Lecture 8: DFS and Topological Sort
CLRS 22.3,22.4

Outline of this Lecture

e Recalling Depth First Search.

e The time-stamp structure.

e Using the DFS for cycle detection.

e Topological sort with the DFS.

What does DFS Do?

Given a digraph G = (V, E), DFS traverses all ver-
tices of G and

e constructs a forest, together with a set of source
vertices; and

e outputs two time unit arrays, d[v]/f[v].
DFS Forest: DFS constructs a forest F' = (V, E¢), a

collection of trees, where

E; = {(pred[v],v)| where DFS calls are made }

A Depth First Search Example

Example

d() e d 0@ ¢ 1013

root
\ 2
a | 1/10 6/9

b b
O O Of @— @2 -@f
/ \ l 78
O Og @ @
C Cc 34
original graph

Two source verticesa, d

Question: What can we do with the returned data?

Classification of the Edges of a Digraph

Tree edges: those on the DFS forest.

The remaining edges fall in three categories:

Forward edges: (u,v) where v is a proper descen-
dent of u in the tree. [u # v.]

Back edges: (u,v), where vertex v is an ancestor of
u In the tree. [u = v Is allowed.]

Cross edges: (u,v) where u and v are not ances-
tors or descendents of one another (in fact, the
edges may go between different trees).

Example of the Classification of Edges

d() (e
CHRPANS
N,

original graph

‘ R
O 02 -0

11/14
d .root ® c 1013

25 C CC
b 110v ~_y 6/9

I’QOt

5 78

®o- c PY

C: cross, F: forward,
B: back edge

Remark: Since the forest obtained with the DFS is
not unique, the classification is not unique.

Time-Stamp Structure in DFS

There is also a nice structure to the time stamps, which
IS referred to as Parenthesis Structure.

Lemma 1 Given a digraph G = (V, E), any DFS For-
est for GG, and any two vertices u,v € V,

e u IS a descendent of v in the DFS forest if and
only if [d[u], f[u]] is a subinterval of [d[v], f[v]]:
dlv] < d[u] < flu] < flv]

e u IS unrelated to v in the DFS forest if and only if
[d[u], f[u]] and [d[v], f[v]] are disjoint intervals:
flu] < d[v] or flv] < d[u]

o dlu] < d[v] < flu] < f[v] and
d[v] < d[u] < f[v] < f[u] are not possible

Cycles in digraphs: Applications of DFS

Claim: Given a digraph, DFS can be used to determine whether
it contains any cycles.

Lemma 2: Given a digraph G, and any DFS tree of G, tree
edges, forward edges, and cross edges all go from a vertex of
higher finish time to a vertex of lower finish time. Back edges go
from a vertex of lower finish time to a vertex of higher finish time.

Proof: The conclusions follow from Lemma 1.

d() e d.ll/l4.e12/13

\ Z/bS C C C6/9
a f 1/10 "
O

b
S L
O Of ‘ o OrQot 'Y
i 4 Y718
O Og @ c@qg
C Cc 34
original graph

C: cross, F: forward,
B: back edge

When Is a Digraph Acyclic

Lemma 3: A digraph is acyclic if and only if any DFS
forest of G yields no back edges.

Example:

d() e d.ll/14.e12/13

rOOt :
\ 25 c c C
a | 110 6/9

b
O O Of .%.r—&)f . f
/ \ l F B
Y V78
O Og @ c@g
c - C 34
original graph

C: cross, F: forward,
B: back edge

When |Is a Digraph Acyclic

Lemma 3: A digraph is acyclic if and only if any DFS
forest of GG yields no back edges.

Proof of <=: Suppose there are no back edges. By
Lemma 2, all edges go from a vertex of higher finish
time to a vertex of lower finish time. Hence there can
be no cycles.

When Is a Digraph Acyclic

Lemma 3: A digraph is acyclic (a DAG) if and only if
any DFS forest of (G yields no back edges.

Proof of =: Assume that GG has no cycles. We prove
that G has no back edges by contradiction.

Suppose there is a back edge (u, v).
Then v is an ancestor of u in a rooted DFS tree.
There is a path v — ... — u in the DFS tree.

The back edge + the path gives a cycle. A contradic-
tion!

Vv
O O
A S
- back edge O
_u
O O

10

Cycle Detection with the DFS

Cycle detection: becomes back edge detection by
Lemma 3!

Problem: Modify the DFS algorithm slightly to give an
algorithm for cycle detection.

This can always be done by first running the algorithm
and assigning the d[v] and f[v] values and then run-
ning through all of the edges one more time, seeing if
any of them are back edges. This would take O(n-e¢)
time for the DFS and O(e) time for the scan through
all of the edges. In total, this uses O(n + ¢) time.

How could you solve this problem online by identifying
back edges while the DFS algorithm is still running?

11

Topological Sorting; graphs

If G = (V, E) is a DAG then a topological sorting of V
Is a linear ordering of V' such that for each edge (u, v)
in the DAG, u appears before v in the linear ordering.

Example: LetV = {1,3,4,5,6,12} and have

(a,b) € E if and only if a|b. This is partial order, but
not a linear one.

There are several topological sortings of G (how many?),
for example:

(1,3,4,5,6,12), (1,4,3,6,12,5), (1,5,3,6,4, 12).

12

Topological Sorting; graphs

If G = (V, F) is a DAG then a topological sorting of V
is a linear ordering of V' such that for each edge (u, v)
in the DAG, u appears before v in the linear ordering.

Idea of Topological Sorting: Run the DFS on the
DAG and output the vertices in reverse order of finish-
Ing time.

Correctness of the Idea: By lemma 2, for every edge
(u, v) in a DAG, the finishing time of u is greater than
that of v, as there are no back edges and the remain-
Ing three classes of edges have this property.

13

Topological Sort: the Algorithm

The Algorithm:

1. Run DFS(G), computing finish time f[v] for each
vertex v;

2. As each vertex is finished, insert it onto the front
of a list;

3. Output the list

Running time: ©(n + e), the same as DFS.

14

Topological Sort: Example

() 1114 (b) 15/16

@ 12/13

Original graph DFSforest

Final order: (b, f,g,a,c,d, e, h).

15

