normal at If N, points

to the right of the upward normal &t angle(strip(s)) is positive. Otherwiseangle(strip(s)) is negative.

We defined; = 6 + angle(strip(s)). That is, 6, is the signed acute angle between the upward direc-
tion of candidatés, 0) and the upward normal & The sign ofé; is determined in the same way as
anglestrip(s)). For anyF, and for any poinip € F, N candidatés, 6), let y, be the signed acute angle
between the upward direction ofndidatés, ¢) and the upward normal gt. The sign ofy, is deter-
mined in the same way angle(strip(s)).

We need the following two technical lemmas. Their proofs can be found in Appendix A. There are two
main results in Lemma 8.1. First, we show that the range of rotgtiory 10, 7 /10] of candidatés, 6)
covers the normal direction &t Second, we relatg, to 6,. This is useful because we will see that for
a proper choice op, the height ofcandidatés, 6) is directly related toy, (and hence t®;). We will
need to focus on a smaller area inst@d@didatés, 8). Lemma 8.2 bounds distances and angles involving
points onF, inside this smaller area.

Lemma 8.1. Assume tha# < 1/(250%) and p > 5. Let s be a sample. LeW, be the width of
candidatés, 9). For sufficiently larger, the following hold with probability at leagt— O(n =< (" //ma0)
throughout the variation of within [—z /10, 7r/10].

(i) Wy <0.1f().
(iiy 6, € [—m/5, /5] andd,; = 0 for some € [—7 /10, 7 /10].
(iii) Any line, which is parallel to candidate, 0) and inside candidaig, 6), intersectsF, N coarsés)
for anya exactly once.
(iv) ForanyF, and for any poinp € F, Ncandidatés, 0), 0, —0.2|6;| —3W,/f (5) < y, < 0,+0.2/6,|+
3W/f(5).

Lemma 8.2. Assume thad < 1/(25p2) andp > 5. Lets be a sample. LeH be a strip that is parallel to
candidatés, 0) and lies inside candidate, ). Whenn is sufficiently large, for any, and for any two
pointsu andv on F, N H, the following hold with probability at leagt— O(n =N #//ma0).

i) |lu—v| < 3width(H).
(i) The angle between the normalsiaand v is at mostO width(H).
(i) The acute angle between and the tangent td, at u is at mosts width(H).

8.1. Normal approximation

We show that our algorithm alignefineds) approximately well with the normal & Our algorithm
variest so as to minimize the height oéctanglds, 6). Let 6* denote the minimizing angle. Recall that
refineds) = rectanglds, 6*). Let6; denotes™* + angle(strip(s)). We apply Lemmas 8.1 and 8.2 to show
thate; is very small.

Lemma 8.3. Assume that < 1/(25p?) andp > 5. Lets be a sample. LeW, be the width of refine@).
For sufficiently large, 6| < 23W, with probability at leastl — O(n (" //ma0)
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Proof. We rotate the plane such theandidatés, 6*) is vertical. Suppose tha;| > 23W,. We first
assume that Lemmas 7.1, 7.2, 7.3, 8.1 and 8.2 hold deterministically and show that a contradiction arises
with probability at least 1 O(n?("""//m20) The contradiction is that we can rotatandidates, 6*)
slightly to reduce its height further. Since these lemmas hold with probability at lea&(A? (" "//ma0),
we can then conclude thgt’| > 23W, occurs with probability at most @ #//ma0).

Without loss of generality, we assume ti#gt> 0. That is, the upward normal atpoints to the left.
Also, we assume thak; N coarsés) lies below F;" N coarsés). Let L be the left boundary line of
candidatés, 6*). By Lemma 8.1(iii),L intersectsF;” N coarses) exactly once. We usg to denote the
point L N Fy N coarsés). We first prove a general claim which will be useful later.

Claim 1. Orient space such that candid&te6) is vertical. If 6, > 23W,, then for anya, F, N
candidatés, 0) increases strictly from left to right.

Proof. Take any point € F, N candidatés, #). By Lemma 8.1(iv),y, > 0.80, — 3W;, which is positive
as6, > 23W, by assumption. Therefore, the upward normat @oints to the left, so the slope of the
tangent toF,, atz is positive. O

We highlight the proof strategy before giving the detailsgf> 23W;, by Claim 1, bothF; and
F;" increase from left to right insideandidatés, 6). Then we dividecandidatés, 6*) into three smaller
slabs of equal width in left to right order, and show that the lower sideafnglés, 6*) intersectsFy
at a pointa inside the leftmost slab. Similarly, the upper sideftanglds, 6*) intersectsF;" at a point
b inside the rightmost slab. Since bofly and F;~ increase from left to right, this allows us to rotate
rectanglds, 6*) arounda andb in the anti-clockwise direction to reduce its height. This contradicts the
minimality of the height ofectanglds, 6*). We give the details in the following.

We first prove that the lower side odctanglés, 6*) intersectsFy~ within the leftmost slab. Let and
m be the constants in Lemma 7.1. ket 1/3240. LetH; be the slab insideandidatés, 6*) such that
H; is bounded byl on the left and widthH;) = W, /3. Let H be the slab insideandidatés, 6*) that
is bounded byL on the left and has width 39,/ f(5). Refer to Fig. 12. Since radidaitial (s)) <
Y/ f(8), radiuginitial (s)) < 1 for sufficiently largen. So J/radiuginitial (s)) > radiuginitial (s)).

H,
H
L|
| Fg
d, s x
d =
_—'L/ C
r! u

Fig. 12. lllustration for Lemma 8.3.
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SinceW,; = min{/radiuginitial (s)), radiugcoarsés))/3}, W, > radiuginitial (s))/3 > A,/ f (5)/9. We
get
)\h f(f) Ws

108 S 12° ®)
Thus, H lies insideH;. By Lemma 8.1(iii), F; crossesd completely. Letr be the intersection point
betweenF; and the center line off . Take the(A/+/ fmax)-grid in which7 is the first cut point. LeC be
the (Ar/+/ fmax)-cell such thatC contains- andC lies between the normal segment$ and the second
cut point. The distance fromto the boundary off is 15,/ f (5). By Lemma 6.2, the diameter ¢f is
at most 14 f (7)// fmax < 14hi/ f (7). Since f(7) < L.1f(5) by Lemma 7.4(v), the diameter ¢f is
less than 15,/ f (). It follows thatC lies insideH.

Letu be the rightmost vertex af on F; . Letv be the vertex o€ different fromu on the normal seg-
ment atu. Letx be the intersection point betweély and the right boundary line @#;. We are to prove
thatx lies aboveC. SinceC is non-empty with very high probability, the lower siderettanglés, 6*)
should intersecF; inside H; at a point below then.

