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Optimal Bandwidth Assignment for
Multiple-Description-Coded Video

Pengye Xia, S.-H. Gary Chan, Senior Member, IEEE, and Xing Jin

Abstract—In video streaming over multicast network, user
bandwidth requirement is often heterogeneous possibly with
orders of magnitude difference (say, from hundreds of kb/s for
mobile devices to tens of Mb/s for high-definition TV). Multiple
description coding (MDC) can be used to address this bandwidth
heterogeneity issue. In MDC, the video source is encoded into
multiple independent descriptions. A receiver, depending on its
available bandwidth, joins different descriptions to meet their
bandwidth requirements.

An important but challenging problem for MDC video multicast
is how to assign bandwidth to each description in order to maxi-
mize overall user satisfaction. In this paper, we investigate this issue
by formulating it as an optimization problem, with the objective to
maximize user bandwidth experience by taking into account the
encoding inefficiency due to MDC.

We prove that the optimization problem is NP-hard. However, if
the description number is larger than or equal to a certain threshold
(e.g., if the minimum and maximum bandwidth requirements are
100 kb/s and 10 Mb/s, respectively, such threshold is seven descrip-
tions), there is an exact and simple solution to achieve maximum
user satisfaction, i.e., meeting all the bandwidth requirements. For
the case when the description number is smaller, we present an effi-
cient heuristic called simulated annealing for MDC bandwidth as-
signment (SAMBA) to assign bandwidth to each description given
the distribution of user bandwidth requirement.

We evaluate our algorithm using simulations. SAMBA achieves
virtually the same optimal performance based on exhaustive search.
By comparing with other assignment algorithms, SAMBA signifi-
cantly improves user satisfaction. We also show that, if the coding
efficiency decreases with the number of descriptions, there is an
optimal description number to achieve maximal user satisfaction.

Index Terms—Multiple-description-coded video, optimal de-
scription bandwidth assignment, simulated annealing, streaming.

1. INTRODUCTION

ITH the penetration of broadband Internet access and
advances in video compression techniques, there has
been increasing interest in both stored and live video services.
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Fig. 1. Video streaming using MDC to heterogeneous users.

Websites like YouTube and MSN Video have offered numerous
on-demand video clips. Online live TV streaming with the use
of IP multicast or peer-to-peer (P2P) technology have also been
widely deployed (e.g., AT&T IPTV, PPLive, CoopNet, and
SplitStream) [1]-[4].

To stream video to a large group of users, meeting heteroge-
neous bandwidth requirements presents a challenging problem.
Such bandwidth requirement may differ by orders of magnitude,
from hundreds of kbits/s for mobile devices to tens of Mbits/s
for high-definition TV. In order to serve all the users, obviously
it is neither efficient nor feasible for the server to transcode the
stream to each of the user bandwidths. A simple approach is to
encode the video into a number of streams of different bitrates,
which users join to best match their bandwidth requirements.
Given the wide range of bandwidth requirements and limited
number of video streams, this approach is clearly not satisfac-
tory, resulting in many receivers getting a stream substantially
lower than their bandwidth requirements.

A much better approach is to use multiple description coding
(MDC), which encodes the video into multiple independent “de-
scriptions” of different bandwidth [3]-[6]. The descriptions can
be arbitrarily combined to best match user’s bandwidth require-
ment. Such approach provides many more options of video bi-
trates to meet different user requirements, e.g., m descriptions
provide up to 2™ different video bitrates [5].! A user chooses to
receive a set of descriptions, where the sum of their bandwidth
best matches the user bandwidth requirement.

We illustrate in Fig. 1 video streaming using MDC to hetero-
geneous users. The video is encoded into m descriptions with
bitrates dy,ds,...,d,,. The users, depending on their access

ITn this paper, we use “user” and “receiver” interchangeably.

1520-9210/$26.00 © 2010 IEEE



XIA et al.: OPTIMAL BANDWIDTH ASSIGNMENT FOR MULTIPLE-DESCRIPTION-CODED VIDEO 367

bandwidth, get the descriptions that best match their bandwidth
requirements so as to maximize their video quality.

