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Abstract 

We envision that in some wireless sensor network 
applications, such as environmental monitoring, 
assisted living, and industrial control, handheld devices 
will be used from time to time to query the sensor 
networks. However, there is no full-fledged query 
processor for this purpose. Therefore, we propose 
WinyDB, a relational query processing system on 
Windows-CE based PDAs (Personal Digital Assistants) 
for sensor networks. One of the main features of 
WinyDB is that multiple PDAs running WinyDB can 
answer queries collaboratively. This feature is useful in 
that it improves both the energy efficiency and the data 
quality. Our WinyDB prototype package is available 
online at http://www.cse.ust.hk/winydb and our 
simulation experiments have shown promising results 
on collaborative query processing. 

1. Introduction 
Wireless sensor networks (WSNs) have been widely 

deployed in applications such as habitat monitoring, 
medical care, intelligent building, and surveillance 
[3][5][6]. A common way to acquire sensory data from 
these WSNs is to issue a query from a PC-grade base 
station to the WSNs and have the sensors return their 
query results to the base station [17][18]. There has also 
been some work [3][11][14] on using handheld devices 
to collect WSN data, but the query processing 
capabilities of these data collection tools are limited. In 
this paper, we propose WinyDB, an embedded query 
processing system on Windows-CE based PDAs 
(Personal Digital Assistants) to query WSNs. 

We envision that WinyDB will be useful for many 
WSN applications. For example, in a country park with 
WSNs deployed in the natural environment, Wi-Fi 
covered in the air, and WinyDB-installed PDAs 
provided to the park rangers and the visitors, people can 
issue queries about the environment through their PDAs 
as they move around. Furthermore, if multiple PDAs 
are roaming around in the park, they can also help one 
another answering queries about their local WSNs. 
These queries can be answered conveniently and 
promptly without contacting a central server. Most 
importantly, this collaborative query answering will 
save the energy consumption of WSNs as well as 
improve the data quality, because the data acquisition is 
done locally and is shared among multiple queries. 

Now that mobiles devices become base stations for 
their local WSNs, we need to consider the resource 
limitations of the devices as well as the WSNs in 
collaborative query processing. Specifically, we address 
the following questions: 

1. What query processing capabilities do we support 
on PDAs? Given multiple WSNs deployed in a wide 
area, how do we answer a query involving multiple 
streams of sensory data?   

2. Given queries of different kinds running on 
multiple PDAs for multiple WSNs, what collaborative 
query processing schemes do we design to answer these 
queries? 

3. Given the resource constraints of WSNs and 
PDAs, how we consider these constraints in our cost 
model to direct WinyDB to process queries efficiently? 

The reminder of this paper is organized as follows. 
Section 2 gives an overview of WinyDB and Section 3 
presents our collaborative query processing framework. 
We discuss experimental results in Section 4, review 
the related work in Section 5, and conclude in Section 
6.   
2. System Overview 

We consider multiple WSNs deployed in a wide 
area, e.g., in a park. Each WSN has a unique network 
ID and a sink node. A PDA may roam into any of the 
WSNs and can communicate with the sink node of the 
WSN if the sink node is within the PDA’s 
communication range.  Both PDA-WSN and PDA-PDA 
communications are via IEEE 802.11b. 

WinyDB consists of three software components - 
query processing (QP), peer collaboration (PeerCo), 
and resource management (ResM).  The QP module is 
in charge of query parsing, query optimization, and 
query result processing. Because PDAs move around, 
and queries are issued and removed dynamically, the 
PeerCo module on each PDA keeps track of the current 
status of its peer PDAs and coordinates collaboration 
with these devices. Finally, the ResM module monitors 
the consumption of the resources, including WSN 
energy and PDA memory. 

