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Seven Classes of Three-Weight Cyclic Codes
Zhengchun Zhou and Cunsheng Ding, Senior Member, IEEE

Abstract—Cyclic codes are a subclass of linear codes and
have applications in consumer electronics, data storage systems,
and communication systems as they have efficient encoding and
decoding algorithms, compared with linear block codes. In this
paper, seven classes of three-weight cyclic codes over GF(p) whose
duals have two zeros are presented, where p is an odd prime.
The weight distributions of the seven classes of cyclic codes are
settled. Some of the cyclic codes are optimal in the sense that
they meet certain bounds on linear codes. The application of
these cyclic codes in secret sharing is also considered.

Index Terms—Cyclic codes, linear codes, weight distribution,
weight enumerator, secret sharing.

I. INTRODUCTION

LET p be a prime. An [n,κ,d] linear code over GF(p)
is a κ-dimensional subspace of GF(p)n with mini-

mum nonzero (Hamming) weight d. A linear [n,κ] code
C over GF(p) is called cyclic if (c0,c1, · · · ,cn−1) ∈ C im-
plies (cn−1,c0,c1, · · · ,cn−2) ∈ C . By identifying any vector
(c0,c1, · · · ,cn−1) ∈ GF(p)n with a polynomial ∑n−1

i=0 cixi ∈
GF(p)[x]/(xn −1), any linear code C of length n over GF(p)
corresponds to a subset of the quotient ring GF(p)[x]/(xn−1).
A linear code C is cyclic if and only if the correspond-
ing subset in GF(p)[x]/(xn − 1) is an ideal of the ring
GF(p)[x]/(xn −1).

It is well known that every ideal of GF(p)[x]/(xn − 1) is
principal. Let C = ⟨g(x)⟩ be a cyclic code, where g(x) is
monic and has the smallest degree among all the generators of
C . Then g(x) is unique and called the generator polynomial,
and h(x) = (xn − 1)/g(x) is referred to as the parity-check
polynomial of C . If the parity-check polynomial h(x) of a
code C of length n over GF(p) is the product of ℓ distinct
irreducible polynomials over GF(p), we say that the dual code
C⊥ has ℓ zeros.

Let Ai denote the number of codewords with Hamming
weight i in a code C of length n. The weight enumerator
of C is defined by 1+A1y+A2y2 + · · ·+Anyn. The weight
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distribution {A0,A1, . . . ,An} is an important research topic
in coding theory. First, it contains crucial information as to
estimate the error correcting capability and the probability of
error detection and correction with respect to some algorithms
[13]. Second, due to rich algebraic structures of cyclic codes,
the weight distribution is often related to interesting and
challenging problems in number theory [11]. A code C is
said to be a t-weight code if the number of nonzero Ai in the
sequence (A1,A2, · · · ,An) is equal to t [17].

Cyclic codes have been widely used in consumer electron-
ics, data transmission technologies, broadcast systems, and
computer applications for error detection and correction as
they have efficient encoding and decoding algorithms com-
pared with linear block codes. Cyclic codes with a few weights
are of special interest in secret sharing schemes as the access
structures of the secret sharing schemes derived from such
cyclic code can be easily determined and are interesting [4],
[8], [25].

In this paper, seven classes of three-weight cyclic codes over
GF(p) whose duals have two zeros are presented, where p is
an odd prime. The weight distributions of the seven classes of
cyclic codes are settled. Some of the cyclic codes are optimal
in the sense that they meet certain bounds on linear codes.
As a demonstration of applications of these cyclic codes, the
access structures of the secret sharing schemes derived from
these codes are analyzed.

This paper is organized as follows. Section II fixes some
notations for this paper. Section III defines cyclic codes over
GF(p) whose duals have two zeros. Section IV introduces
a few known classes of three-weight cyclic codes and their
weight distributions. Section V presents two lemmas that will
be needed in the sequel. Section VI defines seven classes of
cyclic codes and determines their weight distributions. Section
VII studies the access structures of the secret sharing schemes
derived from these cyclic codes. Section VIII summarizes and
concludes this paper.

II. SOME NOTATIONS FIXED THROUGHOUT THIS PAPER

Throughout this paper, we adopt the following notations
unless otherwise stated:

• p is a prime and q = pm, where m is a positive integer.
• n= q−1, which is the length of a cyclic code over GF(p).
• Tr j

1(x) is the trace function from GF(p j) to GF(p) for
any positive integer j.

• χ is the canonical additive character on GF(q), i.e.,
χ(x) = e2π

√
−1Trm

1 (x)/p for any x ∈ GF(q).
• χ1 is the canonical additive character on GF(p), i.e.,

χ1(x) = e2π
√
−1x/p for any x ∈ GF(p).

