COMP 271 Design and Analysis of Algorithms
2003 Spring Semester
Solutions to Question Bank Number 1 (Selected Problems)

Answer 1. The proof is by induction on n, the limit of the summation. For the basis
case we consider the smallest legal value of n, namely 1. We have

11— 1)(1+1)

ij’(z‘—l) =0 =

3 2

as desired. For the induction step, we will assume that the formula holds for all
the values 1,2,...,n — 1, then show that it holds for n. The standard method is
to get rid of the last term of the sum, use the induction hypothesis to apply the
formula to the the sum consisting of the first n — 1 terms, and then add the last
term back in again and simplify.

:Lz(z'—1)

i=1

as desired.

Answer 2.

(a) True. Since Ti(n) = O(f(n)) and Ts(n)

(gz(z — 1)) +n(n —1)

(n=D(n-1)-D((n-1)+1)

(n—1)(n—2)n

3

(n—24+3)n(n—1)

3

+nn-1) =
nin—1)(n+1)

+n(n—-1) (by ind. hyp.)

(n—=2)n(n—1)+3n(n—1)
3

3

3 K

O(f(n)), it follows from the def-

inition that there exist constants c¢;,co > 0 and positive integers ni, ny such
that T1(n) < e f(n) for n > ny and To(n) < cof(n) for n > ny. This
implies that, T1(n) + Ta(n) < (c1 + o) f(n) for n > max(ng,ng). Thus,
Ti(n) + Ta(n) = O(f(n)).

(b) False. For a counterexample to the claim, let Ty(n) = n? Ty(n) = n, f(n) =
n?. Then Ti(n) = O(f(n)) and Ty(n) = O(f(n)) but % =n # O(1).

(c) False. We can use the same counterexample as in part (b). Note that 77(n) #

O(Tx(n))

Answer 3.

A Relation:
(a) n®+nlogn €,0,0
(b)  logv/n Q
(¢)  nlogsn 2,0,0
(d) 2" 0
(e) log(2") 2,0,0

n® +n?logn

Viogn
nlog, n
2n/2

log(3")



Notes:
(a) Both are ©(n?), the lower order terms can be ignored. Note that if A(n) =
©(B(n)), then automatically A(n) = O(B(n)) and A(n) = Q(B(n)).

(b) After simplifying, A is (1/2)1gn, and B is y/logn. Substituting m = logn,
we can see ratio A/B grows as m/2./m = \/m/2 which tends to infinity as n
(and hence m) tends to infinity.

(c) Log base conversion only introduces a constant factor.
(d) The ratio is 2%/2%? = (2)™? which goes to infinity in the limit.
(e) After simplifying these are nlg2 and nlg3, both of which are ©(n).

Answer 4.
(a) T(n) = O(n).
(b) T'(n) = O(logn)
(¢) T(n) =0O(n).
(d) T'(n) = O(n).
(e) T(n) = O(nlogn)
(f) T(n) = 0O(n?).
Answer 5.

The recurrence for the number of comparisons is:
T(1) = 0
T(n) = T(In/2])+T([n/2])+n—1.

(Note that if you use the following recurrence for the running time: 7'(1) =
1;T(n)=T(|n/2])+ T([n/2]) + n, you will obtain slightly different results.)

(a) Recursion tree for merge sort (n = 13):
LEVEL

\
\@/
)é/
™~
ﬁ\
e
Py

O



(b) There are 5 levels in the recursion tree.

(
(

)

) Number of comparisons at levels 0, 1, 2 and 3 are 12, 11, 9 and 5, respectively.
d) The total number of comparisons is 37.

)

C

(e) For general n, the number of levels is 1+ logn, the number of comparisons at
each level is O(n), and the total number of comparisons is O(n logn).

Answer 6. For any value of n, max(f(n), g(n)) is either equal to f(n) or equal to g(n).
Therefore, for all n,

max(f(n),g(n)) < f(n) +g(n).

Using ¢ = 1 and ng = 1 in the big-oh definition, it follows that
max(f(n),g(n)) = O(f(n) + g(n)).

Also, for all n,
max(f(n),g(n)) = f(n)
and
max(f(n),g(n)) = g(n).
Adding we have
2 x max(f(n),g(n)) = f(n)+ g(n).

Therefore,

max(f(n),g(n)) > %(f(n) + g(n)).

Using ¢ = 1/2 and ng = 1 in the Omega definition, it folows that
max(f(n), g(n)) = Q(f(n) + g(n)).

Since max(f(n),g(n)) = O(f(n) + g(n)) and max(f(n), g(n)) = Q(f(n) + g(n)), it
implies that max(f(n), g(n)) = ©(f(n) + g(n)).



Answer 8.

(a)

It computes the Fibonacci numbers, which are defined by the following recur-
rence relation:

The recursion tree is shown in the figure. It is easy to see that unknown[i] is
executed once for ¢ = 5, twice for ¢ = 4, three times for ¢ = 3, five times for
i = 2, eight times for i = 1, and five times for ¢ = 0.

12 additions are performed to compute unknown(6).

Let T'(n) denote the time taken to compute unknown (n). Then the recurrence
relation for T'(n) is:

T(0) = T(1) =1
Tny = Tlh—1)+T(n—-2)+1 ifn>1

We claim that T'(n) > ¢(1.5)" for some constant c¢. Without knowing what
¢ is, we proceed with the proof by induction. For the basis case, we need to
check for both n = 0 and n = 1. Note that T(0) = 1 > ¢ (1.5)%, for ¢ < 1,
and T(1) =1 > ¢- (1.5)!, for ¢ < 2/3. So let us choose ¢ = 2/3. For the
induction step, we assume the induction hypothesis that for all 0 < k£ < n,
T(k) > c(1.5)%, and then we show that the T'(n) > c(1.5)". If we apply the
definition of T" and the induction hypothesis and simplify we get:



Tn) = Th—1)+Tn—-2)+1> 2(1.5)"—1 + 3(1.5)”—2 +1

2

> §(1.5)"—2(1.5+1)+1
2

> g(1.5)”‘2(2.5)+1
2

> §(1.5)"—2(1.5)2+1
2

> g(1.5)“+1
2

> Z(L5)"

which completes the induction proof. It follows that T'(n) = Q(1.5™).

Note that the recurrence given for T'(n) also applies to the number of addi-
tions. Hence the number of additions performed to compute unknown (100)
> (2/3)(1.5)!%° Since the computer can perform a million additions each
second, it takes > (2/3)(1.5)'%°/10% seconds. This simplifies to > (2.71)10"
seconds or more than 86 centuries!

float unknown(int n)
{

F[0] = F[1] = 0;

for i = 2 ton {

F[n] = F[n-1] + F[n-2]

}

return(F([n]l);
+
This program takes O(n) time to compute unknown(n). In the recursive pro-
gram, the same values are computed repeatedly (see part(b)). But in the new
program, we do not compute the same values again and again; instead each
value F[i] is computed exactly once and stored for future reference.