In this paper, we study optimal bandwidth assignment
for descriptions given heterogeneous bandwidth require-
ments. We expect an optimal assignment because of the
following: if description bandwidths are set too high, the
low-bandwidth receivers may not benefit from them (as
joining them may exceed their bandwidth), leading to low
video quality. On the other hand, if description bandwidths
are set too low, those high-bandwidth receivers may not
be able to fulfill their bandwidth by joining them, leading
again to low video quality. Therefore, we expect optimal
description bandwidths to achieve the best overall video quality.

The contributions of our work are as follows.

1) Problem formulation and complexity analysis: Given het-
erogeneous user bandwidth requirements (which can be
in terms of a distribution), we formulate an optimization
problem for assigning bandwidth to each description so
as to maximize overall user satisfaction. The user satis-
faction is a function of coding efficiency as well as band-
width requirement. We prove that the optimization problem
is NP-hard.

2) An exact solution for description number larger than a cer-
tain threshold: Our problem is in general NP-hard. How-
ever, when the number of descriptions is larger than or
equal to a certain value (e.g., if the minimum and maximum
bandwidth requirements are 100 kb/s and 10 Mb/s, respec-
tively, such threshold is seven descriptions), we show that
the problem can be solved exactly and efficiently. Our so-
lution takes only O(m) computational time to set m de-
scription bandwidths with all user bandwidth requirements
fully matched. In other words, maximum overall user sat-
isfaction can be achieved in this case.

3) An efficient heuristic for smaller description number: For
the case where m is lower than the threshold, we present
an efficient heuristic called simulated annealing for MDC
bandwidth assignment (SAMBA) to set the description
bandwidths. SAMBA is shown to be efficient, and vir-
tually matches the optimum based on exhaustive search.
As compared with other simple assignment algorithms,
our algorithm can achieve much higher user satisfaction.
Using SAMBA, we further show that, if the coding effi-
ciency decreases with the description number, there is an
optimal m to achieve maximum user satisfaction. Such m
is typically small (in the range of 3-5).

This paper is organized as follows. We review related work in
Section II, and describe our problem formulation in Section III.
In Section IV, we show an exact assignment method given
description number not lower than the threshold, and SAMBA
to solve the general problem. Illustrative simulation results
and comparisons are presented in Section V. We conclude in
Section VL.

II. RELATED WORK

A. Literature Review

MDC has found numerous applications in video streaming
[7]-[14]. Much of these previous works on MDC only focus

on its error resilient techniques to ensure transmission robust-
ness, and have not considered the assignment of description
bandwidth to achieve system performance as investigated in this
paper.

Other methods used in multirate video multicast include lay-
ered coding (or scalable video coding), where higher layer can
be joined only if all the lower layers have been chosen. Perfor-
mance analysis of layered coding and comparisons with MDC
can be found in [15]-[17]. In contrast to layered coding, each de-
scription in MDC can be joined or left independently. This flex-
ibility makes MDC a very good candidate to match hetereoge-
neous video streaming rate requirements. Furthermore, because
the descriptions are not coupled as tightly as in layered coding,
MDC can achieve better error containment in case packets are
lost. There has been work on optimal bandwidth assignment for
layered coding [18]. However, the techniques used for layered
coding cannot be directly applied to MDC because the com-
plexity MDC optimization is much higher due to the combinato-
rial nature of the problem. MDC has higher coding inefficiency
as compared with layered coding [8], [19]-[21]. Seldom has
there been work on how to optimally assign description band-
width with such efficiency consideration. We study this issue
here.

The work in [22]-[24] has addressed optimal bandwidth
assignment problem for MDC. We differ here in several major
ways. Firstly, our paper provides more general formulation
with coding efficiency consideration. Furthermore, we show
that when the description number is no less than a certain
threshold, there is a simple and efficient algorithm to achieve
exact optimum which matches all the bandwidth requirements
in the network. We also show that there is an optimal descrip-
tion number to achieve the best user satisfaction, which has
never been studied in the literature before. Our approach based
on simulated annealing is efficient and achieves performance
close to exhaustive search.

