
 1

Template-Based Runtime Invalidation for Database-Generated Web Contents

Chun Yi Choi Qiong Luo
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

{stefan, luo}@cs.ust.hk

Abstract

We propose a template-based runtime invalidation
approach for maintaining cache consistency in
database-generated web contents. In our approach, the
invalidator sits between a web cache and a database
server and intercepts the query statements as well as the
update statements transparently. Moreover, it
maintains templates for queries and updates, as well as
a mapping between URLs and SQL queries. At runtime,
the invalidator checks an update statement against the
query statements, whose corresponding HTML
fragments have been cached, and decides on if any
cached HTML fragments should be invalidated based on
an extended satisfiability testing algorithm without
sending any polling queries to the backend database.
We further improve the efficiency of this checking
process by utilizing the semantic information of the
templates. We have integrated our invalidator with the
Oracle Web Cache and have conducted extensive
experiments using the TPC-W benchmark. Our results
show that this approach efficiently maintains the
consistency of cached HTML fragments with the
backend database.

1. Introduction

Large e-commerce sites typically serve many users

concurrently with web contents dynamically generated

from a backend database. Caching these web contents

has been the main solution to scalability and

performance problems faced by the e-commerce sites.

However, these cached web contents may become

obsolete within a short period of time, because their

corresponding database contents are constantly changing

due to ongoing transactions. Since users usually desire

to see up-to-date web contents in their browsing and

shopping activities, it is crucial to maintain consistency

between the database contents and the cached web

contents.

Despite previous research efforts [7, 8, 10], cache

consistency remains a challenging problem for database-

backed web sites. A major cause is that the sites require

several pieces of complicated software – the web server

(with a web cache), the application server, the database

server, and server-side applications. Moreover, these

components speak different languages and run

independently from one another. In this paper, we take a

holistic approach to address the problem, aiming at

making our approach generally applicable to a wide

range of applications. Our goal in this work is to

invalidate outdated database-generated web contents

automatically without putting any extra workload onto

 2

the backend database. Figure 1 shows our invalidator in

a database-backed web site.

Database

B
row

ser

W
eb C

ache

W
eb Server

A
pplication

A
pp. Server

Invalidator

D
B

 Server

HTTP JDBC

Figure 1. The invalidator in a database-backed web site

Our key observation in this work is that both SQL

queries and web pages generated from database-backed

web sites have templates. Specifically, server-side

applications such as Java servlets, Java Server Pages,

Active Server Pages, and Enterprise Java Beans are

programmed to contain parameterized SQL statements

(both queries and updates) as well as parameterized

HTML fragments. Moreover, these parameterized

statements and fragments remain visible at application

development time, deployment time, or even runtime.

Consequently, it is possible to know a priori the

expected templates as well as the mapping between the

HTML fragments and the SQL statements in an

application.

The templates and mapping information reveal the

SQL semantics of database-generated HTML fragments,

which enables us to connect consistency maintenance of

the cached web content with database operations.

Subsequently, we need to know the database operations

at runtime in order to perform the consistency

maintenance of the web contents. Fortunately, the

parameterized SQL statements are instantiated with user

input or environmental variable values at runtime, and

are sent to the database server through the ODBC or

JDBC interface. Correspondingly, we chose to intercept

SQL statements at the JDBC interface level at runtime in

order to perform cache consistency maintenance

transparently.

Given an instantiated SQL update and cached query

statements at runtime, we have two options for cache

consistency maintenance. One is invalidation and the

other is update propagation. Update propagation is a

more powerful choice in that it refreshes a cached item

with new content. However, it requires much more

computing and communications than does invalidation –

the database server has to re-compute the query results

and send them to the applications, while the applications

have to regenerate the HTML fragments and update the

cache. Therefore, we chose invalidation as our

consistency maintenance approach, under which

outdated HTML fragments are simply purged from the

cache.

To check if a cached HTML fragment (query result)

becomes invalid due to an update statement, we have

further choices on if we send polling queries to the

backend database to confirm the validity of the cached

fragment. Recent research [7] has indicated that there is

a tradeoff between the degree of over-invalidation and

 3

the overhead of polling queries. In this work, we take an

approach of invalidating cached fragments based on a

satisfiability test of the statement texts only. This

eliminates any polling queries to the backend database

as well as greatly simplifies the processing in the

invalidator. In practice, we find that HTML fragments

(for example, product details) are usually generated with

key attributes (e.g., the product ID) in the queries and

that instantiated update statements often come with key

attributes in the condition. Over-invalidation is highly

unlikely in such cases.

In order to improve the efficiency of invalidation, we

further exploit the use of templates. Specifically, we

design a satisfiability matrix with pairs of query

templates and update templates to maintain the

relationship between the SQL templates. We then

organize instantiated queries and updates by their

templates, and perform further satisfiability tests if the

satisfiability is not yet determined by the matrix.

Additionally, we build satisfiability indexes on

important attributes referenced in the SQL statements for

each template. Finally, we translate an instantiated SQL

query to be invalidated into a URL based on the

mapping between query templates and HTML fragment

templates, and invalidate the HTML fragments identified

by that URL.

In addition to designing and implementing our

template-based invalidator (TBI), we have integrated it

with the Oracle Web Cache [18] that has an Edge Side

Includes processor [19]. Furthermore, we evaluated this

framework using a Java implementation of the TPC-W

benchmark [21]. Our results show that our invalidator

enables the web cache to serve fresh HTML pages

efficiently even when the update workload is high.

The remainder of this paper is organized as follows.

We introduce the background of our work in Section 2

and describe the system architecture of our invalidator in

Section 3. We present our template-based invalidation

algorithms in Section 4 and our experimental results in

Section 5. We discuss related work in Section 6 and

draw conclusions in Section 7.

2. Background

This section introduces the theoretical background of

our invalidation algorithm as well as the implementation

background of our system.

2.1. Theoretical Background

Our invalidation algorithm is based on the

satisfiability testing algorithm for conjunctive Boolean

expressions [13] by Larson and Yang, and on the results

on irrelevant update detection [5]. The following

section gives a brief overview of this background and

our contributions are further discussed in Section 4.

