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• 1966, MIT Computation 
Center

• IBM 7094, Ancient OS CTSS 
(before UNIX)

• A technical issue leaked all 
user’s passwords in plain 
text

Source: https://multicians.org/thvv/7094.html

One of the earliest 
cybersecurity vulnerability
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What is Security Vulnerability?

• Software code flaws or system misconfigurations

• Lead to unauthorized access/control of computer systems

• Huge real-world impact on our lives
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Global Ransomware Attacks
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Global ransomware attacks cost billions of dollars every year



Confidential Data Breach
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Account leaked: 12 billion[1]

Online population: 5 billion[2]

Every people has an average of 
2.4 accounts leaked online

[1] https://haveibeenpwned.com/
[2] https://datareportal.com/global-digital-overview

https://datareportal.com/global-digital-overview
https://datareportal.com/global-digital-overviewhttps:/da


Why Do Vulnerabilities Exist?

[1] Pearce et al. Asleep at the Keyboard? Assessing the Security of GitHub Copilot's Code Contributions. IEEE S&P’22.

• Humans write code

• Humans inevitably make the mistake

• Current AI-code completion still contains vulnerabilities[1]
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It is hard to eliminate all the bugs



Automated Approaches to Find Vulnerabilities

• Fuzzing

• Static/Dynamic analysis

• Formal verification

• Symbolic execution
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• Simple and effective
• Light-weight and scalable
• Widely-used in industry



Limitation of Existing Approaches

Rule-based design: rely on a set of static rules or heuristics. 

Rule 1
Rule 2

…
Rule n

outputinput

Human experience/
Hand-crafted heuristics

Rule-based system

• Good heuristics are expensive
• Often fail to generalize on diverse 

programs
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Rule 1: Schedule the seed by file size
Rule 2: Schedule the seed by execution time
Rule 3: Randomly mutate the first byte of the seed

Rule N: … 



Rule-Based vs. Data-Driven

Rule 1
Rule 2

…
Rule n

outputinput

Human experience/
Hand-crafted heuristics

Rule-based system

𝒇 𝒊𝒏𝒑𝒖𝒕
Adatpive to 

data

outputinput

Data-driven system

Data-driven approach is adaptive and effective
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My Research

Seed 1

Seed 2

Seed N

…

Seed Corpus

Seed
Scheduling

Seed
Mutation

Save?
Yes

No

new Input
Program

 Part 1: Data-driven mutation
 Part 2: Data-driven scheduling

Data-driven mutation:
Neuzz[SP’19]

Neutaint[SP’20]
MTFuzz[FSE’20]

Data-driven scheduling:
K-Scheduler[SP’22]
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Part 1Part 2

Fuzzing Workflow
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NEUZZ: Data-Driven Mutation

Existing works: rule-based mutation
Our solution: data-driven mutation

- Fuzzing as an optimization problem => Gradient-guided mutation

Background: Fuzzing is a search problem aimed at discovering testcases 
that can trigger vulnerabilities

Problem: How to effectively search for interesting testcases 



Input Space of Program

High-dimensional and discrete input space

0 1 2 3 4 . . . . . . 255𝑥1

0 1 2 3 4 . . . . . . 255𝑥2

0 1 2 3 4 . . . . . . 255𝑥𝑛

n is the length of the input
Total possible inputs = 256^n

Random mutation in huge search space is inefficient

… …

X = [𝑥1, 𝑥2, 𝑥3 , … , 𝑥𝑛 ]

12



Overview of NEUZZ

NN

Program 

Inputs

Program 

Behaviors

Program
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Program 

Inputs

Program 

Behaviors

Gradient-guided 

mutation

Smooth

Approximation

Discrete and 

Non-differentiable

Smooth and 

Differentiable
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K-Scheduler: Data-Driven Scheduling

Existing work: rule-based selection
Our approach: Data-driven scheduling

- Fuzzing as an influence analysis problem => Graph centrality analysis

Background: fuzzing needs to choose a seed during the search

Problem: How to choose a promising seed from seed corpus



Overview of K-Scheduler

Seed1

Node3

Graph Centrality 
Analysis

Node4

Node2

Node1

Seed2

𝒄 = 𝟏 𝒄 = 𝟏

Seed1

Node3 Node4

Node2

Node1

Seed2

𝒄 = 𝟏. 𝟓

𝒄 = 𝟏

𝒄 = 𝟏. 𝟐 𝒄 = 𝟑

Edge horizon graphEdge horizon graph

We use graph centrality score to estimate the search gain of each seed
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Future Directions

• Neural-symbolic software testing

• LLM-assisted program analysis
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Neural-Symbolic Software Testing
Software testing with domain knowledge

- Smart contract, Network protocol, Autonomous driving, Deep Learning API

Explore the domain-specific software testing in a 
neural-symbolic way

Symbolic Module
Domain knowledge

Neural Module
Learn from data

Neural-Symbolic 
Software Testing
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Temporal Logic
Fuzzy Logic

Solver-based techniques

NN approximation
Optimizations

Sampling-based techniques

Robustness
Interpretability

Expressiveness
Scalability



LLM-Assisted Program Analysis

Leverage LLM’s capability of code comprehension and code summary 
to boost traditional program analysis tasks

- Dataflow analysis, vulnerability detection (e.g., race condition, memory 
corruption, integer overflow), software testing (e.g., fuzzing)

• Task decomposition
• Automatic prompt generation
• Retrieval augmented generation

Traditional
Program
Analysis

Large 
Language

Model

Prompt generation with
analysis result

Code comprehension
& code summary


