
Collaboratively Querying Sensor Networks through Handheld Devices

Tsz Wai Chiu Qiong Luo
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
{cswai, luo}@cse.ust.hk

Abstract

We envision that in some wireless sensor network
applications, such as environmental monitoring,
assisted living, and industrial control, handheld devices
will be used from time to time to query the sensor
networks. However, there is no full-fledged query
processor for this purpose. Therefore, we propose
WinyDB, a relational query processing system on
Windows-CE based PDAs (Personal Digital Assistants)
for sensor networks. One of the main features of
WinyDB is that multiple PDAs running WinyDB can
answer queries collaboratively. This feature is useful in
that it improves both the energy efficiency and the data
quality. Our WinyDB prototype package is available
online at http://www.cse.ust.hk/winydb and our
simulation experiments have shown promising results
on collaborative query processing.

1. Introduction
Wireless sensor networks (WSNs) have been widely

deployed in applications such as habitat monitoring,
medical care, intelligent building, and surveillance
[3][5][6]. A common way to acquire sensory data from
these WSNs is to issue a query from a PC-grade base
station to the WSNs and have the sensors return their
query results to the base station [17][18]. There has also
been some work [3][11][14] on using handheld devices
to collect WSN data, but the query processing
capabilities of these data collection tools are limited. In
this paper, we propose WinyDB, an embedded query
processing system on Windows-CE based PDAs
(Personal Digital Assistants) to query WSNs.

We envision that WinyDB will be useful for many
WSN applications. For example, in a country park with
WSNs deployed in the natural environment, Wi-Fi
covered in the air, and WinyDB-installed PDAs
provided to the park rangers and the visitors, people can
issue queries about the environment through their PDAs
as they move around. Furthermore, if multiple PDAs
are roaming around in the park, they can also help one
another answering queries about their local WSNs.
These queries can be answered conveniently and
promptly without contacting a central server. Most
importantly, this collaborative query answering will
save the energy consumption of WSNs as well as
improve the data quality, because the data acquisition is
done locally and is shared among multiple queries.

Now that mobiles devices become base stations for
their local WSNs, we need to consider the resource
limitations of the devices as well as the WSNs in
collaborative query processing. Specifically, we address
the following questions:

1. What query processing capabilities do we support
on PDAs? Given multiple WSNs deployed in a wide
area, how do we answer a query involving multiple
streams of sensory data?

2. Given queries of different kinds running on
multiple PDAs for multiple WSNs, what collaborative
query processing schemes do we design to answer these
queries?

3. Given the resource constraints of WSNs and
PDAs, how we consider these constraints in our cost
model to direct WinyDB to process queries efficiently?

The reminder of this paper is organized as follows.
Section 2 gives an overview of WinyDB and Section 3
presents our collaborative query processing framework.
We discuss experimental results in Section 4, review
the related work in Section 5, and conclude in Section
6.
2. System Overview

We consider multiple WSNs deployed in a wide
area, e.g., in a park. Each WSN has a unique network
ID and a sink node. A PDA may roam into any of the
WSNs and can communicate with the sink node of the
WSN if the sink node is within the PDA’s
communication range. Both PDA-WSN and PDA-PDA
communications are via IEEE 802.11b.

WinyDB consists of three software components -
query processing (QP), peer collaboration (PeerCo),
and resource management (ResM). The QP module is
in charge of query parsing, query optimization, and
query result processing. Because PDAs move around,
and queries are issued and removed dynamically, the
PeerCo module on each PDA keeps track of the current
status of its peer PDAs and coordinates collaboration
with these devices. Finally, the ResM module monitors
the consumption of the resources, including WSN
energy and PDA memory.

When a PDA issues a query, the query is parsed and
optimized by the QP module at this query issuer.
During the query optimization, QP consults PeerCo to
check whether any other PDAs (we call them data
providers) can collaborate to answer part of or the
whole query. Then it generates candidate query plans,
works with ResM to estimate the goodness of each plan,
and selects the best plan. This best plan may be to send

1-4244-1241-2/07/$25.00 ©2007 IEEE

30

the query to the WSNs directly or to share the query
results from some other PDAs. Finally, QP works with
PeerCo to execute the query and to return query results
to the user. Since most of the queries are continuous
and the environment is dynamic, QP may change a
query plan to adapt to the current setting.
3. Collaborative Query Processing

Our database model is similar to those in Cougar
[18] and TinyDB [17], where a sensor network is
represented as a virtual table and every sensor node
generates a data tuple for each sample period. The
difference is that in our work, this virtual table contains
multiple physical WSNs, each of which is identified by
a network ID. We focus on continuous queries as
opposed to snapshot queries, because they create more
opportunities for as well as benefit more from
collaborative query processing.