 4

2.1.1. Satisfiability Testing

The satisfiability testing algorithm for conjunctive

Boolean expressions (referred to as CONJUNCTIVE by

Larson and Yang [13]) checks if a conjunctive Boolean

expression is satisfiable (i.e., if it is evaluated to be true

for some value assignment of its variables). The input

conjunctive Boolean expression is a conjunction of

multiple atomic conditions, each of which takes the form

of attribute op constant or attribute op attribute. The

attributes (or variables) are of an integer data type, and

each has a lower bound and an upper bound. The

operator is one of the five arithmetic comparison

operators (>, <, >=, <=, and =).

The CONJUNCTIVE algorithm creates a graph with

its nodes being the bounded variables and its edges

being the arithmetic comparison relationships between

the variables. It manipulates the graph (adding or

removing edges and nodes, and changing the bounds of

the variables) according to the current bounds of the

variables until the graph becomes empty. When the

algorithm halts, it returns a true/false answer on the

satisfiability of the expression, as well as the final

permissible range of each variable.

2.1.2. Detecting Irrelevant Updates

By utilizing the satisfiability test of the CONJUNCTIVE

algorithm, the irrelevant update detection algorithms [5]

give necessary and sufficient conditions for a UDI

(Update/Delete/Insert) operation to be irrelevant to a

query (i.e., the UDI operation on any database does not

change the result of the query on that database). The

input query (referred to as a derived relation [5]) is

assumed to be a simple PSJ (Projection-Selection-Join)

query with no self-join or subquery. The highlight of

these results (one for each of the three types of UDI

operations) is that the update irrelevance is equivalent

to the unsatisfiability of the conjunction of the UDI

condition and the query condition. Therefore, we can

detect irrelevant UDIs of a query by only checking the

statement text, not any of the database content.

2.2. Implementation Background

2.2.1. Edge Side Includes

ESI (Edge Side Includes) [19] is a simple markup

language proposed by Akamai (a major player in the

content delivery network business) and Oracle. Both

companies have implemented processors [1][18] for the

language. This language is used in web pages to define

ESI templates as well as ESI page fragments. It can

define different caching properties (such as the timeout

value) at the page fragment level. Therefore, ESI

enables web caching servers to cache individual HTML

page fragments and to assemble dynamically the

fragments at the edges of networks. As a result, ESI is

widely supported by the content delivery network

business as well as web content providers.

 5

Let us use a simplified product detail web page as an

example to illustrate ESI. As shown in Figures 2 and 3,

an ESI Template defines the static skeleton of a web

page. The ESI tags (such as “<esi: include>”) inside

the template define ESI fragments and direct the

assembly and delivery of the fragments. An ESI

fragment can be static or dynamic. Static fragments are

text or image files, which seldom change over time.

Dynamic fragments are contents generated by programs

with parameters instantiated at runtime. For instance,

the product detail fragment in Figure 2 is generated by

TPCW_product_detail_servlet and is included using the

<esi:include> tag in the ESI template. This indicates

that the product detail fragment can be cached separately

from the template and other fragments (such as the

buttons) of the template.

Figure 2: The product detail web page

In addition to defining templates and fragments for

web pages, ESI supports the use of variables for HTTP

request attributes. In particular, the <esi:vars> tag

indicates that the values of the HTTP request attributes

will be extracted from environmental variables and

embedded into the URLs at runtime. Consider the home

button in the product detail page. Traditionally, the

button’s embedded URL

(TPCW_home_interaction.html) has to be generated

dynamically to encode the customer ID and shopping

ID. With the <esi:vars> tag, the value of the C_ID

parameter in the URL will be replaced by that of the

$(QUERY_STRING_ENCODED{C_ID}) environmental

variable. As a result, the product detail template can be

reused across users and shopping sessions as opposed to

being generated for each user and shopping session.

Figure 3: ESI template of the product detail web page

<HTML>
<H1>TPC-W Product Detail Page</H1>
<esi:include src="TPCW_product_detail_servlet?

I_ID=$(QUERY_STRING_ENCODED{I_ID})&
S_ID=$(QUERY_STRING_ENCODED {S_ID})" />
<esi:vars>
<A HREF="TPCW_home_interaction.html?
C_ID=$(QUERY_STRING_ENCODED{C_ID})&
S_ID=$(QUERY_STRING_ENCODED{S_ID})">

<A HREF = "TPCW_admin_request_servlet.html?
C_ID=$(QUERY_STRING_ENCODED{C_ID})&
S_ID=$(QUERY_STRING_ENCODED{S_ID})">

</esi:vars>
</HTML>

 6

2.2.2. Oracle Web Cache

The Oracle9iAS Web Cache (OWC) [18] performs

traditional web caching as well as incorporates an ESI

processor to enable ESI templates and fragments

caching. OWC uses cache rules to direct caching of ESI

templates and fragments. A simplified example of OWC

cache rules is shown in Table 1. Since only ESI

templates and static HTML files have the .html suffix in

our example, the first rule directs OWC to cache all ESI

templates and static html files while the subsequent rules

direct OWC to cache several dynamic ESI fragments

generated by servlets.

Table 1. Examples of simplified OWC cache rules

URL Expression Cache?
.html Cache
TPCW_product_detail_servlet Cache
TPCW_execute_search Cache
TPCW_new_products_servlet Cache

Moreover, OWC can be configured to ignore specific

parameters in a URL. Consider the following two URLs:

TPCW_product_detail_servlet.html?C_ID=123&I_ID=12

TPCW_product_detail_servlet.html?C_ID=124&I_ID=12

These two URLs differ only in their customer ID

parameter values. Since the customer ID parameter does

not affect the content of this template, we can configure

OWC to ignore the C_ID parameter in the URL.

Therefore, the two URLs correspond to the same cached

template.

Finally, OWC purges outdated cache content by

either examining the timeout value of a cached unit or

serving invalidation requests to the cached unit.

3. System Architecture

We give an overview of the system architecture and

the key components in this section.

3.1. System Overview

Figure 4 shows the components of our Template-

based Invalidator (TBI).

Figure 4. Components of TBI

As shown in Figure 4, the major components of TBI

are the JDBC wrapper, the statement parser, the

template manager, the satisifiability tester, and the

invalidation messenger. The key data structures in TBI

include a SQL-URL map, parsed query instances, query

templates, update templates, a template satisfiability

matrix, and query satisfiability indexes. We describe

these components together with the key data structures

in more detail in the following subsections.