• Ca denotes the p-cyclotomic coset modulo n containing a,
where a is any integer with 0 ≤ a ≤ q−2, and ℓa := |Ca|

0090-6778/13$31.00 c⃝ 2013 IEEE
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TABLE I
WEIGHT DISTRIBUTION I

Weight w No. of codewords Aw
0 1
(p−1)pm−1 − p(m−1)/2 1

2 (p−1)(pm −1)(pm−1 + p(m−1)/2)

(p−1)pm−1 (pm −1)(pm−1 +1)
(p−1)pm−1 + p(m−1)/2 1

2 (p−1)(pm −1)(pm−1 − p(m−1)/2)

denotes the size of the cyclotomic coset Ca.
• By the Database we mean the collection of the tables of

best linear codes known maintained by Markus Grassl at
http://www.codetables.de/.

III. CYCLIC CODES WHOSE DUALS HAVE TWO ZEROS

Given a positive integer m, recall that q = pm and n = q−1
throughout this paper. Let α be a generator of the multiplica-
tive group GF(q)∗. For any 0 ≤ a ≤ q− 2, denote by ma(x)
the minimal polynomial of α−a over GF(p).

Let 0 ≤ u ≤ q− 2 and 0 ≤ v ≤ q− 2 be any two integers
such that Cu ∩ Cv = /0. Let C(u,v,q,m) be the cyclic code over
GF(p) with length n whose codewords are given by

c(a,b) = (c0,c1, . . . ,cn−1), ∀(a,b) ∈ GF(pℓu)×GF(pℓv) (1)

where

ci = Trℓu
1

(
aαiu)+Trℓv

1

(
bαiv) , 0 ≤ i ≤ n−1.

By Delsarte’s Theorem, the code C(u,v,q,m) has parity-check
polynomial mu(x)mv(x) and dimension ℓu+ℓv. There are a lot
of references on the code C(u,v,q,m) (see for example [2], [7],
[9], [10], [15], [16], [18], [19], [20], [22], [23], [26]).

This class of cyclic codes C(u,v,q,m) may have many nonzero
weights. Note that C(u,v,q,m) cannot be a constant-weight code
as its parity-check polynomial has two zeros and the minimal
polynomials of the two zeros are distinct. In most cases
C(u,v,q,m) has at least three nonzero weights, provided that
Cu ∩ Cv = /0, ℓu > 1 and ℓv > 1 (see [12]). Hence it is very
interesting to study three-weight cyclic codes C(u,v,q,m).

IV. SOME KNOWN NONBINARY THREE-WEIGHT CYCLIC
CODES

Carlet, Ding and Yuan employed some special monomials to
construct three-weight cyclic codes and proved the following
theorem [4], [24].

Theorem 4.1: ([24], [9]) Let m ≥ 3 be odd and let p be an
odd prime. Then C(1,v,p,m) is a three-weight [pm−1,2m] cyclic
code with the weight distribution in Table I if

• v = ph +1 or
• v = (ph+1)/2, where p = 3, gcd(m,h) = 1 and h is odd.
When m is even, the codes C(1,v,p,m) defined by the mono-

mials xv in Theorem 4.1 have five nonzero weights. For
information on the duals of the three-weight cyclic codes
described in Theorem 4.1, the reader is referred to [4].

Luo and Feng [14] extended the second construction in
Theorem 4.1 and proved the following theorem.

Theorem 4.2: ([14]) Let m ≥ 3 be odd and let p be an odd
prime. Then C(1,v,p,m) is a three-weight [pm−1,2m] cyclic code
with the weight distribution in Table II if v=(ph+1)/2, where
h is a positive integer satisfying gcd(2m,h) = 1.

TABLE II
WEIGHT DISTRIBUTION II

Weight w No. of codewords Aw
0 1
(p−1)pm−1 − p−1

2 p(m−1)/2 (pm −1)(pm−1 + p(m−1)/2)

(p−1)pm−1 (pm −1)(pm −2pm−1 +1)
(p−1)pm−1 + p−1

2 p(m−1)/2 (pm −1)(pm−1 − p(m−1)/2)

When p = 3, the weight distribution depicted in Table I is
the same as that in Table II .

A few more classes of three-weight nonbinary cyclic codes
are available in the literature (see for example [5], [21]). We
will not introduce them here as we do not need the weight
distribution formulas of these codes in this paper. Similarly,
we will not touch on references on binary three-weight codes
as this paper deals with nonbinary three-weight codes.

V. TWO AUXILIARY RESULTS ABOUT EXPONENTIAL
SUMS

In this section, we introduce two lemmas on exponential
sums over finite fields. Recall that χ and χ1 are respectively
the canonical additive characters of GF(q) and GF(p).

The following lemmas will be needed in the sequel.
Lemma 5.1: Let m be odd and h ≥ 0 be any integer. Define

S(a,b) = ∑
x∈GF(q)

χ
(

axph+1 +bx
)
.

Then, as (a,b) runs through GF(q)2, the values of the sum
∑y∈GF(p)∗ S(ya,yb) have the following distribution

Value Frequency
(p−1)pm 1
p(m+1)/2 p−1

2 (pm −1)(pm−1 + p(m−1)/2)
0 (pm −1)(pm−1 +1)

−p(m+1)/2 p−1
2 (pm −1)(pm−1 − p(m−1)/2).

