COMP 271 Design and Analysis of Algorithms 2003 Spring Semester Questions for First Tutorial

- Problem 1. Suppose $T_1(n) = O(f(n))$ and $T_2(n) = O(f(n))$. Which of the following are true? Justify your answers.
 - (a) $T_1(n) + T_2(n) = O(f(n))$
 - (b) $\frac{T_1(n)}{T_2(n)} = O(1)$
 - (c) $T_1(n) = O(T_2(n))$
- Problem 2. For each pair of expressions (A, B) below, indicate whether A is O, Ω , or Θ of B. Note that zero, one, or more of these relations may hold for a given pair; list all correct ones. Justify your answers.
 - (a) $A = n^3 + n \log n$; $B = n^3 + n^2 \log n$.
 - (b) $A = \log \sqrt{n}$; $B = \sqrt{\log n}$.
 - (c) $A = 2^n$; $B = 2^{n/2}$.
- Problem 3. Let f(n) and g(n) be asymptotically nonnegative functions. Using the basic definition of Θ -notation, prove that $\max(f(n), g(n)) = \Theta(f(n) + g(n))$.

Problem 4. Give asymptotic upper bounds for T(n). Make your bounds as tight as possible. You may assume that n is a power of 2.

(a)

$$T(1) = 1$$

 $T(n) = T(n/2) + 1$ if $n > 1$

(b)

$$T(1) = 1$$

$$T(n) = T(n/2) + n \quad \text{if } n > 1$$

(c)

$$T(1) = 1$$

 $T(n) = 2 \cdot T(n/2) + 1$ if $n > 1$

(d)

$$T(1) = 1$$

 $T(n) = 2 \cdot T(n/2) + n$ if $n > 1$

(e)

$$T(1) = 1$$

 $T(n) = 3T\left(\frac{n}{2}\right) + n^2$ if $n > 1$