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Abstract 

We propose a template-based runtime invalidation 
approach for maintaining cache consistency in 
database-generated web contents.  In our approach, the 
invalidator sits between a web cache and a database 
server and intercepts the query statements as well as the 
update statements transparently.  Moreover, it 
maintains templates for queries and updates, as well as 
a mapping between URLs and SQL queries.  At runtime, 
the invalidator checks an update statement against the 
query statements, whose corresponding HTML 
fragments have been cached, and decides on if any 
cached HTML fragments should be invalidated based on 
an extended satisfiability testing algorithm without 
sending any polling queries to the backend database.  
We further improve the efficiency of this checking 
process by utilizing the semantic information of the 
templates.  We have integrated our invalidator with the 
Oracle Web Cache and have conducted extensive 
experiments using the TPC-W benchmark.  Our results 
show that this approach efficiently maintains the 
consistency of cached HTML fragments with the 
backend database. 

1. Introduction 

Large e-commerce sites typically serve many users 

concurrently with web contents dynamically generated 

from a backend database.  Caching these web contents 

has been the main solution to scalability and 

performance problems faced by the e-commerce sites.  

However, these cached web contents may become 

obsolete within a short period of time, because their 

corresponding database contents are constantly changing 

due to ongoing transactions.  Since users usually desire 

to see up-to-date web contents in their browsing and 

shopping activities, it is crucial to maintain consistency 

between the database contents and the cached web 

contents. 

Despite previous research efforts [7, 8, 10], cache 

consistency remains a challenging problem for database-

backed web sites.  A major cause is that the sites require 

several pieces of complicated software – the web server 

(with a web cache), the application server, the database 

server, and server-side applications.  Moreover, these 

components speak different languages and run 

independently from one another.  In this paper, we take a 

holistic approach to address the problem, aiming at 

making our approach generally applicable to a wide 

range of applications.  Our goal in this work is to 

invalidate outdated database-generated web contents 

automatically without putting any extra workload onto 
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the backend database.  Figure 1 shows our invalidator in 

a database-backed web site. 
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Figure 1. The invalidator in a database-backed web site 

Our key observation in this work is that both SQL 

queries and web pages generated from database-backed 

web sites have templates.  Specifically, server-side 

applications such as Java servlets, Java Server Pages, 

Active Server Pages, and Enterprise Java Beans are 

programmed to contain parameterized SQL statements 

(both queries and updates) as well as parameterized 

HTML fragments.  Moreover, these parameterized 

statements and fragments remain visible at application 

development time, deployment time, or even runtime.  

Consequently, it is possible to know a priori the 

expected templates as well as the mapping between the 

HTML fragments and the SQL statements in an 

application. 

The templates and mapping information reveal the 

SQL semantics of database-generated HTML fragments, 

which enables us to connect consistency maintenance of 

the cached web content with database operations.  

Subsequently, we need to know the database operations 

at runtime in order to perform the consistency 

maintenance of the web contents.  Fortunately, the 

parameterized SQL statements are instantiated with user 

input or environmental variable values at runtime, and 

are sent to the database server through the ODBC or 

JDBC interface. Correspondingly, we chose to intercept 

SQL statements at the JDBC interface level at runtime in 

order to perform cache consistency maintenance 

transparently.   

Given an instantiated SQL update and cached query 

statements at runtime, we have two options for cache 

consistency maintenance.  One is invalidation and the 

other is update propagation.  Update propagation is a 

more powerful choice in that it refreshes a cached item 

with new content.  However, it requires much more 

computing and communications than does invalidation –

the database server has to re-compute the query results 

and send them to the applications, while the applications 

have to regenerate the HTML fragments and update the 

cache.  Therefore, we chose invalidation as our 

consistency maintenance approach, under which 

outdated HTML fragments are simply purged from the 

cache. 

To check if a cached HTML fragment (query result) 

becomes invalid due to an update statement, we have 

further choices on if we send polling queries to the 

backend database to confirm the validity of the cached 

fragment.  Recent research [7] has indicated that there is 

a tradeoff between the degree of over-invalidation and 
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the overhead of polling queries.  In this work, we take an 

approach of invalidating cached fragments based on a 

satisfiability test of the statement texts only.  This 

eliminates any polling queries to the backend database 

as well as greatly simplifies the processing in the 

invalidator.  In practice, we find that HTML fragments 

(for example, product details) are usually generated with 

key attributes (e.g., the product ID) in the queries and 

that instantiated update statements often come with key 

attributes in the condition.  Over-invalidation is highly 

unlikely in such cases.  

In order to improve the efficiency of invalidation, we 

further exploit the use of templates.  Specifically, we 

design a satisfiability matrix with pairs of query 

templates and update templates to maintain the 

relationship between the SQL templates.  We then 

organize instantiated queries and updates by their 

templates, and perform further satisfiability tests if the 

satisfiability is not yet determined by the matrix.  

Additionally, we build satisfiability indexes on 

important attributes referenced in the SQL statements for 

each template.  Finally, we translate an instantiated SQL 

query to be invalidated into a URL based on the 

mapping between query templates and HTML fragment 

templates, and invalidate the HTML fragments identified 

by that URL. 

In addition to designing and implementing our 

template-based invalidator (TBI), we have integrated it 

with the Oracle Web Cache [18] that has an Edge Side 

Includes processor [19].  Furthermore, we evaluated this 

framework using a Java implementation of the TPC-W 

benchmark [21].  Our results show that our invalidator 

enables the web cache to serve fresh HTML pages 

efficiently even when the update workload is high. 

The remainder of this paper is organized as follows.  

We introduce the background of our work in Section 2 

and describe the system architecture of our invalidator in 

Section 3.  We present our template-based invalidation 

algorithms in Section 4 and our experimental results in 

Section 5.  We discuss related work in Section 6 and 

draw conclusions in Section 7.  

2. Background 

This section introduces the theoretical background of 

our invalidation algorithm as well as the implementation 

background of our system. 