By Claim 1, v is the highest point inC and x is the highest point oy (p, x). Let d, and d,
be the height ofv and x from p, respectively. Letp be the acute angle betwegmn and the hori-
zontal line throughp. Since¢ is at most the sum of,, and the angle betweepu and the tangent
at p, by Lemma 8.2(iii), we havep < y, + Swidth(H). By Lemma 8.2(i),||p — u|| < 3width(H).
Observe thatd, < ||p — u| - sing + [lu — v|. So d, < 3pwidth(H) + 248 < 3y, width(H) +
15width(H)? + 21, 8. By (5), we getd, < W,y,/4+5W?2/48+ 21,8. We bound 2,3 as follows. Recall
that W, = min{,/radiuginitial (s)), radiugcoarsés))/3}. If W, = /radiuginitial (s)), by Lemma 7.1,
Wy = VA /3f (Y4 = Ai/3. S0 248 < 20y = A,/1620< 0.002W2. If W, = radiugcoarses))/3, by
Lemmas 7.1 and 7.3V, > 2,/p8/3 andW, > A,/ f(5)/9 > A, /9. We geth; = A;,/3240< W,/360 and
28 < 3W,//p < 3W,/+/5, S0 2,8 < 0.004W2. We conclude that

Wiy

Width(H) = 300,/ 1 5) =

d, < +0.2W2.

Observe thapx is parallel to the tangent at some pombn F; (p, x). By Lemma 8.2(ii),y, > v, —
9width(Hy) = y, — 3W;. Sinced, = width(H) - tany, = (W,/3) - tany,, we get

Wsy: > Wsvp
3 3

Sinced; > 23W, by our assumption, Lemma 8.1(iv) implies that> 0.89) — 3W, > 15W;,. Therefore,

d, —d, > Wyy,/12—1.2W2 > 0. It follows thatx lies aboveC.

Since C is a (Ak/«/fmax)—cell, by Lemma 6.6(i),C contains some sample with probability at
least 1— n®(n“r/fmad  Thus, the lower side ofectanglés, 6*) lies belowx with probability at least
1 — pSn“n/fma0 On the other hand, the lower side rettanglés, 6*) cannot lie belowF;” N Hy, oth-
erwise it could be raised to reduce the heightaatanglds, 6*), a contradiction. So the lower side of
rectanglés, 6*) intersectsF;” N H; at some point.. See the left figure in Fig. 13.

Let H, be the slab insideandidatés, 6*) such thatH, is bounded by the right boundary line of
candidatés, 6*) on the right and widttH,) = W, /3. By a symmetric argument, we can prove that the
upper side ofectanglés, 6*) intersectsF;” N H, at a pointb.

Consider an angle that is slightly less thaf*. As shown in the right figure in Fig. 13, this is equiva-
lent to rotating the candidate neighborhood in the anti-clockwise direction. By Lemma &1@an

dy > — W2
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Fig. 13. In the right figure, the middle bold rectangle is the one obtained by a slight anti-clockwise rotation. Its height is smaller
than that of the middle dashed rectangle.

reach zero during the variation éf Thus, asf] > 0, decreasing from 6* is legal. Moreover, as
0F > 23W;, the small rotation keep8 greater than 2@;. Correspondingly, we rotate the lower and
upper sides ofectanglés, 6*) arounda andb, respectively, to obtain a rectangke Orient the plane
such that the new candidate neighborhood becomes vertical. By Cldiin ihcreases strictly from left
to right, soF; crosses the lower side & at most once at from below to above. SimilarlyF;"~ crosses
the upper side oR at most once &i from below to above. This implies th& contains all the samples in-
side the new candidate neighborhood. Simég on the left ofb and belowb, the anti-clockwise rotation
makes the height oR strictly less than the height aéctanglés, 6*). This contradicts the assumption
that the height ofectanglds, 6*) is already the minimum possible.0

8.2. Pointwise convergence

Oncerefinedys) is aligned well with the normal &, it is intuitively true that the center point of
refineds) should lie very close t8. The following lemma proves this formally.

Lemma 8.4. Assume thad < 1/(25p%) andp > 5. Lets be a sample. LeW, be the width of refined).
For sufficiently largen, the distance between the center poaihbf refineds) ands is at most(1385 +
3)W, with probability at leastl — O(n ~2(n"#/fma0),

Proof. We first assume that Lemmas 7.1, 7.2, 7.3, 8.1, 8.2 and 8.3 hold deterministically and show that
the lemma is true with probability at least-10(n (" */fmx0) ' Since these lemmas hold with probability
at least 1- O(n®(n“n/fmady the lemma follows.

Assume that lies on F;\, the normal af is vertical, andF;" N coarsés) is aboveF; N coarses).
Letr, (resp.r,) be the ray that shoots downward (resp. upward) fsoemd makes an angte’ with the
vertical. Letx andy be the points orF;" and F hit by r, andr, respectively. Let be the point onF;
hit by r,. Lets; be the point oy such thats; = 5. Without loss of generality, we assume that> 0.
Refer to Fig. 14.

Our strategy for boundinfis — s*|| is as follows. By triangle inequalityls —s*|| < ||ls* — ||+ 15 — yll.
Thus it suffices to bounfils* — y|| and||s — y||. While |5 — y|| can be bounded directly, a few intermediate
steps are needed to bouit — y||. If the upper and lower sides oéfineds) pass through andz,
respectively, thelfs* — y|| is just the distance between the midpointvaefandy. Then we consider the
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Ta

Fig. 14. lllustration for Lemma 8.4.

cases that the upper and lower sidesafiheds) do not pass through andz, and bound the maximum
displacement of* from the midpoint ofxz. This yields the bound ofis* — y||. We give the details in
the following.

