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We study the provisioning of large-scale video-on-demand (VoD) services to distributed
users. In order to achieve scalability in user capacity overcoming the limitation in core net-
work bandwidth, servers are deployed close to user pools. They replicate movie segments
cooperatively under the constraint of their storages. Considering the realistic scenario that
access delay is a function of the total traffic in the underlay link (including cross-traffic), we
address the following optimization issues in the server overlay: (1) Which segments should
each server replicate to achieve network-wide good locality effect? This is the so-called con-
tent replication (CR) problem; (2) Given a segment miss at a server and a number of remote
servers storing the segment, which of them should serve the local server to conserve
network bandwidth? This is the so-called server selection (SS) problem; and (3) Given a
certain total storage budget in the VoD network, what should be the capacity allocated to
each server to achieve low access delay? This is so-called storage planning (SP) problem.
Clearly the decisions of CR, SS and SP are inter-dependent, and hence need to be jointly
optimized.

We first formulate the joint optimization problem and prove that it is NP-hard. We then
propose a simple and distributed algorithm called CR–SS–SP to address it. CR–SS–SP
achieves good storage allocation, replicates segments collaboratively and adaptively to
achieve high locality, and selects servers efficiently with a simple lookup. Simulation results
on both Internet-like and real ISP topologies show that CR–SS–SP significantly outperforms
existing and state-of-the-art approaches by a wide margin (often by multiple times).

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

With the penetration of residential broadband network,
providing video-on-demand (VoD) service to distributed
users has attracted much attention recently [1–4]. Numer-
ous on-demand Internet movie applications have been
deployed, and most of them make use of data centers or
Content Delivery Networks (CDN) for content distribution
to their end users [5]. We consider a content or service pro-
vider offering large-scale VoD service. There are several
challenges in deploying such video distribution network,
e.g., how to efficiently replicate and access contents so as
to achieve the best user experience. In this paper, we con-
sider a scalable server architecture for large-scale VoD, and
study its distributed joint optimization issues. As we con-
sider a managed VoD network deployed by a service or
content provider (with bandwidth allocated between serv-
ers), addressing issues regarding link instability and DNS
are less critical and outside the scope of this work.
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We show in Fig. 1 the VoD network under consider-
ation. There is a repository storing all the video contents.
To scale up the streaming or user capacity, distributed
servers are deployed close to user pools forming an overlay
network. Such deployment also substantially reduces the
load of the core network due to the decrease in the long-
haul connections between users and servers. In the net-
work, the clients may be set-top boxes, Internet TVs or
PCs connected to the servers (through, for example, some
Digital Subscriber Line Access Multiplexer (DSLAM)). To
facilitate storage, the movies are divided into fixed-sized
segments. Users may at any time perform random seeks
to any movie segments using interactive DVR functional-
ities. Each user has a home server, which is his only contact
point to the VoD service. The home servers stream to the
user directly if they have replicated locally the segment
of interest (we consider the usual case that the bandwidth
between the users and their home servers is not a bottle-
neck). Otherwise, the home server re-directs the request
to another server (including repository) storing the seg-
ment, which is called the remote server. The remote server
then streams directly to the user once network bandwidth
is available. Such remote server is the streaming parent of
the home server. For example the rightmost server in the
figure is the home server of the clients that connect to it.
For those clients, all other servers in the network are
remote servers.

Note that each movie segment may have different access
probabilities which may slowly vary over time. (Though the
segment may be 5–30 min of movie, our study is by no
Fig. 1. A distributed server ap
means limited to that. During movie streaming, the video
segments can be further ‘‘packetized’’ into smaller chunks
for efficient transmission using adaptive http live streaming
(HLS or DASH)). Due to the content volume and its skewed
popularity, it is not cost-effective, and often not possible,
to replicate all the segments in all the servers. For example,
the storage of a 100-min 5 Mbps movie is about 4 GB. There-
fore, to store 10,000 movies, a server requires a capacity of
40 TB, which is not cost-expensive to maintain locally, espe-
cially in a dynamic environment when most of the movies
are not very popular. The server overlay cooperates in a
‘‘peer-to-peer’’ manner by streaming segments to fulfill
each other’s local requests. In this paper, we use ‘‘client,’’
‘‘request,’’ and ‘‘user’’ interchangeably.

We consider the realistic scenario that the delay of an
underlay link is a function of its total traffic including the
cross traffic. There are three important issues which need
to be addressed. First, which segments should a server rep-
licate given its storage to achieve good segment locality?
This is the so-called content replication (CR) problem.
Second, in case of a miss in the home server and given a
number of available remote servers storing the requested
segment, which of them should the home server choose
to achieve good overall user delay experience? This is the
so-called server-selection (SS) problem. Third, given a cer-
tain total storage budget in the system, what storage
capacity should be allocated to each server? This is the
so-called storage planning (SP) problem.

Clearly, the decisions of CR, SS and SP are inter-
dependent, i.e., the optimal strategy of one depends on the
proach for VoD service.