B. Review of Simulated Annealing

Because our efficient heuristic SAMBA is based on simulated
annealing, we review its principles here. Simulated annealing
was first proposed by Kirkpatrick et al. in 1983 as a frame-
work to find approximate solution for difficult combinatorial
optimization problems [25]. It takes the concept from statistical
mechanics and is inspired by the behavior of the physical system
in the annealing process.2

Given a combinatorial problem, we try to find the best
solution of lowest cost which is defined by a cost function.
Conventional iterative improvement heuristics iteratively find
a solution of lower cost by making small local alternations and
stop at a local optimum. In contrast, simulated annealing has a
better chance to approach global optimum. The key idea is that
in each iteration, the acceptance of a solution of higher cost is
probabilistic. In other words, simulated annealing occasionally
allows an “uphill” movement instead of always searching
“downhill” to avoid being trapped in the local optima. The
probability of accepting a higher cost solution is controlled

2Annealing is a process of heating and slowly cooling down to toughen a
subject and reduce its brittleness.
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by the temperature parameter. The higher the temperature,
the more probable the acceptance of a higher cost solution.
The temperature parameter is initially high and then slowly
lowered down, which is analogous to the temperature in the
real annealing process. As stated in [25], four ingredients
are needed to apply simulated annealing to a combinatorial
problem:

* definition of a state (or configuration) of the system, which
is usually a point in the search space;

» an energy (or cost) function that can be evaluated at each
state, which is usually equivalent to the cost function in the
combinatorial problem;

* atransition function which picks a neighbor state, evaluates
its energy, and decides whether the system moves to the
state based on the probability;

 an annealing schedule to control the initialization and low-
ering down of the temperature parameter.

Given the four ingredients, a generic simulated annealing algo-
rithm can be stated as follows.

e Step I) Set the initial state and the initial temperature.

e Step 2) Make a transition from the current state to a
neighbor state.

» Step 3) Repeat Step 2 for a number of times, record down
the top state of lowest energy.

» Step 4) Lower down the temperature according to the an-
nealing schedule. If the end of the schedule is reached, re-
turn the top state and its energy. Otherwise, repeat Steps 2
and 3 by using the top state from previous temperature as
the starting state.

The framework provides freedom for the design of the transi-
tion function and the annealing schedule. The transition function
contains two major steps. On the one hand, in each iteration,
the function should randomly pick a state from the neighbor-
hood. The definition of the neighborhood depends on the given
problem. For instance, in the example of the traveling salesmen
problem in [25], a state is defined as a permutation list of the
cities and its neighbor state is defined as another list which can
be generated by reversing any section of the permutation list.
For another instance, in image restoration problem in [26], the
neighborhood is defined by the neighborhood radius which is
related to the temperature. On the other hand, given a neighbor
state, the transition function should decide the transition proba-
bility. In [25], the author suggests that when the neighbor state
has lower energy, the probability is one; otherwise, the prob-
ability is proportional to the Boltzmann factor of the energy
difference. The detail annealing schedule (including how to ini-
tialize and to lower down the temperature) depends on the na-
ture of the given problem and can be developed by trial and error
[25]. In the example of partition problem in [25], the tempera-
ture is cooled down exponentially.

III. PROBLEM FORMULATION

Consider a video stream to be accessed by a large pool of
users with heterogeneous bandwidth requirements. In Fig. 2, we
show the optimization being done at the server. The server en-
codes the stream into multiple descriptions, given the descrip-
tion number m. User j has bandwidth requirement c; and a
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Fig. 2. Optimization model for MDC bandwidth assignment.

TABLE I
MAJOR SYMBOLS USED IN THE PAPER AND THEIR EXPLANATIONS

Symbol | Explanation

d; ' description bandwidth

m description number

n number of users

h heterogeneity factor

¢j bandwidth requirement for user j

v; total joined video bandwidth

T; bandwidth matching factor, defined as the ratio
of v; and c;

w; weight for user j, which represents the user
importance

Qm coding efficiency factor given m descriptions

B base factor used to model coding efficiency factor

d description bandwidth assignment vector

Sind individual satisfaction given description band-
widths and user bandwidth requirement

S overall network satisfaction given description
number and bandwidth assignment

S* optimal overall satisfaction

f individual satisfaction function, which is a func-
tion of 7; and oy,

K matrix when Kj;;=1 if and only if user ¢ joins
description j

certain importance according to a weight value w;. Users em-
ploy a greedy approach in joining the descriptions to maxi-
mize their video quality, i.e., they join the descriptions so that
the total bandwidth best matches the bandwidth requirement
without overflowing.3 We show some of the important symbols
used in the paper in Table L.