2.1. Theoretical Background 

Our invalidation algorithm is based on the 

satisfiability testing algorithm for conjunctive Boolean 

expressions [13] by Larson and Yang, and on the results 

on irrelevant update detection [5].  The following 

section gives a brief overview of this background and 

our contributions are further discussed in Section 4. 
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2.1.1. Satisfiability Testing 

The satisfiability testing algorithm for conjunctive 

Boolean expressions (referred to as CONJUNCTIVE by 

Larson and Yang [13]) checks if a conjunctive Boolean 

expression is satisfiable (i.e., if it is evaluated to be true 

for some value assignment of its variables).  The input 

conjunctive Boolean expression is a conjunction of 

multiple atomic conditions, each of which takes the form 

of attribute op constant or attribute op attribute.  The 

attributes (or variables) are of an integer data type, and 

each has a lower bound and an upper bound.  The 

operator is one of the five arithmetic comparison 

operators (>, <, >=, <=, and =).   

The CONJUNCTIVE algorithm creates a graph with 

its nodes being the bounded variables and its edges 

being the arithmetic comparison relationships between 

the variables.  It manipulates the graph (adding or 

removing edges and nodes, and changing the bounds of 

the variables) according to the current bounds of the 

variables until the graph becomes empty.  When the 

algorithm halts, it returns a true/false answer on the 

satisfiability of the expression, as well as the final 

permissible range of each variable. 

2.1.2. Detecting Irrelevant Updates 

By utilizing the satisfiability test of the CONJUNCTIVE 

algorithm, the irrelevant update detection algorithms [5] 

give necessary and sufficient conditions for a UDI 

(Update/Delete/Insert) operation to be irrelevant to a 

query (i.e., the UDI operation on any database does not 

change the result of the query on that database).  The 

input query (referred to as a derived relation [5]) is 

assumed to be a simple PSJ (Projection-Selection-Join) 

query with no self-join or subquery.  The highlight of 

these results (one for each of the three types of UDI 

operations) is that the update irrelevance is equivalent 

to the unsatisfiability of the conjunction of the UDI 

condition and the query condition.  Therefore, we can 

detect irrelevant UDIs of a query by only checking the 

statement text, not any of the database content. 

2.2. Implementation Background 

2.2.1. Edge Side Includes 

ESI (Edge Side Includes) [19] is a simple markup 

language proposed by Akamai (a major player in the 

content delivery network business) and Oracle. Both 

companies have implemented processors [1][18] for the 

language.  This language is used in web pages to define 

ESI templates as well as ESI page fragments.  It can 

define different caching properties (such as the timeout 

value) at the page fragment level.  Therefore, ESI 

enables web caching servers to cache individual HTML 

page fragments and to assemble dynamically the 

fragments at the edges of networks.  As a result, ESI is 

widely supported by the content delivery network 

business as well as web content providers. 
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Let us use a simplified product detail web page as an 

example to illustrate ESI.  As shown in Figures 2 and 3, 

an ESI Template defines the static skeleton of a web 

page.  The ESI tags (such as “<esi: include>” ) inside 

the template define ESI fragments and direct the 

assembly and delivery of the fragments.  An ESI 

fragment can be static or dynamic.  Static fragments are 

text or image files, which seldom change over time.  

Dynamic fragments are contents generated by programs 

with parameters instantiated at runtime.  For instance, 

the product detail fragment in Figure 2 is generated by 

TPCW_product_detail_servlet and is included using the 

<esi:include> tag in the ESI template.  This indicates 

that the product detail fragment can be cached separately 

from the template and other fragments (such as the 

buttons) of the template. 

 

Figure 2: The product detail web page 

In addition to defining templates and fragments for 

web pages, ESI supports the use of variables for HTTP 

request attributes. In particular, the <esi:vars>  tag 

indicates that the values of the HTTP request attributes 

will be extracted from environmental variables and 

embedded into the URLs at runtime.  Consider the home 

button in the product detail page.  Traditionally, the 

button’s embedded URL 

(TPCW_home_interaction.html) has to be generated 

dynamically to encode the customer ID and shopping 

ID.  With the <esi:vars>  tag, the value of the C_ID 

parameter in the URL will be replaced by that of the 

$(QUERY_STRING_ENCODED{C_ID}) environmental 

variable.  As a result, the product detail template can be 

reused across users and shopping sessions as opposed to 

being generated for each user and shopping session. 

Figure 3: ESI template of the product detail web page 

 

<HTML>
<H1>TPC-W Product Detail Page</H1>
<esi:include src="TPCW_product_detail_servlet? 

I_ID=$(QUERY_STRING_ENCODED{I_ID})&
S_ID=$(QUERY_STRING_ENCODED {S_ID})" />
<esi:vars>
<A HREF="TPCW_home_interaction.html?
C_ID=$(QUERY_STRING_ENCODED{C_ID})&
S_ID=$(QUERY_STRING_ENCODED{S_ID})">
<IMG SRC="home_B.gif"></A>
<A HREF = "TPCW_admin_request_servlet.html?
C_ID=$(QUERY_STRING_ENCODED{C_ID})&
S_ID=$(QUERY_STRING_ENCODED{S_ID})">
<IMG SRC="update_B.gif"></A>
</esi:vars>
</HTML>
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2.2.2. Oracle Web Cache 

The Oracle9iAS Web Cache (OWC) [18] performs 

traditional web caching as well as incorporates an ESI 

processor to enable ESI templates and fragments 

caching.  OWC uses cache rules to direct caching of ESI 

templates and fragments.  A simplified example of OWC 

cache rules is shown in Table 1.  Since only ESI 

templates and static HTML files have the .html suffix in 

our example, the first rule directs OWC to cache all ESI 

templates and static html files while the subsequent rules 

direct OWC to cache several dynamic ESI fragments 

generated by servlets.  