JD
B

C
 W

rapper

Template
Manager

Invalidation M
essenger

JDBC Calls

Query
Templates

Update
Templates

To Web
Cache

Satisfiability
Tester

Statement
Parser

To DBMS

SQL-
URL
Map Template

Satisfiability
Matrix

Query Satisfiability Index

Parsed
Query

Instances

 7

3.2. JDBC Wrapper

The interface of TBI to a web application is a

wrapper class of a JDBC driver. Vendor-specific JDBC

drivers have native implementations for data access to

their database servers, but they all conform to the

publicly available java.sql package interface.

Consequently, one implementation of any class defined

by the package can be replaced with another

implementation without changing the application code.

Therefore, we implemented our wrapper to conform to

the java.sql package interface.

When the web application registers this wrapper

package to be its JDBC driver, the application’s JDBC

calls to the backend database are transparently

intercepted by the TBI. After other TBI components

check the JDBC calls, the JDBC wrapper sends the

JDBC calls to the actual JDBC driver of the backend

database server. No modifications of the application

code are needed. Note that we chose the JDBC platform

for its openness, popularity in the industry and

availability of its API documentation. In essence, our

technique can also be applied to a non-JDBC compliant

platform with additional engineering efforts.

3.3. Statement Parser

A JDBC call is passed to the statement parser in the

TBI before it is forwarded to the backend database. If

the JDBC call is to prepare a SQL statement, the

statement parser will parse the to-be-prepared SQL

statement (with or without question marks). If the to-be-

prepared statement is a query, it is parsed into a query

tree and the WHERE clause is transformed into the

Disjunctive Normal Form (DNF). The parser handles

Projection-Selection-Join queries with optional Top-N,

Order by, and Group by clauses. Subqueries and self-

joins are handled as well. If the to-be-prepared

statement is a UDI operation, the parser parses it into a

UDI tree with update conditions and data (e.g., the tuple

to be inserted). The statement parser also handles other

JDBC calls such as setting the parameter values in a

prepared statement and executing a prepared statement.

3.4. Template Manager

The statement parser passes SQL statement

information to the template manager. The template

manager maintains the key data structures of TBI.

(1) It maintains the SQL query templates, the SQL

UDI templates, and a template satisfiability matrix

between the two kinds of SQL templates. SQL query

templates are parameterized SQL queries and SQL UDI

templates are parameterized UDI statements. Together,

the two types of templates are referred to as SQL

templates. Figures 5 and 6 show examples of SQL

templates.

 8

SELECT I_ID, I_TITLE FROM ITEM, AUTHOR

WHERE I_A_ID = A_ID AND I_ID = ?

Figure 5. The product detail query template

UPDATE ITEM SET I_RELATED1 = ? WHERE I_ID = ?

Figure 6. An example of a UDI template

The template satisfiability matrix records the

satisfiability relationship between a pair of a query

template and an update template. We describe the

construction and maintenance of the matrix in detail in

Section 4.

(2) It maintains a URL-SQL map, which records the

mapping between the URL templates of the OWC-

cached web contents and the SQL templates that

generate the corresponding web contents. URL

templates are URLs with or without uninstantiated

parameters. For instance, the URL template

"TPCW_product_detail_servlet?" is mapped to the SQL

template shown in Figure 5. In addition, the map

records that the I_ID parameter in the URL template will

correspond to the I_ID parameter in the SQL query

template.

(3) It maintains the query satisfiability indexes and

parsed query instances. The query satisfiability index

keeps the values of some attributes referred to in

instantiated SQL queries of a query template. The goal

is that, for an update operation, TBI can quickly locate

the specific instantiated SQL queries of a query template

that need to be invalidated.

3.5. Satisfiability Tester

Given an instantiated query statement and an

instantiated UDI statement, the satisfiability tester

checks if the conjunction of the conditions in the pair of

statements is satisfiable. The tester utilizes the template

satisfiability matrix as well as the query satisfiability

indexes to speed up the process. Details are discussed in

Section 4.

3.6. Invalidation Messenger

If the satisfiability tester decides that a cached query

should be invalidated due to a UDI operation, it will tell

the invalidation messenger to send an invalidation

message to the web cache.

The invalidation messenger is given the query

template together with the parameter-value pairs. It

constructs the URL to be invalidated by looking up the

URL-SQL map. Consider the product detail query

template in Figure 5 with an I_ID value of 123. The

messenger looks up the URL-SQL map and finds the

corresponding URL template

"TPCW_product_detail_servlet?" and the parameter

matching rules. It then constructs an HTTP request to

invalidate the following URL:

TPCW_product_detail_servlet?I_ID=123

 9

4. Template-Based Invalidation

In this section, we describe our template-based

invalidation algorithm.

4.1. Definitions

T = { t1, t2, …, tn} is a set of tables.

A = { a1, a2, …, am} is a set of attributes.

QT denotes a query template. UT denotes a UDI

template. An instantiated query statement of QT is

denoted as q. An instantiated UDI statement of UT is

denoted as u.

C is a Boolean expression over attributes a1, a2, …, ap

corresponding to the query condition in QT or the UDI

condition in UT.

A Boolean expression is valid if it is always

evaluated to be true. A Boolean expression is

unsatisfiable if it is never evaluated to be true. A

Boolean expression is satisfiable if it is evaluated to be

true for some values of its attributes.

A Boolean expression, C, can be converted into a

disjunctive normal form, C = B1 ∨ B2 ∨ B3 … ∨ Bx,

where Bk is a conjunction of atomic conditions, Bk =

AC1∧ AC2 ∧ AC3 … ∧ ACy.

An atomic condition can take one of the following

four forms:

1. a opC c, where a is an attribute, c is a constant

value, and opC ∈ { <, =, >, ≥, ≤, LIKE} .

2. a1 opN a2, where a1 and a2 are attributes and opN

∈ { <, =, >, ≥, ≤} .

3. a opN sq, where sq is a subquery.

4. a opN bv, where bv is an uninstantiated variable.