Proof: According to the definition of S(a,b), we have

∑
y∈GF(p)∗

S(ya,yb)

= −q+ ∑
x∈GF(q)

∑
y∈GF(p)

χ1

(
yTrm

1 (axph+1 +bx)
)

= −q+ p+ ∑
x∈GF(q)∗

∑
y∈GF(p)

χ1

(
yTrm

1 (axph+1 +bx)
)

= (p−1)q− pWa,b (2)

where Wa,b = #{x ∈ GF(q)∗ : Trm
1 (axph+1+bx) ̸= 0}. Note that

Wa,b is exactly the Hamming weight of the codeword(
Trm

1 (axph+1 +bx)
)

x∈GF(q)∗

in the code C(1,ph+1,p,m). By Theorem 4.1, the weight distribu-
tion of C(1,ph+1,p,m) is listed in Table I. The value distribution
of ∑y∈GF(p)∗ S(ya,yb) then follows from (2) and the weight
distribution in Table I.

Lemma 5.2: Let m be odd and h be an integer with
gcd(m,h) = 1. Define

R(a,b) = ∑
x∈GF(q)

χ
(

axph+1 +bx2
)
.
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Then, as (a,b) runs through GF(q)2, the values of the sum

∑
y∈GF(p)∗

(R(ya,yb)+R(−ya,yb))

have the following distribution

Value Frequency
2(p−1)pm 1

(p−1)p(m+1)/2 (pm−1 + p(m−1)/2)(pm −1)
0 (pm −2pm−1 +1)(pm −1)

−(p−1)p(m+1)/2 (pm−1 − p(m−1)/2)(pm −1).
Proof: When h is even, the conclusion has been proved in

Theorem 3.4 of [26] (see also [14]). We now assume that h is
odd. Let λ = α(pm−1)/(p−1), where α is a generator of GF(q)∗.
Then λ is a generator of GF(p)∗, a nonsquare in GF(q) and
satisfies λ(ph−1)/2 = −1 as h is odd. By the definition of
R(a,b), we have

∑
y∈GF(p)∗

R(ya,yb)

= ∑
x∈GF(q)

∑
y∈GF(p)∗

χ
(

y(axph+1 +bx2)
)

= −q+ p+ ∑
x∈GF(q)∗

∑
y∈GF(p)

χ1

(
yTrm

1 (axph+1 +bx2)
)

= p−q+2 ∑
x∈C(2,q)

0

∑
y∈GF(p)

χ1

(
yTrm

1 (ax(ph+1)/2 +bx)
)
(3)

where C(2,q)
0 denotes the set of all nonzero squares in GF(q).

Similarly, we have

∑
y∈GF(p)∗

R(−ya,yb)

= p−q+2 ∑
x∈C(2,q)

0

∑
y∈GF(p)

χ1

(
yTrm

1 (−ax(ph+1)/2 +bx)
)

= p−q+2 ∑
x∈C(2,q)

0

∑
y∈GF(p)

χ1

(
yTrm

1 (a(λx)(ph+1)/2 +bλx)
)

= p−q+2 ∑
x∈C(2,q)

1

∑
y∈GF(p)

χ1

(
yTrm

1 (ax(ph+1)/2 +bx)
)

(4)

where C(2,q)
1 denotes the set of all nonsquares in GF(q), and in

the second and third identities we respectively used the fact
that λ is an element in GF(p) with λ(ph−1)/2 = −1 and the
fact that λx runs through C(2,q)

1 as x runs through C(2,q)
0 .

Combining (3) and (4), we arrive at

∑
y∈GF(p)∗

(R(ya,yb)+R(−ya,yb))

= −2q+2p+2 ∑
x∈GF(q)∗

∑
y∈GF(p)

χ1

(
yTrm

1 (ax(ph+1)/2 +bx)
)

= 2(p−1)q−2pWa,b (5)

where Wa,b = #{x ∈ GF(q)∗ : Trm
1 (ax(ph+1)/2+bx) ̸= 0}, which

is exactly the Hamming weight of the codeword(
Trm

1 (ax(ph+1)/2 +bx)
)

x∈GF(q)∗

in the code C(1,(ph+1)/2,p,m). By Theorem 4.2, the weight
distribution of this code is given by Table II. The conclusion
then follows from (5) and the weight distribution listed in
Table II.

VI. SEVEN CLASSES OF THREE-WEIGHT CYCLIC CODES
AND THEIR WEIGHT ENUMERATORS

In this section, we propose seven classes of three-weight
cyclic codes C(u,v,p,m) over GF(p) where u = 1 and v is some
integer with Cv∩C1 = /0 and ℓv = m. It is obvious that the code
C(1,v,p,m) has length q−1 and dimension 2m.

In terms of exponential sums, the Hamming weight
wt(c(a,b)) of the codeword c(a,b) of (1) in C(1,v,p,m) is given
by

wt(c(a,b)) = (p−1)pm−1 − 1
p ∑

y∈GF(p)∗
Tv(ya,yb) (6)

where

Tv(a,b) = ∑
x∈GF(q)

χ(ax+bxv) (7)

for each (a,b)∈GF(q)2. Throughout this section, the function
Tv(a,b) is always defined as in (7) for any given v.