Table 1. Examples of simplified OWC cache rules 

URL Expression Cache? 
.html Cache 
TPCW_product_detail_servlet Cache 
TPCW_execute_search Cache 
TPCW_new_products_servlet Cache 
 

Moreover, OWC can be configured to ignore specific 

parameters in a URL. Consider the following two URLs:  

TPCW_product_detail_servlet.html?C_ID=123&I_ID=12 

TPCW_product_detail_servlet.html?C_ID=124&I_ID=12 

These two URLs differ only in their customer ID 

parameter values.  Since the customer ID parameter does 

not affect the content of this template, we can configure 

OWC to ignore the C_ID parameter in the URL.  

Therefore, the two URLs correspond to the same cached 

template. 

Finally, OWC purges outdated cache content by 

either examining the timeout value of a cached unit or 

serving invalidation requests to the cached unit. 

3. System Architecture 

We give an overview of the system architecture and 

the key components in this section. 

3.1. System Overview 

Figure 4 shows the components of our Template-

based Invalidator (TBI). 

Figure 4. Components of TBI 

As shown in Figure 4, the major components of TBI 

are the JDBC wrapper, the statement parser, the 

template manager, the satisifiability tester, and the 

invalidation messenger.  The key data structures in TBI 

include a SQL-URL map, parsed query instances, query 

templates, update templates, a template satisfiability 

matrix, and query satisfiability indexes.  We describe 

these components together with the key data structures 

in more detail in the following subsections. 
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3.2. JDBC Wrapper 

The interface of TBI to a web application is a 

wrapper class of a JDBC driver.  Vendor-specific JDBC 

drivers have native implementations for data access to 

their database servers, but they all conform to the 

publicly available java.sql package interface.  

Consequently, one implementation of any class defined 

by the package can be replaced with another 

implementation without changing the application code. 

Therefore, we implemented our wrapper to conform to 

the java.sql package interface. 

When the web application registers this wrapper 

package to be its JDBC driver, the application’s JDBC 

calls to the backend database are transparently 

intercepted by the TBI.  After other TBI components 

check the JDBC calls, the JDBC wrapper sends the 

JDBC calls to the actual JDBC driver of the backend 

database server.  No modifications of the application 

code are needed.  Note that we chose the JDBC platform 

for its openness, popularity in the industry and 

availability of its API documentation.  In essence, our 

technique can also be applied to a non-JDBC compliant 

platform with additional engineering efforts. 

3.3. Statement Parser  

A JDBC call is passed to the statement parser in the 

TBI before it is forwarded to the backend database.  If 

the JDBC call is to prepare a SQL statement, the 

statement parser will parse the to-be-prepared SQL 

statement (with or without question marks).  If the to-be-

prepared statement is a query, it is parsed into a query 

tree and the WHERE clause is transformed into the 

Disjunctive Normal Form (DNF).  The parser handles 

Projection-Selection-Join queries with optional Top-N, 

Order by, and Group by clauses.  Subqueries and self-

joins are handled as well.  If the to-be-prepared 

statement is a UDI operation, the parser parses it into a 

UDI tree with update conditions and data (e.g., the tuple 

to be inserted).  The statement parser also handles other 

JDBC calls such as setting the parameter values in a 

prepared statement and executing a prepared statement.  

3.4. Template Manager 

The statement parser passes SQL statement 

information to the template manager.  The template 

manager maintains the key data structures of TBI. 

(1) It maintains the SQL query templates, the SQL 

UDI templates, and a template satisfiability matrix 

between the two kinds of SQL templates.  SQL query 

templates are parameterized SQL queries and SQL UDI 

templates are parameterized UDI statements.  Together, 

the two types of templates are referred to as SQL 

templates.  Figures 5 and 6 show examples of SQL 

templates. 



 8 

SELECT I_ID, I_TITLE FROM ITEM, AUTHOR  

WHERE I_A_ID = A_ID AND I_ID = ? 

Figure 5. The product detail query template 

UPDATE ITEM SET I_RELATED1 = ? WHERE I_ID = ? 

Figure 6. An example of a UDI template 

The template satisfiability matrix records the 

satisfiability relationship between a pair of a query 

template and an update template.  We describe the 

construction and maintenance of the matrix in detail in 

Section 4. 

(2) It maintains a URL-SQL map, which records the 

mapping between the URL templates of the OWC- 

cached web contents and the SQL templates that 

generate the corresponding web contents.  URL 

templates are URLs with or without uninstantiated 

parameters.  For instance, the URL template 

"TPCW_product_detail_servlet?" is mapped to the SQL 

template shown in Figure 5.  In addition, the map 

records that the I_ID parameter in the URL template will 

correspond to the I_ID parameter in the SQL query 

template. 

(3) It maintains the query satisfiability indexes and 

parsed query instances.  The query satisfiability index 

keeps the values of some attributes referred to in 

instantiated SQL queries of a query template.  The goal 

is that, for an update operation, TBI can quickly locate 

the specific instantiated SQL queries of a query template 

that need to be invalidated. 

3.5. Satisfiability Tester 

Given an instantiated query statement and an 

instantiated UDI statement, the satisfiability tester 

checks if the conjunction of the conditions in the pair of 

statements is satisfiable.  The tester utilizes the template 

satisfiability matrix as well as the query satisfiability 

indexes to speed up the process.  Details are discussed in 

Section 4. 

3.6. Invalidation Messenger 

If the satisfiability tester decides that a cached query 

should be invalidated due to a UDI operation, it will tell 

the invalidation messenger to send an invalidation 

message to the web cache.   

The invalidation messenger is given the query 

template together with the parameter-value pairs.  It 

constructs the URL to be invalidated by looking up the 

URL-SQL map.  Consider the product detail query 

template in Figure 5 with an I_ID value of 123.  The 

messenger looks up the URL-SQL map and finds the 

corresponding URL template 

"TPCW_product_detail_servlet?" and the parameter 

matching rules.  It then constructs an HTTP request to 

invalidate the following URL: 

TPCW_product_detail_servlet?I_ID=123 
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4. Template-Based Invalidation 

In this section, we describe our template-based 

invalidation algorithm. 

4.1. Definitions  

T = { t1, t2, …, tn}  is a set of tables. 

