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Abstract

We study query scheduling in Wireless Sensor Networks
(WSNs) with a focus on two important metrics: Quality of
Service (QoS) and Quality of Data (QoD). The motivation
comes from our observation that most WSN scheduling
techniques ignore the quality requirements of queries. As
a result, they are inefficient or inapplicable to quite a few
applications that have different quality requirements. In this
paper, we propose a distributed Quality Aware Scheduling

(QAS) framework to address this problem. QAS works on
top of existing quality-unaware query scheduling protocols
and allows individual users to specify their QoS and QoD
requirements on their queries. Given these quality require-
ments, QAS determines the target qualities to be provided
in scheduling and the execution order of these queries so
as to maximize the total system profit. Our preliminary
results show that QAS significantly outperforms the baseline
scheduling algorithms in terms of system profit.

1. Introduction

In-network query processing techniques for wireless sen-

sor networks have been widely accepted for on-line sensory

data management in WSNs [14], [25]. Instead of pulling all

the sensory data from nodes into a central server to process,

these techniques make the sensor nodes to cooperatively pro-

cess the SQL queries from users within the network, hence

can increase the flexibility and reduce the network traffic of

WSNs [14]. Scheduling schemes have also been proposed to

guarantee the efficiency and reliability of in-network sensor

query processing [4], [9], [12], [21], [24]. These scheduling

schemes are able to coordinate the timings of nodes to avoid

communication collisions, to sleep nodes to save energy, and

to make receivers active when a transmitter transmits packets

to them, since a node cannot receive data when it is sleeping.

However, as far as we know, existing scheduling or query

processing techniques ignore the quality requirements from

different applications and users. For instance, in a WSN, a

user may require 80% nodes to report their results within

some predefined length of period, while another user may

need query results from all of the nodes in order that the

scientific data would not be misleading. Current scheduling

schemes or query processing systems process such kind of

queries in an ad-hoc way: queries with different quality

preferences are equally treated and are processed one by

one according to their arrival order. As a result, those queries

with high quality requirements are likely to be unsatisfied,

whereas the lower request queries that arrive earlier than the

high request queries may be overly satisfied.

To address the above problem of these quality-unaware

scheduling protocols, we propose a distributed Quality

Aware Scheduling framework (QAS) in this paper. In QAS,

users can specify their quality requirements on queries by

giving revenues to different qualities in quality functions

[8], [17]. Given the quality function, a WSN attains a profit

from each processed query in accordance with the quality it

served. The profit is the ratio between the attained revenue

and the query processing cost. With the quality functions

of the queries, QAS tries to find the best qualities and

processing order of the queries to get the maximum profit

for the underlying scheduling protocol. This profit is only

the highest one for the current underlying protocol, but may

not be the highest for others due to the efficiency differences

among various scheduling protocols.

QAS is designed to run on top of a scheduling protocol

and to apply the quality-aware scheduling strategy to this

protocol. Given a certain level quality of a query on a node,

QAS uses a cost model to calculate the needed cost and the

revenue will be gained. In the cost model, the energy cost

and response time each is a function of a set of network

parameters. These parameters indicate the current status

of the nodes such as number of hops, children, queries,

etc. They are extracted from historical statistics of query

processing and communication of the network. With this cost

model, QAS can mathematically compute the quality level

that can get the maximum profit from processing each query.

When there are multiple queries running simultaneously,

QAS will rearrange the order of these queries towards the

maximum total system profit, since the resources of a WSN

are too limited to satisfy the requirements of all queries.

As far as we know, QAS is the first distributed scheduling



approach to address the problem of maximizing the system

profit while at the same time, satisfying different quality

requirement of users in WSNs. Moreover, it contributes to

the distributed query scheduling study in sensor networks

with the definition of network parameters and cost model.

Its work flow enables the workload and served quality to be

evenly distributed on each node of a WSN. Finally, QAS

allows the quality result feedback for dynamic schedule ad-

justment to further improve the system profits in a network.

We performed a series of experiments to compare QAS with

other scheduling methods. Experiment results show that,

powered by the three quality-aware scheduling mechanisms,

QAS significantly outperforms the baseline algorithms in

terms of system profit and capacity.

The remainder of this paper is organized as follows.

Section 2 describes the background of query processing and

scheduling, defines the scheduling problem for maximizing

the quality profits in query processing, and then reviews

the related work on QoS and QoD. Section 3 describes

the overview of QAS. Section 5 details the design and

implementation of QAS. The evaluation results of QAS

compared to other base line schemes are shown in Section 6.

Finally, we conclude this paper and list some future work

directions in Section 7.

2. Background and Related Work

In this section, we first present the network, data, query

and scheduler in a query processing system, we then define

QoS, QoD, and system profit in such a system, and finally

we review the related work. The symbols (excluding those

commonly used, e.g., U - voltage, the temporary variables,

and those in the algorithm) used throughout this paper is

summarized in Table 1.

2.1. Preliminaries and Problem Formulation

2.1.1. Network. A Wireless Sensor Network (WSN) is an

ad hoc, multi-hop, wireless network that is composed of

spatially distributed nodes, each of which is equipped with

a CPU, radio and sensing devices to cooperatively monitors

the physical characteristics of a target [19]. Such a WSN has

three features as follows: (1) the nodes are highly limited

in hardware resources [14], [27]; (2) the nodes use multi-

hop communication to report their data due to the short

transmission range and limited transmission power of each

node [6]; and (3) the communication may be overwhelmed

by collisions if nodes transmit packets simultaneously.