Denote the bandwidth of description 4 by d;. Then dis m-di-
mensional vector (sorted in the increasing order) and represents
a particular bandwidth assignment for the descriptions. The total
joined video bandwidth v; is the sum of received description
bandwidths. Clearly we need

vj SC]'. (1)

Let K;; € {0, 1} be a binary number with 1 indicating that user
7 chooses description 7. We have

v = i Kudl
i=1

We consider that bandwidth is normalized to some unit (say,
50 kb/s), and hence c; and d; are integral. The heterogeneity

@

3Note that the bandwidth requirement may be represented by a distribution. If
this is the case, then there is a certain fraction of users with bandwidth require-
ment c; according to the distribution, and w; is the importance of each of the
users in the group. The remaining study extends naturally and straightforwardly
to this case.
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factor h is defined as the difference between minimum and max-
imum user bandwidth requirement, i.e.,

h = maxcj; —minc; + 1. 3)
J J

Define 7; the bandwidth matching factor given by the ratio of
v; and ¢j, i.e.,

rj= @)

Define a,, € (0, 1] as the coding efficiency factor given m
descriptions, which decreases with m. We model user individual
satisfaction as a monotonically increasing function f in terms of
70y, The individual satisfaction of user j is hence given by

Sina(d, cj) = f (amr;). (5)

Let n be the number of users in the network. The overall net-

work satisfaction is hence given by

> w;Sina(d, cj)
= j=1

Sd) = ——— ©)
Z

Our objective is then to find optimal bandwidth assignment &
0 as to maximize (6) subject to (1), (2), (4), and (5), i.e.,
S*:S(_:“):II@XS(_B. (7
d
The problem is NP-hard (shown in the Appendix, by finding
a polynomial reduction from the subset sum problem).

IV. ALGORITHMS FOR OPTIMAL ASSIGNMENT
OF DESCRIPTION BANDWIDTHS

In Section IV-A, we present the threshold value for descrip-
tion number. We show that when the description number is no
less than the threshold, there is a simple and efficient assign-
ment algorithm to match all the user bandwidth requirements.
In Section IV-B, we present an efficient heuristic SAMBA to
assign description bandwidth for the more general case.

A. Threshold and the Exact Solution

Consider that user bandwidth requirement ranges in [a, b],
where a and b are the maximum and minimum user bandwidth
requirement, i.e., ¢ = min; ¢; and b = max; c;.

Let us first consider the simple case where a is equal to one
(i.e., equal to the basic unit). All the values in [a, b] can be con-
verted to a binary number by changing base to 2. The number
of binary digits for a particular value is bounded by the number
of digits of b in binary form, which is clearly |log, b| + 1.

A binary number can be regarded as a linear combination of
2’s powers with coefficients either 0 or 1. For example, the bi-
nary form of 25 is 11001. If the description bandwidth is as-
signed to be a power of 2 (i.e., 1,2,22,...,2™~1), then the bi-
nary form of the bandwidth requirement represents exactly the
joining choice, with coefficient 1 to join the corresponding de-
scription and O otherwise. As in the example above, the user

with bandwidth 25 units will choose to join descriptions with
bandwidth 16, 8, and 1 units. The maximum number of binary
digits indicates the description number, which is |log, b] + 1.

From above, it is clear that if m > |log, b] + 1, all the band-
width requirements can be fully matched, because their values
can be expressed as 0—1 linear combination of the description
bandwidths.

Now consider a to be any integer larger than one. In this case,
bandwidth requirement can be expressed as (a — 1) + x, where
x € [1,b — a + 1]. By the previous argument, z can be written
in binary form with at most |log,(b — a + 1)| + 1 digits. Then
any bandwidth requirement can be expressed as a linear combi-
nation of a description bandwidth (¢ — 1) and the binary expres-
sion for z. According to the definition of heterogeneity factor in
(3), we have h = b — a + 1. Therefore, the threshold value for
the description number in terms of A is

log, h + 2. 8)

If m is no less than this value, the description bandwidths are
hence {(a —1),2°, 2, ..., 2l°g: "]} With this assignment, all
the bandwidth requirements can be fully matched.

It simply takes O(m) computations to decide the bandwidths
for the descriptions, given m is no less than the threshold.

B. SAMBA

In this section, we present an efficient heuristic SAMBA to
solve the general problem when description number m is no
larger than the threshold given by (8).