When a PDA issues a query, the query is parsed and 
optimized by the QP module at this query issuer. 
During the query optimization, QP consults PeerCo to 
check whether any other PDAs (we call them data 
providers) can collaborate to answer part of or the 
whole query. Then it generates candidate query plans, 
works with ResM to estimate the goodness of each plan, 
and selects the best plan. This best plan may be to send 
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the query to the WSNs directly or to share the query 
results from some other PDAs.  Finally, QP works with 
PeerCo to execute the query and to return query results 
to the user.  Since most of the queries are continuous 
and the environment is dynamic, QP may change a 
query plan to adapt to the current setting. 
3. Collaborative Query Processing 

Our database model is similar to those in Cougar 
[18] and TinyDB [17], where a sensor network is 
represented as a virtual table and every sensor node 
generates a data tuple for each sample period. The 
difference is that in our work, this virtual table contains 
multiple physical WSNs, each of which is identified by 
a network ID. We focus on continuous queries as 
opposed to snapshot queries, because they create more 
opportunities for as well as benefit more from 
collaborative query processing.   

The goals of our collaborative query processing are 
to improve data quality and to reduce WSN energy 
consumption. These two goals may be conflicting; 
when this happens, we take a user-centric stand and put 
data quality before resource efficiency. We measure the 
data quality of a given query in the query result output 
rate, because it reflects both the network efficiency and 
the data quality. We estimate WSN energy consumption 
by the amount of data communication. Additionally, 
because a PDA is resource constrained, we take its 
available memory into consideration.  

In the following, we present our collaborative query 
processing schemes for different types of queries. 
3.1. Selection, projection queries 

We consider selection and projection queries with 
numeric comparison predicates. Note that, even though 
a query appears as a single table query, it may involve 
multiple physical WSNs unless the network ID of a 
WSN is specified in the selection condition.  Query 1 is 
an example of selection query. 

Query 1: 
SELECT nodeid, temperature  
FROM sensors  
WHERE NetworkID=1 AND temperature>30  
SAMPLE PERIOD 60s 
If the query issuer is out of the range of the sink of 

WSN 1, it must ask for the help of the PDAs that are in 
the range of WSN 1, which we call the candidate data 
providers for WSN 1; otherwise, the query issuer itself 
is also a candidate data provider and it will probe itself 
first before probing other candidate data providers. 

A candidate data provider for a WSN can answer a 
query either by (1) directly issuing the query to the 
WSN or by (2) evaluating the query on the cached 
results of another query. We call option (1) direct 
evaluation and (2) cache evaluation. We always choose 
cache evaluation over direct evaluation whenever 
applicable, because it can reduce the WSN workload 
and therefore improve the data quality and save the 
WSN energy consumption.  

The cache evaluation of query A over the result of 
query B is applicable when query B contains query A 
[8]. Given selection and projection queries A and B in 
their conjunctive normal forms (CNFs), we determine 

that B contains A when (1) B’s list of attributes is a 
superset of A’s, (2) each of B’s selection predicate 
conjunct is less restrictive than one of A’s, and (3) if A 
is a continuous query, its sample period is a multiple of 
B’s.  For example, temperature > 30 is less restrictive 
than temperature > 40 or temperature = 50.  

When multiple candidate data providers can answer 
a query by cache evaluation, we choose the one with the 
highest estimated result output rate. A higher output 
rate is preferred by the user and usually indicates the 
data provider has a lighter workload and/or a better 
capability.   

In WinyDB, each candidate data provider provides 
its estimated result output rate for a given query.  This 
estimation is done by examining the input rate, the 
processing rate, the transmission rate, the buffer size, 
and the selectivity. The input rate is the number of input 
tuples from a WSN or from another data provider per 
unit of time.  The processing rate is the number of result 
tuples processed per unit of time. The transmission rate 
is the number of result tuples that can be transmitted to 
the query issuer per unit of time. The buffer size is the 
maximum number of result tuples that can be cached. 
The selectivity is the number of final result tuples 
divided by the number of input tuples.  

Based on the input rate ( tin ), selectivity ( tsel ), 
processing rate ( tp ), buffer size ( tbuf ), and the 
transmission rate ( tx ) at time t, the output rate ( tout ) 
during a sample period [t1, t2] can be estimated in one of 
the following four cases in Table 1. Only for the four 
cases in Table 1 will we consider cache evaluation on 
the data provider. Otherwise, we will exclude this data 
provider from performing cache evaluation because its 
buffer will overflow and it will lose query results. 