The following lemma will be frequently used in the sequel
when we determine the weight distributions of the seven
classes of cyclic codes.

Lemma 6.1: Let s be any integer with gcd(s,q− 1) = 2.
Then

Tv(a,b) =
1
2

(
∑

x∈GF(q)
χ(axs +bxsv)+ ∑

x∈GF(q)
χ(aλxs +bλvxsv)

)

where λ is any fixed nonsquare in GF(q)∗.
Proof: Let C(2,q)

0 denote the set of all nonzero squares in
GF(q). Then

Tv(a,b) = 1+ ∑
x∈C(2,q)

0

χ(ax+bxv)+ ∑
x∈C(2,q)

0

χ(aλx+bλvxv). (8)

Note that gcd(q− 1,s) = 2. When x runs through GF(q), xs

runs twice through the nonzero squares in GF(q) and takes
on the value 0 once. Similarly, λxs runs twice through all
the nonsquares in GF(q) and takes on the value 0 once. The
conclusion then follows directly from (8) and the discussions
above.

A. The First Class of Three-Weight Cyclic Codes

In this subsection, we study the cyclic codes C(1,v,p,m), where
m is odd, p = 3, and v = 3(m+1)/2 −1. The parameters of the
codes are described in the following theorem.

Theorem 6.2: Let m be odd, p = 3, and v = 3(m+1)/2 −1.
Then C(1,v,p,m) is a [pm −1,2m] cyclic code over GF(p) with
the weight distribution in Table II.

Proof: Let h=(m+1)/2 and s= 3h+1. Then gcd(s,3m−
1) = 2 since m is odd. It is easy to check that sv ≡ 2 (mod
3m − 1). Noticing that v is even and −1 is a nonsquare in
GF(q). By Lemma 6.1, we have

Tv(a,b) =
1
2
(Rv(a,b)+Rv(−a,b))

where
Rv(a,b) = ∑

x∈GF(q)
χ
(

ax3h+1 +bx2
)
.
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It then follows from (6) that

wt(c(a,b))
= 2×3m−1 − 1

6 ∑y∈GF(3)∗ (Rv(ya,yb)+Rv(−ya,yb)) . (9)

Note that gcd(m,h) = gcd(m,(m + 1)/2) = 1, the weight
distribution of the code C(1,v,3,m) then follows from Equation
(9) and Lemma 5.2.

Example 6.3: Let p = 3 and m = 5. Then v = 26 and
C(1,v,p,m) is a [242,6,153] code over GF(3) with weight
enumerator 1 + 21780y153 + 19844y162 + 17424y171. It has
the same parameters as the best known cyclic codes in the
Database. It is optimal or almost optimal since the upper
bound on the minimal distance of any ternary linear code with
length 242 and dimension 6 is 154.

B. The Second Class of Three-Weight Cyclic Codes
In this subsection, we investigate the cyclic codes C(1,v,p,m),

where m ≡ 3 (mod 4), p = 3, and v = (3(m+1)/2 − 1)/2.
The parameters of the codes are described in the following
theorem.

Theorem 6.4: Let m ≡ 3 (mod 4), p = 3 and v =
(3(m+1)/2 −1)/2. Then C(1,v,p,m) is a [pm −1,2m] cyclic code
over GF(p) with the weight distribution in Table I.

Proof: Let h = (m+ 1)/2 and s = 3h + 1. Since m ≡ 3
(mod 4), gcd(s,3m − 1) = 2 and v is even. Note that sv =
(3m+1 −1)/2. Thus sv≡ (3m +1)/2 (mod 3m−1). Select λ=
−1 as a nonsquare in GF(q). Applying Lemma 6.1, we have

Tv(a,b) =
1
2
(Qv(a,b)+Qv(−a,b)) . (10)

Herein

Qv(a,b) = ∑
x∈GF(q)

χ
(

ax3h+1 +bx(3
m+1)/2

)
= 1+ ∑

x∈C(2,q)
0

χ
(

ax3h+1 +bx(3
m+1)/2

)
+

∑
x∈C(2,q)

0

χ
(

a(λx)3h+1 +b(λx)(3
m+1)/2

)
= 1+2 ∑

x∈C(2,q)
0

χ
(

ax3h+1 +bx
)

where C(2,q)
0 denotes the set of all nonzero squares in GF(q),

and the last identity followed from the observation that
x(3

m+1)/2 = x for any x ∈C(2,q)
0 . It is easily seen that

Qv(a,b)+Qv(a,−b) = 2Sv(a,b) (11)

and

Qv(−a,b)+Qv(−a,−b) = 2Sv(−a,b) (12)

where

Sv(a,b) = ∑
x∈GF(q)

χ
(

ax3h+1 +bx
)
. (13)

Note that

Sv(−a,b) = ∑
x∈GF(q)

χ
(
−a(−x)3h+1 −b(−x)

)
= ∑

x∈GF(q)
χ
(
−ax3h+1 −bx

)
= Sv(−a,−b). (14)

Combining Equations (10)–(14), we then have

∑
y∈GF(3)∗

Tv(ya,yb) = ∑
y∈GF(3)∗

Sv(ya,yb). (15)

It then follows from (6) and (10) that

wt(c(a,b)) = 2×3m−1 − 1
3 ∑

y∈GF(3)∗
Sv(ya,yb). (16)

The weight distribution of the code C(1,v,3,m) then follows
from Equation (16) and Lemma 5.1.