4.2. Class of Queries Handled

TBI handles selection-projection-join queries with

optional order-by and group-by clauses. Subqueries and

self-joins in these queries are also handled. Figure 7

shows a generic form of the class of queries handled.

Figure 7. The class of queries handled

In this generic form of a query template QT,

A(S(QT)) denotes the attributes in the select clause.

T(QT) denotes the tables involved in this query

template. C(QT) denotes the where condition (note that

it may contain subqueries). We will use A(C(QT)) to

denote the attributes in the where condition. A(O(QT))

denotes the attributes in the order-by clause. A(G(QT))

denotes the attributes in the group-by clause.

Finally, we define A(QT) = A(S(QT)) ∪ A(C(QT)) ∪

A(O(QT)) ∪ A(G(QT)), which denotes all attributes

SELECT TOP n A(S(QT))
FROM T(QT)
WHERE C(QT)
ORDER BY A(O(QT))
GROUP BY A(G(QT))

 10

involved in QT. If C(QT) has any subquery, sq,

A(C(QT)) includes A(sq) as well.

4.3. Class of UDIs Handled

Given a UDI template, UT, S(UT) denotes the clause

containing the modification action, and A(S(UT))

denotes the attributes that a UDI modifies. S(UT)

varies by the type (insertion, deletion, or update) of

UDI. S(UT) of an insert statement explicitly denotes the

list of all the attributes in the insertion table and the

corresponding insertion values. S(UT) of a delete

statement implicitly denotes all the attributes in the

deletion table. For an update statement, S(UT) denotes

the SET clause.

TBI handles the following class of UDIs.

(1) INS(T(INS), C(INS)):

INSERT INTO T(INS) A(T(INS)) VALUES(? ? … ?)

INS(T(INS), C(INS)) denotes an insertion into an

insertion table, T(INS), where the insertion tuple is

defined over attributes A(T(INS)). C(INS) denotes the

Boolean expression in the form of a conjunction of

equality predicates formed on all pairs of attributes and

insertion values.

(2) DEL(T(DEL), C(DEL)):

DELETE FROM T(DEL) WHERE C(DEL)

DEL(T(DEL), C(DEL)) denotes a deletion from a

table, T(DEL), with the deletion condition C(DEL).

(3) UPD(T(UPD), C(S(UPD)), C(W(UPD))):

UPDATE T(UPD) SET S(UPD) WHERE W(UPD)

UPD(T(UPD), C(S(UPD)), C(W(UPD))) denotes an

update of a table, T(UPD), where C(S(UPD)) denotes

the conjunction of the equality predicates formed on all

pairs of attributes and update values from the update

statement’s SET clause. C(W(UPD)) denotes the

Boolean expression in the WHERE clause of the update

statement.

Consequently, A(S(UT) for an insert or a delete

statement includes all attributes of a tuple and for an

update statement includes only attributes in the set

clause.

4.4. Common Attributes Test

Formally, we say that QT and UT have common

attributes if A(S(UT)) ∩ A(QT) � �. Given that q

belongs to QT and that u belongs to UT, the first step of

invalidation is to test if QT and UT have common

attributes. If A(S(UT)) ∩ A(QT) = �, u does not

modify the result of q and UT is irrelevant to QT. If

A(S(UT)) ∩ A(QT) � �, UT may be relevant to QT and

u may modify the result of q. This test is mainly for an

update statement rather than for an insert or delete

statement.

 11

Proposition 1. If A(S(UT)) ∩ A(QT) = �, UT is

irrelevant to QT.

Proof: Given A(S(UT)) ∩ A(QT) = �, no attributes of

the query condition are modified by S(UT). Therefore,

for any result tuple, t, of q, it is not added, removed or

modified when a UDI, u, of UT is applied to the

database. In other words, the result of q is unaffected by

u. Thus, UT is irrelevant to QT. �

Let us consider the examples of templates in Figures

5 and 6. Both the QT and UT involve the ITEM table,

and the I_ID attribute is involved in the WHERE clause

of both templates. However, I_ID is not involved in the

SET clause of the update template. Correspondingly,

the two attribute sets are as follows

A(S(UT)) = {I_RELATED1};

A(QT) = {I_ID, I_TITLE, I_A_ID, A_ID}.

Since A(S(UT)) ∩ A(QT) = �, these two templates

do not share common attributes. By Proposition 1, UT

is irrelevant to QT.

4.5. Construction of Boolean Expressions

If QT and UT share common attributes, we will

construct a Boolean expression of q and u for

satisfiability testing. The Boolean expression of q, C(q),

is simply the q’s where condition. The construction of

the Boolean expression of u, C(u), is more complex. As

an insert statement, INS, only adds new tuples to a table,

C(INS) describes the new tuples being added. As a

delete statement, DEL, only removes tuples that satisfy

C(DEL) from a table, C(DEL) describes the removed

data that satisfy C(DEL). As an update statement, UPD,

modifies tuples in a table, C(UPD) is constructed to

describe both the old values and the new values of the

tuples being updated. Therefore, C(UPD) = C(S(u)) OR

C(W(u)), the disjunction of the set clause condition and

the where condition.

Given q and u, the Boolean expressions constructed

for them are summarized in Table 2.

Table 2. Boolean expressions constructed for q and u

UDI Type of u Boolean Expression
INS(T(INS), C(INS)) C(q) AND C(INS)
DEL(T(DEL), C(DEL)) C(q) AND C(DEL)
UPD(T(UPD), C(S(UPD)),
C(W(UPD)))

C(q) AND (C(S(UPD)) OR
C(W(UPD)))

4.6. Satisfiability Testing Algorithm

Larson and Yang’s [13] CONJUNCTIVE algorithm

processes conjunctive Boolean expressions of numeric

comparison predicates on integer-valued attributes with

predefined ranges. We have made the following

extensions in our satisfiability testing algorithm.

(1) Handling more data types and predicates. This

extension includes the string data type and “LIKE”

predicates and the float point data type.

(2) Automatic discovery of attribute data type. This

extension ensures that the invalidator does not need to

query the backend database for metadata.

 12

(3) Handling uninstantiated variables. This extension

is for testing satisfiability between query templates and

UDI templates. Because uninstantiated variables may

assume any possible value, we assume that an atomic

condition involving an uninstantiated variable is always

true in the satisifiability testing. This assumption defers

further satisfiability testing to instantiated SQL

statements.