88 D. Ren et al. / Computer Networks 75 (2014) 86–98
strategies of the other two. A joint optimization of CR, SS and
SP is hence necessary to achieve the best overall perfor-
mance. In this work, we address this joint optimization
problem with the following contributions:

� Problem formulation and its complexity analysis: Using a
realistic overlay network model, we formulate the prob-
lem of jointly optimizing CR, SS and SP to minimize user
delay. We prove that this problem is NP-hard.
� CR–SS–SP, a distributed joint optimization algorithm: Note

that, given a total storage budget, there exists many
combinations of server storage, each of which leads to
an optimal user delay. In order to efficiently identify a
solution to minimize user delay, we propose a distrib-
uted heuristic called CR–SS–SP to address the joint opti-
mization problem. Note that CR–SS–SP works even if SS,
CR and SP are in different time scales. For example, con-
sider the usual case that they are in increasing order of
magnitude. First CR–SS–SP is jointly optimized with the
time scale of SP, then CR–SS can be optimized with the
time scale of CR, and then finally SS is optimized in the
shortest time scale given SP and CR.
CR–SS–SP is based on only simple overlay measurement
(i.e., without the knowledge of underlay topology)
without the need of full network information. Servers
may run the algorithm in parallel and independently
to come up with good CR, SS and SP strategies. It is fully
distributed (i.e., scalable to large network) and simple
to implement. By exchanging with its neighbors a rout-
ing table of its stored segments, a server can efficiently
find good neighbor(s) for any of the segments and make
efficient replication decisions. Besides CR and SS strate-
gies, CR–SS–SP also jointly designs server storage given
a certain network-wide total storage budget. It is a truly
joint algorithm where given one, it optimizes the other
two. CR–SS–SP is guaranteed to converge, and has low
server and computational overheads.
� Performance study of CR–SS–SP: We conduct extensive

simulation study of CR–SS–SP on both Internet-like
and real network topologies. Our results show that
CR–SS–SP outperforms both traditional and state-of-
the-art schemes by a wide margin, achieving substan-
tially lower user delay and bandwidth usage (often
cut by more than 70% better).

This paper is organized as follows. In Section 2 we
review related work. In Section 3 we formulate the joint
optimization of CR, SS and SP, and prove that it is NP-hard.
We present the distributed CR–SS–SP algorithm and its
exchange overhead and computational complexity in Sec-
tion 4. In Section 5 we present illustrative simulation
results on the performance comparison of CR–SS–SP. We
conclude in Section 6.
2. Related work

There has been much work on VoD based on efficient
file downloading [6–8]. In contrast, we consider interactive
streaming with content replication, server selection and
storage planning. Other work on VoD focuses on the design
of its infrastructure and framework [9–17]. Although this
body of work contains some of SP, CR and SS, it has not
addressed their joint optimization. In contrast, our work
presents mathematical formulation and distributed joint
optimization of SP, CR and SS.

The SS problem has often been studied in the context of
overlay routing problem in the literature [18–22]. This
body of work solves SS based on overlay measurement
(e.g., PING and traceroute) or using information from ISP
without considering the impact of CR, an important prob-
lem which we consider here. There has been work to opti-
mize independently CR [23–26] and SS [27]. However, they
have not considered their joint optimization with SP.

Traffic engineering has been studied together with coop-
erative distribution [28,29]. These work studies content dis-
tribution from a ISP’s point of view by coordinating traffic
engineering (to select efficient routes for the traffic) and
server selection (to match servers with subscribers). These
works assume fully replicated contents in each server. Our
work, on the other hand, is to consider partial replication
in the servers, which leads to joint optimization of content
replication and server selection. We solve the problem as
content providers, assuming given routes in the underlay.

There have been extensive studies on data replication
and server selection in CDNs [30]. The work in [31] formu-
lates the constraints such as bandwidth and storage into a
5 dimensional search space, and use a Particle Swarm Opti-
mization algorithm to find the most appropriate server to
store each replica. The work in [32] models the server
selection problem as a sequential decision problem solved
by the Multi-Armed Bandit paradigm. However, most of
the works consider content replication and server selection
as separate problems, and solve them independently. Fur-
thermore, storage planning (SP) has not been considered
with CR and SS as well. In this work we jointly optimize
the three operations in the VoD network together, and pro-
pose efficient algorithms for each operation.

Joint optimization of CR and SS has been discussed in
[33–37], but none of them has considered SP, which is an
important problem in VoD. How content providers allocate
the storage budget to different servers directly determines
the system performance such as replicate miss rate and user
delay. Besides given a storage planning solution, it also
affects the decisions for content replication and server selec-
tion. The work [33,34] assumes that overlay end-to-end
delay is not affected by the underlay link traffic. We differ
by considering the more realistic scenario where the delay
of the underlay links (including propagation and queuing
delay) may be a non-linear function of the link traffic. As a
result, the underlay cross traffic has an impact on the over-
lay end-to-end delay. This calls for a totally different prob-
lem formulation and algorithmic approach. The work of
[35,36] assumes the server network to be a specific tree
topology with homogeneous link bandwidth and user
demand. It cannot be extended to a general mesh network
topology with heterogeneous link bandwidth and user
demand as we consider here. Furthermore, it has not taken
into account the influence of cross traffic in the underlay
which we consider here. Some other work is centralized in
nature [38], which relies on complete network information
and hence does not scale well to large (and dynamic)
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networks. We present a distributed algorithm for the server
overlay where the servers cooperate in a peer-to-peer man-
ner to improve access delay. Our algorithm is scalable as
each server only needs partial information (i.e., user delay
and routing table) from its neighbors. As compared to [37]
which studies the joint optimization of CR and SS, we pres-
ent here an effective distributed solution for CR, SS and SP.
We also present a mathematical formulation for the joint
optimization problem, which is proved to be NP-hard.