First, we bound the distance between the midpointzoandy. By Lemma 7.4(iv), the acute angle
betweens,z and the tangent at (the horizontal) is at most sif(0.03). It follows that Zss1z < /2 +
sin"1(0.03). So/szsy = 7w — 0 — Lss1z > /2 — 6 —sin(0.03), which is greater than.9 asd; < /5
by Lemma 8.1(ii). By applying sine law to the shaded triangle in Fig. 14, we get

ls —s1]l - SINOF (8 + )0

-zl = < — < 2(8 0F. 6
s =zl Sin/szsy sin(0.9) <20+ a)b; ©)

Similarly, we get

- ls — 5] - sing* ab*
—y|l = - — 3 {3 2007, 7
Is =l Sin/sys sin(0.9) = 4% (7)

By triangle inequality)|s — s1]| — [Is1 — z|l < lIs — zll < |Is — s1]| + |ls1 — z||. Then (6) yields
F4+a)—20+a)0 <|s—z| <G +a)+20+a)b). (8)
We can use a similar argument to show that
(6—a)—20—a)f; <|ls —x[| <6 —a)+206 —a)], 9
o — 2007 < |ls — y|| <o+ 206 (10)

Letd, andd, be the distances from the midpointefto x andy, respectively. Sincgx —z|| = [ls — x|/ +
s —zll, by (8) and (9), we get®— 456 < ||x — z|| < 28 + 480, Therefore§ — 250 < d, < §+ 2807.
Sincellx —yll=|ls—x||+|ls — yll, by (9) and (10), we ge&t— 280* < lx =yl < 842567 We conclude
that

dy = |d, — |lx — yll| < 486} (11)

Second, we bound the displacement’ofrom the midpoint ofcz. There are two cases.
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Casel: the upper side ofefineds) lies abovex. The upper side ofefineds) must intersect;” N
candidatés, 6*) at some poinb, otherwise we could lower it to reduce the heightefineds),
a contradiction. Sincéx — v| < 3W, by Lemma 8.2(i), the distance betweerand the upper
side ofrefineds) is at most 3v;.

Case2: the upper side afefineds) lies belowx. Let z be the constant in Lemma 7.1. Uet= h/270.
Take the(r;/+/ fmax)-grid in whichx is the first cut point. LeC be the cell such that contains
x andC lies between the normal segments a&tnd the second cut point.

We claim thatC lies insidecandidatés, 6*). Since radiu@nitial (s)) < ¥,/ f(5), we have
radiuginitial (s)) < 1 for sufficiently largen. So /radiuginitial (s)) > radiuginitial (s)). Thus,
W, = min{y/radiuginitial (s)), radiugcoarsés))/3} > radiuginitial (s))/3, which is at least
Ay f(5)/9. By Lemma 6.2, the diameter @ is at most 14, f (X)/+v/ fmax < 14Ahi+/ f(X).
Since f(x) < L.1f(5) by Lemma 7.4(v), the diameter af is less than 1&../ f(5). Since
W = A/ £ (5)/9=300/ f(5), C must lie insidecandidatés, 6*).

SinceC is a(iy/+/ fmax)-Cell, by Lemma 6.6(i)C contains some sample with probability at
least 1— n~®In“»/fmad Thus, the upper side o&fined:s) cannot lie belowC. It follows that the
distance between and the upper side aéfineds) is at most the diameter @f, which has been
shown to be less thaWw; /2.

Hence, the position of the upper siderefineds) may cause* to be displaced from the midpoint of

by a distance of at mosti3; /2. The position of the lower side oéfineds) has the same effect. So the
distance betweest and the midpoint okz is at most 3v. It follows that||s* — y|| < d, +3W,. By (11),
we get||s* — y|| < 4660 + 3W,. Starting with triangle inequality, we obtain

)
5 —=s*I <ls™ =yl + 115 — yll <4867 + 3W; + (|5 — yl| < 656, + 3W;.

Sinced; < 23W, by Lemma 8.3, we conclude thjf — s*|| < (138 +3)W,. O

9. Homeomaor phism

In this section, we prove more convergence properties which lead to the proof that the output curve
of the NN-crust algorithm is homeomorphic fo. For each sample, we uses* to denote the center
point of refineds). We briefly review the processing of the center points. We first sort the center points
in decreasing order of the widths of their corresponding refined neighborhoods. Then we scan the sorted
list to select a subset of center points. When the current center gfomselected, we delete all center
points p* from the sorted list such thgp* — s*|| < width(refined:s))*/3.

In the end, we call two selected center poisitand:* adjacentif F(5,7) or F(f, 5) does not contain
u for any other selected center poirit. We useG to denote the polygonal curve that connects adjacent
selected center points. Note that the degree of every vertexignexactly two. Clearly, if we conneét
andt for every pair of adjacent selected center poiitsinds*, we obtain a polygonal curvé’ that is
homeomorphic taF. Our goal is to show that the output curve of the NN-crust algorithm is exattly
Since there is a bijection betweéhandG’, the homeomorphism result follows.

Throughout this section, we assume that widftitial (s)) < 1 for any samples, which is true
for sufficiently largen. There are a few consequences. First, it implies tieadiuginitial (s)) >
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radiuginitial (s)). Second, since widthefineds)) = min{/radiuginitial (s)), radiugcoarses))/3}, we
have widthrefineds)) < +/radiuginitial (s)) < 1. This implies that for any constants > b > 0,
width(refineds))* < width(refineds))”. Lastly, width(refineds)) > radiuginitial (s))/3.

We need the technical results Lemmas 9.1-9.6. The proofs of Lemmas 9.1, 9.3, 9.4 and 9.5 are given
in Appendix A.

Lemma 9.1. There exists a constani; > 0 such that whem is sufficiently large, for any two
center pointsp* and g*, if ||p — gl < f(p)/2, then W, < u1f(p),/ W, with probability at least
1— O(n—Q(mw"/fmax))_

Lemma9.2. Let p* andg* be two selected center points. Thgs* — g*|| > max{W,}

3 1/3

/ ’ Wq/ }'

Proof. Assume without loss of generality that was selected beforg*. Sinceq* was selected subse-
quently,q* was not eliminated by the selection pf. Thus, || p* — ¢*| > W, > W,”*. O

Lemma 9.3. Whem is sufficiently large, for any two center pointsand y* such that|x — || < f(3)/2

and [|x* — y*|| > W,”*, the acute angle betwearty* and %y is O(f (5)W,’®) with probability at least
1 — O(n=2n“n/fmaxy

Lemma 9.4. Whem is sufficiently large, for any three center pointy y*, andz* such thaty € F(x, 2),
1% —Zll < max( £ (£)/5, £(2)/5), llx* — y*I| = W;", and|ly* — z*|| = W;"°, the angle/x* y*z* is obtuse
with probability at leastl — O(n =" 7/fmad

Lemma 9.5. There exists a constapt, > 0 such that whem is sufficiently Iargie, for any edgein G
connecting two center points* and ¢*, length(e) < 2 f (5)W;'> + uaf(G)W,'® with probability at
leastl — O(n—S2(In"n/fmax)

Lemma 9.6. Wherw is sufficiently large, for any two selected center popitandg* such thatp* andg*
are not adjacent inG and| p* — ¢*|| < f(p)/5, there is an edge in G incident top* such that the angle
betweere and p*¢* is acute andengthle) < || p* — ¢*|| with probability at leastl — O(n =N #/fmax))

Proof. Sincep* andg* are not adjacent i, there is some selected center paihiadjacent tgp* such
thatii lies onF(p, §) or F(G, p), sayF(p, §). By Lemma 9.2] p* —u*|| > Wi'° and|lg* —u*|| > W,">.
By Lemma 9.4, the anglep*u*q* is obtuse with probability at least-1O(n 2 #//ma0) |t follows that

lu*p*q* is acute and p* — u*|| < || p* —g*||. O

We apply the above technical lemmas to show that the output curve of the NN-crust algorithm is
exactlyG. Then this allows us to show that the output curve is homeomorphic to the underlying smooth
closed curve.

