Lecture 8: DFS and Topological Sort CLRS 22.3, 22.4

Outline of this Lecture

- Recalling Depth First Search.
- The time-stamp structure.
- Using the DFS for cycle detection.
- Topological sort with the DFS.

What does DFS Do?

Given a digraph $G=(V, E)$, DFS traverses all vertices of G and

- constructs a forest, together with a set of source vertices; and
- outputs two time unit arrays, $d[v] / f[v]$.

DFS Forest: DFS constructs a forest $F=\left(V, E_{f}\right)$, a collection of trees, where
$E_{f}=\{(\operatorname{pred}[v], v) \mid$ where DFS calls are made $\}$

A Depth First Search Example

Example

Question: What can we do with the returned data?

Classification of the Edges of a Digraph

Tree edges: those on the DFS forest.
The remaining edges fall in three categories:

Forward edges: (u, v) where v is a proper descendent of u in the tree. $[u \neq v$.]

Back edges: (u, v), where vertex v is an ancestor of u in the tree. [$u=v$ is allowed.]

Cross edges: (u, v) where u and v are not ancestors or descendents of one another (in fact, the edges may go between different trees).

Example of the Classification of Edges

Remark: Since the forest obtained with the DFS is not unique, the classification is not unique.

Time-Stamp Structure in DFS

There is also a nice structure to the time stamps, which is referred to as Parenthesis Structure.

Lemma 1 Given a digraph $G=(V, E)$, any DFS Forest for G, and any two vertices $u, v \in V$,

- u is a descendent of v in the DFS forest if and only if $[d[u], f[u]]$ is a subinterval of $[d[v], f[v]]$: $d[v]<d[u]<f[u]<f[v]$
- u is unrelated to v in the DFS forest if and only if $[d[u], f[u]]$ and $[d[v], f[v]]$ are disjoint intervals: $f[u]<d[v]$ or $f[v]<d[u]$
- $d[u]<d[v]<f[u]<f[v]$ and
$d[v]<d[u]<f[v]<f[u]$ are not possible

Cycles in digraphs: Applications of DFS

Claim: Given a digraph, DFS can be used to determine whether it contains any cycles.

Lemma 2: Given a digraph G, and any DFS tree of G, tree edges, forward edges, and cross edges all go from a vertex of higher finish time to a vertex of lower finish time. Back edges go from a vertex of lower finish time to a vertex of higher finish time.

Proof: The conclusions follow from Lemma 1.

When Is a Digraph Acyclic

Lemma 3: A digraph is acyclic if and only if any DFS forest of G yields no back edges.

Example:

When Is a Digraph Acyclic

Lemma 3: A digraph is acyclic if and only if any DFS forest of G yields no back edges.

Proof of \Leftarrow : Suppose there are no back edges. By Lemma 2, all edges go from a vertex of higher finish time to a vertex of lower finish time. Hence there can be no cycles.

When Is a Digraph Acyclic

Lemma 3: A digraph is acyclic (a DAG) if and only if any DFS forest of G yields no back edges.

Proof of \Rightarrow : Assume that G has no cycles. We prove that G has no back edges by contradiction.

Suppose there is a back edge (u, v).
Then v is an ancestor of u in a rooted DFS tree.
There is a path $v \rightarrow \ldots \rightarrow u$ in the DFS tree.

The back edge + the path gives a cycle. A contradiction!

Cycle Detection with the DFS

Cycle detection: becomes back edge detection by Lemma 3!

Problem: Modify the DFS algorithm slightly to give an algorithm for cycle detection.
This can always be done by first running the algorithm and assigning the $d[v]$ and $f[v]$ values and then running through all of the edges one more time, seeing if any of them are back edges. This would take $O(n+e)$ time for the DFS and $O(e)$ time for the scan through all of the edges. In total, this uses $O(n+e)$ time.

How could you solve this problem online by identifying back edges while the DFS algorithm is still running?

Topological Sorting; graphs

If $G=(V, E)$ is a DAG then a topological sorting of V is a linear ordering of V such that for each edge (u, v) in the DAG, u appears before v in the linear ordering.

Example: Let $V=\{1,3,4,5,6,12\}$ and have ($a, b) \in E$ if and only if $a \mid b$. This is partial order, but not a linear one.
There are several topological sortings of G (how many?), for example:
$\langle 1,3,4,5,6,12\rangle,\langle 1,4,3,6,12,5\rangle,\langle 1,5,3,6,4,12\rangle$.

Topological Sorting; graphs

If $G=(V, E)$ is a DAG then a topological sorting of V is a linear ordering of V such that for each edge (u, v) in the DAG, u appears before v in the linear ordering.

Idea of Topological Sorting: Run the DFS on the DAG and output the vertices in reverse order of finishing time.

Correctness of the Idea: By lemma 2, for every edge (u, v) in a DAG, the finishing time of u is greater than that of v, as there are no back edges and the remaining three classes of edges have this property.

Topological Sort: the Algorithm

The Algorithm:

1. Run $\operatorname{DFS}(\mathrm{G})$, computing finish time $f[v]$ for each vertex v;
2. As each vertex is finished, insert it onto the front of a list;
3. Output the list

Running time: $\Theta(n+e)$, the same as DFS.

Topological Sort: Example

Original graph DFS forest

Final order: $\langle b, f, g, a, c, d, e, h\rangle$.