3. Problem formulation

We focus on the server network and model the under-
lay network as a graph G ¼ ðV ; EÞ, where V is the set of
nodes including servers and underlay routers. E is the set
of directed underlay links between them. The repository
is considered as a regular server that stores all the video
segments. In the case of a miss in the home server, if no
remote server replicates the requested segment, the
request goes to the repository. We show the important
symbols that are used in this paper in Table 1.

Let S be the set of servers (including the repository) and
R be the set of routers. Obviously, we have

V ¼ S [ R; ð1Þ

and

S \ R ¼ ;: ð2Þ

We consider video segments are of the same size so that
storage, scheduling and transmission can be efficiently
planned and organized. Let T be the set of video segments,
Table 1
Major symbols used in this paper.

Notation Definition

kj
i

Access probability of segment j at server i

ci Storage capacity of server i (in number of segments)
C Total storage budget in the network (in number of

segments)

Ij
i

0 or 1 variable indicating if server i replicates segment j

Di Total streaming bitrate serving the users homed at
server i (bits/s)

rj
ik

The proportion of requests for segment j served by
server k to users homed at server i

f l
ik

The proportion of the traffic from server i to server k that
passes underlay link l

dp
l

Propagation delay of link l (s)

dq
l

Queuing delay of link l (s)

dl dl ¼ dp
l þ dq

l , the total delay of link l (s)
r Packet size in the network (bits)
bl Bandwidth of link l (bits/s)
dw Total delay of path w (s)

Pj
ik

The probability that server k is chosen as the streaming
parent of server i for segment j

�dj
i

The average access delay for segment j at server i (s)

�di The average access delay of segments at server i (s)
�d The average access delay of all segments in the network

(s)
�dLi

The average segment access delay in the local region Li

formed by the neighbors of server i (s)

Gj
i

Sum of average segment j’s delay change in the server i’s
local region Li (s)

tki The total amount of VoD traffic from server k to serve
the users homed at server i (bits/s)
and C be total storage budget. A server i has a certain stor-
age of ci segments, where i 2 S; ci 2 Zþ and ci 6 jTj. Let
Ij
i 2 f0;1g be a binary variable indicating whether server i

replicates segment j. We obviously must haveX
i2S

ci 6 C; ð3Þ

andX
j2T

Ij
i 6 ci; 8i 2 S: ð4Þ

Each user is associated with a home server. We assume
the user requests are independent. Let kj

i be the popularity
of segment j at server i, which is defined as the probability
that a user request accessing segment j at server i. Clearly,
we must haveX
j2T

kj
i ¼ 1; 8i 2 S: ð5Þ

Let Di be the total streaming bitrate serving all the users
homed at server i (bits/s), which means that server i is this
group of users’ home server. Therefore, the average total
bitrate for segment j at server i is given by kj

iDi.
Consider server i with a missed request of segment j,

and a remote server k has the segment j. We consider the
general case that multiple servers may supply simulta-
neously the stream to the request. Let rj

ik be the fraction
of this bitrate supplied by server k, where 0 6 rj

ik 6 1. In
order to aggregate a stream, we must haveX
k2S

rj
ikIj

k ¼ 1; 8i 2 S; j 2 T: ð6Þ

When Ij
k ¼ 0; rj

ik needs to be 0 as well. In order to ensure
that those servers without segment j do not contribute to
the bitrate, we further needX
k2S

rj
ik ¼ 1; 8i 2 S; j 2 T: ð7Þ

Denote the total amount of VoD traffic from server k to
serve the users homed at server i as tki, we have

tki ¼
X
j2T

rj
ikk

j
iDi; 8i; k 2 S: ð8Þ

Furthermore, for traffic/flow conservation, we needX
i;k2S

tki ¼
X
i2S

Di: ð9Þ

The routing strategy in the underlay network can be rep-

resented by f l
ki

n o
, where f l

ki is the fraction of the traffic from

k to i that goes through link l (0 6 f l
ki 6 1). Given f l

ik

n o
, the

traffic on link l brought by tki is then given by tkif
l
ki. The

aggregated traffic on link l is therefore

Fl ¼
X
i;k2S

tkif
l
ki; 8l 2 E: ð10Þ

Denote the propagation delay and queuing delay on link l
by dp

l and dq
l , respectively [39]. Then we have

dl ¼ dp
l þ dq

l ; 8l 2 E: ð11Þ
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Let dw be the delay of the path w. Obviously, we have

dw ¼
X
l2w

dl: ð12Þ

Let Hw
ki be the fraction of tki that goes through w. Note that

user delay at a home server depends on the path delay
between the segments and the server, the so-called seg-
ment delay. We hence minimize the average segment delay
�d, which can be written as the sum of path delay weighted
by the proportion of traffic:

�d ¼
P

i;k2Stki
P

wHw
kidwP

i;k2Stki
: ð13Þ

Using Eqs. (9) and (12), we can rewrite the numerator as a
sum over each link l, i.e.,

�d ¼
P

l2EFldlP
i2SDi

: ð14Þ

We state the joint optimization problem as follows:
Joint CR–SS–SP Problem: Given user demand Dif g,

total storage budget Cf g, segment popularity kij
� �

,

underlay routing f l
ik

n o
and topology G, we seek to

minimize �d given in Eq. (14), subject to Eqs. (3), (4),
(6)–(8), (10) and (11). The output is the SP strategy cif g,
CR strategy Ij

i

n o
and SS strategy rj

ik

n o
.