Example 6.5: Let p= 3 and m= 3. Then v= 8 and C(1,v,p,m)

is a [26,6,15] code over GF(3) with weight enumerator 1+
312y15 + 260y18 + 156y21. It has the same parameters as the
optimal cyclic code in the Database.

C. The Third Class of Three-Weight Cyclic Codes

In this subsection, we deal with the cyclic codes C(1,v,p,m),
where m ≡ 1 (mod 4), p = 3, and v = (3(m+1)/2 − 1)/2 +
(3m −1)/2. The parameters of the codes are described in the
following theorem.

Theorem 6.6: Let m ≡ 1 (mod 4), p = 3 and v =
(3(m+1)/2−1)/2+(3m−1)/2. Then C(1,v,q,m) is a [pm−1,2m]
cyclic code over GF(p) with the weight distribution in Table
I.

Proof: Let h=(m+1)/2 and s= 3h+1. Then gcd(s,3m−
1) = 2 since m is odd. It is easy to verify that v is even and
sv ≡ (3m +1)/2 (mod 3m −1). The proof of this theorem is
then similar to that of Theorem 6.4 and is omitted here.

D. The Fourth Class of Three-Weight Cyclic Codes

In this subsection, we treat the cyclic codes C(1,v,p,m), where
m ≡ 3 (mod 4), p = 3, and v = (3m+1 −1)/8. The parameters
of the codes are described in the following theorem.

Theorem 6.7: Let m ≡ 3 (mod 4), p = 3 and v =
(3m+1 −1)/8. Then C(1,v,p,m) is a [pm−1,2m] cyclic code over
GF(p) with the weight distribution in Table I.

Proof: Let h = 1 and s = 3h + 1. Since m ≡ 3 (mod 4),
gcd(s,3m−1) = 2 and v is even. It is straightforward to verify
that sv ≡ (3m+1)/2 (mod 3m−1). The proof of this theorem
is then similar to that of Theorem 6.4 and is omitted here.

Example 6.8: Let p = 3 and m = 7. Then v = 820 and
C(1,v,p,m) is a [2186,14,1431] code over GF(3) with weight
enumerator 1+1652616y1431 +1595780y1458 +1534572y1485.

E. The Fifth Class of Three-Weight Cyclic Codes

In this subsection, we consider the cyclic codes C(1,v,p,m),
where p = 3 and v = (3m+1 −1)/8+ (3m −1)/2 for m ≡ 1
(mod 4). The parameters of the codes are described in the
following theorem.

Theorem 6.9: Let m ≡ 1 (mod 4), p = 3 and v =
(3m+1 −1)/8+ (3m −1)/2. Then C(1,v,p,m) is a [pm − 1,2m]
cyclic code over GF(p) with the weight distribution in Table
I.

Proof: Let h = 1 and s = 3h+1. Then gcd(s,3m−1) = 2.
It is not hard to verify that v is even and sv≡ (3m+1)/2 (mod
3m − 1). The proof of this theorem is then similar to that of
Theorem 6.4 and omitted here.
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Example 6.10: Let p = 3, m = 9. Then v = 17222 and
C(1,v,p,m) is a [19682,18,13041] code over GF(3) with
weight enumerator 1+130727844y13041 +129153284y13122 +
127539360y13203.

F. The Sixth Class of Three-Weight Cyclic Codes

In this subsection, we analyze the cyclic codes
C(1,v,p,m), where m ≡ 3 (mod 4), p = 3, and

v =
(

3(m+1)/4 −1
)(

3(m+1)/2 +1
)

. The parameters of
the codes are described in the following theorem.

Theorem 6.11: Let m ≡ 3 (mod 4), p = 3 and v =(
3(m+1)/4 −1

)(
3(m+1)/2 +1

)
. Then C(1,v,3,m) is a [3m−1,2m]

cyclic code over GF(3) with the weight distribution in Table
II.

Proof: Let h = (m+ 1)/4 and s = 3h + 1. Since m ≡ 3
(mod 4), gcd(s,3m −1) = 2 and v is even. It is easy to check
that sv ≡ 2 (mod 3m − 1). Select λ = −1 as a nonsquare in
GF(pm). Applying Lemma 6.1, we have

Tv(a,b) =
1
2
(Rv(a,b)+Rv(−a,b)) (17)

where
Rv(a,b) = ∑

x∈GF(q)
χ
(

ax3h+1 +bx2
)
.

