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Explainable and Robust CV/Al Systems

1. Explainable: Most of AI/CV systems are “black-boxes”

Al system is a black-box
end-to-end model

[Source: Google]
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2. Robust: Current Al systems rely on balanced, clean, and sufficient training

data

Image classification performance on ImageNet
SOTA Acc: 98.7% (top-5), Human Acc: 94.9% (top-5)
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Real-world data is biased, noisy,
and long-tailed.

[Xuanyu Yi, et al, ECCV’22]

[Source: paperswithocde.com]
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Explainable: Transform raw visual data into structural representation
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(a) Scene-centric Graph (b) Event-centric Graph (c) Video Scene-centric Graph

Robust: Real-world natural data are biased, noisy, and limited
« Biased samples learning

* Noisy samples learning

* Limited samples learning
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» Appearance of large-scale pretrained Large Language Models (LLMs) and
Vision-Language Models (VLMSs)
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A Survey of Large Language Models. In arXiv, 2023.

Multimodal Foundation Models: From Specialists to General-Purpose Assistants. In arXiv, 2023.
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Explainable

* More general multimodal representation (AAAI'24)

« Decompose a complex question into a set of simpler ones (EMNLP’23)
Robust

« Using simple descriptive knowledge in LLMs (NeurlPS’23)

« Using procedure knowledge in LLMs (ICLR24)

« Using commonsense knowledge in LLMs (EMNLP’23)

Efficient

« Memory-efficient parameter-efficient transfer learning (CVPR'24)
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« Explainable: More general multimodal representation (AAAI'24)

: :
V7

Iran/Iraq (e:: War), Mass Funeral For Victims Of
Iranian Airbus

Mass (e«: funeral) for victims of Iranian Airbus
(es: shot) down over the Gulf... Khameini funeral
(er: speech)...mourners give clenched fist
salutes and (es: chanting)...

-

: Multimodal Edge €i: text event
[ ]: Video Event Boundary Vi: video event
\__H: Hierarchical Relation I: Identical Relation

Beyond Grounding: Extracting Fine-Grained Event Hierarchies Across Modalities. In AAAI, 2024

e:: shot

e.: funeral

Y

es: chanting

(airbus debri)

e:: speech
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« Explainable: Decompose a complex questions into a set of simpler ones (EMNLP’23)

Visual Question Answering (IdealGPT)

IdealGPT: Iteratively Decomposing Vision and Language Reasoning via Large Language Models. In EMNLP, 2023. L

End-to-End Methods:

nswer
They are walking
'@' along slreetQ
End-to-End |~

VLMs

Main Question:.

What are the man and woman
doing here?

Answerer
'@' (VLMs)

Sub-Question 1: Sub-Answer 1:

’Wwe the man and vml The woman is wearing a
wearing? long white dress, and the
man is in formal attire.
Sub-Question 2:
Where are the people located? Sub-Answer 2:
[ At a wedding |
Sub-Question 3:

How are the man and woman
interacting with each other?

Ours:

Sub-A 3:

I They are holding hands. l

If Unconfiden ’/__/
oo [ Wearemotsue | -
If Confident Reasoner @

 They are going to get
V' 4 married, because ...

Finis
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* Robust: Using simple descriptive knowledge in LLMs (NeurlPS’23)

Visual Relation Detection

© holdin O carryin
| g rying

Holding: a person having an object in their hands |a person having

Carrying: a person supporting an object in their an object in their [
hands hands 0 © a person supporting

c
Which of the pictures are “holding” and “carrying"?

(A) carrying (B) carrying

D B O ----+ an object in their
Loy O ¢  hands

AC are “holding”, and BD are “carrying”

___________ @ __ . ____
subject with hands » subject with hands
subject is standing @ » subject is standing
v holding object with a handle or a grip that is oPT P
held by the subject's hand O holding O carrying

subject with both hands
sand arms supporting a
/' heavy object
1

0@o™,  subject in a more
A B

subject with hands, with arms

subject in a more engaged position,
camying perhaps walking or running

subject with both hands and arms

supporting a heavy object 1% 22 " engaged position,
CD are “holding", and AB are “carrying” CLIP perhaps walking
ar running
(c) (d)
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» Robust: Using procedure knowledge in LLMs (ICLR’24)

Procedure Planning

Step 1? Step 2? Step 37
—_— —_—»
a a, as

start state . . . .
¢ Sy ) (a) Problem: Procedure Planning in Instructional Videos

1 i I
i open = jTake steakj)
1 lid :from grilf'i

(d) LLM'’s descriptions as state supervision (ours)

SCHEMA: State CHangEs MAtter for Procedure Planning in Instructional Videos. In ICLR, 2024

(goal state)

[goal]: Make Kimchi Fried Rice

[step]: add onion

Step Description:

- Add diced onion into the fried rice.
Before:

- The diced onion is separate from the pan.
- The pan contains fried rice.

- The pan has no onion on it.

After:

- The diced onion is mixed with the fried rice.
- The onion is on the pan.

- The pan contains onion.

[goal]: Make Pancakes

[step]: pour milk

Step Description:

- Pour milk into the pancake batter.
Before:

- The milk is in a container.

- The pancake batter contains no milk.
- The milk is a liquid.

After:

- The milk is mixed with the pancake batter.
- The milk is in the mixing bowl.

- The pancake batter contains milk.

THE DEPARTMENT OF
a COMPUTER SCIENCE & ENGINEERING
k AEMRZ2RTESEER



* Robust: Using commonsense knowledge in LLMs (EMNLP’23)

Harmful Meme Detection

Chance
a virus with
a99.97%
recovery rate

vaccine, witi
NO liabilty, from
a corrupt industry

¥ . "
Youlteynna gethis family to accent WIT ~

(a) Harmful (b) Harmful (c) Harmless
Abductive Reasoning with LLMs of |0
n -

Given a text: my black boy friend, which is Rationale:
kmbedded in an image: A Woman holds a baby The text oou.ld be seen as ?bjecﬁfy'ing or reducing a person to.their race. While the image Pfa

114 ol s :onale for how th LLM 'woman holding a baby gorilla could be interpreted as a comparison between the black boyfriend|

» Please provide a rationale for how the meme and an animal, reinforcing harmful stereotypes about race. The potential for the overall message|

s reasoned as the harmfulness label: harmyful of the meme to spread harmful or offensive content about race and relationships.

’ Distiﬁation
v

F* Fusion > LM Decoder

| Vision Extractor e s 4

The First Fine-tuning Stage

|Tlle meme is harmful|

> LM Encoder' LM Encoder

Fusion LM Decoder

Vision Extractor
The Second Fine-funing Stage

Beneath the Surface: Unveiling Harmful Memes with Multimodal Reasoning Distilled from Large Language Models. In EMNLP, 202
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- Efficient: Memory- & parameter-efficient transfer learning (CVPR’24)
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Figure 1: Overview of different types of state-of-the-art PETL methods. “Partially”, “Adapter”, and
“Prompt” denote “partially tuning”, “adapter tuning” and “prompt tuning”, respectively.

UniPT: Universal Parallel Tuning for Transfer Learning with Efficient Parameter and Memory. In CVPR, 2024
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THANK YOU
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