Claim 1. The Joint CR–SS–SP Problem is NP-hard.
Proof. We prove its NP-hardness by deriving a polynomial
reduction from the Domatic Number Problem, which is NP-
complete [40]. Its NP-complete version is stated as follows.
Given G ¼ ðV ; EÞ and a positive integer K no larger than Vj j,
is the domatic number of G at least K, i.e., can V be parti-
tioned into at least K disjoint dominating sets? Given G
and K, we construct an instance of our decision problem
as follows. The network contains K video segments with
equal popularity everywhere, with the total storage budget
C ¼ Vj j. Consider the case that each link has infinite band-
width (i.e., queuing delay is zero) and constant propaga-
tion delay of 1 unit. The instance construction can
obviously be done in polynomial time. The average access
delay is larger than or equals to ðK � 1Þ=K , and the mini-
mum delay can be achieved when each server replicates
exactly one segment. Our decision problem becomes:
Given the instance, is there a joint CR–SS–SP strategy
which achieves average access delay of at most
ðK � 1Þ=K? Using‘‘proof-by-restriction’’ method [41,42],
we only need to show Domatic Number Problem is reduc-
ible to this special instance. h

At each node v, the minimum average access delay is
ðK � 1Þ=K when one segment is stored locally and ðK � 1Þ
segments are one hop away. We show that G can be parti-
tioned into K disjoint dominating sets if and only if there is
such a strategy. First, if there is such a strategy, any node v
can access a segment within one hop distance. Then if we
separate V into K disjoint sets with each corresponding to a
certain video segment, we must result in K dominating sets
because the distance between a set and any node is either
zero (i.e., contained in the set) or one unit (i.e., connected
by an edge). Furthermore, if we have K disjoint dominating
sets, we can easily derive such a strategy by assigning each
set a distinct segment to replicate. Therefore, we reduce
the Domatic Number Problem to a special case of our deci-
sion problem, and it proves that our optimization problem
is NP-hard.
4. CR–SS–SP: distributed joint optimization algorithm

In this section, we present our distributed heuristic
called CR–SS–SP to address the NP-hard problem. In CR–
SS–SP, each server independently minimizes the average
segment delay in its local region through segment
replacement. The joint optimization is based on three
algorithms built successively as follows: first SS given
CR and SP, then CR–SS given SP, and finally CR–SS–SP
together. CR, SS and SP are jointly optimized by minimiz-
ing a delay function iteratively in a distributed manner,
and we prove that CR–SS–SP is guaranteed to converge.
In Sections 4.1–4.3, we present our probabilistic server
selection framework, content replication and storage
planning used in CR–SS–SP, respectively. In Section 4.4,
we discuss the exchange overhead and computational
complexity of CR–SS–SP.

4.1. Probabilistic SS framework

This framework optimizes SS given CR and SP. Every
server has a simple routing table, each entry of which cor-
responds to a video segment it stores. For each video seg-
ment, the row contains some known servers with the
segment and hence can be chosen as its streaming parent.
In order to reduce the size of the table, we keep a maxi-
mum number ns of such known servers for each segment.
Each server periodically exchanges its routing table with
its neighbors, and pings the path delay to them. Let Ej

i be
the set of servers stored in the entry for segment j at server
i. Let dj

ik be the access delay of segment j from server k for
users homed at server i. For each server k 2 Ej

i , apart from
its IP address, the entry also stores a utility value indicating
the importance of server k as Uj

ik. Obviously, Uj
ik should be a

monotonically decreasing function in dj
ik. For concreteness

in our study, we choose

Uj
ik ¼

1=dj
ik; if j is stored at k;

0; otherwise;

(
ð15Þ

and

dj
ik ¼ dði; kÞ; ð16Þ

where dði; kÞ is the path delay from server k to server i,
which can be inferred by a ‘‘ping’’ operation between i
and k (by definition, dði; iÞ ¼ 0). Note that our algorithms
are not restricted to this particular form of the function;
any other function of Uj

ik may be used. In order to choose
close servers as streaming parents and not to direct all
the traffic to a particular server, we adopt a probabilistic
framework to achieve load spreading. In the framework,
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the probability that server k is chosen as the streaming
parent for segment j is given by

Pj
ik ¼

Uj
ikP

t2Ej
i
Uj

it

: ð17Þ

Clearly from the equation, if the home server has repli-
cated the segment, it has probability 1 to become the
streaming parent (and hence surely serves its local users).
On the other hand, if the segment is not found in the home
server, only the servers with the segment are considered to
become the parent: the larger the path delay, the lower is a
server’s probability to become the streaming parent.

4.2. Joint CR–SS given SP

Given server storage (as in SP), CR–SS–SP jointly opti-
mizes CR and SS. The SS strategy is based on the informa-
tion in the routing table. Consider a user request sent to its
home server i for segment j. Server i then inspects the par-
ent list in the corresponding entry of its routing table. Each
server stored in that list has a probability to be chosen as
streaming parent as given by Eq. (17).