If m is less than the threshold, the problem is to search in an
m-dimensional integer space for the optimal description band-
widths. The search space is discrete and finite, because each de-
scription can only take integral bandwidth no larger than the
maximum bandwidth requirement in the network. This condi-
tion makes it feasible to adopt simulated annealing algorithm
(Section II-B) to solve the problem.

In SAMBA, a state is defined as a vector d of description
bandwidths (sorted in the increasing order). Each state is associ-
ated with an “internal energy”, which is defined to be the nega-
tive of the satisfaction value (as in simulated annealing, we seek
to minimize an objective function). SAMBA starts with an ini-
tial state and iteratively transits to other state seeking for lower
internal energy (and hence higher user satisfaction).

Each state has a neighborhood given by a radius . By saying
state dy is a neighbor of state do, we mean ||d1 —do|| < r
(we use [1-norm in the simulation). At each iteration, SAMBA
randomly picks a neighbor of the current state as the target state,
and decides whether or not to make the transition according to
a transition probability p.

We further define a temperature 7', which exponentially de-
creases as the algorithm iterates. Let ¢ be the current iteration
number and K be the total number of iterations. We have

T =K — e 1, 9)

The higher T is, the larger is the neighborhood radius r. We

define r as
hT
1—e 1"

r= maX{Q, (10)
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We then define transition probability as follows. Denote the cur-
rent state by d and target state by d;. The energy difference be-
tween the two states is given by the difference of their satisfac-
tion value, i.e., S(d)—S(d;). If S(d)— S(dy) < 0, the transition
probability p is defined as 1. Otherwise, p is a decreasing func-
tion of (S(d) — S(dy))/T with initial value close to 1. Given T,
the lower the satisfaction of the target state is, the smaller is the
transition probability. Further, with large 7', any target state has
transition probability near 1. Therefore, we have

—

if S(d;) > S(d)
otherwise.

-

p(d, dy) = (11)

L,
{ (S(@)-S@)/1.

This definition of p is equivalent to the definition of transition
probability in [25] which uses Boltzmann factor.

At the early iterations when the temperature is high, SAMBA
picks the target state from a large neighborhood. Because the
transition probability to any picked state is high, the algorithm
randomly moves among the states. As the algorithm iterates, the
temperature gets lower. SAMBA picks the target state from a
smaller neighborhood and the transition probability to a state of
lower satisfaction decreases. In other words, the algorithm grad-
ually settles to a neighborhood with locally-optimal satisfaction.
By running SAMBA with different initial states, we have great
chance to find the global optimum. The whole algorithm can
hence be summarized in the following steps.

e Step 0) For the first iteration, set the initial temperature

value and the initial state d_;). Find out initial satisfaction
Sp. Then set the highest satisfaction Sy,.x = Sp and its
associated state Jmax = JE).

e Step I) Update the temperature value.

» Step 2) Find a target state dy in the neighborhood and eval-
uate its satisfaction S. If S > Shax, assign d; and S to
d_'max and Spax, respectively.

» Step 3) Make the transition decision according to the tran-
sition probability.

* Step 4) Repeat Steps 2 to 3 for a number C' times.

e Step 5) Set current state to d .y and repeat Steps 1 to 4 for
a number K iterations. Return S, and d_'max.

The computational complexity of our algorithm is as follows.
According to Steps 4 and 5, Steps 1 to 3 are repeated for KC'
times. The first and the third steps take constant computations
while Step 2 has to calculate the overall satisfaction for the
target state. According to (6), S is a weighted sum of indi-
vidual satisfactions S;, 4. Given d and c¢j, evaluating each
Sina becomes an integer Knapsack problem and takes at most
O(2™) time. Therefore, given n users, Step 2 takes O(n2™)
time. Thus, the whole algorithm runs in O(KCn2™) time.
In contrast, the exhaustive search has to evaluate S for all
the states in order to decide the optimal overall satisfaction.
Each state (J in sorted order) is a combination of m integers
in [1, max; ¢;]. The number of such combinations is lower
bounded by (max; ¢;)™/m!. Given (3), we can further bound
the number of states by

—(ma’;ﬁ = H Z (12)
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SAMBA evaluates S for KC' times, which is usually much
smaller than []/~(h/7). This is why SAMBA is much more
efficient than exhaustive search.