Existing query processing systems use the tree network

structure due to its simplicity, duplicate-freeness and com-

munication efficiency [14], [25]. In addition, the systems

assume the networks on which they are running to be

stationary. In a tree network, the sink node is the root. All

the other nodes should report their query results, if any, to

Table 1. Summary of symbols used

Symbol Definition
D Number of query results received by the sink
A Number of all query results generated in a WSN
D(i) Number of transmitted query results in hop i
A(i) Number of all results should be generated in hop i
DQ Data quality on a node
H Maximum number of hops
Ih Electric current in hibernating (sleeping)
Ip Electric current in computation
Ir Electric current in receiving
It Electric current in transmitting
L Query lifetime
Nc Average number of children
Nd Average number of descendants
N(i) Number of nodes in hop i
r Ratio of parallel transmission among all nodes
Ta Aggregating time on a node
Tc Communication time on a node
Th Hibernating time
T (j) Execution time of the j-th operator in a query
TNp Network processing time of a query
TNc Network communication time of a query
TNq Network query evaluation time of a query
To Overlap between the operations on a node
Tq Query evaluation time on a node
Tr Time for receiving data from the children of a node
ts Length of a time slot
k1, k2, k3 Coefficients of quality functions
b1, b2, b3 Coefficients of quality functions

this root node. The parent of a node serves as the router that

forwards or aggregates the data of the node. A neighbor of a

node is one within this node’s transmission/receiving range.

By this definition, the parent of a node is also its neighbor.

Finally, a sibling means the node that shares the same parent

with one node.

A query processing system on a WSN is shown in Fig. 1.

In this network, the server and the sink node together

constitute the base station. A user posts one or more queries

on the server, which injects these queries into the network

via the sink node [14], [25]. The other sensor nodes then

start to process and schedule these queries, generate query

results, and report their results back to the sink. In a query

processing system, the scheduler arranges both the starting

time and the execution order of operations [24].

2.1.2. Data. Each sensor node in a WSN maintains an

attribute table that specifies types of sensory and non-sensory

data [14]. The sensory data, such as temperature, light, etc.,

can be acquired from sensing devices. The non-sensory data,

such as node ID, hop count, children and neighbor table, etc.,

is the attribute of a node and doesn’t need to be acquired

by sensing devices. Table 2 shows these two kinds of data

and their properties on a TelosB mote.
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Figure 1. Query processing in a WSN

Table 2. Sensor data

Data Range
Temperature -40 ◦ C to 123.8 ◦C

Humidity 0 to 100% RH

Light 320 nm to 730 nm

Non-sensory data Depending on the network and node

2.1.3. Query. Currently, in-network query processing sys-

tems mainly support two kinds of read-only queries: ac-

quisition query and aggregation query [13], [14], [27].

An acquisition query uses projection and selection to col-

lect the needed sensory data while an aggregation query

uses database aggregates such as AVERAGE, MAX, SUM,

COUNT, to get the collective information of the entire

network or a group of nodes [14]. According to whether the

queries reside in each node continuously sample the sensory

data or not, the queries can also be divided to continuous

query and snapshot query. A continuous query requires that

the nodes sample the sensory data once every fixed interval,

which is called a sample interval or epoch [14]. A snapshot

query only needs to sample the sensory data once.

Q1 gives an example of a continuous acquisition query.

This query requires the nodes in a WSN to report their

light readings if the light reading is less than λ, which can

be a threshold value defined in applications. Q2 shows an

example of an aggregation query, which requires the nodes

to report the average temperature every 60 seconds.
Q1:
SELECT nodeid, light
FROM sensors
WHERE light < λ
Q2:
SELECT AVG (temperature) FROM sensors
WHERE temperature < τ
SAMPLE INTERVAL 60s

A query result refers to the result that is received at the

sink node. It is usually composed of data collected from the

sensor nodes or is an aggregated value about the sensed data

from nodes in a WSN. Note that according to this definition,

data packets transferred from a sensor node to the sink is not

a query result, it is only a part of the result when it arrives

at the sink.

2.2. Scheduling for Query Processing in WSNs

There have been great efforts from researchers in schedul-

ing the communication of the WSNs. FPS [9], SS [21]

and DCS [24] are the representative scheduling protocols.

These protocols can either be directly used or be adopted

for query processing. There are also some other schemes

for event detection [4] or data collection that needs only

one time wake-up per epoch [12]. These protocols provide

the slot allocation to reduce wireless competition and the

idle listening periods. The problem with them is that they

are not quality-aware and thus are not applicable for queries

with quality requirement.

The major assumption in these scheduling protocols is

time synchronization. Currently, there are many realistic

and efficient time synchronization protocols [7], [22]. In

addition, scheduling protocols require all nodes injected

queries report their results within the allocated transmission

slots. In case the predicate of a query can not be satisfied on

a node, the node should report a short message to its parent
to indicate that it does not have the result for this query. This

enables a node to know whether its children have finished

query result reporting and consequently each node is able to

know the quality of its children.