A = { a1, a2, …, am}  is a set of attributes. 

QT denotes a query template.  UT denotes a UDI 

template.  An instantiated query statement of QT is 

denoted as q.  An instantiated UDI statement of UT is 

denoted as u. 

C is a Boolean expression over attributes a1, a2, …, ap 

corresponding to the query condition in QT or the UDI 

condition in UT.   

A Boolean expression is valid if it is always 

evaluated to be true.  A Boolean expression is 

unsatisfiable if it is never evaluated to be true.  A 

Boolean expression is satisfiable if it is evaluated to be 

true for some values of its attributes.   

A Boolean expression, C, can be converted into a 

disjunctive normal form, C = B1 ∨ B2 ∨ B3 … ∨ Bx, 

where Bk is a conjunction of atomic conditions, Bk = 

AC1∧ AC2 ∧ AC3 … ∧ ACy. 

An atomic condition can take one of the following 

four forms: 

1. a opC c,  where a is an attribute, c is a constant 

value, and opC ∈ { <, =, >, ≥, ≤, LIKE} . 

2. a1 opN a2, where a1 and a2 are attributes and opN 

∈ { <, =, >, ≥, ≤} . 

3. a opN sq, where sq is a subquery. 

4. a opN bv, where bv is an uninstantiated variable. 

4.2. Class of Queries Handled 

TBI handles selection-projection-join queries with 

optional order-by and group-by clauses.  Subqueries and 

self-joins in these queries are also handled.  Figure 7 

shows a generic form of the class of queries handled. 

Figure 7. The class of queries handled 

In this generic form of a query template QT, 

A(S(QT)) denotes the attributes in the select clause.  

T(QT) denotes the tables involved in this query 

template.  C(QT) denotes the where condition (note that 

it may contain subqueries).  We will use A(C(QT)) to 

denote the attributes in the where condition.  A(O(QT)) 

denotes the attributes in the order-by clause.  A(G(QT)) 

denotes the attributes in the group-by clause. 

Finally, we define A(QT) = A(S(QT)) ∪ A(C(QT)) ∪ 

A(O(QT)) ∪ A(G(QT)), which denotes all attributes 

SELECT TOP n   A(S(QT)) 
FROM   T(QT) 
WHERE   C(QT)  
ORDER BY  A(O(QT)) 
GROUP BY  A(G(QT)) 
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involved in QT.  If C(QT) has any subquery, sq, 

A(C(QT)) includes A(sq) as well. 

4.3. Class of UDIs Handled 

Given a UDI template, UT, S(UT) denotes the clause 

containing the modification action, and A(S(UT)) 

denotes the attributes  that a UDI modifies.  S(UT) 

varies by the type (insertion, deletion, or update) of 

UDI.  S(UT) of an insert statement explicitly denotes the 

list of all the attributes in the insertion table and the 

corresponding insertion values.  S(UT) of a delete 

statement implicitly denotes all the attributes in the 

deletion table.  For an update statement,  S(UT) denotes 

the SET clause.   

TBI handles the following class of UDIs. 

(1) INS(T(INS), C(INS)): 

INSERT INTO T(INS) A(T(INS)) VALUES(? ? … ?) 

INS(T(INS), C(INS)) denotes an insertion into an 

insertion table, T(INS), where the insertion tuple is 

defined over attributes A(T(INS)).  C(INS) denotes the 

Boolean expression in the form of a conjunction of 

equality predicates formed on all pairs of attributes and 

insertion values.   

(2) DEL(T(DEL), C(DEL)): 

DELETE FROM T(DEL) WHERE C(DEL) 

DEL(T(DEL), C(DEL)) denotes a deletion from a 

table, T(DEL), with the deletion condition C(DEL).  

(3) UPD(T(UPD), C(S(UPD)), C(W(UPD))): 

UPDATE T(UPD) SET S(UPD) WHERE W(UPD) 

UPD(T(UPD), C(S(UPD)), C(W(UPD))) denotes an 

update of a table, T(UPD), where C(S(UPD)) denotes 

the conjunction of the equality predicates formed on all 

pairs of attributes and update values from the update 

statement’s SET clause.  C(W(UPD)) denotes the 

Boolean expression in the WHERE clause of the update 

statement.   

Consequently, A(S(UT) for an insert or a delete 

statement includes all attributes of a tuple and for an 

update statement includes only attributes in the set 

clause. 

4.4. Common Attributes Test 

Formally, we say that QT and UT have common 

attributes if A(S(UT)) ∩ A(QT) � �.  Given that q 

belongs to QT and that u belongs to UT, the first step of 

invalidation is to test if QT and UT have common 

attributes.  If A(S(UT)) ∩ A(QT) = �, u does not 

modify the result of q and UT is irrelevant to QT.  If 

A(S(UT)) ∩ A(QT) � �, UT may be relevant to QT and 

u may modify the result of q.  This test is mainly for an 

update statement rather than for an insert or delete 

statement. 
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Proposition 1. If A(S(UT)) ∩ A(QT) = �, UT is 

irrelevant to QT. 

Proof: Given A(S(UT)) ∩ A(QT) = �,  no attributes of  

the query condition are modified by S(UT).  Therefore, 

for any result tuple, t, of q, it is not added, removed or 

modified when a UDI, u, of UT is applied to the 

database.  In other words, the result of q is unaffected by 

u.  Thus, UT is irrelevant to QT. � 

Let us consider the examples of templates in Figures 

5 and 6.  Both the QT and UT involve the ITEM table, 

and the I_ID attribute is involved in the WHERE clause 

of both templates.  However, I_ID is not involved in the 

SET clause of the update template.  Correspondingly, 

the two attribute sets are as follows 

A(S(UT)) = {I_RELATED1};  

A(QT) = {I_ID, I_TITLE, I_A_ID, A_ID}. 

Since A(S(UT)) ∩ A(QT) = �, these two templates 

do not share common attributes.  By Proposition 1, UT 

is irrelevant to QT. 