It then follows from (6) and (17) that

wt(c(a,b))

= 2×3m−1 − 1
6 ∑

y∈GF(3)∗
(Rv(ya,yb)+Rv(−ya,yb)) .(18)

The weight distribution of the code C(1,v,3,m) then follows from
(18) and Lemma 5.2.

VII. APPLICATION OF THE THREE-WEIGHT CYCLIC
CODES IN SECRET SHARING

Secret sharing is an interesting topic of cryptography and
has been studied for over thirty years. In a secret sharing
scheme, a dealer will create a secret to be shared among a
group of participants. The dealer will compute a share of
the secret for each participant, and will distribute them to all
participants. Some of the subgroups of the participants will be
able to recover the secret after combining their shares together,
while other subgroups will not be able to do so. In this section,
we will study the secret sharing schemes based on all the
three-weight codes presented in this paper, as a demonstration
of applications of these codes.

A. A Construction of Secret Sharing Schemes Based on Linear
Codes

Let G = (g0,g1, . . . ,gn−1) be a generator matrix of an
[n,k,d] linear code C over GF(p). For all the linear codes
mentioned in this section we assume that no column vector
of any generator matrix is the zero vector. One way of
using linear codes to construct secret sharing schemes is the
following.

The secrets and parties involved: In the secret sharing
scheme constructed from C , the secret is an element of GF(p),
and n−1 parties P1,P2, · · · ,Pn−1 and a dealer are involved.

The computation and distribution of shares: To compute the
shares with respect to a secret s, the dealer chooses randomly
a vector u = (u0, . . . ,uk−1) ∈ GF(p)k such that s = ug0. There
are altogether pk−1 such vectors u ∈ GF(p)k. The dealer
then treats u as an information vector and computes the
corresponding codeword

t = (t0, t1, . . . , tn−1) = uG.

He then gives ti to party Pi as share for each i ≥ 1.
Recovering the secret: Note that t0 = ug0 = s. A set of

shares {ti1 , ti2 , . . . , tim} determines the secret if and only if g0
is a linear combination of gi1 , . . . ,gim .

The following lemma tells which subgroups of participants
can recover the secret [25].

Lemma 7.1: Let G be a generator matrix of an [n,k] code
C over GF(p). In the secret sharing scheme based on C , a set
of shares {ti1 , ti2 , . . . , tim} determine the secret if and only if
there is a codeword

(1,0, . . . ,0,ci1 ,0, . . . ,0,cim ,0, . . . ,0) (19)

in the dual code C⊥, where ci j ̸= 0 for at least one j, 1 ≤ i2 <
.. . < im ≤ n−1 and 1 ≤ m ≤ n−1.

If there is a codeword of (19) in C⊥, then the vector g0 is
a linear combination of gi1 , . . . ,gim , say, g0 = ∑m

j=1 x jgi j . Then
the secret s is recovered by computing s = ∑m

j=1 x jti j .
If a group of participants can recover the secret by combin-

ing their shares, then any group of participants containing this
group can also recover the secret. A group of participants is
called a minimal access set if they can recover the secret with
their shares, but any of its proper subgroups cannot do so.
Here a proper subgroup has fewer members than this group.
Due to these facts, we are only interested in the set of all
minimal access sets. To determine this set, we need the notion
of minimal codewords.

The support of a vector c ∈ GF(p)n is defined to be

{0 ≤ i ≤ n−1 : ci ̸= 0}.

A codeword c2 covers a codeword c1 if the support of c2
contains that of c1.

If a nonzero codeword c covers only its multiples, but no
other nonzero codewords, then it is called a minimal codeword.
If the first coordinate of a minimal codeword is 1, it is called
a minimal AS-codeword.

It follows from Lemma 7.1 and the discussions above
that there is a one-to-one correspondence between the set of
minimal access sets and the set of minimal AS-codewords
of the dual code C⊥. To determine the access structure of a
secret sharing scheme, we need to determine only the set of
minimal AS-codewords, i.e., a subset of the set of all minimal
codewords. However, in almost every case we should be able
to determine the set of all minimal codewords as long as we
can determine the set of minimal AS-codewords.

The shares for the participants depend on the selection of
the generator matrix G of the code C . However, by Lemma
7.1 the selection of G does not affect the access structure of
the secret sharing scheme. Hence in the sequel we will call
it the secret sharing scheme based on C , without mentioning
the generator matrix used to computer the shares.
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B. The Access Structure of The Secret Sharing Schemes Based
on Special Linear Codes

Theorem 7.2: [25] Let C be an [n,k] code over GF(p),
and let G = [g0,g1, · · · ,gn−1] be its generator matrix. If each
nonzero codeword of C is a minimal vector, then in the
secret sharing scheme based on C⊥, there are altogether pk−1

minimal access sets. In addition, we have the following:
1) If gi is a multiple of g0, 1 ≤ i ≤ n−1, then participant Pi

must be in every minimal access set. Such a participant
is called a dictatorial participant.