2.3. Problem Definition

2.3.1. QoS. In this paper, QoS refers to response time and/or

query lifetime in query processing. The response time is the

period from the start time of query processing to the time

when all of the nodes have reported their query results in

one epoch (sample interval). The query lifetime is described

using the number of epochs from the time of query injection

to the time when the query stops running. The lifetime

requirement of a snapshot query is 1, since a snapshot query

needs only one epoch of processing. The reason of including

these two performance metrics in QoS is as follows: some

queries desire short response time, e.g., event monitoring

queries, some queries prefer long query lifetime, e.g., data

collection queries, and some queries may require both short

response time and long life time, e.g., queries in factory or

health monitoring applications.

2.3.2. QoD. In QAS, QoD is defined by Equation (1). In this

equation, D is the number of query results received by the

sink of a WSN, while A is the number of all query results

generated in the WSN. If A is 0, i.e., there is no satisfying

query result in the network, then D
A = 1.

Note that D
A alone does not describe the data quality of a

network well: A WSN may want to return query results from

nodes that are closer to the sink node as much as possible



to save energy. In this scenario, the value of D
A will still be

high but the data quality under such scenario may be low

in effect, since there are few results from the nodes that are

far from the sink. To avoid such a problem, Equation (1)

uses the average weighted difference between D
A and

D(i)
A(i)

of each hop i”, ρ(D
A − D(i)

A(i) ), as a punishment. Here D(i)
is the number of transmitted query results in hop i, H is the

maximum number of hops, and A(i) is the number of all

results that should be generated in hop i. Similarly, if A(i)
is 0, which indicates that there is no satisfying query result

generated in hop i, then
D(i)
A(i) = 1.

QoD : DQ =
D

A
− 1

H
ζ

H∑
i=1

(
D

A
− D(i)

A(i)
) (1)

In Equation (1), ζ is a user specified weight (0 < ζ ≤ 1
and ζ = 0 when D

A ≤ D(i)
A(i) ). A larger ζ indicates that a

user expects the received source data to be more evenly

distributed among hops.

2.3.3. Quality Award. Similar to traditional databases,

users may accept a range of QoS and QoD, although they

desire them to be as high as possible. Since providing higher

QoS and QoD in query processing correspondingly needs

more cost (energy and time), users should specify the awards

to the attained qualities. The QoS and QoD awards are

usually described using ”money” [17]. The amount of money

is determined by a user defined quality-award function.

Fig. 2 shows a set of example of quality-award functions.

In this figure, the X axis is the provided quality and the Y

axis represents the award given to the corresponding quality.

The total awards from a query processing is AwardtoQoS+
AwardtoQoD.
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Figure 2. QoS/QoD award functions

2.3.4. System Profit. As mentioned, the system profit is the

ratio of award and the cost. Due to the severe limitations

of hardware and energy resources in WSNs, the energy

cost is critical for a sensor network to attain the highest

award during its lifetime. Hence, we define the system profit

gained from a query as Equation 2, where ϕ is the price of

battery energy, with a unit of dollar per joule ($/joule). The

problem for QAS is to maximize the profit of the queries

processed.

Profit =
AwardtoQoS + AwardtoQoD

ϕ · cost (2)

2.3.5. Scheduling Problem. With the definition of system

profit, we now define the scheduling problem for QAS.

Given a network G = (V, E), s is the sink node, s ∈ V . If

two nodes i, j, i ∈ V , j ∈ V , can communicate, then i, j
can be denoted as (i, j), (i, j) ∈ E. Suppose that a number

of queries Q = {q1, q2, . . . , qn} have been installed on each

node, the problem for QAS is to maximize the total system

profit from processing a subset of queries in Q, as stated

below,

max : S =
m∑

k=1

Profit(qk) (qk ∈ Q,m ≤ n) (3)

Although QoS and QoD are well studied in traditional

database areas [1], [2], [5], [8], [15], [17], there is no existing

work that studies QoS and QoD in query scheduling for

wireless sensor networks yet. Due to the different conditions

and requirements, current studies on scheduling in traditional

databases are not directly applicable to query scheduling

in WNSs. However, these studies of QoS and QoD in

traditional databases still provide helpful reference for the

problem of profit maximization in WSNs. Additionally,

previous scheduling protocols [4], [9], [21], [24] for both

computation and communication are tightly related to our

work here. In the following, we review some representative

scheduling studies in both traditional databases and sensor

networks.

2.4. Related Work

Previous work on scheduling in WSNs [4], [9], [21], [24]

for both computation and communication are tightly related

to ours, as QAS is designed to work on top of them. FPS

[9], SS [21] and DCS [24] are the representative scheduling

protocols. These protocols can either be directly used or be

adopted for query processing. There are also some other

schemes for event detection [4] or data collection that needs

only one time wake-up per epoch [12]. These protocols

allocate slots so as to reduce wireless competition and the

idle listening periods. The problem with them is that they

are not quality-aware and thus are not applicable for queries

with quality requirement.

Although QoS and QoD scheduling are well studied in

traditional database [1], [2], [5], [8], [15], [17], there are few

studies on QoS and QoD in query scheduling for wireless

sensor networks yet. However, these studies of QoS and

QoD in traditional databases share a common goal of profit

maximization with our work.

Qu et al. proposed the concept of quality contract to

integrate QoS and QoD metrics [17]. With quality contract,



the scheduling scheme is able to perform the tradeoff be-

tween QoD and QoS to maximize the total system profit.