Table 1. Output Rate Estimation 
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If a data provider has no cache evaluation 
alternatives for a given query, it will estimate its output 
rate for a direct evaluation of the query over the WSN. 
In this case, we estimate its output rate as follows: 

),min( ttt xpout =  
Finally, we handle the case of using multiple data 

providers to answer a given query.  In this case, each of 
the data providers can answer part of the query through 
cache evaluation or direct evaluation. Therefore, the 
query issuer generates alternative plans, estimates the 

31



output rates of each alternative, and selects the final 
query plan.  
3.2. Aggregation Queries 

We support seven common aggregate functions, 
including MAX, MIN, AVG, SUM, COUNT, COUNT 
DISTINCT, and MEDIAN. We classify these aggregate 
functions into two categories, divisible and indivisible. 
Aggregate functions MAX, MIN, COUNT, and SUM 
are divisible, because they can be evaluated on 
partitions of the result set and the final aggregation 
value can be obtained by combining the partial 
aggregates of the partitions. In contrast, aggregate 
functions COUNT DISTINCT, and MEDIAN are 
indivisible, because partial aggregation is inapplicable 
to them. Finally, AVG itself is indivisible, but we treat 
it as divisible by representing it in the form of (SUM, 
COUNT) so that we can apply partial aggregation. 

We handle an aggregation query in a way similar to 
selection and projection queries. Specifically, it can be 
done either through direct evaluation or cache 
evaluation.  The cache evaluation of an aggregation 
query can use the results of existing selection and 
projection queries.  Furthermore, a query with a 
divisible aggregate function can be evaluated at a 
candidate data provider and the final aggregation is 
performed at the query issuer by combining the partial 
aggregation values. However, for a query with an 
indivisible aggregate function, we can apply the 
aggregate function only at the query issuer, not at any 
other data provider.  
3.3. Window Join Queries 

A window join can be between different WSNs or 
within one WSN. The window is time-based. We 
consider only binary joins and the join predicate can use 
any of the numeric comparison operators.  

For simplicity, we apply window join predicates 
only at PDAs, not at individual sensor nodes. We make 
this design decision because join is an expensive 
operation and therefore is more suitable to perform at 
PDAs than at sensor nodes. However, the downside of 
the PDA-side join approach is that many input tuples 
may be useless when the join is highly selective. 
Therefore, we have developed a synopsis based 
prediction method for two input sources of an equi-join 
to decide on whether to discard an input tuple before 
performing the join.  This synopsis works for one or 
multiple join attributes, with one synopsis per join 
attribute. 
3.3.1. Join Synopsis 

We build a join synopsis at the two data providers of 
a join to predict if an input tuple may be discarded or 
not for the join. These two data providers can be the 
same PDA or different ones. The query issuer may be 
one of them or a third PDA. This join synopsis works in 
two phases:  

1) Start-up Phase 
Suppose the two data providers are A and B. Each of 

the data providers determines the range of its join 
attribute values from its local WSN. Then, they send the 
ranges to the query issuer. The query issuer thereby 

determines a common range and a number of equal-
width partitions, k. This common range covers both A 
and B’s ranges, and the choice of k is dependent on the 
free memory space of the query issuer. A larger k incurs 
higher memory usage but leads to further reduction of 
communication and improvement of output rate. 

Next, both A and B start to construct their join 
synopses. A join synopsis is a bit vector summarizing 
the distribution of the join attribute value.  Each bit in a 
k-bit vector corresponds to one of the k partitions of the 
join attribute value over the common range. When the 
join attribute value falls into a certain partition, the 
corresponding bit is set to 1; otherwise, the bit remains 
to be 0. This bit vector applies to the tuples within the 
current join window. 