4.5. Construction of Boolean Expressions 

If QT and UT share common attributes, we will 

construct a Boolean expression of q and u for 

satisfiability testing.  The Boolean expression of q, C(q), 

is simply the q’s where condition.  The construction of 

the Boolean expression of u, C(u), is more complex.  As 

an insert statement, INS, only adds new tuples to a table, 

C(INS) describes the new tuples being added.  As a 

delete statement, DEL, only removes tuples that satisfy 

C(DEL) from a table, C(DEL) describes the removed 

data that satisfy C(DEL).  As an update statement, UPD, 

modifies tuples in a table, C(UPD) is constructed to 

describe both the old values and the new values of the 

tuples being updated.  Therefore, C(UPD) = C(S(u)) OR 

C(W(u)), the disjunction of the set clause condition and 

the where condition. 

Given q and u, the Boolean expressions constructed 

for them are summarized in Table 2.   

Table 2.  Boolean expressions constructed for q and u 

UDI Type of u Boolean Expression  
INS(T(INS), C(INS)) C(q) AND C(INS) 
DEL(T(DEL), C(DEL)) C(q) AND C(DEL) 
UPD(T(UPD), C(S(UPD)), 
C(W(UPD))) 

C(q) AND (C(S(UPD)) OR 
C(W(UPD))) 

4.6. Satisfiability Testing Algorithm 

Larson and Yang’s [13] CONJUNCTIVE algorithm 

processes conjunctive Boolean expressions of numeric 

comparison predicates on integer-valued attributes with 

predefined ranges. We have made the following 

extensions in our satisfiability testing algorithm. 

(1) Handling more data types and predicates.  This 

extension includes the string data type and “LIKE”  

predicates and the float point data type. 

(2) Automatic discovery of attribute data type.  This 

extension ensures that the invalidator does not need to 

query the backend database for metadata. 
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(3) Handling uninstantiated variables.  This extension 

is for testing satisfiability between query templates and 

UDI templates.  Because uninstantiated variables may 

assume any possible value, we assume that an atomic 

condition involving an uninstantiated variable is always 

true in the satisifiability testing.  This assumption defers 

further satisfiability testing to instantiated SQL 

statements. 

(4) Handling subqueries that return an atomic value.  

For a query, q, with a subquery, sq, and a UDI, u, we 

first test the satisfiability of C(sq) AND C(u). If u is 

relevant to sq, it is also relevant to q.  Otherwise, we 

replace the atomic condition on the subquery to be true 

and further test the satisfiability of C(q) AND C(u). 

(5) Handling self-joins.  Since a table is referenced 

multiple times in a self-join, we associate all aliases of 

the table with the table itself and identify attributes of 

the aliased table accordingly. 

4.7. Template Satisfiability Matrix 

We implement the satisfiability testing between query 

and update templates by building a template satisfiability 

matrix.  For each pair of query and UDI templates, we 

first test if they share common attributes.  If they do not 

share common attributes, they are already irrelevant and 

the entry for this pair in the matrix is set to FALSE.  

Otherwise, we test the relevance of the UDI template to 

the query template.  Table 3 shows an example of a 

satisfiability matrix between three query templates and 

four UDI templates. 

Consider a pair of a query template QT3 and a UDI 

template UT4 in Table 3: 

QT3: “ SELECT I_ID, I_COST, A_FNAME, A_LNAME 

FROM ITEM, AUTHOR WHERE I_A_ID = A_ID AND I_ID 

= ?”  

A(QT3) = {I_ID, I_COST, A_FNAME, A_LNAME, I_A_ID, 

A_ID} 

C(QT3) = {I_A_ID = A_ID AND I_ID = ?} 

UT4:“ UPDATE ITEM SET I_COST = ? WHERE I_ID = ?”  

C(UT4) ={I_ID = ? OR I_COST = ?} 

A(S(UT4)) = {I_COST}. 

This pair of templates shares common attributes as 

A(S(UT4)) ∩ A(QT3) is not empty.  Therefore, we 

further test the Boolean expression C(QT3) AND 

C(UT4).   

C(QT3) AND C(UT4) 

= {I_A_ID = A_ID AND I_ID = ?} AND {I_ID = ? OR 

I_COST = ?} 

Table 3. An example of a template satisfiability matrix 

 QT1 QT2 QT3 
UT1 TRUE TRUE TRUE 
UT2 TRUE FALSE TRUE 
UT3 TRUE TRUE FALSE 
UT4 TRUE FALSE TRUE 
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As described in the previous sections, the predicates 

with uninstantiated variables will be assumed to be true.  

The satisfiability algorithm evaluates the Boolean 

expression of this pair of templates to be satisfiable and 

therefore the entry for this template pair in the template 

satisfiability matrix is TRUE.  At runtime, for each 

instantiated u belonging to UT, any cached query, q, 

belonging to QT must be further checked for satisifabiliy 

with instantiated values. 

In contrast, if a pair of query and UDI templates is 

irrelevant, the entry for this template pair in the template 

satisfiability matrix is FALSE.  Subsequently, any UDI 

of that UDI template will not invalidate any query of the 

query template.  For example, with UT2 and QT2, a 

UDI belonging to UT2 does not need to check against 

any cached query of QT2 as they are always 

unsatisfiable regardless of the values of the instantiated 

variables. 

In short, the template satisfiability matrix reduces the 

satsifiability test of individual queries and updates to the 

satisfiability test of the corresponding templates; only 

when the pair of templates is relevant, the individual 

statements of the templates are tested further.  The size 

of the template satisfiability matrix is linear to the 

number of relevant pairs of query templates and UDI 

templates. 

4.8. Query Satisfiability Indexes 

For each relevant pair of query and UDI templates, 

we build a satisfiability index on the important attributes 

of the instantiated queries if such attributes exist.  By 

important attributes, we refer to those whose instantiated 

values affect the answer of the satisfiability test on 

instantiated statements.  Intuitively, these important 

attributes should be in the predicates of the common 

attributes shared by the two templates.   

Consider the following Boolean expression: 

C(QT) AND C(UT) 

= {I_ID = ? AND I_A_ID = A_ID} AND {I_ID = ?}. 