Lemma 9.7. For sufficiently largez, the output curve obtained by running the NN-crust algorithm on the
In® n

selected center points is exactywith probability at leastl — O(n‘mfmax‘l)).

Proof. We first prove the lemma assuming that Lemmas 8.4, 9.4, 9.5 and 9.6 hold deterministically. We
will discuss the probability bound later.
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Let p* be a selected center point. Lgtu* and p*v* be the edges daf incident top*. Without loss of
generality, we assume thatlies on F (i, ). By Lemma 9.2/ p* — u*| > W,/° and | p* — v*|| > W,"°.

Letk =138 + 3. By Lemmas 8.4 and 9.8p — a| < ||p — p*ll + lla — u*|| + | p* — u*|| < kW, +
kW, + paf ()W + uaf () W,'3, which is less tharif () + f(ii))/30 for sufficiently larger. The
Lipschitz condition implies that

0.97(p) < fw) <11f(p).

So we get

<f(ﬁ)—i—f(ft)

< fP+ 1@
30

30

Ip —ull <0.07f(p), Ip* —u”| <0.07f(p).

Similarly, we can show that

Ip = vl <0.07f(p), Ip* —v*Il <0.07f(p).

Let p*q¢* be an edge computed by the NN-crust algorithm when it processes the péridgsume to
the contrary thap*¢™* is not an edge iti;. If p*¢™* is computed in step 1 of the NN-crust algorithm, then
g* is the nearest neighbor of. So| p* —¢*|| < || p* —u*|| < 0.07f(p). By Lemma 9.6, there is another
edgee in G such that lengtte) < || p* — ¢™||, a contradiction. Suppose thatg* is computed in step 2 of
the NN-crust algorithm. As we have just shown, the step 1 of the NN-crust algorithm already outputs an
edge, sayp*u*, of G whereu* is the nearest neighbor pf. Observe thatuz —v|| < ||p— |+ | p— | <
0.14f(p) < 0.2f (). By Lemma 9.4,/u* p*v* is obtuse. By the NN-crust algorithmiu* p*g* is also
obtuse. Since the NN-crust algorithm prefers;* to p*v*, || p* — ¢*|| < || p* — v*|| < 0.07f(p). By
Lemma 9.6G has an edge incident top* that is shorter thap*g* (p*v* too) and makes an acute angle
with p*¢*. The edge is not p*v* ase is shorter thap*v*. The edge is not p*u* as/u* p*q* is obtuse.
But then the degree gf in G is at least three, a contradiction.

We have shown that each output edge belongé& t&ince the NN-crust algorithm guarantees that
each vertex in the output curve has degree at least two, the output cur¢elen the same number of
edges. So the output curve is exaafly

Since Lemmas 8.4, 9.4, 9.5 and 9.6 hold with probability at leastQ(n (" »/fmad) "the output
edges incident tp* are edges o with probability at least - O(n~%n“7//ma0)  Since there are @)
output vertices, the probability that this holds for all vertices is at leasOln "7/ fmax-1)y =

Coroallary 9.1. For sufficiently largen, the output curve obtained by running the NN-crust algorithm on
the selected center points is homeomorphic to the underlying smooth closed curve with probability at
least1 — O(n~ 2”1/ fnax-1)),

Proof. We have shown that the output curveds Let G’ be the curve obtained by connectipgand
g for each edgep*g* of G. G’ is homeomorphic to the underlying smooth closed curve*aandg*
are adjacent irG. Clearly, G is homeomorphic ta;’ as there is a bijection between the edges;of
andG’'. O
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10. Finale

We make use of the lemmas in the previous subsections to prove the key result of this paper, stated as
the Main Theorem in Section 4.

Proof of the Main Theorem. First of all, for any noisy sample, let W, denote the width ofefineds).
By constructionW, < /radiuginitial (s)). By Lemma 7.1, radiugnitial (s)) = O((In*** n/n) Y4 £ (5)¥2).
ThusW, = O((IN*** n/n)Y8 £ (5)1/4).

By Lemma 8.4, ag tends toco, for each output vertex®, ||s* — 5| = O(W,) with probability at least
1 — O(n—%0n“r/Imady - Since there are @) output vertices, the distance bounds hold simultaneously
with probability at least - O(n—?(n“7/fma—D) Next, we analyze the angular differences between the
tangents of the smooth closed curve and the output curve.

Let 7*s* be an output edge. By Lemma 9.5, with probability at leastQ(n—("*/fmx0)  we have

I = 5% < pa f AW+ pa f YW, (12)
Letk = 138 + 3. Using the above, the triangle inequality, and Lemma 8.4, we get

IF =Sl < IF = r [l + 115 = 5™ + 17 — 5™ (13)
kW, + kW, + paf W+ o f ()W, (14)

By (12), ||Ir* — s*|| < f(#F)/5+ f(5)/5 for sufficiently largen. The Lipschitz condition implies that
f(F) < 1L5f(@5). So|r* — s*|| < f(5)/2. Thus, Lemma 9.1 applies and yiel#ds < u1f(5)+/ W, with
probability at least 1 O(n—2(n“7/fma0)  Substituting into (14), we conclude that

IF =511 < paf G)PPWHS, (15)

for some constants > 0.
1/6
S

Let# be the angle betwesti and the tangent &t By Lemma 5.2(ii), we havé < sin™? %
Let 6’ be the acute angle betweety* andrs. By (15), |7 — 5| < f(5)/2 for sufficiently largen. Thus,
by Lemma 9.3¢" = O(f (5) W,”°®) with probability at least 1- O(n~ (" /fma0) for sufficiently largen.
We conclude that the angle between* and the tangent at, which is upper bounded by + 6, is
O(f(E)Wsl/G). Since there are @) output edges, the angular difference bounds hold simultaneously
with probability at least 1 O(n =" 1/ JmacD)

The output curve is homeomorphic to the smooth closed curve by Corollary 6.1.