2) If gi is not a multiple of g0, 1≤ i≤ n−1, then participant
Pi must be in (p− 1)pk−2 out of pk−1 minimal access
sets.

In view of Theorem 7.2, it is an interesting problem to
construct codes where each nonzero codeword is a minimal
vector. Such a linear code gives a secret sharing scheme with
the interesting access structure described in Theorem 7.2.

If the weights of a linear code are close enough to each
other, then each nonzero codeword of the code is minmal, as
described by the following proposition [1].

Lemma 7.3: In an [n,k] linear code C over GF(p), let wmin
and wmax be the minimum and maximum nonzero weights
respectively. If

wmin

wmax
>

p−1
p

,

then each nonzero codeword of C is minimal.

C. The Access Structure of The Secret Sharing Schemes
Derived From the Codes of This Paper

The cyclic codes of this paper are very interesting for secret
sharing due to the following lemma.

Lemma 7.4: In every cyclic code C(1,v,p,m) in the seven
classes presented in this paper, every nonzero codeword is
minimal.

Proof: Every cyclic code C(1,v,p,m) in the seven classes
presented in this paper has parameters [pm − 1,2m] and the
weight distribution of either Table I or Table II. Note that
p ≥ 3.

If the code has the weight distribution of Table I, then it is
easily verified that

wmin

wmax
=

(p−1)p(m−1)/2 −1
(p−1)p(m−1)/2 +1

>
p−1

p
,

provided that m ≥ 3.
If the code has the weight distribution of Table II, then it

is similarly verified that

wmin

wmax
=

(p−1)p(m−1)/2 − (p−1)/2
(p−1)p(m−1)/2 +(p−1)/2

>
p−1

p
,

provide that m ≥ 3.
The desired conclusion then follows from Lemma 7.3. This

completes the proof of this lemma.
The main result of this section is the following.
Theorem 7.5: Let C(1,v,p,m) be any code in the seven classes

of this paper, and let G = [g0,g1, · · · ,gn−1] be its generator
matrix. In the secret sharing scheme based on C⊥

(1,v,p,m), the
total number of participants is equal to pm −2 and there are

altogether p2m−1 minimal access sets. In addition, we have the
following:
Ca If gi is a multiple of g0, 1≤ i≤ pm−2, then participant Pi

must be in every minimal access set. Such a participant
is called a dictatorial participant.

Cb If gi is not a multiple of g0, 1 ≤ i ≤ pm − 2, then
participant Pi must be in (p − 1)p2m−2 out of p2m−1

minimal access sets.
Proof: The desired conclusions follow from Theorem 7.2

and Lemma 7.4.
The access structure of the secret sharing scheme based on

C⊥
(1,v,p,m) has only two possible cases described in Theorem

7.5. In Case Ca, there is a dictator in the scheme who must be
in every minimal access set, while the other participants have
equal importance in the scheme. In Case Cb, every participant
has equal importance in the scheme. Both access structures are
interesting as they may be required in different scenarios.

For many of the cyclic codes presented in this paper, the
prime p is either 3 or 5. So the space Zp is too small. For
real-world applications, a secret space should be of huge size.
To employ the secret sharing schemes derived from the codes
of this paper, each element of the secret space can be encoded
into a sequence of elements from GF(p) using an encoding
rule, the elements of the sequence are then shared in order
one by one by the participants.

VIII. SUMMARY AND CONCLUDING REMARKS

The contributions of this paper include the construction
of the seven classes of three-weight cyclic codes and the
determination of their weight distributions. These cyclic codes
are interesting and important due to the following:

1) They have only three nonzero weights and are inter-
esting in certain applications such as the one in [3].
If a linear code over GF(q) has a few weights, it is
more likely that wmin/wmax > (q− 1)/q. Such a code
is interesting for the application in secret sharing as
demonstrated in Section VII.

2) Some of the specific codes in the seven classes are
optimal in the sense that their error-correcting capability
is the best possible when the length and the dimension
are fixed (see the codes in some of the examples in this
paper).

3) When the codes presented in this paper are employed
for error detection, the probability of an undetected
error with respect to a communication channel could be
computed. We elaborate on this statement a little below.
When a codeword c in a linear code C is transmitted
over a binary symmetric channel (BSC) with probability
ε, errors may occur during transmission. If the received
message is not a codeword in C , we will be able to
detect the error. However, if the received message is
another codeword c′ ̸= c, we have no way to detect the
error. Thus, we have a undetected error. Let Pue(C ,BSC)
denote the probability that this happens. It is known that
[13, p. 38]

Pue(C ,BSC) =
n

∑
i=1

Aiεi(1− ε)n−i,
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where (A0,A1, · · · ,An) denotes the weight distribution of
the code C .
Since the weight distributions of all the codes presented
in this paper are known, we are able to compute this
probability Pue(C ,BSC) exactly. In addition, since the
codes have only three nonzero weights, the probability
Pue(C ,BSC) may be smaller compared with many other
codes. This is another advantage of the three-weight
codes over other codes when they are used for error
detection.