We adopted the concept of quality contract in designing our

QAS. In Borealis [1], Abadi et al. proposed a QoS model

that aggregates multiple metrics with different weights to

be a single metric for evaluating the QoS. We adopt this

concept of total system profits in QAS.

There are extensive studies on priority (or value) based

and deadline oriented scheduling in the database community.

For instance, Haritsa et al. proposed Value over Relative

Deadline (VRD) to enable the queries whose deadlines are

closer to the current time to be executed earlier [8]. The

purpose is to complete as many queries as possible. These

deadline and value based scheduling methods are mainly

used in real-time databases [10], [15], but they are also

helpful in query scheduling of WSNs where queries post

fixed deadlines for result reporting.

Recently, there are initial investigations in query process-

ing quality of WSNs. For instance, Amirijoo et al. defined

the sensory data quality as the length of the sample interval

in continuous data collection [3]. The authors proposed

mechanisms to lengthen the WSN lifetime by dynamically

adjusting the sampling period. However, their definition is

not applicable to continuous queries with sample interval

specified already [14]. Yates et al. defined the data quality

as the normalized delay and proposed an approximation

approach to reduce the delay [26]. These essentially focused

on the query processing delay (QoS) as defined in this paper.

There are also two representative studies [18], [16], on

the quality of data (QoD) similar to the QoD defined in this

paper. Among these, Ren et al. proposed an algorithm to

select the most related nodes as the active nodes to answer

queries in a WSN to reduce the energy consumption of

nodes without undermining the data quality much. Peng

et al. elaborated the assessment models of data quality

in in-network data processing. Their methods are quite

helpful to improve the admission control and the active node

selection in QAS, although they did not consider query and

communication scheduling. We are planning to adopt and

extend these methods as our future work.

To the best of our knowledge, QAS is the first work that

considers both QoS and QoD in scheduling of WSNs. Next,

we will show how QAS improves the QoS and QoD while

observing energy efficiency.

3. Scheduling Framework Overview

Before coming to the details of the cost model in QAS,

we present the overview of QAS to show its general idea.

Fig. 3 illustrates the architecture of QAS.

On each node, the protocol array adopts a set of existing

scheduling protocols to schedule the query operators and

communications of each query [9], [21], [4], [24]. For a

scheduling protocol to be loaded to the array, we design a
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Runtime Schedule

Adjustment

…

Protocol Array Quality Aware Scheduling Algorithm

Query Processor 

QAS

Schedule

execution

Quality

feedback

Slot

request

Figure 3. QAS architecture

uniform interface that allows QAS to specify the number of

transmission, receiving and query execution slots for each

query. This way, QAS is able to control the target quality of

each query to be scheduled by the protocols. The underlying

protocol to run is system specified before query processing.

In case a protocol does not have operator scheduling sup-

port sometimes, QAS will construct a sensor query operator

tree for the protocol. In such a query operator tree, there are

mainly three types of query operators: sampling, selection,

and aggregation. Note that QAS regards the operation of

fetching non-sensory data as sampling operator too, since the

purpose of this operation is also to get attributes. Projection

operator is excluded, since only the queried attributes will

be fetched in QAS. Fig. 4 shows a query evaluation tree

based on this definition of sensor query operator. It can be

seen that the query evaluation tree gives the order and types

of operators to be executed in processing the query.

light < 300 

temperature > 500 

(nodeid, temperature, light)

sample light 

sample temperature 

Light sensing device 

Temperature sensing device 

Figure 4. QAS on an example WSN

After the query plan is constructed, the quality-aware

scheduler determines the quality and execution order of

queries for the underlying protocol using a cost model so

that the WSN attains the total maximum profit. To avoid

the scenario in which the target qualities of nodes differ

much due to this distributed quality determination, it uses

the same set of network parameters (see Section 4) in the

cost model on nodes. Extending our model to allow nodes to



Table 3. Execution Time of Sampling Operators

Type Delay(ms)
Temperature 226

Humidity 78

Light 22

Non-sensory data 0.1

have different parameter settings is a challenging direction of

future work. The details of the cost model will be presented

in the next section.

4. Cost Model

The cost model in QAS estimates the network processing

time and the energy consumption of a single query. The

motivation of this model is to express the relation between

the QoS, QoD, time and energy costs, and the system profit

of a query, so that QAS is able to determine the target QoS

and QoD to get the maximum system profit.

4.1. Network Processing Time

The network processing time, TNp, is divided into query

evaluation time, TNq, and communication time, TNc. The

network query evaluation time of a WSN, TNq, is called

network query evaluation time, which is the accumulated

time of non-overlapping evaluation time on the nodes of the

WSN. Similarly, TNc of a WSN is the accumulated time of

non-overlapped communications on all nodes of the WSN.

By definition, the time when a node transmits or receives

messages in the midst of query evaluation is considered in

TNc, not TNq.
TNq: We first investigate the query evaluation time on a

single node, Tq so that we can calculate TNq with Tq. Tq

is calculated as Tq = DQ

n∑
j=1

T (j) − To, where DQ is the

QoD to be provided by this node, T (j) is the execution time

of the j-th operator and To is the overlapping time between

the query execution and the communication on the node.
The operator execution time can be measured off line. We

have measured three sampling operators for sensory data:

temperature, humidity, and light sensing on Telos B motes

[6]. We also measured the sampling operator for fetching the

non-sensory data. The execution time for these operators are

listed in Table 3.
In a WSN, the nodes in upper hops are usually started

at the same time or later than lower hop nodes [14], [4].