11. Conclusion

Curve reconstruction is a popular task in computer vision and image processing, and quite a number
of algorithms have been developed by researchers in these areas [4,10,11,15-20]. Despite the effective
ness of these algorithms as demonstrated by experiments, no guarantee of the output quality is known.
This makes it difficult to gauge one’s confidence on the output’s correctness as well as how well the
output approximates the unknown curve. Recently, significant progress has been made and several curvi
reconstruction algorithms with quality guarantees have been proposed [1,2,6-9,12—-14]. However, all of
them assume that the input sample points are noiseless, i.e., they lie exactly on the unknown curve. This



S.-W. Cheng et al. / Computational Geometry 31 (2005) 63—100 91

assumption fails in a practical environment as input devices inevitably make some measurement errors.
This paper presents the first theoretical study of how to guarantee a faithful output in the presence of
noise.

We propose a probabilistic model of noisy samples. In a sense, it models the location of points on the
curve by an input device, followed by perturbation due to noise. We assume that the perturbation (due
to noise) moves the points in the normal directions randomly and uniformly within an interval of fixed
unknown width. Based on this model, we develop an algorithm that returns a faithful reconstruction with
probability approaching 1 as the number of noisy samples increases. A straightforward implementation
of our algorithm runs in cubic time. This is the first theoretical result known for handling noise, albeit
under some restrictive assumptions.

We expect that our approach will also help in reconstructing curves with features such as corners,
branchings and terminals (with or without noise). Another research direction is to study the reconstruc-
tion of surfaces from noisy samples. Recently, we have extended our algorithm and its guarantees to
reconstructing surfaces in three dimensions for a deterministic noise model which is strongly related to
the probabilistic noise model in this paper [3]. When the sample size is sufficiently large, the output is
homeomorphic to the unknown surface. As the sample size tends to infinity, the distance between the
reconstruction and the surface tends to zero and the normals of the triangles converge to the true surface
normals. Independently, Dey and Goswami [5] have proposed another surface reconstruction algorithm
for points that follow a different noise model. Their experiments show that the algorithm works in prac-
tice. In their model, the noise amplitude is proportional to the local feature size. This has the advantage
that a larger noise can be accommodated in areas of larger local feature sizes. On the other hand, unlike
our model, their noise amplitude decreases as the sampling density increases. They prove that the outpu
is homeomorphic to the unknown surface and the distance between the reconstruction and the surface
is bounded by the noise amplitude. A constant bound is given on the angles between the normals of the
triangles and the true surface normals, which can be reduced for smaller noise amplitude.

It is open whether more general noise models are amenable to theoretical analysis.

Acknowledgements

We thank the anonymous referees for suggestions that greatly improve the presentation of this paper
and for pointing out more references on curve reconstruction. We also thank Tamal Dey for helpful
comments.

Appendix A

Proof of Lemma 5.1. Let M, be the medial disk oF, touching a pointp € F,. By the definition of
F,, there is a medial disk/ of F touchingp such thatM and M, have the same center. Moreover,
radiugM,) =radiusM) —a > f(p) —a. O

Proof of Lemma 5.2. Assume that the tangent atis horizontal. Consider (i). Refer to Fig. A.1(a). Let
B be the tangent disk at that lies abovey and has center and radiug1 — «) f (p). Let C be the circle
centered ap with radius||p — ¢||. Since|lp — ¢g| < 2(1 — «) f(p), C crossesB. Letr be a point in
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(1-o) f(p)

tangent to p 0
F(x at p

(@) (b)

Fig. A.1. lllustration for Lemma 5.2.

CNAJB. Letd be the distance of from the tangent gb. By Lemma 5.14 bounds the distance frogto
the tangent ap. Observe thatp — gl = llp —r| = 2(1—a) f(p) sin(%) andd = ||p—r|| -sin(%).
Thus,d =2(1— a)f(p)smz(ll””) = “” q”2~ .

Consider (ii). Refer to Fig. A.1(b). By (|{ tﬁe distance between any poiit,in D and the tangent at
p is bounded byra""‘% Let# be the smallest angle such tltatconép, 0) containsF, N D. Then

.0 3 radiug D)? . 1 _ radiugD)
2 " 21-o)f(p) radiugD) 2(1—a)f(p)’

Proof of Lemma 5.3. Take any pointt on F, N D. Let ¢ be the tangent t@, atu. Let¢’ be the line that
is perpendicular td and passes through Let C be the circle centered at with radius||p — u||. Let
A and B be the two tangent circles atwith radius(1 — «) f(p)/2. Letx be the center ofi. Without
loss of generality, we assume that the tangerf,tat p is horizontal,A is below B, u lies to the left of
p, and the slope of is positive or infinite. (We ignore the case where the slopé isfzero as there is
nothing to prove then.) It follows that the slope#fs zero or negative. Refer to Fig. A.2.

By Lemma 5.1,u lies outsideA and B. Let ¢ be the intersection point betwe&hand A on the
left of p. Sincellp —qll=lp —ull < 1—a)f(p)/4=radiugA)/2, q lies abovex. Also, /pxqg =
2 ginL p=ull_

A-a) f(p)

Suppose that’ does not lie above, see Fig. A.2(a). Since lies above the support line gfx, the
angle betweed’ and the vertical is less than or equaltpxg = 2 sin? (1[1;;;‘213)'

Suppose that’ lies abovex but not abovep, see Fig. A.2(b). We show that this case is impossible.
Let w the intersection point betweefi and ¢’ on the right of p. Note thatp lies betweeru and w
and Zupw > /2. If we grow a disk that lies below and remains tangent toat «, the disk will hit
F,, at some point different frorm when the disk passes throughor earlier. It follows that there is a
medial diskM, of F, that touches: and lies below/. Observe that the center a1, lies on the half
of ¢’ on the right ofu. Furthermore, the center @#, lies on the line segmentw; otherwise, since
lupw > 7 /2, M, would containp, a contradiction. Thus, the distance frgnto the center oM, is less

thanmax|ip—ull, lp—wl}+llp—pll <2-radiugsd)+o=(1—«a) f(p) +a < f(p). However, since
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Fig. A.2. lllustration for Lemma 5.3.

the center ofM,, is also a point on the medial axis &f, its distance fromp should be at leasf(p), a
contradiction.