For each window join, A and B exchange their bit 
vectors through the query issuer and only send the 
tuples that fall into the common partitions to the query 
issuer. Additionally, these bit vectors are used to 
determine what tuples to discard when the memory size 
is limited. 
2) Maintenance Phase 

As the sensor data values may change over time, the 
bit vectors and the common range of data values may 
change too. Therefore, we update the bit vector for each 
sample period.  If it differs from the last sample period, 
it is sent to the query issuer. To prevent the common 
range and the number of partitions, k, from changing 
frequently, we expand the range to a certain degree so 
that it usually holds for the full length of a join window. 
In our experiments with the Intel Berkeley dataset [7], it 
is sufficient to expand this common range by 10%. 

When the number of partitions is small or the data 
distribution is skewed, many data values may fall into 
one partition. When this happens, few tuples may be 
discarded according to the bit vectors. Therefore, we 
maintain join statistics at the query issuer. Specifically, 
for each partition, the query issuer records two counters 
- the number of tuples received from the data provider 
and the number of tuples that satisfy the join condition. 
With these two counters, we know which partitions 
contain many tuples but only a few of the tuples satisfy 
the join condition. The data provider then further 
divides up such a partition by constructing a child bit 
vector on the partition. Similarly, if the two counter 
values associated with a partition are similar, the data 
provider may decide to remove its child partitions, if 
any. 
3.3.2. Collaborative Join Processing 

PDA X

PDA Y PDA W PDA Z

PDA X

PDA W PDA Z

PDA X

(a) (b) (c)  
Figure 1.  Cache Evaluation on other PDAs 

Given a new window join query Q on two WSNs, its 
collaborative processing is either (1) cache evaluation 
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on another PDA or (2) cache evaluation on two other 
PDAs. 

Figure 1(a) illustrates the cache evaluation on 
another PDA. PDA X is the query issuer and PDA Y is 
the data provider. If there is an existing join query on Y 
that contains the new query, all processing can be done 
on PDA Y and only the final results are forwarded to 
PDA X. If there are only selection or projection queries 
on Y to be used for cache evaluation, the join 
processing can be done either on Y or on X. The choice 
of plan depends on the result output rate.  

If the join query involves two other PDAs each of 
which connecting to a WSN, there are two possible 
communication schemes – either data shipping (Figure 
1(b)) or query shipping (Figure 1(c)). 

When a join query involves more than one data 
providers, the coordination of data providers is 
essential. The simplest way is to use data shipping as 
shown in Figure 1(b). All data are forwarded to and 
joined at the query issuer. However, this approach may 
not be cost-effective even with our join synopsis 
method applied, because data communication may be 
reduced if they are joined between the data providers 
before forwarded to the query issuer, as shown in the 
query shipping in Figure 1(c). In addition, the memory 
and processing requirement of the query issuer can be 
shared by the data providers in query shipping.  

For simplicity, data shipping is used as the default at 
start-up. One problem with data shipping is that the 
query issuer may not have enough memory to cache the 
results from the two data providers. When this happens, 
the query issuer will check whether the data providers 
can satisfy the memory requirement for query shipping. 

Suppose the query issuer is joining the results from 
data providers i and j using data shipping. The memory 
requirement for query shipping will be either data 
provider i's buffer can cache (Rj) results from data 
provider j, or vice versa. If neither data providers satisfy 
this memory requirement, query shipping cannot be 
used. If exactly one of the data providers satisfy the 
memory requirement, query shipping will be used and 
the join will be moved to that data provider. If both data 
providers satisfy the memory requirement, the query 
issuer will determine the join site. If Formula (1) holds, 
the join will be at data provider i; otherwise, it will be at 
data provider j. 

N(Ri)>N(Rj)        (1) 
Ri is data provided by data provider i. N(Ri) is the 

size of Ri. 
Even when the query issuer has enough memory for 

data shipping, query shipping will be considered for 
possible reduction of data communication over data 
shipping. This consideration is represented by Formula 
(2). 