(4) Handling subqueries that return an atomic value.

For a query, q, with a subquery, sq, and a UDI, u, we

first test the satisfiability of C(sq) AND C(u). If u is

relevant to sq, it is also relevant to q. Otherwise, we

replace the atomic condition on the subquery to be true

and further test the satisfiability of C(q) AND C(u).

(5) Handling self-joins. Since a table is referenced

multiple times in a self-join, we associate all aliases of

the table with the table itself and identify attributes of

the aliased table accordingly.

4.7. Template Satisfiability Matrix

We implement the satisfiability testing between query

and update templates by building a template satisfiability

matrix. For each pair of query and UDI templates, we

first test if they share common attributes. If they do not

share common attributes, they are already irrelevant and

the entry for this pair in the matrix is set to FALSE.

Otherwise, we test the relevance of the UDI template to

the query template. Table 3 shows an example of a

satisfiability matrix between three query templates and

four UDI templates.

Consider a pair of a query template QT3 and a UDI

template UT4 in Table 3:

QT3: “ SELECT I_ID, I_COST, A_FNAME, A_LNAME

FROM ITEM, AUTHOR WHERE I_A_ID = A_ID AND I_ID

= ?”

A(QT3) = {I_ID, I_COST, A_FNAME, A_LNAME, I_A_ID,

A_ID}

C(QT3) = {I_A_ID = A_ID AND I_ID = ?}

UT4:“ UPDATE ITEM SET I_COST = ? WHERE I_ID = ?”

C(UT4) ={I_ID = ? OR I_COST = ?}

A(S(UT4)) = {I_COST}.

This pair of templates shares common attributes as

A(S(UT4)) ∩ A(QT3) is not empty. Therefore, we

further test the Boolean expression C(QT3) AND

C(UT4).

C(QT3) AND C(UT4)

= {I_A_ID = A_ID AND I_ID = ?} AND {I_ID = ? OR

I_COST = ?}

Table 3. An example of a template satisfiability matrix

 QT1 QT2 QT3
UT1 TRUE TRUE TRUE
UT2 TRUE FALSE TRUE
UT3 TRUE TRUE FALSE
UT4 TRUE FALSE TRUE

 13

As described in the previous sections, the predicates

with uninstantiated variables will be assumed to be true.

The satisfiability algorithm evaluates the Boolean

expression of this pair of templates to be satisfiable and

therefore the entry for this template pair in the template

satisfiability matrix is TRUE. At runtime, for each

instantiated u belonging to UT, any cached query, q,

belonging to QT must be further checked for satisifabiliy

with instantiated values.

In contrast, if a pair of query and UDI templates is

irrelevant, the entry for this template pair in the template

satisfiability matrix is FALSE. Subsequently, any UDI

of that UDI template will not invalidate any query of the

query template. For example, with UT2 and QT2, a

UDI belonging to UT2 does not need to check against

any cached query of QT2 as they are always

unsatisfiable regardless of the values of the instantiated

variables.

In short, the template satisfiability matrix reduces the

satsifiability test of individual queries and updates to the

satisfiability test of the corresponding templates; only

when the pair of templates is relevant, the individual

statements of the templates are tested further. The size

of the template satisfiability matrix is linear to the

number of relevant pairs of query templates and UDI

templates.

4.8. Query Satisfiability Indexes

For each relevant pair of query and UDI templates,

we build a satisfiability index on the important attributes

of the instantiated queries if such attributes exist. By

important attributes, we refer to those whose instantiated

values affect the answer of the satisfiability test on

instantiated statements. Intuitively, these important

attributes should be in the predicates of the common

attributes shared by the two templates.

Consider the following Boolean expression:

C(QT) AND C(UT)

= {I_ID = ? AND I_A_ID = A_ID} AND {I_ID = ?}.

The common attributes of the two templates are I_ID

and the I_ID attribute has uninstantiated variables in the

predicate on it (I_ID = ?). Moreover, the variable value

in this predicate in a query of QT determines if an

update of UT will invalidate the query. For instance, if

the parameter has the value 8 in the query and has the

value 9 in the update, the update is irrelevant to the

query. In comparison, if the parameter has the value 8 in

both the query and the update, we will need to invalidate

the query upon the update.

In this example, I_ID is the important attribute and

we build a query satisfiability index on the values of the

parameter in the I_ID = ? predicate of the instantiated

queries. When an update of QT arrives, we can use the

 14

parameter value in the update statement to look up

relevant queries of the given query template.

4.9. Summary

In summary, we extend the satisfiability testing to

query templates and build a template satisfiability matrix

for filtering out irrelevant updates early on. We then

build query satisfiability indexes for queries of each

template to speed up the checking process. A summary

of the control flow is shown in Figure 8.

SQL Type

SQL

UDI

Query

Template
Satisfiability

Matrix

Backend
DBMS

SQL-
URL Map Non-cacheable

Check Query Satisfiability Index;
If satisfiable, send invalidation request;
Update the index as needed.

Update Query Satisfiability
Index as needed

Cacheable

Relevant to some
query templates

Irrelevant

Irrelevant

Relevant to some UDI templates

Template
Satisfiability

Matrix

Figure 8. TBI control flow

5. Experimental Evaluation

We deployed the original Java implementation [14]

of the TPC-W benchmark [21] as well as our

modifications (to incorporate ESI tags) in a local area

network. We ran remote browser emulators to study the

performance of the web site under test. We compared

the performance of the web site without a web cache,

with the Oracle Web Cache, and with the Oracle Web

Cache and our TBI.

5.1. System Configuration

There were three computers involved in the

experiments. All of them ran the Red Hat Linux 7.3

operating system. The database server resided on a Dell

PowerEdge server machine with a Pentium-III 1.26GHz

processor and 512MB memory. The other two machines

had a Pentium-IV 1.8GHz CPU with 1GB memory each.

5.1.1. Client Tier

The Remote Browser Emulator (RBE) program

provided by the original TPC-W implementation acted

as an emulated browser client interacting with the web

site under test. We used 50 RBEs with no think time in

all experiments to simulate an intensive, real-world web

load.