Therefore, the query evaluation time of the upper hop nodes

and the query evaluation of the lower hop nodes will overlap,

or the query evaluation time and the communication of other

nodes will overlap. The non-overlapping network query

evaluation time thus is roughly the same as that of a single

node, i.e., TNq ≈ Tq.

TNc: We estimate TNc by Equation (4). In (4), D (Directly

forward) refers to a node that directly forwards the results

from its children towards the sink; A (Aggregate) refers

to a node that aggregates the results of its children first

and then reports the aggregated result. The equations in the

remainder of this paper use the same denotations. In the

two formulas for forward and aggregate, r is the ratio of

parallel transmission among nodes in the network. r is used

to remove time of simultaneous transmissions on the nodes.

N(i) is the number of nodes in hop i and H is the maximum

number of hops in the network. ts is the length of a slot.

DQ is the QoD. The reason of using DQ in the forward
formula is that DQ determines the number of packets to

be forwarded on each node. Nc is the average number of

children and Ta is the average time for aggregating a result.

r, N(i), H , Nc, and Ta are called the network parameters,

which are managed by the sink and disseminated to the other

nodes before query processing.

TNc =

⎧⎪⎪⎨
⎪⎪⎩

(1 − r)DQts
H∑

i=1

iN(i), D,

NcTa +
H∑

i=1

N(i), A.

(4)

Lemma 1: Given a WSN whose routing paths are fixed,

the network processing time of a query, TNp, is a linear

function of data quality DQ: TNp = αDQ + β.

Proof: As described above, TNp = Tq +TNc. From the

equations of Tq and TNc, TNp can be estimated as follows.

TNp = DQ

n∑
j=1

T (j)− To +

⎧⎪⎪⎨
⎪⎪⎩

(1 − r)DQts
H∑

i=1

iN(i), D,

NcTa +
H∑

i=1

N(i), A.

(5)

In (5), once the network and the scheduler is fixed, the

network parameters such as H , N(i), ts, and To are all

constants. Denoting these constants using α and β as shown

in Equations (6) and (7), we have TNp = αDQ + β, hence

the lemma follows.

α =
n∑

j=1

T (j) +

⎧⎨
⎩(1 − r)

H∑
i=1

iN(i)ts, D,

0, A.

(6)

β = −To +

⎧⎨
⎩

0, D,

NcTa +
H∑

i=1

N(i), A.
(7)

4.2. Energy Consumption

The average energy consumption for processing a query

on a node in a WSN can be estimated from the node running

time and electric current: E = U ·I ·T , where E is the energy



consumption of a node within T length of time, during which

the voltage and the electric current of the node are U and

I , respectively. Considering the different operations in query

processing, the energy consumption should be E = U
∑

Ij ·
T (j) ·L, where Ij and T (j) are the electric current and the

execution time of each type of the j-th operation per epoch,

L is the total number of epochs in processing the query.
With the above analysis, the node energy consumption is

modeled in Equation (8). In (8), Tq is the query evaluation

time and To is the same as that in Section 4.1. Ip is the

electric current of the computation for query evaluation.

Usually, a node can turn off the radio chips to lower the

electric current. Tr is the time for receiving the results

from the children. Ir is the electric current of receiving

on the node. Tc is the communication time as described

in Equation (5). Tc −Tr is the total transmitting time on the

node. It is the electric current of transmitting. Finally, Th

and Ih are time and electric current in hibernating (sleeping),

respectively.

E = (TqIp + (Tc − Tr)It + TrIr + ThIh) · U · L (8)

In Equation (5), the electric current of transmission in

each epoch is assumed to be constant. This assumption is

realistic because in the scheduling protocols and current

query processing systems, the transmission power and the

corresponding transmission range are all fixed in each epoch.

In addition, the average retransmission time due to transmis-

sion failures is included in the transmitting time per epoch.
In Equation (5), Th is calculated by removing the active

time (Tq, Tc and Tr) from the total time. Suppose that the

time length for transmitting and receiving a result is ts,

Tq, Tc and Tr are computed as follows. First, Tq: Tq is

deduced in Section 4.1. Second, Tc: Suppose the size of

communicated results is n, then Tc is n × ts. Hence, the

task is to find n of a query on each node. Considering

the characteristic in query processing, n is not constant in

different queries. There are two scenarios for calculating this

n: (1) If the query needs the node directly forward the results

of its children, suppose the query result of each node is

reported, then the node should receive Nd results, forward

them and send an additional result to its parent. Nd is the size

of the results from the descendants of this node. Considering

the QoD to be provided, n = Dq(2Nd + 1), where Dq is

the QoD. (2) If the query requires the node to aggregate the

results of its children, then n = (Nc + 1), where Nc is the

size of the results from the children. Here Dq is not included,

since no matter what Dq is to be provided, each node has

to aggregate a result from each of its children. Finally, Tr:

Similarly to Tc, we can deduce that for an acquisition query,

Tr = DqNdts, and for an aggregation query, Tr = DqNcts.
Given the above processing time on each node, the energy

consumption can be expressed as E = (λDQ + δ)L, . They

are computed in Equation (9) and (10). Nd in Equation (9)

is the average number of descendants of each node in the

WSN. It is used to calculate the receiving and forwarding

slots for the descendants.