From Eq. (17), the expected segment delay for users at
home server i to get segment j is given by

�dij ¼
X
k2Ej

i

Pj
ikdj

ik: ð18Þ

Given the segment popularity kj
i

n o
, the average

segment access delay at server i is hence given by

�di ¼
X

j

kj
i
�dj

i: ð19Þ

Each server has a certain number n of neighbors, which
are the closest servers according to the delay. Denote this
set of neighbors for server i as Ni. The local region Li is
defined as the set including server i and its neighbors in Ni.
From Eq. (14), the average access delay in Li is hence given by

�dLi
¼
P

k2Li
Dk

�dkP
k2Li

Dk
: ð20Þ

In CR–SS–SP, each server i independently minimizes
the average segment access delay in its local region (i.e.,
�dLi

) through content replacement presented below. As a
result, the servers jointly minimize the average segment
delay �d.

The content replication strategy of CR–SS–SP includes
two parts, i.e., segment initialization and segment replace-
ment. For each server, given the storage allocated in Sec-
tion 4.3, the segment initialization assigns video segments
at server startup. The assignment can be either random or
based on segment popularity. In any case, CR–SS–SP con-
verges to a steady state (that each server replicates the
appropriate segments) independent of the initial state. For
concreteness in our simulation study, we randomly assign
video segments to each server at startup.

Each server asks its neighbors to compute the delay
change for each segment, which is, for the users homed
at the neighbor server, the change in access delay due to
replication or replacing the segment. After getting the
information of such change from its neighbors, for each
segment it computes the gain which is sum of the delay
change for each neighbor.

The principle is that, for a stored segment, a positive
gain means replacing the segment will reduce the delay
while negative one means that replacing the segment will
increase the delay. On the other hand, for an unstored one,
a positive gain means replicating the segment will reduce
the delay while negative one means that replicating the
segment will increase the delay.

We describe below the details of the above operation.
Each server stores two lists:

� Store List, where each entry stores the ID of the segment
that is stored in the server and corresponding gain.
� Replacement List, where each entry stores the ID of the

segment that is not stored in the server and correspond-
ing gain.

A segment in the Store List is replaced by another one in
the Replacement List when the discrepancy of the gain is
larger than a certain threshold.

The initial segment assignment is not likely to be
optimal, and hence the server goes through segment
replacement to improve the performance. A server deci-
des which segment to replace using the routing tables
exchanged from its neighbors. Given all its neighbors’
routing tables, a server examines the gain (in terms of
reduction in access delay) of a certain segment
replacement.

Consider that server i checks whether to replace seg-
ment j by segment t. It examines the routing table

obtained from its neighbor k. Recall that Ej
k is the entry

which stores the parent list for segment j in server k. If

i 2 Ej
k, server i is possibly chosen by k as the streaming

parent for segment j. However, if server i decides to

replace j, server k has to remove i from Ej
k. The expected

access delay of segment j at server k (i.e., �d j
k in Eq. (18))

also changes. Denote this access delay change of segment

j at server k as Cj
ik.

Let �d j�

k and �d jþ

k be the expected segment delay at server
k before and after the replacement (i.e., without segment j
and with j), respectively. The change of �dk due to removing

server i from Ej
k is given by

Cj
ik ¼ kj

kð�d
j�

k � �d jþ

k Þ: ð21Þ

Similarly, i can be chosen as streaming parent for t after the
replacement. The change of �dk due to adding server i into Et

k

is given by

Ct
ik ¼ kt

kð�d
jþ

k � �d j�

k Þ: ð22Þ

We further define the gain GiðjÞ as the sum of average seg-
ment j’s delay change in server i’s local region Li. Given Eq.
(20), we have

GiðjÞ ¼
P

k2Li
DkCikð jÞP
k2Li

Dk
: ð23Þ
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Server i sorts the segments in the Store List and
Replacement List according to their total gain. Server i
examines the segment j with the lowest GiðjÞ in the Store
List and the segment t with the highest gain GiðtÞ in the
Replacement List. Because the number of stored segments
is limited by the storage, the number of pairs that the ser-
ver needs to examine is only Oð Tj jÞ.

We use a certain threshold value a to guarantee the
convergence of our distributed algorithm. A replacement
is applied only if ðGt

i � Gj
iÞ=
P

j2T Gj
i is larger than a. If it is lar-

ger than a, server i discards the entry of segment j and the
entry of segment t in the Store List and Replacement List,
respectively, and continues to examine the next pair of
segments. Otherwise, server i stops segment replacement.
This threshold eliminates the tiny delta improvements of
the gain. If a is set to zero, the replacement occurs when-
ever a segment has larger gain than the ones in the current
Store List. In the worst case scenario there will be uncount-
able number of updates. However if we have this threshold
parameter, each replacement increases the total gain by at
least a (in proportion), therefore the algorithm is guaran-
teed to converge. The choice of alpha depends on the
deployment requirements. It is a parameter that makes
sensible tradeoffs between convergence time and optimal-
ity. A large value of alpha leads to less replication updates,
and significant improvement on the convergence time. A
small value of alpha will lead to a higher value of the total
gain, and hence smaller average delay.
4.3. Joint CR–SS–SP algorithm