So far, we are given the description number m. There is in
fact an optimal m to achieve maximum user satisfaction among
all m’s. This is expected as a.,, is a decreasing function in m
(due to decreasing coding efficiency) while r; is an increasing
function in m (due to better bandwidth matching). Because all
the bandwidth requirements are fully matched if m is larger than
the threshold as given in (5), the optimal m to achieve maximum
user satisfaction is bounded by the threshold. To search for the
optimal description number, we can run SAMBA for increasing
m up to the threshold in the simulation.

V. ILLUSTRATIVE SIMULATION RESULTS

In this section, we present illustrative simulation results
to show the efficiency of our algorithm. In Section V-A, we
describe simulation environment. In Section V-B, we compare
SAMBA with other bandwidth assignment schemes and ex-
amine the influence of some important factors.

A. Simulation Environment and Parameters

In our simulation, we have compared SAMBA with exhaus-
tive search, which always achieves the optimum. Besides, we
have also compared SAMBA with other simple bandwidth as-
signment schemes, which include uniform assignment (in which
all the descriptions have the same bandwidth), linear assignment
(in which the description bandwidth is linearly increased), expo-
nential assignment (in which the description bandwidth is expo-
nentially increased), and random assignment (which randomly
assigns bandwidth for each description).

We consider a simple user individual satisfaction function
given by f(amr;) = (aumr;)*, where k € R*. The function is
reasonable as it is strictly increasing in [0, 1] and the minimum
and maximum are 0 and 1, respectively. For concreteness, we
consider coding efficiency as a,,, = ™1, where 8 < 1 (the
value of § depends on the underlying MDC techniques used).

We consider that the number of users of bandwidth require-
ment c is proportional to some distribution given by N (c). We
use a simple truncated normal curve as the bandwidth distri-
bution, i.e., ¢ ~ Np(u,0?). Fig. 3 show a truncated normal
¢ ~ Nr(10,5).

Each user has its “importance” in terms of a weight w(c),
which is a function of bandwidth requirement. According to (6),
simulation on w(c¢) with uniform bandwidth requirement distri-
bution is equivalent to simulation on N (c¢) with constant weight.
Therefore, we only focus on the influence of N(c¢) and expect
the similar result for w(c).

Unless otherwise stated, we use baseline parameters k = 2,
B =1,m = 3,and v; € [1,100].

B. Illustrative Results

Fig. 4 plots the overall satisfaction S versus heterogeneity
factor h given different bandwidth assignment schemes. The
satisfaction S is decreasing with h. This is because it becomes
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Fig. 3. Example bandwidth requirement distribution ¢ ~ Nr(10,5).
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Fig. 4. Overall satisfaction (.5) versus heterogeneity factor / given different
schemes.

more difficult to match the bandwidth requirements if hetero-
geneity factor gets higher. In the graph, for each h, overall sat-
isfaction given by SAMBA overlaps with that given by exhaus-
tive search, and is much better than those given by the other
schemes. SAMBA performs virtually the same as exhaustive
search. Exponential assignment performs better than uniform
assignment, random assignment, and linear assignment when h
is not large. Besides, random assignment and linear assignment
have the similar performance and uniform assignment has the
better performance than them.

Fig. 5 plots the overall satisfaction S versus the mean value
1 given different bandwidth assignment schemes. If a scheme
is robust to the variation of bandwidth requirement distribution,
its overall satisfaction should not change much with different .
From the graph, S given by SAMBA overlaps with that given by
exhaustive search and is not affected by the changes of 1. How-
ever, S given by the other schemes is lower when p is small.
The comparison shows SAMBA performs as well as exhaustive
search and is robust when the bandwidth requirement distribu-
tion changes. Besides, exponential assignment performs better
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Fig.5. Overall satisfaction (.S) versus mean value (¢+) given different schemes.
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Fig. 6. Overall satisfaction (S) versus description number () given different
schemes.

than uniform assignment and much better than linear assign-
ment and random assignment. Linear assignment and random
assignment have the similar performance.