λ = UIp

n∑
j=1

T (j)+U ·
{

NdtsIr + (Nd + 1)tsIt, D,

0, A.
(9)

δ = −ToU · Iq +U ·
{

0, D,

NcTaIp + NctsIr + tsIt, A.
(10)

5. Quality Aware Scheduling

We first show the details of how to maximize the system

profit that a given scheduling protocol can attain, using the

cost model presented in the last section. Then we present

our quality aware scheduling algorithm that determines the

quality to be realized for the given scheduling protocol.

5.1. System Profit Maximization

With the quality functions, the system profit P can be

calculated by the following equation,

P =
k1L + b1 + k2(TE − TRes) + b2 + k3DQ + b3

Cost
(11)

where k1, k2, b1, b2, k3, b3 are coefficients, L and TRes is

QoS, DQ is QoD. Cost is the average node energy con-

sumption of the network. The response time TRes can be

computed by Equation (12), in which Tlast is the current

response time of existing queries. According to Lemma 1,

Tnetwork = αDQ +β. Hence, TRes is also a linear function

of DQ, TRes = αDQ + γ, where γ = Tlast + β. We thus

have,

TRes = Tlast + Tnetwork = αDQ + γ (12)

Then, (11) can be easily converted to Equation (13). There

are two variables, DQ and L in (13). The profit maxi-

mization problem becomes searching for a pair of (DQ, L)
such that P is maximized. In essence, this is a problem of

calculating extreme value of bivariate functions. We use the

partial derivatives to solve this problem.

P =
k1L + b1 + k2(αDQ + γ) + b2 + k3DQ + b3

(λDQ + δ)L
(13)

Firstly, We can get the first partial derivatives of system

profit in the direction of DQ and L as shown in Equa-

tion (14) and (15). Usually ∂P
∂L ≥ 0 as k1 ≥ 0 and δ ≥ 0

and a node only needs to consider the changes of DQ to get

the maximum system profits from queries. It is obvious that
∂P

∂DQ
= 0 and ∂P

∂L = 0 is a necessary condition for (DQ, L)
to be the extreme value point of P .

∂P

∂DQ
=

(k2α + k3)δ − (b1 + b2 + b3 + k2γ)λ − k1λL

(λDQ + δ)2L
(14)

∂P

∂L
= −b1 + k2(αDQ + γ) + b2 + k3DQ + b3

(λDQ + δ)L2
(15)



The second partial derivatives of system profit are calculated

as follows:

A =
∂2P

∂D2
Q

= 2
(b1 + b2 + b3 + k2γ)λ2 + k1λ

2L − (k2α + k3)δλ

(λDQ + δ)3L
(16)

B =
∂2P

∂DQ∂L
=

(b1 + b2 + b3 + k2γ)λ − (k2α + k3)δ

(λDQ + δ)2L2
(17)

C =
∂2P

∂L2
= 2 ∗ b1 + k2(αDQ + γ) + b2 + k3DQ + b3

(λDQ + δ)2L3
(18)

With the above partial derivatives, QAS is able to find

out the point, (Dq0, L0), that enables the system profit

Profit(qi) of each query to be a maximum one by using

the following mathematical method:
(1) Find the (Dq0, L0) that makes ∂P

∂DQ
= 0 and ∂P

∂L = 0.

(2) If Dq0, L0 satisfy the threshold quality of the query,

then calculate the value of A, B and C at (Dq0, L0), where

A, B, C are computed by Equations (16) to (18); otherwise,

goto (4).
(3) Use M = AC−B2 to check whether (Dq0, L0) is the

maximum point, if M < 0, then (Dq0, L0) is the maximum

point. otherwise, we goto (4).
(4) If the maximum point is not found or does exceeds

the quality threshold, Dq0, L0 should be set as the lowest or

the highest possible quality, depending on which one makes

the larger system profit.
(5) Finally, QAS calculates the target response time, TR0,

from Dq0 and get (Dq0, TR0, L0), which is the target quality

for the query. QAS sorts the injected queries in the ascending

order of Profit(qi). Then it schedules the query to attain

the maximum profit from all queries.

5.2. Distributed Profit Maximization Algorithm

With the cost model and the partial derivatives in the

previous sections, we now present our distributed algorithm

for profit maximization in query processing. Algorithm 1

shows the steps of the determination of the target qualities

and the execution order of queries and then the process of

calling scheduling protocol in QAS. Note that Algorithm 1

is run on each node instead of on the sink to reduce the

communication overhead, since the communication is more

costly than computation.
In this algorithm, the first segment (Lines 1 - 6) uses the

partial derivatives of the cost model to calculate the target

QoS and QoD, tQoS[i] and tQoD[i] for the i-th query. The

system profit would be tP [i], if the target qualities tQoS[i]
and tQoD[i] were realized, as shown in Line 3. Then Lines 4

-5 calculate the number of receiving slots needed, sr[i], and

transmission slots, st[i] , using the target quality tQoS[i] and

tQoD[i]. In these two lines, Nr[i] and Nt[i] are the number

of needed receiving and transmission slots if tQoD[i] = 1,

i.e., the number of receiving and transmission slots that the

node would allocate previously without QAS.