CR–SS–SP jointly optimizes CR, SS and SP in a distrib-
uted manner through an iterative approach which guar-
antees to converge. Initially the servers have certain
storage (which can be the same) given a total storage bud-
get. When a server, say server i, is to optimize its storage,
it first asks its neighbors for the Store Lists. After receiving
all the Store Lists, server i adds the IP address of the neigh-
bor who sends the Store List to each entry, and combines
all the entries in those Store Lists as a ‘‘Plan List’’. Then
server i sorts the ‘‘Plan List’’ according to the gain of each
entry. Let Pi be the Plan List of server i, and Mj

ik be the
entry in Pi indicating that server k replicates segment j.
Let Ji be the sum of the segment gain of each entry in Pi.
We have

Ji ¼
X
ðk;jÞ2Pi

Gj
k: ð24Þ

Servers then trade storage to improve network perfor-
mance. The details of CR–SS–SP is shown in Algorithm 1.
Server i examines Let Segment j be the largest gain in Pi

for server i, and segment j0 be the lowest gain in Qi for ser-
ver k. If ðGj

i � Gj0

kÞ=Ji is larger than a certain threshold b
(b < 1), server i increases its storage by 1 and replicates
segment j. It then asks server k to discard segment j0 by
decreasing its storage by one. Server i repeats this process
until all the segments in its Replacement List have been
examined. We use a and b to guarantee the convergence
for Store List calculation and storage adaptation with a
time-optimality tradeoff.
Algorithm 1. CR–SS–SP algorithm
for server k in server i’s local region Li do
for segment j in i’s Store list do

calculate the delay change Cj
ik;

end for
for segment t not in i’s Replacement list do

calculate the delay change Ct
ik;

end for
send its store list to server i

end for
for segment j in i’s storage do

calculate Gj
i;

total gainþ ¼ Gj
i;

end for

sort store list and replacement list according to Gj
i;

repeat

select segment t0 with lowest Gt0
i in i’s Store list

select segment t with highest Gt
i in i’s Replacement

list

if Gt
i�Gt0

i
total gain P a then

replace segment t0 by segment t at server i
end if

until Gt
i�Gt0

i
total gain < a

combines the store lists as ‘‘Plan List’’
sort ‘‘Plan List’’
calculate Ji

repeat

select segment j with the highest Gj
i in i’s

Replacement List
select segment j0 stored in server k with highest

Gj0

k ini0sPlanList

if GiðjÞ�Gj
k

Ji
P b then

i increases its storage by 1, and replicates segment j0

end if k decreases its storage by 1, and discards
segment j

until
GiðjÞ�Gj

k
Ji

< b
4.4. Exchange overhead and computational complexity

Note that CR–SS–SP has low control overhead because
the servers do not need to exchange the entire routing
table; they only need to exchange two types of informa-
tion. First, when a server i performs segment replacement,
it only needs the information of the delay change of a
neighbor k given by Eqs. (21) and (22). The information
of the potential delay change can be efficiently calculated
at neighbors in Oð Tj jÞ time and sent to the server with size
Oð Tj jÞ. Second, after the replacement, the server just needs
to send its segment replication information in a bitmap of
Oð Tj jÞ to each of its neighbors. Clearly, the exchange over-
head of both types of information is rather low. The low
exchange overhead may be illustrated with an example
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below. For 1200 segments and the delay change for each
segment is represented by a floating number of 4 bytes,
the bitmap of segments is about 150 bytes and the total
size of delay change is around 5 KB. If segment replace-
ment is done every, say 10 min, and each server has 15
neighbors, the table exchange bandwidth is only around
1 kbits/s.

The computational load of our algorithm is also low. As
mentioned above, each neighbor computes potential delay
change in Oð Tj jÞ time. After obtaining all such information,
a server sorts them in Oð Tj j log Tj jÞ time. For segment
replacement, we simply calculate the reduction of delay
by removing the segment of lowest gain and replacing it
with the segment of highest gain. We repeat this process
for the next entry until the reduction of delay is less than
the threshold. The running time of the whole process is
Oð Tj jÞ, because the segments have already been sorted.
Hence the total running time of CR–SS–SP for replacement
is Oð Tj j log Tj jÞ.
5. Simulation environment and illustrative results

5.1. Simulation environment and metrics

We have conducted extensive simulations to study the
performance of CR–SS–SP on both Internet-like topology
generated by BRITE (using the default Router Waxman
model) and a real Internet topology obtained from an ISP
[43]. The BRITE topology is a router-only topology, which
contains 3072 routers and 10,850 underlay links. BRITE
also gives us the link propagation in milli-seconds. Each
underlay link has a certain link bandwidth. The real Inter-
net topology is obtained from the Internet Initiative Japan
(IIJ) backbone, the largest data network in Japan.

In our simulation, a certain number of servers are ran-
domly attached to the routers in the topology. Each server
has a certain number of nearest servers as its neighbors. All
segments (or groups of movies) are of the same size and
their popularities follow the Zipf distribution at each ser-
ver, i.e., if f ðk; s;NÞ is the k-th highest of the segments,
given the skewness parameter and T number of segments,
then we have

f ðk; s; TÞ ¼ 1=ksPT
n¼11=ns

; ð25Þ

where s is the Zipf parameter. When s is small (e.g., s ¼ 0),
all segments have similar popularities; when s is high (e.g.,
s ¼ 1), the distribution is more skewed. (Note that the use
of Zipf distribution is for illustration only. Any other distri-
bution including the long-tailed ones may be used.)