The goals of our collaborative query processing are
to improve data quality and to reduce WSN energy
consumption. These two goals may be conflicting;
when this happens, we take a user-centric stand and put
data quality before resource efficiency. We measure the
data quality of a given query in the query result output
rate, because it reflects both the network efficiency and
the data quality. We estimate WSN energy consumption
by the amount of data communication. Additionally,
because a PDA is resource constrained, we take its
available memory into consideration.

In the following, we present our collaborative query
processing schemes for different types of queries.
3.1. Selection, projection queries

We consider selection and projection queries with
numeric comparison predicates. Note that, even though
a query appears as a single table query, it may involve
multiple physical WSNs unless the network ID of a
WSN is specified in the selection condition. Query 1 is
an example of selection query.

Query 1:
SELECT nodeid, temperature
FROM sensors
WHERE NetworkID=1 AND temperature>30
SAMPLE PERIOD 60s
If the query issuer is out of the range of the sink of

WSN 1, it must ask for the help of the PDAs that are in
the range of WSN 1, which we call the candidate data
providers for WSN 1; otherwise, the query issuer itself
is also a candidate data provider and it will probe itself
first before probing other candidate data providers.

A candidate data provider for a WSN can answer a
query either by (1) directly issuing the query to the
WSN or by (2) evaluating the query on the cached
results of another query. We call option (1) direct
evaluation and (2) cache evaluation. We always choose
cache evaluation over direct evaluation whenever
applicable, because it can reduce the WSN workload
and therefore improve the data quality and save the
WSN energy consumption.

The cache evaluation of query A over the result of
query B is applicable when query B contains query A
[8]. Given selection and projection queries A and B in
their conjunctive normal forms (CNFs), we determine

that B contains A when (1) B’s list of attributes is a
superset of A’s, (2) each of B’s selection predicate
conjunct is less restrictive than one of A’s, and (3) if A
is a continuous query, its sample period is a multiple of
B’s. For example, temperature > 30 is less restrictive
than temperature > 40 or temperature = 50.

When multiple candidate data providers can answer
a query by cache evaluation, we choose the one with the
highest estimated result output rate. A higher output
rate is preferred by the user and usually indicates the
data provider has a lighter workload and/or a better
capability.

In WinyDB, each candidate data provider provides
its estimated result output rate for a given query. This
estimation is done by examining the input rate, the
processing rate, the transmission rate, the buffer size,
and the selectivity. The input rate is the number of input
tuples from a WSN or from another data provider per
unit of time. The processing rate is the number of result
tuples processed per unit of time. The transmission rate
is the number of result tuples that can be transmitted to
the query issuer per unit of time. The buffer size is the
maximum number of result tuples that can be cached.
The selectivity is the number of final result tuples
divided by the number of input tuples.

Based on the input rate (tin), selectivity (tsel),
processing rate (tp), buffer size (tbuf), and the
transmission rate (tx) at time t, the output rate (tout)
during a sample period [t1, t2] can be estimated in one of
the following four cases in Table 1. Only for the four
cases in Table 1 will we consider cache evaluation on
the data provider. Otherwise, we will exclude this data
provider from performing cache evaluation because its
buffer will overflow and it will lose query results.

Table 1. Output Rate Estimation

Cases
tout

tt pin ≤ and ttt xinsel <*),*min(ttt xinsel

tt pin ≤ and ttt xinsel ≥*

∫ ≤−2

1
1

)*(
t

t tttt bufdtxinsel

),*min(ttt xinsel

tt pin > and ttt xpsel ≤*

∫ ≤−2

1
1

)(
t

t ttt bufdtpin
tt psel *

tt pin > and ttt xpsel >*

∫ ≤−+−2

1
1

)*(
t

t tttttt bufdtxpselpin
tx

If a data provider has no cache evaluation
alternatives for a given query, it will estimate its output
rate for a direct evaluation of the query over the WSN.
In this case, we estimate its output rate as follows:

),min(ttt xpout =
Finally, we handle the case of using multiple data

providers to answer a given query. In this case, each of
the data providers can answer part of the query through
cache evaluation or direct evaluation. Therefore, the
query issuer generates alternative plans, estimates the