Algorithm 1 Scheduling for Profit Maximization

Input n queries with quality functions;

Output Query execution order of these queries and the

target QoS and QoD for each query; schedule of each

query;

1: for i = 1 to n do
2: find tQoS[i], tQoD[i] for query i;
3: compute the profit, tP [i] of the i-th query under

tQoS[i], tQoD[i];
4: sr[i] = Nr[i] · tQoD[i];
5: st[i] = Nt[i] · tQoD[i];
6: end for
7: for j = 1 to NUM STRATEGIES do
8: sort the queries in the descending order of their

weights, the order is denoted as O[j];
9: move the query in O[j] whose quality requirement

cannot be satisfied into the waiting list w[j];
10: P [j] = the sum of system profit of queries in O[j];
11: end for
12: find the execution order, O[k], that has the highest profit

(1 ≤ k ≤ NUM STRATEGIES);

13: send O[k] and the sr, st of the queries in O[k] to the

underlying scheduling protocol to build up the schedule

for each query in O[k];

The second segment (Lines 7 - 13) optimizes the query

execution order of multiple queries to be scheduled and

processed to get the maximum total system profit. This

algorithm uses different weights to sort the queries and can

get a number of orders of query execution of the set of

queries as shown in Lines 5 - 9. QAS currently uses two

strategies (NUM STRATEGIES = 2) to define the weights:

(1) maxP[i] and (2) maxP[i] / tQoS[i]. We found in our

experiments that in most occasions, these two types of

weights allowed QAS to get higher profits than a single

type.

6. Evaluation

6.1. Experiment Setup

We ran the prototype of QAS on four scheduling protocols

of WSNs, DCS [24], AHS [23], FPS [9], and SS [21]. We

compared QAS with the following quality-aware scheduling

schemes applied on the protocols: (1) Low-quality(low),

which always serves the lowest acceptable QoD and life

time of a query; (2) Medium-quality(Mid), which serves

the medium level QoD and life time within the range

of QoD and lifetime requests; (3) Random-quality(Rand),

which randomly chooses the target quality from the range

of QoD and lifetime; and (4) High-quality (High), which

always serves the highest QoD and life time of a query.



We evaluated the performance of the scheduling schemes

through simulation at this stage and take the experiments

on real sensor motes as future work. In the simulation

experiments, the sensory data for the queries were synthetic

data, since there were no available sensory dataset for up

to 100 nodes. Hence, we used the source dataset from Intel

lab [11] and expanded it to up to 100 nodes using a data

generation tool [20]. We fixed the WSN to be one with

randomly deployed 100 nodes (including the sink) in an

100 meter * 100 meter area, in which there was at least one

route from each node to the sink node. The transmission

range is 25 meters (a MICA series sensor mote can reach

this distance when the transmission current is about 22 mA).

WSNs with such a configuration are widely used in the

sensor networking studies [4], [9], [14], [24], [25].

The queries tested were acquisition and aggregation

queries. To focus on the study of system profits and avoid

the interference with query selectivity, in the experiments

we fixed the queries as Q1 and Q2 (Section 2.

6.2. Experiment Results

In the experiments, we found the following major factors

affecting the system profits from processing queries in a

WSN: (1) scheduling protocol type, (2) query selectivity,

(3)quality functions, (4) available resources, (5) query exe-

cution order; and (6) query type. Hence, in our experiments,

we present the experiment results by varying one factor but

fixing the others to get a thorough evaluation of QAS.

Scheduling Protocol. We compared QAS on the four

scheduling protocols for WSNs using Q1. The query predi-

cate is designed to make the selectivity to be about 70%. A

query with a selectivity lower than 100% is the common case

in both data collection and monitoring applications. Here we

choose a little higher selectivity (70%) to make the protocols

work in a relatively high communication traffic network to

investigate their performance under a heavy workload. The

quality function is as follows: k1 = b1 = 0; k2 = −10, b2 =
100; k3 = 333.33, b3 = −133.33. Such a quality function

specifies that, for a network to attain profits, the minimum

quality it should serve is as follows: the shortest query

lifetime is 1 epoch, longest response time is 10s and the

lowest data quality is 0.4. Such requirements are common

in real world applications.

The results of the four schemes are shown in Fig. 5.

As shown in this figure, different underlying scheduling

protocols achieve different system profits with a given

quality-aware scheme. Some scheduling protocols combined

with a quality-aware scheme may get a negative profit, e.g.,

FPS with Random. No matter what underlying scheduling

protocols used, QAS outperformed the other three quality-

aware schemes. The High scheme was close to QAS on

AHS, due to the highest profit was achieved near the high

end of the range of the qualities. Overall, AHS achieves the

highest system profits across all schemes. In the following

experiments, we use AHS as the underlying scheduling

protocol.
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Figure 5. Different scheduling protocols

6.2.1. Selectivity. To investigate the effects of selectivities

on AHS, we simulated three levels of selectivities, 0.1, 0.5

, and 1, on AHS. The quality function is k1 = b1 =
0; k2 = −10, b2 = 100; k3 = 167.67, b3 = −66.67. Figure

6 presents their attained system profits. In comparison, QAS

on AHS almost attained the highest system profit when the

query selectivity ranging from low to high. The point at

which the WSN can attain the highest system profit is the

lowest acceptable quality of data. Hence, the ”low” strategy

attained the highest system profit at this time. Since QAS

needed more overhead the determination the optimal target

quality with cost modeling, the system profit attained by

QAS is a little low than the highest one. Especially when

the cost of query was low and then the overhead became

relatively high, which made QAS perform worth, as can be

seen when the selectivity is 0.1.