The remaining case is thétlies abovep, see Fig. A.2(c). Since lies outsideB and the slope of’
is zero or negativel’ lies betweenp and the center oB. The situation is similar to the previous case
wheret’ lies betweerp andx. So a similar argument shows that this case is also impossible.

Proof of Lemma 7.4. A straightforward calculation shows (i).

If F, Ncoarsés) consists of more than one connected component, the medial akisimtersects the
interior of coarses). SinceF and F, have the same medial axis, the distance ftotm the medial axis
is at most 2 radiugoarsés)) < 2(508 + ¥/ f(5)) <2508 + ¥,) £ (5) < f(5) by (i), a contradiction.
This proves (ii).

Let s; be the point onF, such thats; = 5. The distancé|s; — x| < |ls — x|| + ||s — s1]| < 508 +
Y/ )+ 28 < (B5pd + ¥, +28) f(5). By Lemma 5.3, the angle between the normalg aindx is at

most 2sin® il < 2sint 22t < 2sin1(0.06) by (i). This proves iii).
By Lemma 5.2(ii),x € cocondsy, 2sin* - 5=2)  coconesy, 2 sin*(0.03)). This proves (iv).

. 210-8fG)
The distance
5 =Xl < lls =58+ lls — x| + lx = X[l <508 + ¥y f(5) +26
< 5pd+ ¥ +28) f(5) <0.11(5).

Then the Lipschitz condition implies (v).
Consider (vi). Refer to Fig. A.3. Assume that the tangentiathorizontal. By sine law,

s — 51| - sinZssix 28
I 1l o

Sin/sxsy = -
s — x| ~ radiugcoarsés))

as|ls — s1/l < 28 and||s — x|| = radiugcoarsés)). Since radiugoarsés)) > 2,/pé andp > 5, we have

Lsxsy <sint % < sin1(0.5). By (iv), Zsysx > 7 — Lsxsy — (w/2+sin1(0.03)) > 7 /2 —sin"1(0.5) —
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< sin”(0.5)

< 2sin”(0.03) —

Fig. A.3. lllustration for Lemma 7.4.

y

L L

Fig. A.4. lllustration for Lemma 8.1(iii).

sin~1(0.03). Thus, the horizontal distance betweeandx is equal to||ls — x|| - SinZsisx > ||s — x|| -
cogsin 1(0.5) 4+ sin"1(0.03)) > 0.8 ||s — x]|.

Consider (vii). Sincey € F, Ncoarsés), |x — y|| < 2radiugcoarsés)) < 2(508 + ¥,/ f(3) ) which
is at most OL £ (5) by (i). So Lemma 5.2(ii) applies and the acute angle betweeand the tangent at

. LY i 1 (5p84vm) f (5 . - -
is at most sint z(l"fgi)yf”(x) <sint %w Sincef(X) > 0.97(5) by (v) ands < 1/(25p2), the acute

angle is less than sif(1.2(508 + ¥,,)), which is less than sift(0.06) by (i). O

Proof of Lemma 8.1. We first assume that m§R,/p8, ¥/ f(5)} < radiugcoarsds)) < 508 +

Y./ f(§) and radiugnitial (s)) < ¥,/ f(5). We will take the probabilities of their occurrences later
into consideration.

SinceW, < J/radiuginitial (s)) < /¥, f (§)¥* andv,, < 0.01 for sufficiently large:, W, < 0.1f(5).
This proves (i).

By Lemma 7.5, for sufficiently large:, |anglestrip(s))| < 4sin1(0.06) < 7/10. Since6 €
[—7/10, 7 /101, 6, = 6 + angle(strip(s)) € [—x /5, 7 /5] andf; = 0 for somed. This proves (ii).

Consider (iii). Let¢ be a line that is parallel toandidatés, #) and insidecandidatés, 6). We first
prove that? intersectsF,. Refer to Fig. A.4. Without loss of generality, assume that the normaisat
vertical, the slope otandidatés, 6) is positive, and is belows. Let s; ands, be the points onF,"
and Fy , respectively, such thai = s, = 5. Shoot two rays upward frosy with slopes+ sin~1(0.03).
Also, shoot two rays downward frosa with slopes+ sin~1(0.03). Let R be the region insideoarsés)
bounded by these four rays. By Lemma 7.4(iF),N coarsds) lies insideR. Let x be the upper right
vertex of R. Let y be the right endpoint of a horizontal chord throughLet L be the line that passes




S.-W. Cheng et al. / Computational Geometry 31 (2005) 63—100 95

throughx and is parallel t&. Let L’ be the line that passes througland is parallel t&. Let z be the
point onL such thaty1z is perpendicular td..
We claim thatL’ is aboveL and L and L’ intersect both the upper and lower boundariesRof

By Lemma 7.4(iv),Zxs1y < sin"1(0.03), so Zxsy < 2sin1(0.03). Observe that cass sy = 'I‘l‘l‘_“ylll' <
dasay; - Since radiugcoarsds)) > 2,/p8, costsisy < 1/,/p < 1/+/5 which implies that/s;sy >

/3. Sincelsisx = /sysy — /xsy, we get
Ls1sx > m/3—2sim1(0.03) > /5> |6]. (A.1)

SoL’ cuts through the angle between andsx. It follows thatL’ is aboveL. Observe thaL’ intersects
s1x. By symmetry,L’ intersects the left downward ray frosp too. We conclude that and L’ intersect
both the upper and lower boundaries/of

Sincel|f;| < /5 and/Zsxz = Lsisx — |6s], by (A.1), Lsxz > 7/3 — 2sin1(0.03) — /5 > 0.3. The
distance frony to L is equal to|ls — x|| - sinZsxz > ||s — x|| - sin(0.3) > 0.2 - radiugcoarsds)). Recall
that? lies belows by our assumption. The distance betwéeands is at mostW, /2 and our algorithm
enforces thaw, /2 < radiugcoarsds))/6. So¢ lies betweerl’ andL. SinceL andL’ intersect both the
upper and lower boundaries &, so doed. It follows that¢ must intersec¥,, N coarsés).

Next, we show that intersectsF, N coarsds) exactly once. If not{ is parallel to the tangent at
some point orF, N coarsés). By Lemma 7.4(iii), the angle betwedrand the vertical is at leagt/2 —
2sin1(0.06) > /5, contradicting the fact thag,| < /5.