31

output rates of each alternative, and selects the final
query plan.
3.2. Aggregation Queries

We support seven common aggregate functions,
including MAX, MIN, AVG, SUM, COUNT, COUNT
DISTINCT, and MEDIAN. We classify these aggregate
functions into two categories, divisible and indivisible.
Aggregate functions MAX, MIN, COUNT, and SUM
are divisible, because they can be evaluated on
partitions of the result set and the final aggregation
value can be obtained by combining the partial
aggregates of the partitions. In contrast, aggregate
functions COUNT DISTINCT, and MEDIAN are
indivisible, because partial aggregation is inapplicable
to them. Finally, AVG itself is indivisible, but we treat
it as divisible by representing it in the form of (SUM,
COUNT) so that we can apply partial aggregation.

We handle an aggregation query in a way similar to
selection and projection queries. Specifically, it can be
done either through direct evaluation or cache
evaluation. The cache evaluation of an aggregation
query can use the results of existing selection and
projection queries. Furthermore, a query with a
divisible aggregate function can be evaluated at a
candidate data provider and the final aggregation is
performed at the query issuer by combining the partial
aggregation values. However, for a query with an
indivisible aggregate function, we can apply the
aggregate function only at the query issuer, not at any
other data provider.
3.3. Window Join Queries

A window join can be between different WSNs or
within one WSN. The window is time-based. We
consider only binary joins and the join predicate can use
any of the numeric comparison operators.

For simplicity, we apply window join predicates
only at PDAs, not at individual sensor nodes. We make
this design decision because join is an expensive
operation and therefore is more suitable to perform at
PDAs than at sensor nodes. However, the downside of
the PDA-side join approach is that many input tuples
may be useless when the join is highly selective.
Therefore, we have developed a synopsis based
prediction method for two input sources of an equi-join
to decide on whether to discard an input tuple before
performing the join. This synopsis works for one or
multiple join attributes, with one synopsis per join
attribute.
3.3.1. Join Synopsis

We build a join synopsis at the two data providers of
a join to predict if an input tuple may be discarded or
not for the join. These two data providers can be the
same PDA or different ones. The query issuer may be
one of them or a third PDA. This join synopsis works in
two phases:

1) Start-up Phase
Suppose the two data providers are A and B. Each of

the data providers determines the range of its join
attribute values from its local WSN. Then, they send the
ranges to the query issuer. The query issuer thereby

determines a common range and a number of equal-
width partitions, k. This common range covers both A
and B’s ranges, and the choice of k is dependent on the
free memory space of the query issuer. A larger k incurs
higher memory usage but leads to further reduction of
communication and improvement of output rate.

Next, both A and B start to construct their join
synopses. A join synopsis is a bit vector summarizing
the distribution of the join attribute value. Each bit in a
k-bit vector corresponds to one of the k partitions of the
join attribute value over the common range. When the
join attribute value falls into a certain partition, the
corresponding bit is set to 1; otherwise, the bit remains
to be 0. This bit vector applies to the tuples within the
current join window.

For each window join, A and B exchange their bit
vectors through the query issuer and only send the
tuples that fall into the common partitions to the query
issuer. Additionally, these bit vectors are used to
determine what tuples to discard when the memory size
is limited.
2) Maintenance Phase

As the sensor data values may change over time, the
bit vectors and the common range of data values may
change too. Therefore, we update the bit vector for each
sample period. If it differs from the last sample period,
it is sent to the query issuer. To prevent the common
range and the number of partitions, k, from changing
frequently, we expand the range to a certain degree so
that it usually holds for the full length of a join window.
In our experiments with the Intel Berkeley dataset [7], it
is sufficient to expand this common range by 10%.

When the number of partitions is small or the data
distribution is skewed, many data values may fall into
one partition. When this happens, few tuples may be
discarded according to the bit vectors. Therefore, we
maintain join statistics at the query issuer. Specifically,
for each partition, the query issuer records two counters
- the number of tuples received from the data provider
and the number of tuples that satisfy the join condition.
With these two counters, we know which partitions
contain many tuples but only a few of the tuples satisfy
the join condition. The data provider then further
divides up such a partition by constructing a child bit
vector on the partition. Similarly, if the two counter
values associated with a partition are similar, the data
provider may decide to remove its child partitions, if
any.
3.3.2. Collaborative Join Processing

PDA X

PDA Y PDA W PDA Z

PDA X

PDA W PDA Z

PDA X

(a) (b) (c)
Figure 1. Cache Evaluation on other PDAs

Given a new window join query Q on two WSNs, its
collaborative processing is either (1) cache evaluation

32

on another PDA or (2) cache evaluation on two other
PDAs.