N(Ri)+ N(Rj)>min(N(Ri), N(Rj))+N(Ri c Rj)  (2) 
To avoid oscillating between data shipping and 

query shipping, we set a threshold for the confidence 
level of Formula (2). This confidence level is calculated 
as the ratio of the number of sample periods that 
Formula (2) holds to the total number of sample 
periods. We set the threshold to be 80% in our 
experiments. Only when Formula (2) holds with a 

confidence level above the threshold will we consider 
switching to query shipping. Similar to the case of the 
query issuer having insufficient memory for data 
shipping, we will consider the memory requirement of 
the data providers and determine the join site for query 
shipping. 
4. Evaluation 

We have implemented WinyDB in C# using Visual 
Studio .NET 2003 and .NET Compact Framework 1.0.  
We call this version the optimized WinyDB. 

For comparison, we have ported TinyDB [17] of 
version 1.1.10 to run on PDAs and have extended it to 
process window joins.  We call it the original WinyDB. 
In the original WinyDB, the query issuer can query 
multiple WSNs through other PDAs. These data 
providers will simply execute the query through direct 
evaluation and forward the results to the query issuer. 

Since we focus on continuous queries for sensor data 
streams, we select the result output rate as the end-to-
end performance metric. This metric reflects the 
network traffic in the WSNs and the packet loss rate.  
Also, as energy consumption is the critical constraint 
for WSNs, we select the average sensor node energy 
consumption as the other performance metric. 
4.1. Experimental Setup 

To evaluate WinyDB in a variety of settings, we ran 
WinyDB on three real PDAs to query simulated WSNs.  
Two of the PDAs each has a 624 MHz processor and 64 
MB memory, running Windows mobile 2003.  The third 
PDA has a 400 MHz processor and 64 MB memory, 
running Windows mobile 2002. 

We used TOSSIM [13] to simulate WSNs of 
different configurations. The simulated WSNs consist 
of tens of MICA2 motes [2] as specified in Table 2.  
These nodes are randomly deployed in a grid. The 
sensor readings at each node are simulated using the 
real data from the Intel Lab data set [7]. 

In every experiment, each of the three PDAs 
connects to a WSN so that any queries about any of the 
three WSNs can be answered, with or without query 
sharing. All queries are continuous queries with sample 
periods varies from 8 to 64 seconds. The number of 
attributes returned in each query is between 1 and 4, 
both inclusive. Each attribute that appears in the query 
condition involves at most one selection predicate. The 
presence of selection condition, aggregation function, 
and join condition is all randomly generated. The 
window size of join queries varies from 40 to 120 
seconds. The number of concurrent queries on each 
PDA is varied from 2 to 4. The reason for this small 
number is that running a large number of queries 
concurrently overwhelms TOSSIM.   

We also conducted another set of experiments to 
evaluate the effect of memory size on join queries. In 
these join query experiments, one PDA issues a window 
join query with a fixed sample period of 8 seconds, 
whereas the other two PDAs issue queries of all types 
by random.  The available memory is varied from 25% 
to 100% of the join window size. 

To estimate the energy consumption of multiple 
queries running in the WSNs, we logged in each sensor 
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node the time spent in different operation modes, 
including sensing, processing, listening, receiving, 
transmitting, and sleeping. We then use the electric 
current level of each mode from the specification of 
mica2 hardware platform [2] to calculate the energy 
consumption. 

Table 2. Simulation parameters 

Parameters Values (Default*) 
# nodes per WSN 10, 30*, 50 
sample period (seconds) 8*, 16, 32, 64  
window size (seconds) 40*, 80, 120 

4.2. Simulation Results 

4.2.1. Effect of the number of queries 
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Figure 2. Output Rate 

Figure 2 shows the effect of number of concurrent 
queries per PDA on the output rate. The main reason for 
the optimized WinyDB outperformed the original 
WinyDB is that, with query sharing, when a query can 
be answered by the results of some other queries, this 
query is not sent to the WSNs. Consequently, the 
workload of the WSNs is reduced. Additionally, the 
workload for a PDA to process the raw results from the 
WSNs directly is heavier than to process the 
intermediate results from other PDAs.   
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Figure 3. Energy Consumption 

With the same configuration as for Figure 2, Figure 
3 shows the average node energy consumption for one 
minute. The optimized WinyDB consumes much less 
energy than the original one.  