Consider (iv). Let’ be a line that is parallel toandidatés, ) and passes through By (iii), ¢ inter-
sectsF, at some poinb. We first prove thad, — 0.2|6;| < y, < 0, + 0.2|6;]. Let s, be the point onF,
such thaf = s7. Assume that the tangentsis horizontals is aboves;, andb is to the left ofs. Let C be
the circle tangent td, ats; that lies belows, is centered at, and has radiug (s) — 8. By Lemma 5.1,
F, does not intersect the interior 6f. Refer to Fig. A.5(a). Leta be a tangent t@ that lies on the
left of x. We claim thatZasx > |6;|. Otherwise||s — x| > |la — x||/sin(r/5) = (f (§) — 8)/ Sin(zt /5) >

eS

direction of candidate (s,0)

normal at p

eS

N

tangent at p

SN

(b)
Fig. A.5. lllustration for Lemma 8.1(iv).
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() + 38 > ||s — x|, a contradiction. Seb lies betweena andsx. Let sr be the extension ofb such
thatr lies onC. We have

la—sl=vls —xI2—lla —x|2 < V(f ) +8)2— (f5) — )2 = 2/5f(5).
Thus,||r —s|| < |la — s|| < 2,/8f(5). Observe that
ol =siesinio] _ 2/81G) - 16|
Ilr — x| r—xl

Sinces < 1/(25p2%) and|6,| < /5, we have

281 () 1651 _ 2/3f() 16,1 _  2/5-164] <2x/3-|05| -

/rxs = Sin

- _ = < 0.06. (A.2)
lr = x| =8 Jf®-8/FG  1-8
Combing (A.2) with the following fact
x<06=sintx <11x, (A.3)
we get/rxs < VALY Since||lb —s1|| < lr —s1ll = lr — x| - Zsinlrz“, we get

llr—x|l

16 —s1ll < |lr — x| - Lrxs < 2.2\/5f(5) - |6;].
Let ' be the acute angle between the normals atds;. By Lemma 5.3,

IIb—Slll~ < 25t 2.27/5 - 16| <2 2.2«/5-|9s|.
1-a)f ) 1-a 1-36

By (A.2) and (A.3), we conclude that < 4842141 _ 0.214,|. It follows that
0s - 02|9s| g Hs - V/ g Vb < 9& + V/ g QS + 02|95|

Next, we prove the upper and lower boundsjfgifor any pointp e F, N candidatés, 6). Letn be the
acute angle betwedrp and the line that passes througland is perpendicular toandidatés, 6). See
Fig. A.5(b). By Lemma 7.4(vii), the acute angle betwégnand the tangent dtis at most sin'(0.06).
It follows thatn < y,, + sin1(0.06) < 6, + 0.2/6,| + sin 1(0.06) < 1.2(x/5) + sin~1(0.06) < 0.9. Thus,

y < 2sint sin !

N

Ib— pll < —2
p = 2cosy

< 0.9W;.

Note thatW; < radiugcoarsés))/3 < (508 + ¥,,) f(5)/3, which is less than.02f (s) by Lemma 7.4(i).
Also, by Lemma 7.4(v)f (p) > 0.9 (5). It follows that

b — pll <0.9W; <0.02f(p). (A.4)
So we can invoke Lemma 5.3 to bound the angléetween the normals &atand p:

M < Zsin_lL‘/Vs~ < Zsin_l Wi .

Q- f(p) Q- f(p) fp)

By (A.4), W,/f(p) < 0.03. So by (A.3), we get” < 2.2W,/f(p). Sincef(p) > 0.9f(s), we conclude
thaty” < 3W,/f(s). This implies that

0, —0.2160,| —=3W,/fS) <y — V' <v¥p <+ ¥ <O +0.2/6,] +3W,/f(5).

Yy’ <2sint
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Finally, we have proved the lemma under the conditions that {Bdxs, v,/ f(5)} <

radiugcoarsés)) < 508 + ¥,,+/ f(§) and radiugnitial (s)) < ¥,,+/ f(§). These conditions hold with
probabilities at least + O(n~n“»/fmad) hy Lemmas 7.1, 7.2 and 7.3. So the lemma follows!

Proof of Lemma 8.2. Let ¢ be the acute angle between and the tangent t@, atu. Let  be the
acute angle betweerw and the direction otandidatés, #). By Lemma 7.4(vii),¢ < sin"1(0.06). So
n>=n/2—y,—¢ >n/2—y, —sin 1(0.06). By Lemma 8.1(i), (i) and (iv)y > 7/2 — 1.2(n/5) —
3(0.1) — sin"1(0.06) > 0.4. Thus,

width(H) _ width(H)

- < . < — 3width(H).
lu =l siny sin(0.4) < SWIdth(H)

This proves (i).
Consider (ii). Note thaW; < radiugcoarsés))/3 < (508 + ¥,,) f(5)/3. So by (i),|lu — v]] < 3W, <
(508 + ¥,,) f(5). By Lemma 7.4(i) and (v), B3 + ¥, < 0.05 andf (&) > 0.97 (5). It follows that

llu —v|| < 0.06f (ir). (A.5)
Thus, we can invoke Lemma 5.3 to bound the aggteetween the normals atanduv:
lu — v||~ < 2sin? 3W|dth(H)~ - 25in‘14WIdt[](H).
Q- f() 091 —-a) f(5) f )
Since 4widthiH)/f (5) < 4W,/f(5) which is at most 0.4 by Lemma 8.1(i), we can apply (A.3) to con-
clude thatt < 9width(H)/f (5) < 9width(H). This proves (ii).

Finally, by (A.5), we can invoke Lemma 5.2(ii) to bound the acute angle betweemd the tangent

atu. This angle is at most sift 5“1l which is less thaig /2. D

£ <2sim?

Proof of Lemma 9.1. We prove the lemma by assuming that Lemma 7.1, 7.2 and 7.3 hold determin-
istically. The probability bound then follows from the probability bounds in these lemmas. £qgr
or g, let R; = radiugcoars€i)) and letr; = radiuginitial (i)). The Lipschitz condition implies that
f(p)/2< f(g) <3f(p)/2.Leth andm be the constants in Lemma 7.1.

Suppose thaW, =, /r,. By Lemma 7.1, we have

/T \/hkm\/f(ﬁ)
3 o 3m '

WP:\/E>\/

Note thatW, < /7, andr, <./14%,, f(g) by Lemma7.1. So we get

NI [ o [h W
W, > C e | W2
"IN a2mf@) T\ 6anyrp) ¢ V6an F(p)

Suppose tha’, = R,,/3. First, sinceR, > 2, /pé by Lemma 7.3, we geis < 3,/pW,/2. SecondW, =

R,/3 > r,/3 which is at leask,/f(p)/9 by Lemma 7.1. So we g&fA,. f(p) = Vminf(p)/h <
3/mW,/h- f(p)Y* <3 /mW,/h- f(p). Finally, sinceW, < R,/3, by Lemma 7.2, we get

505 1m[@ 505  [Tomf(B) _5JAW, [2ImW,
Wq<%+73f@<%+,/ g(p)g */2”+,/ - f(p). D
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Proof of Lemma9.3. We prove the lemma by assuming that Lemmas 8.4 and 9.1 hold deterministically.
The probability bound then follows from the probability bounds in these lemmas.

