
Average Case Analysis of Insertionsort

We want to analyze the average case number of compar-
isons performed by Insertionsort under the assumption that
every one of the ��� different permutations of the � items�����	�
������� ��� are equally likely as input.

In what follows we let � � ����� � ��� ������� ����� denote a permu-
tation of

�����	�
������� ���
Definition: Let ��� ���! be such that

�#" � $ �%" � . We say
that ��� �&�' is an inversion of � if

�
appears before � in � �

Example: The inversions of �(� ��) �+*,���-�.� � are � ���) .� � �-�+*/ 	�� �
�) 	� , � �
�+*/ 	�
Definition: For � $ �

set

0214365 �
789 8: � if �;� ���! is an inversion in �<

if �;� ���! is not an inversion in �
�

=>1 � �?5A@!1&B �
0C1D3E5

� the total number of inversions of the form ��� �&�'
Now suppose that �F� �!G in the original permutation � � .
How many comparisons are performed by Insertionsort when
� is compared to the items to its left? We will now see that
the answer is

= 1IH J&1
where

J&1LK � < �� �
If M � �

then no comparisons are performed since we’re at
the left of the array. On the other hand, since we’re at the
left of the array �N� �O� is not involved in any inversions, so= 1 � < �

Setting
J&1 � <

gives the result.

1

If M�� �
note that when it’s time to process � the items to � ’s

left are the items ��� � � � ������� � G�� � from � � but now in sorted
order.
So, the algorithm will compare � to all of the items

� K� � � � � � ������� �'G�� � � such that
� � � , each time shifting one

item to the left. The algorithm stops either when it compares
� G to the largest

� K � � � � � � ������� � G�� � � such that
� $ � or, if

no such element exists, when it reaches the leftmost end of
the array.
The important observation is that

�
has the property� K � � � � � � ������� � G�� � � and

� � �
if and only if ��� �&�' is an inversion of � �
Thus, the number of comparisons performed by the algo-
rithm when processing � is either (i)

= 1
or (ii)

� H =+1
We will

write this as
=+1 H J 1

where
J 1 K � < �� �

Summing over all of the � G (which are a permutation of�-�.�
������ � �) we see that the total amount of work perfomed
by the algorithm is exactly�?G @ �

� = ��� H J ���
	 � �?1&@ �
=+1 H �?1&@ �

J 1
� ?14365�� �� 1�� 5
� 0 1D3E5 H

�?1&@ �
J&1

The final thing to notice is that for any fixed � �&� it is equally
likely that in a random permutation � will appear before

�
and that � will appear after it. Thus

� � ���,����� � 0 1D3E5 � �D � ��� � 0 1D3E5 � < �
�
�

2

and �
� 0 1D365 � ��� ��� � 0 1D3E5 � �D H < � ��� � 0 1D365 � < �

�
��

� is the expectation operator. To finish we now recall the
Linearity of the expectation operator, i.e., that

�
��� H � ��

��� H
�
� �

(see the appendix of CLRS for a review of
this fact) to find that the expected amount of work done by
Insertionsort is� �

�	 ?1D3E5�� �� 1�� 5
� 0C1D3E5 H
�?1&@ �
J 1�
�� � ?1D3E5 � � 1�� 5 ��

�
� 0C1D3E5 H �?1	@ �

�
� J 1

� � � ��� �D
�

�
� H �?1	@ �

�
� J 1

� � � ��� �D
* H �?1&@ �

�
� J 1

Recalling that
J 1 K � < �� � we have that � �1	@ �

�
� J 1 " � so

the average case of insertionsort runs in approximately � ��� *
time, half the worst case � ��� � time needed.

Note: In order to simplify the analysis we did not analyze
the value of � �1&@ �

�
� J 1 exactly. As an extra credit exercise,

try doing this.

3

