
Lecture 8: DFS and Topological Sort
CLRS 22.3, 22.4

Outline of this Lecture

� Recalling Depth First Search.

� The time-stamp structure.

� Using the DFS for cycle detection.

� Topological sort with the DFS.

1

What does DFS Do?

Given a digraph
� � ������� 	

, DFS traverses all ver-
tices of

�
and

� constructs a forest, together with a set of source
vertices; and

� outputs two time unit arrays,
���
���������
�� .

DFS Forest: DFS constructs a forest � � ������� ��	
, a

collection of trees, where

� � � �����! #"
���
�� �
 	%$ where DFS calls are made &

2

A Depth First Search Example

Example

d e

a
f

g
c

b
a

b

c

e

f

g

d

1/10

7/8

6/9

12/13
11/14
root

root

Two source vertices a, d

3/4

2/5

original graph

Question: What can we do with the returned data?

3

Classification of the Edges of a Digraph

Tree edges: those on the DFS forest.

The remaining edges fall in three categories:

Forward edges:
��� �
 	 where
 is a proper descen-

dent of
�

in the tree. [
� ��
 .]

Back edges:
��� �
 	 , where vertex
 is an ancestor of

�
in the tree. [

� �
 is allowed.]

Cross edges:
��� �
 	 where

�
and
 are not ances-

tors or descendents of one another (in fact, the
edges may go between different trees).

4

Example of the Classification of Edges

d e

a
f

g
c

b
a

b

c

e

f

g

d

1/10

7/8

6/9

12/13
11/14
root

root

3/4

2/5

F

C

B

C CC

C: cross, F: forward,
B: back edge

original graph

Remark: Since the forest obtained with the DFS is
not unique, the classification is not unique.

5

Time-Stamp Structure in DFS

There is also a nice structure to the time stamps, which
is referred to as Parenthesis Structure.

Lemma 1 Given a digraph
� � ����� � 	

, any DFS For-
est for

�
, and any two vertices

� �
 � �
,

�
�

is a descendent of
 in the DFS forest if and
only if ��
�� � � � � � � � � is a subinterval of �
���
�� � � ��
�� � :

���
����
�� � ��� � � � ��� � ��
��

�
�

is unrelated to
 in the DFS forest if and only if
��
�� � � � � � � � � and ��
���
�� � � ��
�� � are disjoint intervals:
� � � ���
���
�� or � ��
����
�� � �

�
�� � ���
���
���� � � � ��� � ��
�� and

���
����
�� � ��� � ��
���� � � � � are not possible

6

Cycles in digraphs: Applications of DFS

Claim: Given a digraph, DFS can be used to determine whether
it contains any cycles.

Lemma 2: Given a digraph � , and any DFS tree of � , tree
edges, forward edges, and cross edges all go from a vertex of
higher finish time to a vertex of lower finish time. Back edges go
from a vertex of lower finish time to a vertex of higher finish time.

Proof: The conclusions follow from Lemma 1.

d e

a
f

g
c

b
a

b

c

e

f

g

d

1/10

7/8

6/9

12/13
11/14
root

root

3/4

2/5

F

C

B

C CC

C: cross, F: forward,
B: back edge

original graph

7

When Is a Digraph Acyclic

Lemma 3: A digraph is acyclic if and only if any DFS
forest of

�
yields no back edges.

Example:

d e

a
f

g
c

b
a

b

c

e

f

g

d

1/10

7/8

6/9

12/13
11/14
root

root

3/4

2/5

F

C

B

C CC

C: cross, F: forward,
B: back edge

original graph

8

When Is a Digraph Acyclic

Lemma 3: A digraph is acyclic if and only if any DFS
forest of

�
yields no back edges.

Proof of � : Suppose there are no back edges. By
Lemma 2, all edges go from a vertex of higher finish
time to a vertex of lower finish time. Hence there can
be no cycles.

9

When Is a Digraph Acyclic

Lemma 3: A digraph is acyclic (a DAG) if and only if
any DFS forest of

�
yields no back edges.

Proof of � : Assume that
�

has no cycles. We prove
that

�
has no back edges by contradiction.

Suppose there is a back edge
��� �
 	 .

Then
 is an ancestor of
�

in a rooted DFS tree.
There is a path
 � �������

�
in the DFS tree.

The back edge + the path gives a cycle. A contradic-
tion!

v

u
back edge

10

Cycle Detection with the DFS

Cycle detection: becomes back edge detection by
Lemma 3!

Problem: Modify the DFS algorithm slightly to give an
algorithm for cycle detection.
This can always be done by first running the algorithm
and assigning the
���
�� and � ��
�� values and then run-
ning through all of the edges one more time, seeing if
any of them are back edges. This would take � ����� " 	
time for the DFS and � � " 	

time for the scan through
all of the edges. In total, this uses � ��� � " 	

time.

How could you solve this problem online by identifying
back edges while the DFS algorithm is still running?

11

Topological Sorting; graphs

If
� � ����� � 	

is a DAG then a topological sorting of
�

is a linear ordering of
�

such that for each edge
��� �
 	

in the DAG,
�

appears before
 in the linear ordering.

Example: Let
� � ��� ��� ��� ��� �	� �
��� & and have��
 ��� 	

�
�

if and only if

 $��

. This is partial order, but
not a linear one.
There are several topological sortings of

�
(how many?),

for example:
� � ��� ��� ��� �	� �
������� � � ��� ��� ��� �
��� �	��� � � � ��� ��� ��� ��� �������

�

12

Topological Sorting; graphs

If
� � ����� � 	

is a DAG then a topological sorting of
�

is a linear ordering of
�

such that for each edge
��� �
 	

in the DAG,
�

appears before
 in the linear ordering.

Idea of Topological Sorting: Run the DFS on the
DAG and output the vertices in reverse order of finish-
ing time.

Correctness of the Idea: By lemma 2, for every edge��� �
 	 in a DAG, the finishing time of
�

is greater than
that of
 , as there are no back edges and the remain-
ing three classes of edges have this property.

13

Topological Sort: the Algorithm

The Algorithm:

1. Run DFS(G), computing finish time � ��
�� for each
vertex
 ;

2. As each vertex is finished, insert it onto the front
of a list;

3. Output the list

Running time: � ��� � " 	
, the same as DFS.

14

Topological Sort: Example

������ ������

������ ������

������ ������

������

������

������

������

������ ������

������

������ ������

������
�

�
� �

� � � � �
	

�
�

�

� � � � � ��

�
�� � � � �

�

...

�
a b

c d

e f

g

h

a

c

de

h

Original graph DFS forest

bf

g

1/10

2/9

3/6
7/8

4/5

11/14

12/13

15/16

Final order:
� � � � ��� ��
 ��� �
 ��"���� � .

15