Figure 1(a) illustrates the cache evaluation on
another PDA. PDA X is the query issuer and PDA Y is
the data provider. If there is an existing join query on Y
that contains the new query, all processing can be done
on PDA Y and only the final results are forwarded to
PDA X. If there are only selection or projection queries
on Y to be used for cache evaluation, the join
processing can be done either on Y or on X. The choice
of plan depends on the result output rate.

If the join query involves two other PDAs each of
which connecting to a WSN, there are two possible
communication schemes – either data shipping (Figure
1(b)) or query shipping (Figure 1(c)).

When a join query involves more than one data
providers, the coordination of data providers is
essential. The simplest way is to use data shipping as
shown in Figure 1(b). All data are forwarded to and
joined at the query issuer. However, this approach may
not be cost-effective even with our join synopsis
method applied, because data communication may be
reduced if they are joined between the data providers
before forwarded to the query issuer, as shown in the
query shipping in Figure 1(c). In addition, the memory
and processing requirement of the query issuer can be
shared by the data providers in query shipping.

For simplicity, data shipping is used as the default at
start-up. One problem with data shipping is that the
query issuer may not have enough memory to cache the
results from the two data providers. When this happens,
the query issuer will check whether the data providers
can satisfy the memory requirement for query shipping.

Suppose the query issuer is joining the results from
data providers i and j using data shipping. The memory
requirement for query shipping will be either data
provider i's buffer can cache (Rj) results from data
provider j, or vice versa. If neither data providers satisfy
this memory requirement, query shipping cannot be
used. If exactly one of the data providers satisfy the
memory requirement, query shipping will be used and
the join will be moved to that data provider. If both data
providers satisfy the memory requirement, the query
issuer will determine the join site. If Formula (1) holds,
the join will be at data provider i; otherwise, it will be at
data provider j.

N(Ri)>N(Rj) (1)
Ri is data provided by data provider i. N(Ri) is the

size of Ri.
Even when the query issuer has enough memory for

data shipping, query shipping will be considered for
possible reduction of data communication over data
shipping. This consideration is represented by Formula
(2).

N(Ri)+ N(Rj)>min(N(Ri), N(Rj))+N(Ri c Rj) (2)
To avoid oscillating between data shipping and

query shipping, we set a threshold for the confidence
level of Formula (2). This confidence level is calculated
as the ratio of the number of sample periods that
Formula (2) holds to the total number of sample
periods. We set the threshold to be 80% in our
experiments. Only when Formula (2) holds with a

confidence level above the threshold will we consider
switching to query shipping. Similar to the case of the
query issuer having insufficient memory for data
shipping, we will consider the memory requirement of
the data providers and determine the join site for query
shipping.
4. Evaluation

We have implemented WinyDB in C# using Visual
Studio .NET 2003 and .NET Compact Framework 1.0.
We call this version the optimized WinyDB.

For comparison, we have ported TinyDB [17] of
version 1.1.10 to run on PDAs and have extended it to
process window joins. We call it the original WinyDB.
In the original WinyDB, the query issuer can query
multiple WSNs through other PDAs. These data
providers will simply execute the query through direct
evaluation and forward the results to the query issuer.

Since we focus on continuous queries for sensor data
streams, we select the result output rate as the end-to-
end performance metric. This metric reflects the
network traffic in the WSNs and the packet loss rate.
Also, as energy consumption is the critical constraint
for WSNs, we select the average sensor node energy
consumption as the other performance metric.
4.1. Experimental Setup

To evaluate WinyDB in a variety of settings, we ran
WinyDB on three real PDAs to query simulated WSNs.
Two of the PDAs each has a 624 MHz processor and 64
MB memory, running Windows mobile 2003. The third
PDA has a 400 MHz processor and 64 MB memory,
running Windows mobile 2002.

We used TOSSIM [13] to simulate WSNs of
different configurations. The simulated WSNs consist
of tens of MICA2 motes [2] as specified in Table 2.
These nodes are randomly deployed in a grid. The
sensor readings at each node are simulated using the
real data from the Intel Lab data set [7].