We write our event-driven simulation in Java. Segment
requests arrive at a server according to a poisson process
with rate k (requests/minute). We consider that the delay
in a link may be modeled as (Eq. (11))

dl ¼ dp
l þ r=ðbl � FlÞ; ð26Þ

where r is the average packet size (in bits) and bl is the
bandwidth of link l (in bits/s).
A server periodically replaces its stored segments. When
a replacement decision is made, the server downloads the
segment from another server according to the server selec-
tion algorithm. The downloading bitrate is higher than the
streaming bitrate. While being downloaded, the segment
may be played back. When downloading is completed, the
server informs its neighbors its new routing table and the
neighbors update theirs accordingly. A user may renege
(i.e., leaves the system due to impatience) if a requested
segment is not played back by a certain time.

For each experiment, we run it till steady state, after
which we take the statistics. Unless otherwise stated, we
use the default values according to Table 2 in our simula-
tions. We will vary them to study their effects on system
performance. Note that the performance scales for larger
systems. For example, if we have 10 times as many seg-
ments, we may group 10 segments as one ‘‘super seg-
ment’’, and the resulting problem and approach are
exactly the same as the current setting.

The performance metrics that we are interested in are:

� User (interactive) delay, defined as the delay from
the request of a segment until the segment is
streamed to the user. Clearly, the delay is the sum
of the path delay and the waiting time for available
end-to-end streaming bandwidth from the stream-
ing parent to the user. We are mainly interested in
the average and distribution of user delay for all
served requests (i.e., excluding those reneged ones).

� Miss delay, defined as the user delay for the seg-
ments not stored by the home servers (i.e., misses).
We are interested in both its average and
distribution.

� Wait probability, the probability of a miss which,
due to network congestion, needs to wait for the
available end-to-end network bandwidth for
streaming. This is measured as the ratio of the
number of requests that cannot be served immedi-
ately to the total number of requests.

� Reneging rate, due to reneging of a miss after wait-
ing for a certain amount of time (10 s in our simu-
lation). Reneging rate is calculated as the fraction of
requests leaving the system without being served.

We compare CR–SS–SP with the following schemes. For
all of them, if a request cannot be served directly, the home
server will choose the nearest server as the streaming
parent:

� Random, where each server randomly replicates
segments without considering the segment popu-
larity. This is the simplest scheme.

� MPF (Most Popular First), where each server only
replicates the most popular segments. It is a greedy
approach to maximize local hit.

� LRU (Least Recently Used), where each server only
stores the segments that are most recently
requested at itself. It is a commonly used scheme.

� Local Greedy Replication, where each server inde-
pendently replaces segments to reduce access cost
in accordance with [35]. The access cost takes into



Table 2
Baseline parameters used in the simulation.

Parameter Default value

Underlay link bandwidth 5 Gbits/s
Number of servers 30
Total storage budget 900
Streaming bitrate 5 Mbits/s
Number of segments 1200
Segment downloading bitrate (for a replacement) 25 Mbits/s
Segment length 5 min
Zipf parameter s 0:4
Request rate for each server 6 per minute
Number of neighbors for each server 15
Duration between two replacement decisions 12 min
Maximum user waiting time 10 s   3 3.6 4.2 4.8 5.4   6 6.6 7.2 7.8 8.4

0

0.5

1

1.5

2

2.5

3

Request rate (requests/min)

U
se

r 
de

la
y 

(s
ec

on
ds

)

LRU
Local Greedy
Random
MPF
CR−SS−SP

Fig. 2. Average user delay versus request rate given different schemes.
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Fig. 3. Average miss delay versus request rate given different schemes.

Fig. 4. User delay distribution given different schemes.
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consideration of both segment access delay and
segment popularity. It is a state-of-the-art scheme
with cooperative replication.

5.2. Illustrative results

Fig. 2 plots average user delay versus request rate given
different schemes. User delay increases with request rate
due to increase in network load. CR–SS–SP clearly achieves
significantly lower user delay among all the schemes. In
other words, given the same requirement on the user
delay, CR–SS–SP can support much higher user capacity
(i.e., higher requests rate or concurrent users in the sys-
tem). LRU and Local Greedy do not perform well mainly
because of their high frequency of content replacement,
which incurs large amount of download traffic in the net-
work. Random replacement does not have any content
replacement, and hence achieves lower replacement traf-
fic. MPF, due to its replication of only the most popular seg-
ments, does not take advantage of cooperative replication.
CR–SS–SP achieves the best performance because it takes
advantages of cooperative replication, achieving low
replacement overhead and better storage planning. Fig. 3
plots the average miss delay versus request rate given dif-
ferent schemes. We have similar observation here with the
user delay. CR–SS–SP achieves much lower miss delay as
compared with all other schemes due to its better cooper-
ative replication. As the performance of miss delay is qual-
itatively the same as user delay, we will only show user
delay in the following.

Fig. 4 shows the user delay distribution given different
schemes. Most of the requests have low user delay (i.e., less
than 2 s). CR–SS–SP significantly outperforms other
schemes because its replication strategy considers the
delay in the network much better. It avoids frequent access
to the repository and far-away remote servers, which will
bring longer user delay and higher reneging rate. Moreover,
it has effective server selection using the probabilistic
framework. All these lead to that CR–SS–SP distributes traf-
fic more uniformly over the network, resulting in much
fewer bottleneck links as compared with other schemes. It
also enjoys the lowest reneging rate among all the schemes.

