COMP 271 Design and Analysis of Algorithms
2003 Spring Semester

Solutions to Question Bank Number 3 (Selected Problems)

Revised April 15, 2003

2. The solution doesn’t work. Here is a counterexample. Suppose n=3 and py = 1,
p1 = 2, po = 32, and p3 = 12. The suggested algorithm parenthesizes the product
as My - (My - Mj;), at a cost of 2-23-12+ 1212 = 792 multiplications. The
optimal way is (M; - M) - M3, using 1-2-32+ 13212 = 448. This solution from
“Problems on Algorithms” by Ian Parberry.

3.

(a)

Consider the case where wi]i] = 1 for all 7 (the worst case must be at least as
bad as this special case). The proof boils down to observing that the recursion
tree is a complete binary tree whose height is essentially h = min(n, W). The
number nodes of will be 2".

More formally, let T(z,W) denote the running time of the algorithm for a
given pair ¢ and W. We can see that we have the following recurrence (up to
constant factors):

. 1 fi=0o0rw<0
T(i, W) = { TG —1,W)+T@G—1,W —1) otherwise.

It is an easy induction proof that T(i, W) > 2™&W) The basis case i = 0 or
W =0 is trivial. For the induction step we have
T(i, W) TE—-1,W)+T6—-1,W—-1)

>
> 2min(i—1,W)+2min(i—1,W—1) > 2.2min(i—1,W—1) _ 2.2min(i,W)—1

- 9. 2min(i7W)/2 _ 2min(i7W)‘

The problem with the recursive version is that it recomputes many of the same
function values over and over again. Again assume that wtfi] = 1 for all i.
Let R(i, W) be a shorthand for the call with parameters i and W. R(i, W)
calls R(i — 1,W) and R(i — 1,W — 1). Both of these call R(i — 2, W — 1).
As you trace the algorithm deeper, you will see that the same procedure is
invoked over and over again. The dynamic programming version avoids this
duplication, since once a value has been computed for a given ¢ and W, this
effort is never repeated.

4. (sketch of solution)
The algorithm is based on defining a table

V(i,C,Cy), 0<i<n,0<C,<C,0<C,<C

in which V(7,C1, Cs) is the maximum value of objects from the set of the first i
objects that can be placed in two knapsacks, the first one having weight capacity

1

(1, and the second having weight capacity Cs. The optimal solution to the problem
is Vin,C,C).

The algorithm is based on the following recurrence relation:
V(’l, Cl, CQ) = max (V(Z — 1, Cl, CQ), V(’l — 1, Cl — Wy, C2> + Vi, V(Z — 1, Cl, C2 — U)Z) + Ui,)

(whose formal proof will be omitted here). The initial conditions are Vi, V (i, Cy, Cy) =
—o0 if €1 < 0or Cy <0 and VCy,Cy > 0, V(0,C1,Cy) = 0. The basic idea behind
the equation is is that the three terms on the right hand side correspond to the
three cases in which the optimal solution for V (i, Cy, Cy) (i) does not use item ¢ at
all, (ii) puts item ¢ in the first knapsack and (iii) puts item 7 in the second knapsack.

Notice that, if all of the items on the right hand side were already known, then the
left hand side could be calculated in O(1) time. The following algorithm therefore
fills in the table in O(nC?) time:

KnapSack(v, n, Wy, Ws)
{
for (wy; =0 to Wy)
for (we =0 to W)
V[0, wy, wy] = 0;
for (i =1 to n)
for (w; = 0 to W)
for (wy =0 to W)
V(i,Cl,Cg) = max (V(Z - 1,01,C2), V(Z — 1,C1 - ZUZ',CQ) + vy, V(Z — 1,C1,C2 - wi) + UZ',)
return Vn, Wy, Wyl;
}

Calling the procedure with KnapSack(v,n,C, C') solves the problem (we omit the
standard technique for figuring out the actual contents of the knapsack from the

table).

. Let X =< a4,...,2, > be the given sequence of n numbers. We need to find the
longest increasing subsequence in X.

Algorithm: We first give an algorithm which finds the length of the longest in-
creasing subsequence; later, we will modify it to report a subsequence with this
length.

Let X; =< z1,...,xz; > denote the prefix of X consisting of the first ¢ items. Define
cli] to be the length of the longest increasing subsequence that ends with z;. It
is clear that the length of the longest increasing subsequence in X is given by
max; <<y, C[i].