We translatec* y* to aligny* with y. Let z denote the point* + y — y*. Letk = 138 + 3. By triangle
inequality and Lemma 8.4,x — z|| < ||x* — X[l + [ly* — Y|l < kW, + kW,. Since||x — y|| < f(3)/2,
by Lemma 9.1W, < u1f(3)y/W,. S0|% — z|| < kusf (3)y/W, + kW,, which is smaller tha;”* <
lx* — y*|| for sufficiently largen. Thus,xz is not the longest side of the triangléz. It follows that/xyz
is acute. Sincgx — z|| is an upper bound on the heightofrom xy, we have

o 4 x—z 1 Ix—z
L7z <sint ”~ I = sin 1H
ly —zll flx* — y*||

<sin (ko f )W+ kW23).
We conclude thatxyz is O(f(jz)Wyl/G) asn tends toco. O

Proof of Lemma 9.4. We first show that|x — zZ|| < min{f(x)/4, f(2)/4}. Assume that|x — Z| <
f(x)/5. By the Lipschitz condition, we havg(z) > 4f(x)/5. Therefore||x —z|| < f(X)/5< f(2)/4.

Let D be the disk centered at with radius f(x)/4. Observe that'(x, 7) lies completely inside
D. Otherwise, the medial axis df intersects the interior oD which implies thatf (x) < f(x)/4, a
contradiction. Sdjx — y|| < f(x)/4. The Lipschitz condition implies that(y) > 3f(x)/4.

We claim that the angléxyz is obtuse. The line segment$ andyz are parallel to the tangents at
some points o (¥, ¥) and F (7, %), respectively. Lemma 5.3 implies that 3z > = — 4sin* % =
m—4sin i (1/4) > 7 /2.

Since|lx — y|| < f(x)/4< f(¥)/3, by Lemma 9.3, the angle betweety* andxy is negligible with
probability at least - O(n—(n“7//ma)) asp tends tooco. A symmetric argument shows that the angle
betweeny*z* andjz is negligible with probability at least + O(n =" »/fmad) asn tends tooo. Thus,

/x*y*z* converges tadxyz which is obtuse. O

Proof of Lemma 9.5. Note thatp* and¢* are adjacent and they are selected by the algorithm. Let
k = 1385 + 3. Let D, be the disk centered at* with radius(1 + k1 £ (5))W,’>. Let D, be the disk
centered ay* with radius(1+ ks £ (§))W,"°>. By Lemma 8.4 p — p*|| < kW, which is less thanv,’*

for sufficiently largen. So p lies insideD,,. Similarly, g lies insideD,.

If D, intersectsD,, then||p* — ¢*|| < (14 puaf (B)W,"> + (L + p1f(G)W,”> and we are done.
Suppose thab, does not intersedd,. We claim thatF'(p, g) N D, is connected. Otherwise, the medial
axis of F' intersects the interior oD, which implies thatf (p) < radiugD,) which is less thanf (p)
for sufficiently largen, a contradiction. SimilarlyF'(p, g) N D, is connected. It follows thaf (p, g) —

(D, U D,) is also connected. There are two cases.

Casel: F(p,q) — (D, U D,) does not contai@t for any sample:. Let y be the endpoint of (p, g) —
(D, U D,) that lies onD,,. Let h be the constant in Lemma 7.1. Take.apartition such that
y is the first cut-point. Sinc& (p,g) — (D, U D,) does not contairx for any sample:, by
Lemma 6.6(i),F (p, g) — (D, U D,) does not contai (y, c1), wherec, is the second cut-point,
with probability at least - O(n—("“m) |t follows that

|F(p.q) — (D, UD,)| <22f(). (A.6)
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Sincel| 5 — y|| < 2radiugD,) = 2(1+ku1f(ﬁ))w,}/3, 15—yl < £(p)/2 for sufficiently large
n. Thus, f(y) < 3f(p)/2, sS0r2 f(y) < 3A2 f(p)/2. SinceW, > radiuginitial (p))/3 which is
atleasth,/ f(p)/9 by Lemma 7.1, we ha\ﬁe,ff(y) 243W2/2 Substituting into (A.6), we get

|F(p,q)| < 243W?2 ~/2+ 2radiugD,) 4 2radiugD,).

By Lemma 8.4 p — p*|l < kW, and ||q —q “|| < kW,. We conclude thal p* — ¢*|| < |Ip —

P +IFG. DI+ 1d — q* | < uaf (DWW, +sz(q)W/ for some constant, > 0.

Case2: F(p,q) — (D, U D,) containsi for some sample:. We show that this case is impossible
if Lemmas 9.1 and 9.4 hold deterministically. It follows that case 2 occurs with probability
at most Qn~2(n"n/fmad) e first claim that| p* — u*|| > W,/°. If not, Lemma 9.1 implies
that W, < uaf(p)/W, for sufficiently largen. But then| p* — || < | p* — u*|l + lld — u*| <

W% + kW, < W,"> + kus £ (p)/W,. This is a contradiction a& lies outsideD,. Similarly,

lg* — u*|| > Wl/3 Sou* is not eliminated by the selection pf andg*.
Next, take any selected center poifitdifferent from p* andg* such thatg € F (i, 7). We
show that:* is not eliminated by the selection gf. Assume to the contrary that this is false. So

lu* — z*|| < 1/3 . By Lemma 9.1 W, < u1 f(2)/W, for sufficiently largen. Letk’ =1+ k +
kuy. Then

i =zl < llu® = 2°| + 12" = 2 + [lu” — il
< W4 KW, + kW, < WYB kW, + ks f )W, <K fFEOWY.

For sufficiently largen, k/f(Z)Wl/3 < f(2)/5. By Lemma 9.4, the anglex*q*z* is obtuse. It
follows that|lg* — z*|| < |lu* — z*|| < W23, contradicting Lemma 9.2.

Symmetrically, we can show that |s not eliminated by any selected center paihdifferent
from p* andg* such thatp € F(z, u). In all, our algorithm should select another center poaint
such thati € F(p, g) — (D, U D,). This contradicts the assumption thetandg* are adjacent
inG. O
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