The common attributes of the two templates are I_ID 

and the I_ID attribute has uninstantiated variables in the 

predicate on it (I_ID = ?).  Moreover, the variable value 

in this predicate in a query of QT determines if an 

update of UT will invalidate the query.  For instance, if 

the parameter has the value 8 in the query and has the 

value 9 in the update, the update is irrelevant to the 

query.  In comparison, if the parameter has the value 8 in 

both the query and the update, we will need to invalidate 

the query upon the update. 

In this example, I_ID is the important attribute and 

we build a query satisfiability index on the values of the 

parameter in the I_ID = ? predicate of the instantiated 

queries.  When an update of QT arrives, we can use the 
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parameter value in the update statement to look up 

relevant queries of the given query template.  

4.9. Summary 

In summary, we extend the satisfiability testing to 

query templates and build a template satisfiability matrix 

for filtering out irrelevant updates early on.  We then 

build query satisfiability indexes for queries of each 

template to speed up the checking process.  A summary 

of the control flow is shown in Figure 8. 
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Template
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Figure 8. TBI control flow 

5. Experimental Evaluation 

We deployed the original Java implementation [14] 

of the TPC-W benchmark [21] as well as our 

modifications (to incorporate ESI tags) in a local area 

network.  We ran remote browser emulators to study the 

performance of the web site under test.  We compared 

the performance of the web site without a web cache, 

with the Oracle Web Cache, and with the Oracle Web 

Cache and our TBI. 

5.1. System Configuration 

There were three computers involved in the 

experiments. All of them ran the Red Hat Linux 7.3 

operating system. The database server resided on a Dell 

PowerEdge server machine with a Pentium-III 1.26GHz 

processor and 512MB memory.  The other two machines 

had a Pentium-IV 1.8GHz CPU with 1GB memory each. 

5.1.1. Client Tier  

The Remote Browser Emulator (RBE) program 

provided by the original TPC-W implementation acted 

as an emulated browser client interacting with the web 

site under test.  We used 50 RBEs with no think time in 

all experiments to simulate an intensive, real-world web 

load.   

5.1.2. Middle Tier  

The middle tier included the web server, the 

application server, the web cache, and the TPC-W 

application.  We used the Oracle9iAS application server, 

which was bundled with the Apache Web Server and the 

Oracle Web Cache Release 2 v9.0.3 (OWC).  The OWC 

was configured to cache ESI templates and dynamic 

fragments.  We also used the Tomcat 4.0 application 

server as a servlet container for the TPCW servlets.   

5.1.3. Database Tier  
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We used Oracle9i Release 2 (9.2.0.1) as our database 

server.  The TPC-W databases of different scales were 

created and populated according to the TPC-W 

specification. 

5.2. TPC-W Workload 

The TPC-W benchmark specification [21] is 

published by the Transaction Processing Council (TPC) 

to model an e-commerce web site.  The TPC-W 

workload consists of two categories of web interactions, 

“Browse”  and “Order” . The “Order”  web interactions 

are centered on the ordering process and generate a large 

number of SQL UDIs.  In contrast, the “Browse”  web 

interactions primarily supply informational web contents 

about the products to the users, generating SQL queries 

to the backend. 

We experimented with the three transaction mixes 

defined by the TPC-W specification, namely the 

Browsing mix, the Shopping mix, and the Ordering mix.  

The Browsing mix consists of 95% “Browse”  web 

interactions and 5% “Order”  web interactions.  The 

Shopping mix comprises of 80% “Browse”  and 20% 

“Order”  web interactions.  The Ordering mix is 

composed of 50% “Browse”  and 50% “Order”  web 

interactions.  As TBI is an invalidation framework, we 

focused on measuring the performance with the 

Ordering mix to stress test the UDIs. 

The UDIs in the TPC-W workload operate on the 

ORDERS and ORDER_LINE tables.  Other tables such 

as ITEM, AUTHOR and ADDRESS are relatively static.  

Among the 14 types of web interactions, no updates in 

the workload are relevant to the Search Results page 

fragment, and one or more UDIs in the workload are 

relevant to page fragments of other web interactions. 

5.3. Framework Construction 

We constructed three frameworks for the TPC-W 

Java implementation.  They were the no-cache baseline 

framework, the Oracle Web Cache with ESI framework, 

and the Oracle Web Cache with ESI and our TBI 

framework. 

5.3.1. No-Cache Baseline Framework (NC) 

The No-Cache Baseline Framework (NC) uses the 

original Java implementation [14] of the TPC-W 

benchmark, which is purely servlet based.  Regardless of 

the types of the requested web contents, all requests are 

answered dynamically by Java servlets running on top of 

the Apache Tomcat Servlet Engine [4].  The Oracle Web 

Cache is configured to cache nothing.  Although the 

contents are always served fresh, the performance (in 

terms of response time and throughput) may suffer due 

to the heavy workload on the servlets. 

5.3.2. OWC ESI Framework (OWC) 

The OWC ESI Framework uses ESI templates and 

fragments as caching units.  We constructed this 
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framework by transforming the servlet-based TPC-W 

implementation into an ESI-enabled implementation and 

configuring the OWC to cache the ESI templates and 

fragments.  We configured the OWC to cache all the 

templates and dynamic fragments in the “Browse”  web 

interactions except the promotion banner fragment that 

had to be generated randomly at runtime.  Dynamic 

fragments in the “Order”  web interactions are mostly un-

cached due to their transactional semantics and privacy-

related issues.  In particular, the Shopping Cart and Buy 

Request pages are not cached.   

We constructed the OWC ESI Framework mainly for 

the purpose of comparing it with the OWC-TBI 

framework.  Without invalidation, the OWC ESI 

Framework caches the templates and dynamic fragments 

but never purges them.  Therefore, the cached dynamic 

fragments may be inconsistent with the backend 

database. This framework may have excellent 

performance, but it is unrealistic due to the poor data 

consistency. 