In every experiment, each of the three PDAs
connects to a WSN so that any queries about any of the
three WSNs can be answered, with or without query
sharing. All queries are continuous queries with sample
periods varies from 8 to 64 seconds. The number of
attributes returned in each query is between 1 and 4,
both inclusive. Each attribute that appears in the query
condition involves at most one selection predicate. The
presence of selection condition, aggregation function,
and join condition is all randomly generated. The
window size of join queries varies from 40 to 120
seconds. The number of concurrent queries on each
PDA is varied from 2 to 4. The reason for this small
number is that running a large number of queries
concurrently overwhelms TOSSIM.

We also conducted another set of experiments to
evaluate the effect of memory size on join queries. In
these join query experiments, one PDA issues a window
join query with a fixed sample period of 8 seconds,
whereas the other two PDAs issue queries of all types
by random. The available memory is varied from 25%
to 100% of the join window size.

To estimate the energy consumption of multiple
queries running in the WSNs, we logged in each sensor

33

node the time spent in different operation modes,
including sensing, processing, listening, receiving,
transmitting, and sleeping. We then use the electric
current level of each mode from the specification of
mica2 hardware platform [2] to calculate the energy
consumption.

Table 2. Simulation parameters

Parameters Values (Default*)
nodes per WSN 10, 30*, 50
sample period (seconds) 8*, 16, 32, 64
window size (seconds) 40*, 80, 120

4.2. Simulation Results

4.2.1. Effect of the number of queries

0

0.5

1

1.5

2

2.5

3

2 3 4
queries

O
ut

pu
t R

at
e

(T
up

le
 p

er
 s

ec
on

d

Original WinyDB Optimized WinyDB

Figure 2. Output Rate

Figure 2 shows the effect of number of concurrent
queries per PDA on the output rate. The main reason for
the optimized WinyDB outperformed the original
WinyDB is that, with query sharing, when a query can
be answered by the results of some other queries, this
query is not sent to the WSNs. Consequently, the
workload of the WSNs is reduced. Additionally, the
workload for a PDA to process the raw results from the
WSNs directly is heavier than to process the
intermediate results from other PDAs.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

2 3 4
queries

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

Original WinyDB Optimized WinyDB

Figure 3. Energy Consumption

With the same configuration as for Figure 2, Figure
3 shows the average node energy consumption for one
minute. The optimized WinyDB consumes much less
energy than the original one.

The experimental results for other sizes of WSNs
show that the optimized WinyDB can always improve
the output rate by 30% to 40%, and the percentage of
energy saving is about 40% on average.
4.2.2. Effect of the memory size

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

100% 75% 50% 25%
memory size (% of window size 40s)

O
ut

pu
t R

at
e

(T
up

le
 p

er
 s

ec
on

d

Original WinyDB Optimized WinyDB

Figure 4. Output Rate

In Figure 4, we vary the memory size with respect to
the sliding window size and evaluate the join query
performance. The output rate of the original WinyDB
drops sharply when the memory is not enough. This
drop is because the original WinyDB discards some
results when the memory is insufficient. In comparison,
the optimized WinyDB tolerates memory insufficiency
better by utilizing other PDAs to store some of the
query results.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

100% 75% 50% 25%
memory size (% of window size 40s)

En
er

gy
 C

on
su

m
pt

io
n

(J
ou

le
s)

Original WinyDB Optimized WinyDB

Figure 5. Energy Consumption

With the same configuration as for Figure 4, Figure
5 shows the average node energy consumption for one
minute. The energy consumption is nearly the same for
all memory sizes. The reason is that the number of
queries running in the WSNs is independent of the
memory size. Experimental results for other join
window sizes are similar to those in Figures 4 and 5.
5. Related Work

There are embedded database systems for handheld
devices, such as IBM DB2 Everyplace, Microsoft SQL
Server 2005 Mobile Edition, Oracle Berkeley DB, and
Sybase SQL Anywhere. These systems deal with disk-
resident relational tables and usually have a backend
database server to connect with. There have also been a
few systems for sensor data collection from handheld

34

devices or microserver-grade sensor nodes, for
example, CodeBlue [3], MSR Sense [11], and TASK
[14]. However, they are either designed for special
purpose (e.g., medical care applications in CodeBlue) or
for digital signal processing and visualization. In
comparison, WinyDB is designed as a general-purpose
query processing system on PDAs for querying WSNs.

