COMP 271 Design and Analysis of Algorithms 2003 Spring Semester

Questions for Fourth Tutorial – March 7, 2003. Revised: March 6, 2003, 6:30PM

- 1. Given an undirected graph G = (V, E), recall that the *complement*, \overline{G} , is a graph (V, E') such that for all $u \neq v$, $\{u, v\} \in E'$ if and only if $\{u, v\} \notin E$. Prove that either G or \overline{G} is connected.
- 2. Let G = (V, E) be a connected undirected graph. Let s be any vertex of V and run the BFS algorithm on G starting at s. Show that if $\{u, v\}$ is any edge of E then $|d(u) d(v)| \leq 1$.
- 3. An (undirected) graph G = (V, E) is bipartate if there exists some $S \subset V$ such that, for every edge $\{u, v\} \in E$, either (i) $u \in S$, $v \in V S$ or (ii) $v \in S$, $u \in V S$.

Let G = (V, E) be a connected graph. Design an O(n + e) algorithm that checks whether G is bipartite. Hint: Run BFS.

How can you modify your algorithm so that it also works for unconnected graphs?

4. Give an example of a directed graph G in which a vertex u of G ends up in a depth-first tree containing only u, even though u has both incoming and outgoing edges. Your example graph should have no self-loops.