5.1.2. Middle Tier

The middle tier included the web server, the

application server, the web cache, and the TPC-W

application. We used the Oracle9iAS application server,

which was bundled with the Apache Web Server and the

Oracle Web Cache Release 2 v9.0.3 (OWC). The OWC

was configured to cache ESI templates and dynamic

fragments. We also used the Tomcat 4.0 application

server as a servlet container for the TPCW servlets.

5.1.3. Database Tier

 15

We used Oracle9i Release 2 (9.2.0.1) as our database

server. The TPC-W databases of different scales were

created and populated according to the TPC-W

specification.

5.2. TPC-W Workload

The TPC-W benchmark specification [21] is

published by the Transaction Processing Council (TPC)

to model an e-commerce web site. The TPC-W

workload consists of two categories of web interactions,

“Browse” and “Order” . The “Order” web interactions

are centered on the ordering process and generate a large

number of SQL UDIs. In contrast, the “Browse” web

interactions primarily supply informational web contents

about the products to the users, generating SQL queries

to the backend.

We experimented with the three transaction mixes

defined by the TPC-W specification, namely the

Browsing mix, the Shopping mix, and the Ordering mix.

The Browsing mix consists of 95% “Browse” web

interactions and 5% “Order” web interactions. The

Shopping mix comprises of 80% “Browse” and 20%

“Order” web interactions. The Ordering mix is

composed of 50% “Browse” and 50% “Order” web

interactions. As TBI is an invalidation framework, we

focused on measuring the performance with the

Ordering mix to stress test the UDIs.

The UDIs in the TPC-W workload operate on the

ORDERS and ORDER_LINE tables. Other tables such

as ITEM, AUTHOR and ADDRESS are relatively static.

Among the 14 types of web interactions, no updates in

the workload are relevant to the Search Results page

fragment, and one or more UDIs in the workload are

relevant to page fragments of other web interactions.

5.3. Framework Construction

We constructed three frameworks for the TPC-W

Java implementation. They were the no-cache baseline

framework, the Oracle Web Cache with ESI framework,

and the Oracle Web Cache with ESI and our TBI

framework.

5.3.1. No-Cache Baseline Framework (NC)

The No-Cache Baseline Framework (NC) uses the

original Java implementation [14] of the TPC-W

benchmark, which is purely servlet based. Regardless of

the types of the requested web contents, all requests are

answered dynamically by Java servlets running on top of

the Apache Tomcat Servlet Engine [4]. The Oracle Web

Cache is configured to cache nothing. Although the

contents are always served fresh, the performance (in

terms of response time and throughput) may suffer due

to the heavy workload on the servlets.

5.3.2. OWC ESI Framework (OWC)

The OWC ESI Framework uses ESI templates and

fragments as caching units. We constructed this

 16

framework by transforming the servlet-based TPC-W

implementation into an ESI-enabled implementation and

configuring the OWC to cache the ESI templates and

fragments. We configured the OWC to cache all the

templates and dynamic fragments in the “Browse” web

interactions except the promotion banner fragment that

had to be generated randomly at runtime. Dynamic

fragments in the “Order” web interactions are mostly un-

cached due to their transactional semantics and privacy-

related issues. In particular, the Shopping Cart and Buy

Request pages are not cached.

We constructed the OWC ESI Framework mainly for

the purpose of comparing it with the OWC-TBI

framework. Without invalidation, the OWC ESI

Framework caches the templates and dynamic fragments

but never purges them. Therefore, the cached dynamic

fragments may be inconsistent with the backend

database. This framework may have excellent

performance, but it is unrealistic due to the poor data

consistency.

5.3.3. OWC ESI with TBI Framework (TBI)

The OWC-TBI framework, or the TBI framework in

short, uses the ESI-enabled TPC-W implementation but

compiled with our TBI package. The OWC in this

framework is configured to cache the same contents as

in the OWC-ESI framework. In addition, the OWC is

configured to accept the invalidation requests from our

TBI module. This approach may have a slightly worse

performance than the OWC-ESI framework due to the

invalidation overhead and the resulting higher cache

miss ratio, but it delivers fresh web content.

5.4. Measurement Methodology

We measured both response time and throughput (in

terms of WIPS, Web Interaction Per Second) at the

Remote Browser Emulator (RBE). Each experiment

was executed for 5000 seconds and measurements were

only reported for the last 1000 seconds. The first 4000

seconds are the system warm-up time, because the

warm-up process is essential for complex systems,

especially systems with caching components.

Before executing each experiment, several key

procedures were carried out to avoid interference from

previous runs. The goal was to provide a clean start.

First, the data in the databases were refreshed to ensure

approximately the same database content for each

experiment. Second, the OWC was restarted to purge

the cached contents left from the previous run. Last, a

random seed conforming to the TPC-W specification

was used for each experiment.

5.5. Experimental Results

5.5.1. General Metrics

We first present the throughput (Table 4) and

response time (Table 5) of different transaction mixes on

 17

the three frameworks. We experimented with different

database sizes and the results we present in this section

are from the 100K database (there are 100,000 records

in the ITEM table). Both OWC and TBI outperformed

the baseline framework on different transaction mixes.

The results of these experiments confirm that our TBI is

sufficiently generic to be deployed at database-backed

web sites with arbitrary database sizes and transaction

mixes.

Not surprisingly, TBI performed worse than OWC,

because the invalidation component needs processing

time at the web site and to reduce number of cache hits

at the web cache. However, TBI ensures the freshness

of the web content, which is highly desirable in e-

commerce.

Table 4. Throughput (WIPS) with a 100K database

Throughput NC TBI OWC
Browsing 0.3 1.1 3.4
Shopping 0.5 0.8 1.9
Ordering 2.1 2.6 3.8

Table 5. Average response time (in seconds) with a

100K database

Response time NC TBI OWC
Browsing 38.3 28.9 7.2
Shopping 45.1 36.8 18.6
Ordering 15.8 11.1 6.0

An additional note on these results is that the

Ordering mix has a better performance than have the

Shopping and the Browsing mixes for NC and TBI.

This is because the execution cost of the TPC-W queries

is more expensive than that of the UDI operations. The

majority of TPC-W queries involves aggregations,

order-by clauses and group-by clauses whereas the UDIs

are much simpler.