The longest increasing subsequence that ends with z; has the form < Z, x; > where
Z is the longest increasing subsequence that ends with z, for some r < 7 and
x, < x;. Thus, we have the following recurrence relation:

1 iti=1
=41 ife, >x; for1 <r <3

maxi<.<; c[r] +1 ifi>1
Ty <T;

The basis follows from the fact the longest increasing subsequence in a sequence
consisting of one number is the number itself. The recurrence relation says that if
all the numbers to the left of i are greater than z; then the length of the longest
increasing subsequence ending in x; is 1. Otherwise, the length of the longest in-
creasing subsequence ending in z; is 1 more than the length of the longest increasing
subsequence ending at a number x, to the left of z; such that z, is no greater than
the xT;.

We store the c[i]’s in an array whose entries are computed in order of increasing i.
After computing the ¢ array we run through all the entries to find the maximum
value. This is the length of the longest increasing subsequence in X.

In order to report the optimal subsequence we need to store for each 4, not only cli]
but also the value of r which achieves the maximum in the recurrence relation. De-
note this by r[¢]. Then we can trace the solution as follows. Let c[k] = max;<;<,, ¢[f].
Then x;, is the last number in the optimal subsequence. The second to last number
1S Ty, the third to last number is k) and so on until we have found the all the
numbers of the optimal subsequence.

Running Time: Since it takes O(i) time to compute the i-th entry of the ¢ array,
the total time to compute the ¢ array is O(> i) = O(n?). It takes O(n) time to
find the maximum in the ¢ array. Finally, the time to trace the solution is O(n).
Thus, the running time is dominated by the time it takes to compute the ¢ array,
which is O(n?).

. The solution is to construct a boolean array Afi,j], 0 < i <nand 0 < j < W,
defined as follows: Ali, j] = true if there is a subset of {z1,zs,...,z;} that sums
to j, else Ali, j] = false. We start with some observations.

Basis: A[i,0] = true, 0 < i < n, because given 0 or more items, you can always
form the sum 0 by picking no item. Also, A0, j] = false, 1 < j < W, because if
there are no items to pick from, then we cannot form any sum > 0.

Last weight too large: A[i,j| = Ali — 1,j] if i« > 0 and 2z; > j. The solution
cannot contain z; if x; exceeds j, the sum to be formed. Therefore the sum j can
be formed using a subset of {1, x2,...,x;} if and only if it can be formed using a
subset of {1, za,...,2;_1}.

Last weight not too large: Ali,j| = (Ali — 1,5 —x;) OR Ali — 1,j]), if i > 0
and j > x;. This follows from the following observations. If sum j can be formed
using a subset of {x1, 2o, ..., x;_1}, then either this subset includes item z; or it
does not. If it includes item z; then it should be possible to form the sum j — z;
using a subset of {x1,zs,...,x;_1}; otherwise if it does not include item z; then it
should be possible to form the sum j using a subset of {x1,zo,..., x;_1}.

3

Combining these observations we have the following recurrence relation:

(true f0<i<nandj=0
Afi, j] = false ifi=0and1<;<W
T Al -1, 5] if i >0 and 2; > j

Ali—1,j—x;] OR Ali—1,j]) ifi>0and j >z,

The algorithm takes as inputs the sum to be formed W, the number of items
n, and the sequence x = x1,xs,...,%,. It stores the Afi,j] values in a table
Al0...n,0... W] whose values are computed in order of increasing i (note that for
any given ¢ it does not matter in which order we compute the A[i, j]'s). Following
this order ensures that the table entries used to compute A[i,j] have all been
computed before the algorithm evaluates Afi, j]. At the end of the computation,
Aln, W] is true, if there is a subset that sums to W, otherwise it is false.

Dynamic-SubsetSum(x, n, W)
Al0,0] = true
for j=1to W do
A0, j] = false
fori=1ton do
Ali, 0] = true
for j =1to W do
if ; > 7 then
else Ali,jl = Ali —1,j — x;] OR Ali — 1,]

Running Time: Since the table has O(nW) entries and it takes constant time to
compute any one entry, the total time to build the table is O(nW). The total
running time is O(nW).

0 oo 0o oo —1 oo
1 0 oo 2 o0 o0
pO _ | 2 0 o0 oo =8
—4 o0 oo 0 3 00
oo 7 o0 oo 0 00
oo 5 10 oo oo 0 |
[0 o0 o0 oo —1 o]
1 0 oo 2 O o0
pw_ | ™ 2 0 oo oo -8
—4 o0 o 0 -5 o©
oo 7 o0 oo 0 00
oo 5 10 oo oo 0 |

o — o | oo

— D@

D®

10

10

o

6 o 8 -1
-2 0 oo 2 -3 >

0

10

9p]