5.3.3. OWC ESI with TBI Framework (TBI) 

The OWC-TBI framework, or the TBI framework in 

short, uses the ESI-enabled TPC-W implementation but 

compiled with our TBI package.  The OWC in this 

framework is configured to cache the same contents as 

in the OWC-ESI framework.  In addition, the OWC is 

configured to accept the invalidation requests from our 

TBI module.  This approach may have a slightly worse 

performance than the OWC-ESI framework due to the 

invalidation overhead and the resulting higher cache 

miss ratio, but it delivers fresh web content. 

5.4. Measurement Methodology 

We measured both response time and throughput (in 

terms of WIPS, Web Interaction Per Second) at the 

Remote Browser Emulator (RBE).  Each experiment 

was executed for 5000 seconds and measurements were 

only reported for the last 1000 seconds.  The first 4000 

seconds are the system warm-up time, because the 

warm-up process is essential for complex systems, 

especially systems with caching components.   

Before executing each experiment, several key 

procedures were carried out to avoid interference from 

previous runs.  The goal was to provide a clean start.  

First, the data in the databases were refreshed to ensure 

approximately the same database content for each 

experiment.  Second, the OWC was restarted to purge 

the cached contents left from the previous run.  Last, a 

random seed conforming to the TPC-W specification 

was used for each experiment.  

5.5. Experimental Results 

5.5.1. General Metrics  

We first present the throughput (Table 4) and 

response time (Table 5) of different transaction mixes on 
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the three frameworks.  We experimented with different 

database sizes and the results we present in this section 

are from the 100K database (there are 100,000 records 

in the ITEM table).  Both OWC and TBI outperformed 

the baseline framework on different transaction mixes.  

The results of these experiments confirm that our TBI is 

sufficiently generic to be deployed at database-backed 

web sites with arbitrary database sizes and transaction 

mixes.  

Not surprisingly, TBI performed worse than OWC, 

because the invalidation component needs processing 

time at the web site and to reduce number of cache hits 

at the web cache.  However, TBI ensures the freshness 

of the web content, which is highly desirable in e-

commerce. 

Table 4. Throughput (WIPS) with a 100K database  

Throughput NC TBI OWC 
Browsing 0.3 1.1 3.4 
Shopping 0.5 0.8 1.9 
Ordering 2.1 2.6 3.8 

 

Table 5. Average response time (in seconds) with a 

100K database 

Response time NC TBI OWC 
Browsing 38.3 28.9 7.2 
Shopping 45.1 36.8 18.6 
Ordering 15.8 11.1 6.0 

 

An additional note on these results is that the 

Ordering mix has a better performance than have the 

Shopping and the Browsing mixes for NC and TBI.  

This is because the execution cost of the TPC-W queries 

is more expensive than that of the UDI operations.  The 

majority of TPC-W queries involves aggregations, 

order-by clauses and group-by clauses whereas the UDIs 

are much simpler. 

5.5.2. Response Time by Web Interaction 
Category 

We further investigate the average response time by 

web interaction categories.  This is because, from the 

web users’  point of view, the time spent waiting for web 

pages to be returned in individual web interactions is 

most important.  Based on the results on general metrics, 

we chose the 100K database size and the ordering mix 

since this combination exercises TBI the most. 

There are four web interaction categories by the web 

pages they generate: (A) a template-only page, (B) a 

page with cacheable templates and fragments, (C) a page 

with cacheable templates and non-cacheable fragments, 

and (D) a servlet page. 

A template-only page does not contain any fragments 

and is readily cached by OWC.  As shown in Figure 9, a 

template-only page (Category A) took 8 seconds to be 

generated in the baseline framework but zero seconds in 

both TBI and OWC.  The sub-second response time 

indicates that the template-only page is directly served 

out of the web cache.  Moreover, the cached templates 

have no dynamic contents.  No invalidation overhead is 
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incurred by TBI.  Therefore, both TBI and OWC 

achieved identical degrees of performance improvement. 

0

5

10

15

20

25

A  B  C  D

Web Interaction Category

A
ve

ra
ge

 R
es

po
ns

e 
Ti

m
e 

(s
) OWC

TBI

NC

 

Figure 9. Average response time (in seconds) by web 

interaction category 

For pages with cacheable templates and fragments 

(Category B), both the templates and the cacheable 

fragments are cached.  The average response time of the 

baseline framework was 17 seconds, while that of the 

two caching frameworks was under 10 seconds.  Both 

TBI and OWC achieved significant improvement on 

pages with cacheable templates and cacheable 

fragments.  

For pages with cacheable templates but non-

cacheable fragments (Category C), the template is 

cached but the dynamic fragments are not.  Hence, the 

improvement on the response time in the caching 

frameworks was not as significant as for Category B.  

Nevertheless, the ESI-enabled caching frameworks were 

still more efficient than the servlet-based baseline 

framework. 

For servlet pages (Category D), the two caching 

frameworks also outperformed the baseline framework 

as these serlvet pages are cacheable.   

5.5.3. Distribution of Response Time 

While the average response time gives a general idea 

about the performance, the distribution of the response 

time allows us to see the percentage of web pages that 

are accelerated by caching (Figure 10).   

All of the web contents in either caching framework 

can be served in a shorter response time than in the 

baseline framework.  In particular, almost 100% of the 

template-only pages were served in zero-second 

response time (not shown in Figure 10).  For pages with 

cacheable templates and fragments (Category B), OWC 

and TBI respectively served around 80% and 60% of the 

pages within eight seconds while the baseline framework 

served only around 25% in the same time.  Results were 

similar for the pages with cacheable templates but non-

cacheable fragments (Category C).  Finally, the servlet 

pages (Category D) are the most expensive in terms of 

time among the four categories of pages to generate.   

5.5.4. Overhead of Template-Based Invalidator 

After the measurements from the remote browser 

emulator indicated the overall performance of TBI, we 
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further examined the time breakdown of the internal 

processing of TBI. 