5.5.2. Response Time by Web Interaction
Category

We further investigate the average response time by

web interaction categories. This is because, from the

web users’ point of view, the time spent waiting for web

pages to be returned in individual web interactions is

most important. Based on the results on general metrics,

we chose the 100K database size and the ordering mix

since this combination exercises TBI the most.

There are four web interaction categories by the web

pages they generate: (A) a template-only page, (B) a

page with cacheable templates and fragments, (C) a page

with cacheable templates and non-cacheable fragments,

and (D) a servlet page.

A template-only page does not contain any fragments

and is readily cached by OWC. As shown in Figure 9, a

template-only page (Category A) took 8 seconds to be

generated in the baseline framework but zero seconds in

both TBI and OWC. The sub-second response time

indicates that the template-only page is directly served

out of the web cache. Moreover, the cached templates

have no dynamic contents. No invalidation overhead is

 18

incurred by TBI. Therefore, both TBI and OWC

achieved identical degrees of performance improvement.

0

5

10

15

20

25

A B C D

Web Interaction Category

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(s
) OWC

TBI

NC

Figure 9. Average response time (in seconds) by web

interaction category

For pages with cacheable templates and fragments

(Category B), both the templates and the cacheable

fragments are cached. The average response time of the

baseline framework was 17 seconds, while that of the

two caching frameworks was under 10 seconds. Both

TBI and OWC achieved significant improvement on

pages with cacheable templates and cacheable

fragments.

For pages with cacheable templates but non-

cacheable fragments (Category C), the template is

cached but the dynamic fragments are not. Hence, the

improvement on the response time in the caching

frameworks was not as significant as for Category B.

Nevertheless, the ESI-enabled caching frameworks were

still more efficient than the servlet-based baseline

framework.

For servlet pages (Category D), the two caching

frameworks also outperformed the baseline framework

as these serlvet pages are cacheable.

5.5.3. Distribution of Response Time

While the average response time gives a general idea

about the performance, the distribution of the response

time allows us to see the percentage of web pages that

are accelerated by caching (Figure 10).

All of the web contents in either caching framework

can be served in a shorter response time than in the

baseline framework. In particular, almost 100% of the

template-only pages were served in zero-second

response time (not shown in Figure 10). For pages with

cacheable templates and fragments (Category B), OWC

and TBI respectively served around 80% and 60% of the

pages within eight seconds while the baseline framework

served only around 25% in the same time. Results were

similar for the pages with cacheable templates but non-

cacheable fragments (Category C). Finally, the servlet

pages (Category D) are the most expensive in terms of

time among the four categories of pages to generate.

5.5.4. Overhead of Template-Based Invalidator

After the measurements from the remote browser

emulator indicated the overall performance of TBI, we

 19

further examined the time breakdown of the internal

processing of TBI.

Query We investigated the amount of time spent in

each step of the invalidation cycle, including parsing the

statement, checking the template satisfiability matrix,

updating the indexes, and executing the statement. We

measured these steps (if applicable) in four cases of an

HTTP request invoking a query: a cache hit, a cache

miss with a UDI template relevant to the query, a cache

miss without any UDI template relevant to the query,

and a non-cacheable request.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 2 4 6 8 10

Response Time (s)

P
er

ce
n

ta
g

e
o

f
W

eb
 C

o
n

te
n

ts

S
er

ve
d

NC
TBI
OWC

Category B

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 2 4 6 8 10

Response Time (s)

Category C

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 2 4 6 8 10

Response Time (s)

Category D
Figure 10. Distribution of response time (seconds)

Table 6. Query time breakdown (in milliseconds) for Ordering Mix with a 100K database

HTTP Requests Statement
Parsing

Matrix
Checking

Indexes
Updating

JDBC
Execution

Non-Cacheable 0.0 0.0 0.0 126.0
Cache Hit 0.0 0.0 0.0 0.0
Cache Miss - Irrelevant UDI 6.1 0.0 0.0 4835.0
Cache Miss - Relevant UDI 40.1 0.1 0.1 5600.0

Table 7. UDI time breakdown (in milliseconds) for Ordering Mix with a 100K database

UDIs Statement
Parsing

Matrix
Checking

Indexes Checking
& Updating

JDBC
Execution

Invali-
dation

Query Template Irrelevant 1.0 0.0 0.0 6.3 0.0
Query Irrelevant 3.3 0.0 0.0 6.1 0.0
Query Relevant 3.6 0.0 467.0 3.2 55.7

A non-cacheable request does not induce additional

cost in TBI; it is directly passed to the underlying JDBC

driver. With cacheable fragments, there may be misses

and hits. A cacheable fragment hit does not induce

additional cost in TBI, as the fragment is served by OWC.

TBI is invoked only when the fragment is not found in

OWC. This is a cache miss.

 20

With a cache miss, we need to update the data

structures. If the query template is not indexed, the query

instance has to be inserted into the corresponding query

instance vector of all relevant UDI templates. Otherwise,

we can simply update the query satisfiability index and

there is no need to store the entire query instance in the

query instance vector.

Table 6 shows that the amounts of time spent on

statement parsing, checking the template satisfiability

matrix, and updating the data structures were negligible.

The query time was dominated by the JDBC execution at

the backend database.

UDI We also investigated the time breakdown of a

UDI. A UDI may fall into one of the three cases –

irrelevant to any query templates (by checking the

template satisfiability matrix), relevant to some query

templates but irrelevant to the cached queries according to

the data structures, or relevant to some cached query. We

show these three cases in Table 7 as “Query Template

Irrelevant” , “Query Irrelevant” , and “Query Relevant” .

Compared with handling a query, handling a UDI

involves two more steps, namely, checking the data

structures and possibly sending invalidation messages.

Different from the performance of handling a query, Table

7 shows that the times of all steps are insignificant (under

0.5 seconds). The largest two items are the invalidation

time of 50 milliseconds and the data structure update time

of 467 milliseconds.

5.5.5. Summary

Our experimental results confirm that our TBI is

sufficiently generic to be deployed by database-backed

web sites with arbitrary database sizes and transaction

mixes. Furthermore, both OWC and OWC-TBI caching

frameworks outperformed the baseline framework with

different database sizes and transaction mixes. The

OWC-TBI framework represents a tradeoff between two

extremes (no caching versus caching but no cache-

consistency). It incurs slight processing overhead at the

web site and fewer cache hits at the web cache, but it

delivers fresh web content with improved performance.