4) When the specific codes of this paper are employed for
secret sharing, the access structure of the secret sharing
schemes can be determined and is in fact very nice, as
shown in Section VII. Note that every linear code gives
a secret sharing scheme. It is believed that determining
the access structure of the secret sharing scheme is very
hard for linear codes in general.

The major mathematical difficulty overcome in this paper is
the determination of the values of the exponential sums that are
required in calculating the weight distributions of these cyclic
codes. The technical breakthrough for computing the values
of the exponential sums is the discovery of the noninvertible
transformations described in Sections V and VI. It is well
known that the weight distribution problem for cyclic codes
is in general very hard and it is settled for only a very small
number of classes of codes.
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[11] I. Honkala and A. Tietäväinen, “Codes and number theory,” in Handbook
of Coding Theory, Vol. II, V. S. Pless and W. C. Huffman (Eds.), pp.
1143–1194. Elsevier, 1998.

[12] D. J. Katz, “Weil sums of binomials, three-level cross-correlation, and
a conjecture of Helleseth,” J. Comb. Theory Ser. A, vol. 119, pp. 1644–
1659, 2012.

[13] T. Kløve, Codes for Error Detection. World Scientific, 2007.
[14] J. Luo and K. Feng, “On the weight distributions of two classes of cyclic

codes,” IEEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5332–5344, Dec.
2008.

[15] C. Ma, L. Zeng, Y. Liu, D. Feng, and C. Ding, “The weight enumerator
of a class of cyclic codes,” IEEE Trans. Inf. Theory, vol. 57, no.1, pp.
397–402, Jan. 2011.

[16] G. McGuire, “On three weights in cyclic codes with two zeros,” Finite
Fields Appl., vol. 10, no. 1, pp. 97–104, Jan. 2004.

[17] J. H. van Lint, Introduction to Coding Theory, 3rd ed. Springer-Verlag,
1999.

[18] G. Vega, “The weight distribution of an extended class of reducible
cyclic codes,” IEEE Trans. Inf. Theory, vol. 58, no. 7, pp. 4862–4869,
July 2012.

[19] G. Vega and C. A. Vázquez, “The weight distribution of a family of
reducible cyclic codes,” in Arithmetic of Finite Fields, Lecture Notes in
Computer Science 7369, Springer-Verlag, 2012, pp. 16–28.

[20] B. Wang, C. Tang, Y. Qi, Y. Yang, and M. Xu, “The weight distributions
of cyclic codes and elliptic curves,” IEEE Trans. Inf. Theory, vol. 58,
no. 12, pp. 7253–7259, Dec. 2012.

[21] Y. Xia, X. Zeng, and L. Hu, “Further crosscorrelation properties of
sequences with the decimation factor d =(pn+1)/(p+1)+(pn−1)/2,”
Appl. Algebra Eng. Commun. Comput., vol. 21, no. 5, pp. 329–342, Nov.
2010.

[22] M. Xiong, “The weight distributions of a class of cyclic codes,” Finite
Fields Appl., vol. 18, no. 5, pp. 933–945, Sept. 2012.

[23] M. Xiong, “The weight distributions of a class of cyclic codes II,” Des.
Codes Cryptogr., to appear.

[24] J. Yuan, C. Carlet, and C. Ding, “The weight distribution of a class of
linear codes from perfect nonlinear functions,” IEEE Trans. Inf. Theory,
vol. 52, no. 2, pp. 712–717, Feb. 2006.

[25] J. Yuan and C. Ding, “Secret sharing schemes from three classes of
linear codes,” IEEE Trans. Inf. Theory, vol. 52, no.1, pp. 206–212, Jan.
2006.

[26] Z. Zhou and C. Ding, “A class of three-weight cyclic codes,”
arXiv:1302.0569, 2013.

Zhengchun Zhou received the B.S. and M.S. de-
grees in mathematics and the Ph.D. degree in infor-
mation security from Southwest Jiaotong University,
Chengdu, China, in 2001, 2004, and 2010, respec-
tively. From 2012 to 2013, he was a postdoctoral
member in the Department of Computer Science and
Engineering, the Hong Kong University of Science
and Technology. He is currently an associate pro-
fessor with the School of Mathematics, Southwest
Jiaotong University. His research interests include
sequence design and coding theory.

Cunsheng Ding (M’98–SM’05) was born in 1962
in Shaanxi, China. He received the M.Sc. degree
in 1988 from the Northwestern Telecommunications
Engineering Institute, Xian, China; and the Ph.D. in
1997 from the University of Turku, Turku, Finland.

From 1988 to 1992 he was a Lecturer of Math-
ematics at Xidian University, China. Before joining
the Hong Kong University of Science and Tech-
nology in 2000, where he is currently Professor of
Computer Science and Engineering, he was Assis-
tant Professor of Computer Science at the National

University of Singapore.
His research fields are cryptography and coding theory. He has coauthored

four research monographs, and served as a guest editor or editor for ten
journals. Dr. Ding co-received the State Natural Science Award of China in
1989.


