
Software Testing in a Data-
driven Approach

Dongdong She

Hong Kong University of Science and Technology

1

• 1966, MIT Computation
Center

• IBM 7094, Ancient OS CTSS
(before UNIX)

• A technical issue leaked all
user’s passwords in plain
text

Source: https://multicians.org/thvv/7094.html

One of the earliest
cybersecurity vulnerability

2

What is Security Vulnerability?

• Software code flaws or system misconfigurations

• Lead to unauthorized access/control of computer systems

• Huge real-world impact on our lives

3

Global Ransomware Attacks

4

Global ransomware attacks cost billions of dollars every year

Confidential Data Breach

5

Account leaked: 12 billion[1]

Online population: 5 billion[2]

Every people has an average of
2.4 accounts leaked online

[1] https://haveibeenpwned.com/
[2] https://datareportal.com/global-digital-overview

https://datareportal.com/global-digital-overview
https://datareportal.com/global-digital-overviewhttps:/da

Why Do Vulnerabilities Exist?

[1] Pearce et al. Asleep at the Keyboard? Assessing the Security of GitHub Copilot's Code Contributions. IEEE S&P’22.

• Humans write code

• Humans inevitably make the mistake

• Current AI-code completion still contains vulnerabilities[1]

6

It is hard to eliminate all the bugs

Automated Approaches to Find Vulnerabilities

• Fuzzing

• Static/Dynamic analysis

• Formal verification

• Symbolic execution

7

• Simple and effective
• Light-weight and scalable
• Widely-used in industry

Limitation of Existing Approaches

Rule-based design: rely on a set of static rules or heuristics.

Rule 1
Rule 2

…
Rule n

outputinput

Human experience/
Hand-crafted heuristics

Rule-based system

• Good heuristics are expensive
• Often fail to generalize on diverse

programs

8

Rule 1: Schedule the seed by file size
Rule 2: Schedule the seed by execution time
Rule 3: Randomly mutate the first byte of the seed

Rule N: …

Rule-Based vs. Data-Driven

Rule 1
Rule 2

…
Rule n

outputinput

Human experience/
Hand-crafted heuristics

Rule-based system

𝒇 𝒊𝒏𝒑𝒖𝒕
Adatpive to

data

outputinput

Data-driven system

Data-driven approach is adaptive and effective

9

My Research

Seed 1

Seed 2

Seed N

…

Seed Corpus

Seed
Scheduling

Seed
Mutation

Save?
Yes

No

new Input
Program

 Part 1: Data-driven mutation
 Part 2: Data-driven scheduling

Data-driven mutation:
Neuzz[SP’19]

Neutaint[SP’20]
MTFuzz[FSE’20]

Data-driven scheduling:
K-Scheduler[SP’22]

10

Part 1Part 2

Fuzzing Workflow

11

NEUZZ: Data-Driven Mutation

Existing works: rule-based mutation
Our solution: data-driven mutation

- Fuzzing as an optimization problem => Gradient-guided mutation

Background: Fuzzing is a search problem aimed at discovering testcases
that can trigger vulnerabilities

Problem: How to effectively search for interesting testcases

Input Space of Program

High-dimensional and discrete input space

0 1 2 3 4 255𝑥1

0 1 2 3 4 255𝑥2

0 1 2 3 4 255𝑥𝑛

n is the length of the input
Total possible inputs = 256^n

Random mutation in huge search space is inefficient

… …

X = [𝑥1, 𝑥2, 𝑥3 , … , 𝑥𝑛]

12

Overview of NEUZZ

NN

Program

Inputs

Program

Behaviors

Program

13

Program

Inputs

Program

Behaviors

Gradient-guided

mutation

Smooth

Approximation

Discrete and

Non-differentiable

Smooth and

Differentiable

14

K-Scheduler: Data-Driven Scheduling

Existing work: rule-based selection
Our approach: Data-driven scheduling

- Fuzzing as an influence analysis problem => Graph centrality analysis

Background: fuzzing needs to choose a seed during the search

Problem: How to choose a promising seed from seed corpus

Overview of K-Scheduler

Seed1

Node3

Graph Centrality
Analysis

Node4

Node2

Node1

Seed2

𝒄 = 𝟏 𝒄 = 𝟏

Seed1

Node3 Node4

Node2

Node1

Seed2

𝒄 = 𝟏. 𝟓

𝒄 = 𝟏

𝒄 = 𝟏. 𝟐 𝒄 = 𝟑

Edge horizon graphEdge horizon graph

We use graph centrality score to estimate the search gain of each seed

15

Future Directions

• Neural-symbolic software testing

• LLM-assisted program analysis

16

Neural-Symbolic Software Testing
Software testing with domain knowledge

- Smart contract, Network protocol, Autonomous driving, Deep Learning API

Explore the domain-specific software testing in a
neural-symbolic way

Symbolic Module
Domain knowledge

Neural Module
Learn from data

Neural-Symbolic
Software Testing

17

Temporal Logic
Fuzzy Logic

Solver-based techniques

NN approximation
Optimizations

Sampling-based techniques

Robustness
Interpretability

Expressiveness
Scalability

LLM-Assisted Program Analysis

Leverage LLM’s capability of code comprehension and code summary
to boost traditional program analysis tasks

- Dataflow analysis, vulnerability detection (e.g., race condition, memory
corruption, integer overflow), software testing (e.g., fuzzing)

• Task decomposition
• Automatic prompt generation
• Retrieval augmented generation

Traditional
Program
Analysis

Large
Language

Model

Prompt generation with
analysis result

Code comprehension
& code summary