6. Related Work

Recent work has studied cache consistency and

freshness in various contexts. Bright and Raschid

proposed latency-recency profiles to accommodate user

preferences [6]. Cho and Garcia-Molina studied crawling

scheduling for maintaining the freshness of a crawled web

page repository [9]. Labrinidis and Roussopoulos

presented an update propagation policy for data-intensive

web sites [12]. Olston and Widom addressed the tradeoff

between data freshness and transfer cost [17]. In

comparison to treating the cached data units as opaque

objects in these studies, we considered the SQL semantics

 21

of updates as well as the semantics of cached HTML page

fragments.

There has been a rich body of research on materialized

view maintenance [11], which exploits SQL semantics of

queries and updates. These techniques have been recently

applied to update propagation in DBCache [15], DBProxy

[2], and TimesTen Front-end Cache [20] for database-

backed web sites. In comparison, our work focuses on

lightweight invalidation of generated HTML fragments as

opposed to full update propagation to cached relational

data tuples.

Invalidation has been previously proposed for

database-backed web sites. While the Oracle Web Cache

[3] and the Dynamic Page Cache [10] provided primitives

for applications to specify their invalidation policies (such

as a timeout value), the DUP (Data Update Propagation)

algorithm [8] and the view invalidation algorithms [7]

facilitate automatic invalidation at the application level.

Our work argues for a lightweight, automatic invalidation

policy in that we neither install triggers at nor send polling

queries to the backend database server.

Finally, query templates have been presented in

caching for database-backed web sites [2][7][16]. In this

work, we extensively utilize templates to improve the

efficiency of our invalidation. Specifically, we exploit not

only SQL query templates, but also SQL update

templates, URL templates, as well as ESI templates [19].

This enables the invalidator to handle a large number of

updates and queries efficiently at runtime.

7. Conclusions

We have presented a template-based invalidator (TBI)

for cached database-generated web contents. The

invalidator works by checking the satisfiability

relationship between a SQL query and a UDI statement

without checking the database content. It maintains a

mapping between URLs and SQL queries so that it can

send invalidation requests to the web cache when a UDI is

relevant to a cached query. It further improves efficiency

by building a template satisfiability matrix and query

satisfiability indexes. We have integrated TBI into the

Oracle Web Cache (including an ESI processor) and

conducted extensive experiments using the TPC-W

benchmark. Our experimental results show that OWC-

TBI delivers fresh web content efficiently.

Acknowledgements

We would like to thank Henry Wong from the

Computer Science Department Systems Lab at HKUST

for his timely technical support on the computers used in

the experiments. Funding for this research was from the

RGC grant HKUST6158/03E.

References

[1] Akamai Technologies Inc. Akamai EdgeSuite.
http://www.akamai.com/html/en/tc/core tech.html.

 22

[2] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan.
DBProxy: A Self-Managing Edge-of-Network Data
Cache. Technical Report RC22419, IBM Research,
2002.

[3] J. Anton, L. Jacobs, X. Liu, J. Parker, Z. Zeng, and T.
Zhong. Web Caching for Database Applications with
Oracle Web Cache. Proc. ACM SIGMOD, 2002.

[4] The Apache Tomcat Servlet Engine.
http://jakarta.apache.org/tomcat/index.html

[5] J. Blakeley, N. Coburn, and P.-A. Larson. Updating
Derived Relations: Detecting Irrelevant and
Autonomously Computable Updates. Proc. VLDB,
1986.

[6] L. Bright and L. Raschid. Using Latency-Recency
Profiles for Data Delivery on the Web. Proc. VLDB,
2002.

[7] K.S. Candan, D. Agrawal, W.-S. Li, O. Po, W.-P.
Hsiung. View Invalidation for Dynamic Content
Caching in Multitiered Architectures. Proc. VLDB,
2002.

[8] J. Challenger, A. Iyengar, and P. Dantzig. A Scalable
System for Consistently Caching Dynamic Web Data.
Proc. IEEE INFOCOM, 1999.

[9] J. Cho and H. Garcia-Molina. Synchronizing a
Database to Improve Freshness. Proc. SIGMOD, 2000.

[10] A. Datta, K. Dutta, Suresha, K. Ramamritham, H.
Thomas, and D. VanderMeer. Proxy-Based Acceleration
of Dynamically Generated Content on the World Wide
Web: An Approach and Implementation. Proc. ACM
SIGMOD, 2002.

[11] A. Gupta and I. S. Mumick (Editors). Materialized
Views: Techniques, Implementations, and Applications.
The MIT Press, 1999.

[12] A. Labrinidis and N. Roussopoulos. Update
Propagation Strategies for Improving the Quality of
Data on the Web. Proc. VLDB, 2001.

[13] P. A. Larson and H. Z. Yang. Computing Queries from
Derived Relation: Theorectical Foundation. Technical
Report CS-87-35, Department of Computer Science,
University of Waterloo, 1987.

[14] M. H. Lipasti (University of Wisconsin). Java TPC-W
Implementation.
http://www.ece.wisc.edu/~pharm/tpcw.shtml.

[15] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H.
Woo, B. G. Lindsay, and J. F. Naughton. Middle-Tier
Database Caching for e-Business. Proc. SIGMOD, 2002

[16] Q. Luo and J. F. Naughton. Form-Based Proxy Caching
for Database-Backed Web Sites. Proc. VLDB, 2001.

[17] C. Olston and J. Widom. Best-Effort Cache
Synchronization with Source Cooperaton. Proc. ACM
SIGMOD, 2002.

[18] Oracle Corporation. Oracle9iAS Web Cache.
http://otn.oracle.com/products/ias/web_cache/content.ht
ml

[19] Oracle Corporation and Akamai Technologies, Inc.
Edge Side Includes (ESI). http://www.esi.org/index.html

[20] Times-Ten Team. Mid-Tier Caching: the TimesTen
Approach. Proc. ACM SIGMOD, 2002.

[21] Transaction Processing Performance Council (TPC).
TPC Benchmark™ W (Web Commerce) Specification
Version 1.8, 2002.