Query We investigated the amount of time spent in 

each step of the invalidation cycle, including parsing the 

statement, checking the template satisfiability matrix, 

updating the indexes, and executing the statement.  We 

measured these steps (if applicable) in four cases of an 

HTTP request invoking a query: a cache hit, a cache 

miss with a UDI template relevant to the query, a cache 

miss without any UDI template relevant to the query, 

and a non-cacheable request. 
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Table 6. Query time breakdown (in milliseconds) for Ordering Mix with a 100K database 

HTTP Requests Statement 
Parsing 

Matrix 
Checking 

Indexes 
Updating 

JDBC 
Execution 

Non-Cacheable 0.0 0.0 0.0 126.0 
Cache Hit 0.0 0.0 0.0 0.0 
Cache Miss - Irrelevant UDI 6.1 0.0 0.0 4835.0 
Cache Miss - Relevant UDI  40.1 0.1 0.1 5600.0 

 

Table 7. UDI time breakdown (in milliseconds) for Ordering Mix with a 100K database 

UDIs Statement 
Parsing 

Matrix 
Checking 

Indexes Checking 
& Updating 

JDBC 
Execution 

Invali-
dation 

Query Template Irrelevant  1.0 0.0 0.0 6.3 0.0 
Query Irrelevant  3.3 0.0 0.0 6.1 0.0 
Query Relevant 3.6 0.0 467.0 3.2 55.7 

 

A non-cacheable request does not induce additional 

cost in TBI; it is directly passed to the underlying JDBC 

driver.  With cacheable fragments, there may be misses 

and hits.  A cacheable fragment hit does not induce 

additional cost in TBI, as the fragment is served by OWC.  

TBI is invoked only when the fragment is not found in 

OWC.  This is a cache miss. 
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With a cache miss, we need to update the data 

structures.  If the query template is not indexed, the query 

instance has to be inserted into the corresponding query 

instance vector of all relevant UDI templates.  Otherwise, 

we can simply update the query satisfiability index and 

there is no need to store the entire query instance in the 

query instance vector. 

Table 6 shows that the amounts of time spent on 

statement parsing, checking the template satisfiability 

matrix, and updating the data structures were negligible.  

The query time was dominated by the JDBC execution at 

the backend database.   

UDI We also investigated the time breakdown of a 

UDI.  A UDI may fall into one of the three cases – 

irrelevant to any query templates (by checking the 

template satisfiability matrix), relevant to some query 

templates but irrelevant to the cached queries according to 

the data structures, or relevant to some cached query.  We 

show these three cases in Table 7 as “Query Template 

Irrelevant” , “Query Irrelevant” , and “Query Relevant” .  

Compared with handling a query, handling a UDI 

involves two more steps, namely, checking the data 

structures and possibly sending invalidation messages.  

Different from the performance of handling a query, Table 

7 shows that the times of all steps are insignificant (under 

0.5 seconds).  The largest two items are the invalidation 

time of 50 milliseconds and the data structure update time 

of 467 milliseconds. 

5.5.5. Summary  

Our experimental results confirm that our TBI is 

sufficiently generic to be deployed by database-backed 

web sites with arbitrary database sizes and transaction 

mixes.  Furthermore, both OWC and OWC-TBI caching 

frameworks outperformed the baseline framework with 

different database sizes and transaction mixes.  The 

OWC-TBI framework represents a tradeoff between two 

extremes (no caching versus caching but no cache-

consistency).  It incurs slight processing overhead at the 

web site and fewer cache hits at the web cache, but it 

delivers fresh web content with improved performance.  

6. Related Work 

Recent work has studied cache consistency and 

freshness in various contexts.  Bright and Raschid 

proposed latency-recency profiles to accommodate user 

preferences [6].  Cho and Garcia-Molina studied crawling 

scheduling for maintaining the freshness of a crawled web 

page repository [9].  Labrinidis and Roussopoulos 

presented an update propagation policy for data-intensive 

web sites [12].  Olston and Widom addressed the tradeoff 

between data freshness and transfer cost [17].  In 

comparison to treating the cached data units as opaque 

objects in these studies, we considered the SQL semantics 
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of updates as well as the semantics of cached HTML page 

fragments. 

There has been a rich body of research on materialized 

view maintenance [11], which exploits SQL semantics of 

queries and updates.  These techniques have been recently 

applied to update propagation in DBCache [15], DBProxy 

[2], and TimesTen Front-end Cache [20] for database-

backed web sites.  In comparison, our work focuses on 

lightweight invalidation of generated HTML fragments as 

opposed to full update propagation to cached relational 

data tuples. 

Invalidation has been previously proposed for 

database-backed web sites.  While the Oracle Web Cache 

[3] and the Dynamic Page Cache [10] provided primitives 

for applications to specify their invalidation policies (such 

as a timeout value), the DUP (Data Update Propagation) 

algorithm [8] and the view invalidation algorithms [7] 

facilitate automatic invalidation at the application level.  

Our work argues for a lightweight, automatic invalidation 

policy in that we neither install triggers at nor send polling 

queries to the backend database server. 

Finally, query templates have been presented in 

caching for database-backed web sites [2][7][16].  In this 

work, we extensively utilize templates to improve the 

efficiency of our invalidation.  Specifically, we exploit not 

only SQL query templates, but also SQL update 

templates, URL templates, as well as ESI templates [19]. 

This enables the invalidator to handle a large number of 

updates and queries efficiently at runtime.  

7. Conclusions 

We have presented a template-based invalidator (TBI) 

for cached database-generated web contents.  The 

invalidator works by checking the satisfiability 

relationship between a SQL query and a UDI statement 

without checking the database content.  It maintains a 

mapping between URLs and SQL queries so that it can 

send invalidation requests to the web cache when a UDI is 

relevant to a cached query.  It further improves efficiency 

by building a template satisfiability matrix and query 

satisfiability indexes.  We have integrated TBI into the 

Oracle Web Cache (including an ESI processor) and 

conducted extensive experiments using the TPC-W 

benchmark.  Our experimental results show that OWC-

TBI delivers fresh web content efficiently. 
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