Average Case Analysis of Insertionsort

We want to analyze the average case number of comparisons performed by Insertionsort under the assumption that every one of the n ! different permutations of the n items $\{1,2, \ldots, n\}$ are equally likely as input.

In what follows we let $\pi=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ denote a permutation of $\{1,2, \ldots, n\}$

Definition: Let (p, q) be such that $1 \leq p<q \leq n$. We say that (p, q) is an inversion of π if q appears before p in π.
Example: The inversions of $\pi=\langle 3,4,1,2\rangle$ are $(1,3),(1,4)$, $(2,3),(2,4)$.
Definition: For $p<q$ set

$$
\begin{aligned}
Z_{p, q} & = \begin{cases}1 & \text { if }(p, q) \text { is an inversion in } \pi \\
0 & \text { if }(p, q) \text { is not an inversion in } \pi\end{cases} \\
I_{p} & =\sum_{q=p+1}^{n} Z_{p, q}
\end{aligned}
$$

$=$ the total number of inversions of the form (p, q)
Now suppose that $p=a_{j}$ in the original permutation π..
How many comparisons are performed by Insertionsort when p is compared to the items to its left? We will now see that the answer is $I_{p}+e_{p}$ where $e_{p} \in\{0,1\}$
If $j=1$ then no comparisons are performed since we're at the left of the array. On the other hand, since we're at the left of the array $p=a_{1}$ is not involved in any inversions, so $I_{p}=0$. Setting $e_{p}=0$ gives the result.

If $j>1$ note that when it's time to process p the items to p 's left are the items $a_{a}, a_{2}, \ldots, a_{j-1}$ from π, but now in sorted order.
So, the algorithm will compare p to all of the items $q \in$ $\left\{a_{a}, a_{2}, \ldots, a_{j-1}\right\}$ such that $q>p$, each time shifting one item to the left. The algorithm stops either when it compares a_{j} to the largest $q \in\left\{a_{a}, a_{2}, \ldots, a_{j-1}\right\}$ such that $q<p$ or, if no such element exists, when it reaches the leftmost end of the array.
The important observation is that q has the property

$$
q \in\left\{a_{a}, a_{2}, \ldots, a_{j-1}\right\} \text { and } q>p
$$

if and only if (p, q) is an inversion of π.
Thus, the number of comparisons performed by the algorithm when processing p is either (i) I_{p} or (ii) $1+I_{p}$ We will write this as $I_{p}+e_{p}$ where $e_{p} \in\{0,1\}$
Summing over all of the a_{j} (which are a permutation of $1,2, \ldots, n$) we see that the total amount of work perfomed by the algorithm is exactly

$$
\begin{aligned}
\sum_{j=1}^{n}\left(I_{a_{j}}+e_{a_{j}}\right) & =\sum_{p=1}^{n} I_{p}+\sum_{p=1}^{n} e_{p} \\
& =\sum_{p, q: 1 \leq p<q \leq n} Z_{p, q}+\sum_{p=1}^{n} e_{p}
\end{aligned}
$$

The final thing to notice is that for any fixed p, q it is equally likely that in a random permutation p will appear before q and that p will appear after it. Thus

$$
\forall p, q, \operatorname{Pr}\left(Z_{p, q}=1\right)=\operatorname{Pr}\left(Z_{p, q}=0\right)=\frac{1}{2}
$$

and

$$
E\left(Z_{p, q}\right)=1 \cdot \operatorname{Pr}\left(Z_{p, q}=1\right)+0 \cdot \operatorname{Pr}\left(Z_{p, q}=0\right)=\frac{1}{2}
$$

$E()$ is the expectation operator. To finish we now recall the Linearity of the expectation operator, i.e., that $E(X+Y)=$ $E(X)+E(Y)$ (see the appendix of CLRS for a review of this fact) to find that the expected amount of work done by Insertionsort is

$$
\begin{aligned}
E\left(\sum_{p, q: 1 \leq p<q \leq n} Z_{p, q}+\sum_{p=1}^{n} e_{p}\right) & =\sum_{p, q: 1 \leq p<q \leq n} E\left(Z_{p, q}\right)+\sum_{p=1}^{n} E\left(e_{p}\right) \\
& =\frac{n(n-1)}{2} \frac{1}{2}+\sum_{p=1}^{n} E\left(e_{p}\right) \\
& =\frac{n(n-1)}{4}+\sum_{p=1}^{n} E\left(e_{p}\right)
\end{aligned}
$$

Recalling that $e_{p} \in\{0,1\}$ we have that $\sum_{p=1}^{n} E\left(e_{p}\right) \leq n$ so the average case of insertionsort runs in approximately $n^{2} / 4$ time, half the worst case $n^{2} / 2$ time needed.

Note: In order to simplify the analysis we did not analyze the value of $\Sigma_{p=1}^{n} E\left(e_{p}\right)$ exactly. As an extra credit exercise, try doing this.