Existing query processing systems for sensor
networks or data streams, such as Aurora [4], Cougar
[18], NiagaraCQ [9], and TinyDB [17] assume queries
are issued from a PC-grade central base station. Query
parsing, optimization, and query result processing are
done at this base station. In contrast, WinyDB runs on
PDAs to query WSNs and multiple PDAs running
WinyDB can answer queries collaboratively. As a
result, the query optimization in WinyDB considers the
resource constraints of both the WSNs and the PDAs
and responds to the current status of PDAs dynamically.

Many techniques [1][10][12][16] are proposed to
allow resource sharing between similar queries. Arasu
et al. [1] proposed a suite of algorithms to exploit the
resource sharing opportunities in sliding-window
aggregations. Goldstein et al. [10] presented a scalable
algorithm to determine whether part or all of a complex
query can be computed from materialized views.
Fjords [16] is a data structure for query plans such that
related queries can be combined into a single Fjord.
Niki Trigoni et al. [12] optimize multiple aggregation
queries in the WSN to minmize the communication
cost. In comparison, WinyDB focuses on sharing sensor
data streams as well as query results among multiple
PDAs.
6. Conclusions and Future Work

In this paper, we have presented our embedded
query processing system, WinyDB, for handheld
devices to query sensor networks. In particular, we have
focused on the collaborative processing techniques for
selection, projection, aggregation, and window join
queries. Our experiments with WinyDB running on real
PDAs querying simulated WSNs have shown that, with
collaborative query processing, the output rate of the
queries and the energy consumption of the sensor nodes
can be improved significantly. Furthermore, this
collaboration is especially beneficial to continuous
sliding window join queries when the memory size of a
handheld device is limited.

Developing a full-fledged, distributed, and efficient
query processor for PDAs to query sensor networks
involves numerous interesting research issues. Our
work on WinyDB has only been initial steps on the
collaborative query processing techniques. Future work
along this line includes incorporation of more cost
factors, such as processing and network communication
workloads of the data providers, in selecting the
collaboration schemes; extensions to WSNs with
multiple sinks, count-based sliding window join queries,
and other collaboration schemes.
7. Acknowledgements

This work was supported by grants
HKUST6263/04E from the Hong Kong Research

Grants Council and MCCL03/04.EG01 from Microsoft
Research Asia.

8. References
[1] Arvind Arasu, Jennifer Widom, “Resource Sharing in

Continuous Sliding-Window Aggregates,” VLDB
2004.

[2] Crossbow Corp. http://www.xbow.com/
[3] David Malan, et al. “CodeBlue: An Ad Hoc Sensor

Network Infrastructure for Emergency Medical Care,”
WAMES 2004.

[4] D. Abadi, et al. “Aurora: A New Model and
Architecture for Data Stream Management,” VLDB
Journal, 2003.

[5] Habitat Monitoring on Great Duck Island.
http://www.greatduckisland.net/

[6] Ian F. Akyildiz, et al. “A Survey on Sensor Networks,”
IEEE Communications Magazine, vol. 40, no. 8, pp.
102-114, August 2002.

[7] Intel Lab Data. http://berkeley.intel-
research.net/labdata/

[8] Jeffrey D. Ullman, “Principles of Database and
Knowledge-Base Systems,” Volume I. Computer
Science Press 1988.

[9] J. Chen, et al. “NiagaraCQ: A Scalable Continuous
Query System for Internet Databases,” SIGMOD 2000.

[10] Jonathan Goldstein, Per-Åke Larson, “Optimizing
queries using materialized views: a practical, scalable
solution,” SIGMOD 2001.

[11] MSR Networked Embedded Sensing Toolkit (MSR
Sense), http://research.microsoft.com/nec/msrsense/

[12] Niki Trigoni, et al. “Multi-query Optimization for
Sensor Networks,” DCOSS 2005

[13] Philip Levis, et al. “TOSSIM: Accurate and Scalable
Simulation of Entire TinyOS Applications,” SenSys
2003.

[14] Phil Buonadonna, et al. “TASK: Sensor Network in a
Box,” EWSN 2005.

[15] R. Motwani, et al. “Query Processing, Resource
Management, and Approximation in a Data Stream
Management System,” CIDR 2003.

[16] Samuel Madden, Michael J. Franklin, “Fjording the
Stream: An Architecture for Queries over Streaming
Sensor Data,” ICDE 2002.

[17] Samuel Madden, et al. “TinyDB: An Acqusitional
Query Processing System for Sensor Networks,” ACM
TODS 2005.

[18] Y. Yao, J. E. Gehrke, “Query Processing for sensor
networks,” CIDR 2003.

35