Fig. 6 plots the overall satisfaction S versus number of
descriptions m given different bandwidth assignment schemes.
The overall satisfaction S increases with m. This is because
more descriptions can provide more options of bitrates to
meet heterogeneous user bandwidth requirements. For each
m, SAMBA performs as well as exhaustive search* and much
better than the other schemes. The satisfaction of SAMBA fi-
nally settles to a value, because all the bandwidth requirements
are fully matched after m reaches the threshold. Exponential
assignment achieves the same performance after m reaches the
threshold. This is because, in this case, the exact assignment in
Section IV-A is optimal and its descriptions have exponentially
increasing bandwidths. Uniform assignment, linear assignment,
and random assignment have the similar performance.

“Due to high computational complexity, it becomes infeasible to find overall
satisfaction using exhaustive search when m is large. Therefore, we only plot
S given by exhaustive search for rn < 3, which overlaps with .S’ given by
SAMBA.
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We next examine the influence of coding efficiency. Fig. 7
plots the overall satisfaction S versus number of descriptions
m given different (3. Given decreasing coding efficiency (3 less
than 1), the overall satisfaction first increases with m and then
decreases with m. The reason is as follows. When m is small,
satisfaction is low because the bandwidth requirements are
badly matched (i.e., 7; is small). When m is large, satisfaction
is also low because the coding efficiency is low (i.e., a, is
small). Therefore, we expect the optimal m when the effect of
decreasing coding efficiency and the effect of better bandwidth
matching balances with each other. From the figure, we observe
that the optimal m becomes smaller when coding efficiency de-
creases faster (i.e., [ is smaller). In the MDC implementation,
m should be chosen according to .

We then examine the influence of k (the coefficient to model
satisfaction function f). Fig. 8 plots the overall satisfaction S
versus description number m given different k. S first increases
with m then decreases with m. This is due to decreasing coding
efficiency (with # = 0.85). And the optimal m is depending
on the choice of k. The reason is as follows. Function f has
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Fig. 9. Individual satisfaction (.5) versus bandwidth requirement with ¢ ~
Nr(0,10).

sind

Fig. 10. Individual satisfaction (.S) versus bandwidth requirement with ¢ ~
Nr(50,10).

different convexity with different k. When f is convex (k =
2), the satisfaction increases more rapidly when the bandwidth
matching factor r; approaches 1. In this case, users emphasize
more on high-quality service. In the other case, when f is con-
cave (k = 0.5), the satisfaction increases more rapidly when
r; is small, which implies users emphasize more on the avail-
ability of the content. As a result, optimal m may change given
different k. For each m, satisfaction is lower if £ = 2, because
22 < 295 for any z € [0, 1].

We finally examine the influence of bandwidth require-
ment distribution. Figs. 9—-11 plot the individual satisfaction
Sina values for each bandwidth requirement ¢ given dif-
ferent bandwidth requirement distributions ¢ ~ Np(0,10),
¢ ~ Nr(50,10), and ¢ ~ Np(100,10), respectively. From
the figures, users with bandwidth requirements around p have
higher individual satisfaction. The reason is as follows. The
number of users N (c¢) is larger, if ¢ is closer to p. According to
the (6), if N(c) is larger, Sind(cz ¢) has greater influence on S.
Therefore, SAMBA satisfies users of bandwidth ¢ with higher
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Fig. 11. Individual satisfaction (.5) versus bandwidth requirement with ¢ ~
Nr(100,10).

TABLE II
DESCRIPTION BANDWIDTHS ASSIGNED BY SAMBA

Distribution | di do d3 da S
Nr(0,10) 1 2 4 8 09460
Nr(50,10) | 12 19 23 27 0.9362

Nr(100,10) | 4 7 15 72 0.9670

precedence to maximize S. Further, we expect the influence
of w(c) is similar (the users of bandwidth requirement ¢ get
higher individual satisfaction if their weight w(c) is larger).

Table II shows the description bandwidths assigned by
SAMBA and the corresponding overall satisfaction, given the
above three different bandwidth requirement distributions. Note
that most of the users are with bandwidth requirement around
the mean of the corresponding distribution. It is easy to see that
the assignment as shown by each row significantly reduces the
bandwidth mismatch for these users.

VI. CONCLUSION

In this paper, we study how to optimally assign description
bandwidth for MDC for video streaming to large group, so that
their heterogeneous bandwidth requirements can be best satis-
fied. We formulate the problem as an optimization problem and
propose algorithms to address it.