The experimental results for other sizes of WSNs 
show that the optimized WinyDB can always improve 
the output rate by 30% to 40%, and the percentage of 
energy saving is about 40% on average. 
4.2.2. Effect of the memory size 
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Figure 4. Output Rate 

In Figure 4, we vary the memory size with respect to 
the sliding window size and evaluate the join query 
performance. The output rate of the original WinyDB 
drops sharply when the memory is not enough. This 
drop is because the original WinyDB discards some 
results when the memory is insufficient. In comparison, 
the optimized WinyDB tolerates memory insufficiency 
better by utilizing other PDAs to store some of the 
query results. 
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Figure 5. Energy Consumption 

With the same configuration as for Figure 4, Figure 
5 shows the average node energy consumption for one 
minute. The energy consumption is nearly the same for 
all memory sizes. The reason is that the number of 
queries running in the WSNs is independent of the 
memory size. Experimental results for other join 
window sizes are similar to those in Figures 4 and 5. 
5. Related Work 

There are embedded database systems for handheld 
devices, such as IBM DB2 Everyplace, Microsoft SQL 
Server 2005 Mobile Edition, Oracle Berkeley DB, and 
Sybase SQL Anywhere. These systems deal with disk-
resident relational tables and usually have a backend 
database server to connect with. There have also been a 
few systems for sensor data collection from handheld 
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devices or microserver-grade sensor nodes, for 
example, CodeBlue [3], MSR Sense [11], and TASK 
[14]. However, they are either designed for special 
purpose (e.g., medical care applications in CodeBlue) or 
for digital signal processing and visualization. In 
comparison, WinyDB is designed as a general-purpose 
query processing system on PDAs for querying WSNs.   

Existing query processing systems for sensor 
networks or data streams, such as Aurora [4], Cougar 
[18], NiagaraCQ [9], and TinyDB [17] assume queries 
are issued from a PC-grade central base station. Query 
parsing, optimization, and query result processing are 
done at this base station.  In contrast, WinyDB runs on 
PDAs to query WSNs and multiple PDAs running 
WinyDB can answer queries collaboratively. As a 
result, the query optimization in WinyDB considers the 
resource constraints of both the WSNs and the PDAs 
and responds to the current status of PDAs dynamically. 

Many techniques [1][10][12][16] are proposed to 
allow resource sharing between similar queries. Arasu 
et al. [1] proposed a suite of algorithms to exploit the 
resource sharing opportunities in sliding-window 
aggregations. Goldstein et al. [10] presented a scalable 
algorithm to determine whether part or all of a complex 
query can be computed from materialized views.  
Fjords  [16] is a data structure for query plans such that 
related queries can be combined into a single Fjord. 
Niki Trigoni et al. [12] optimize multiple aggregation 
queries in the WSN to minmize the communication 
cost. In comparison, WinyDB focuses on sharing sensor 
data streams as well as query results among multiple 
PDAs. 
6. Conclusions and Future Work 

In this paper, we have presented our embedded 
query processing system, WinyDB, for handheld 
devices to query sensor networks. In particular, we have 
focused on the collaborative processing techniques for 
selection, projection, aggregation, and window join 
queries. Our experiments with WinyDB running on real 
PDAs querying simulated WSNs have shown that, with 
collaborative query processing, the output rate of the 
queries and the energy consumption of the sensor nodes 
can be improved significantly. Furthermore, this 
collaboration is especially beneficial to continuous 
sliding window join queries when the memory size of a 
handheld device is limited. 

Developing a full-fledged, distributed, and efficient 
query processor for PDAs to query sensor networks 
involves numerous interesting research issues. Our 
work on WinyDB has only been initial steps on the 
collaborative query processing techniques. Future work 
along this line includes incorporation of more cost 
factors, such as processing and network communication 
workloads of the data providers, in selecting the 
collaboration schemes; extensions to WSNs with 
multiple sinks, count-based sliding window join queries, 
and other collaboration schemes. 
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