Fig. 5 plots average user delay versus streaming bitrate
given different schemes. User delay increases with the
streaming bitrate, because network traffic increases with
streaming bitrate. It is clear that CR–SS–SP achieves signif-
icantly the lowest user delay as compared with all other
schemes. When the streaming bitrate increases, LRU, Local
Greedy and MPF do not perform well. In contrast, CR–SS–
SP considers the delays much better which significantly
reduces the miss delay. MPF and Random perform better
than LRU and Local Greedy due to their lower downloading
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Fig. 5. Average user delay versus streaming bitrate given different
schemes.
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Fig. 7. Average user delay versus Zipf parameter s given different
schemes.
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schemes.
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traffic. Given the same requirement on user delay, CR–SS–
SP is able to support much higher streaming bitrate and
hence video quality.

Fig. 6 plots average user delay versus the number of
neighbors of each server. For MPF, the average user delay
does not depend sensitively on the number of neighbors
because the servers always replicate the same set of seg-
ments, i.e., the most popular segments. For the other
schemes, the average user delay decreases with the num-
ber of neighbors. This is mainly because SS can be better
optimized with larger number of neighbors. CR–SS–SP
achieves much lower delay, because its probabilistic server
selection and storage planning spreads traffic across the
network more effectively.

Fig. 7 plots the average user delay versus Zipf parameter
s given different schemes. User delay decreases with the
Zipf parameter. This is because skewed popularity means
that more requests are concentrated on fewer segments.
Consequently, the miss rate decreases, leading to lower
delay. CR–SS–SP achieves substantially the lowest delay
than the other schemes, even when s is small (i.e., segment
popularity is rather uniform). This shows that CR–SS–SP
makes very good cooperative replication and storage
decisions. When s is large, CR–SS–SP achieves similar per-
formance as MPF. This is because it makes effective deci-
sion as MPF by replication high-popularity segments at
each of the servers. Random does not perform well,
because it does not replace its stored segments according
to the segment popularity. Compared with Random, LRU
and Local Greedy perform better because they adapt their
replication decision according to the segment popularity.
However, due to their continuous segment replacement,
LRU and Local Greedy generate a lot of traffic which leads
to higher user delay as compared with CR–SS–SP.

Fig. 8 plots average user delay versus number of servers
in the system. As the number of servers increases, user
traffic increases (as each additional server carries user traf-
fic). The increase in user traffic leads to higher user delay.
CR–SS–SP performs the best, because its replication strat-
egy, server selection and storage planning can effectively
spread the traffic over the network, leading to lower net-
work congestion.

Fig. 9 plots wait probability versus request rate. The
probability increases with request rate due to network
congestion. CR–SS–SP achieves the lowest wait probability
due to its better optimization. LRU and Local Greedy do not
perform well because of their ineffective replication and
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Fig. 11. Topology obtained from an ISP.
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Fig. 12. Average user delay versus streaming bitrate given different
schemes on a real ISP topology.
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server selection algorithms. As the request rate increases,
the repository for MPF becomes congested, because the
servers are ‘‘greedy’’, and they only replicate the popular
segments without cooperating with each other.

Fig. 10 plots the reneging rate versus request rate. The
reneging rate increases with request rate due to network
congestion. CR–SS–SP has substantially the lowest reneg-
ing rate as compared with all the other schemes, for the
same reason as discussed before.

Besides Internet-like topologies generated by BRITE, we
have also simulated using a realistic ISP network. Fig. 11
shows the topology and the bandwidth of each link as
obtained from [43]. The core routers, edge routers and
gateways are indicated as circles, small rectangles and lar-
ger rectangles, respectively. Servers are randomly attached
to the edge routers, where requests arrive. All the links are
with certain bandwidth and delay in accordance with the
discussion of an ISP. Figs. 12 and 13 plot the effects of
the streaming bitrate and Zipf parameter s on user delay,
respectively. Note the remarkable resemblance with the
previous results based on BRITE simulation (Figs. 5 and
7). After examining many other plots, the results are qual-
itatively similar to the simulated Internet topologies and
the results will not be repeated here.

6. Conclusion

In this work, we study the provisioning of large-scale
distributed video-on-demand (VoD) services where coop-
erative servers are deployed close to user pools. We address
the joint optimization of content replication (CR), server
selection (SS) and storage planning (SP) to achieve low user
(interactive) delay. We formulate an optimization problem,
and propose a simple and distributed algorithm called CR–
SS–SP to jointly optimize the system. With CR–SS–SP, each
server uses a simple routing table to store segment location.
By locally exchanging the routing table, each server is able
to find good streaming server(s) for any of the segments. It
is used in storage planning to allocate server capacity given
a certain storage budget. CR–SS–SP makes effective distrib-
uted replacement decision to minimize user delay.

We have conducted extensive simulation studies of
CR–SS–SP on both Internet-like and realistic topologies.
Our results show that our algorithm achieves much better
user delay and miss delay comparing to the both traditional
and state-of-the-art schemes. We can also see that CS–SS–
SP performs well under different segment popularity distri-
butions. It is adaptive and not restricted to a certain movie
popularity. CR–SS–SP is able to support by far the highest
streaming bitrate and request rate, and achieves the lowest
miss delay, probability of waiting, and reneging rate. In the
future we will study the joint optimization of traffic engi-
neering (TE) and CR, SS, SP, and see how to improve our sys-
tem given the underlying ISP traffic information.
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