We have proved that the formulated optimization problem is
NP-hard, by finding a polynomial reduction to the problem from
the subset sum problem. We show that when the description
number is no smaller than a certain threshold, simple and effi-
cient assignment algorithm of run-time complexity of O(m) can
fully match all the bandwidth requirements. For the general case
when m is less than the threshold, we have proposed and studied
the heuristic SAMBA, which uses simulated annealing to effi-
ciently find the optimal description bandwidth assignment. Fur-
thermore, there exists an optimal choice for description number
to achieve maximum user satisfaction.

Simulation results have shown that SAMBA achieves much
better user satisfaction than other assignment methods and
closely matches the optimum based on exhaustive search. With

the consideration of coding efficiency, we show that indeed
there is an optimal description number to achieve maximum
user satisfaction.

APPENDIX

In this section, we prove our problem is NP-hard. We find a
polynomial reduction from the subset sum problem L. to our
problem L. In order to have L. <p L, we prove any input of L,
can be transformed into input of L in polynomial time. Also the
output of L is equivalent to that of L. and can be transformed
back in polynomial time as well.

The input of L. is (z1,22,...,Zm,t), with all z; and ¢
positive integers. The output is a “yes” or “no” to decide
whether ¢ is sum of a subset of {z;}. We assume z; # 0,
because after excluding zeros the problem is still equivalent to
the original one. We construct the input for L in the form of
(z1,22,...,%m, ».; T;,t,m), where the first m + 2 elements
are user bandwidth requirements and the last one is the descrip-
tion number. We further set «(m) = 1 and let all users have the
same weight. until this point, we have transformed the input of
L. to that of L, which obviously takes polynomial time.

The output of L is (dy,ds, ..., dmn, S), where d; is descrip-
tion bandwidth and S is the optimal overall satisfaction. Ac-
cording to (6), maximum of S is 1 when all the bandwidth
requirements are fully matched i.e., S < 1. If ¢ is a subset
sum in L., t can be expressed as a linear combination of x;
with zero or one coefficients. Then if we let descriptions have
bandwidths (z1,Z2,...,Zm), all the bandwidth requirements
in L are fully matched. We thus have S = 1. In other words,
,1) must be one of the solutions of L. If we
show it is also the only solution, we can prove the equivalence
between the outputs of L. and L, i.e., “t is subset sum in L.”
< “L has output (21,22, ..., Zm,1)".

Now let d = (d1,ds,...,d)T be the optimal descriptions
bandwidth assignment for L. There exists an (m + 2) by m
matrix A with each element a;; be zero or one, such that

1
T2

Ad = (13)
Tm
2T

t
By adding the first m rows together, we have the following
equation:

dq
m m m d m
(Zai17zai27---7zaim> . .2 = sz (14)
=1 =1 =1 =1

We claim that none of the > a; ; equals zero. Because if it is
true, we must have a column of zero in A and a d; without any
user joining it. In this case, we can simply remove the column
and the description. Then we have

15)
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for all j. Using the (m + 1)th row of matrix A, we have

S (16)
=1

dy
da
= (a(m+1)17 A(m+1)2y -+ a(m+1)m) ' : (17)
dm
dy
da
<(1,1,...,1)-] . (18)
dm
dy
m m m d2
< Zail;zaﬂ:--wzaim o (19)
i=1 i=1 i=1 d'

Y 20)
=1

which implies, after some manipulations

a(m_H)j =1 (21)
and
> aij =1,V (22)
1=1

Since Y_!" | a;; is the sum of first m rows for column j, if
it equals one, there is exactly one entry a;; in this column with
value one. Because there are m such columns (or less than m
if zero columns are removed), there are at most m entries of
value one in the top m rows of matrix A. Now if there is one
row containing two entries with value one, there must be at least
one row with all zero entries. It is equivalent to say that one of
x; is zero, which is contradicting to our assumption. Therefore,
each row must contain exactly one entry with value one. (If the
number of columns is less than m, there must be one row with
all zero entries leading to the same contradiction.) By looking
at the top m by m matrix, we can conclude that

(d17d27...,dm):(xil,xiz,...,xim) (23)

where the right-hand side is a permutation of z;. In other words,
the set x; is the only solution which fully matches all the band-
width requirements. Therefore, we have proved the equivalence
between output of L and L.. The transformation between the
outputs is obviously in polynomial time.

Therefore, we conclude that there exists polynomial reduc-
tion from L, to L and our problem L is NP-hard.
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