Due to this difference of performance on the four schedul-

ing protocols, and on AHS with various selecitivities, In the

next experiments, we set the selectivity of queries is 1 by

changing the predicates in the queries. We chose DCS as

the basis scheduling protocol, so that our study would focus

on the remaining factors that affecting the system profits.

Quality Function. A network running the same schedul-

ing scheme may get different system profits from a query

given different quality functions. Since QAS allows a user

to specify the quality function of each query, the effect of

quality function on system profits should be studied.

Fig. 5 only shows the system profit from executing queries

with standard quality functions. A standard quality function

for a query refers to a function in which the revenue is
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proportional to the cost of the query. We also tested Q1

with two non-standard quality functions to evaluate QAS as

shown in Table 4. These two non-standard quality functions

are used to favor certain performance metrics. For instance,

Function A in this table desires a high QoD and Function

B prefers longer lifetime (at least 1000 epochs).

Table 4. Non-standard Quality Functions for Q1

Function k1 b1 k2 b2 k3 b3
A 0 0 -1. 100 1000 -800
B 1 -1000 -60 600 166.7 -66.7

The attained system profits are shown in Figure 7. The

results show that, QAS achieved the highest profit for both

non-standard quality functions. Especially for Function B,

QAS was able to avoid negative profit.

Query Execution Order. We now show the comparison

of three strategies, the algorithm in QAS, a greedy algorithm,

and an exhaustive searching algorithm on scheduling of

multiple queries. The greedy algorithm always arranges the

queries in descending order of system profits. The exhaustive

algorithm traverses all of the permutations of queries and

arranges the queries in the order that will get the highest

total system profits.

We tested a group of five queries, where the required

query life time and QoD of each were 1 and 0.4, respectively.

The acceptable response time of the queries were 30s (Q13),

40s (Q14), 10s (Q11), 50s (Q15), 20s (Q12) (The query

injection order was: Q13, Q14, Q11, Q15, Q12). We used

different quality functions of the queries, so that different

execution orders of queries would not get the same system

profits.

As shown in Figure 8(a), when the quality functions

specified the revenues in a way that made the order of

possible highest system profit (PHSP) as Q11 > Q12 >
Q13 > Q14 > Q15, then the three strategies got the same
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Figure 7. Q1 with different quality functions

total system profits. The PHSP is the highest system profit

that can be attained from processing a query given a WSN.

We found that the strategies determined the same query

execution order and it is the optimal query execution order.

However, when the quality functions did not enable the

PHSP of Q11 to be the largest one, the execution orders

given by the strategies were much different. As demonstrated

in Figure 8, in general the performance of QAS was better

than the greedy algorithm and close to the exhaustive

algorithm. In the worst case, QAS attained the same system

profit as that of the greedy algorithm.

6.2.2. Available Resources. In query processing on a WSN,

it is often found that the quality request of a query is not

satisfied although the query results are returned, especially

when there are multiple queries running in the network or

the quality request is too high. The underlying reason is that

the resources are not enough to satisfy the user requests and

the query processors fail to utilize the available resources to

satisfy the request as much as possible, which causes some

resources to be wasted in serving additional qualities not
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Figure 8. System Profits of the three strategies

required by the users. Since wireless sensor networks are

highly resource limited networks, this resource limitation

problem is much important in quality aware scheduling.

In the following, we evaluate the performance of QAS on

limited resources that are not enough for all queries injected.

• Group 1: 5 queries, query life time of each is 1; the

acceptable response time are 50s, 40s, 30s, 20s, and

10s, respectively; the minimal QoD is 0.4.

• Group 2: 5 queries, query life time of each is 1; the

acceptable response time are 50s, 40s, 30s, 20s, and

10s, respectively; the minimal QoD is 0.8.

• Group 3: one query, query life time of each is 1;

the acceptable response time is 10s, respectively; the

minimal QoD is 0.8.

6.2.3. Query Type. To study quality scheduling on different

types of queries, we evaluate QAS on the aggregation query,
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Figure 10. Aggregation query

Q2, in this subsection. The quality function of Q2 is shown

in Table 5. The highest revenue to Q2 is 100, the same as

that of Q1 in Figure 5.

Table 5. Quality Function of Q2

Quality Function k1 b1 k2 b2 k3 b3
f-Q2 0 0 -10 100 166.7 -66.7

The system profits of QAS and other strategies from

running Q2 are shown in Figure 10. The result show that

although the Q2 was given the same level of revenue as that

of Q1 in Figure 6, the aggregation query could get much

higher system profit ( 22800 vs. 3000). The reason is that in

processing an aggregation query, the internal nodes only sent

one data packet. In contrast, they needed to send multiple

data packets to forward the query results of their descendants

in an acquisition query. Moreover, the results show that

QAS still attained the maximum system profit in process

aggregation queries due to its quality aware scheduling.

6.2.4. Profit within Network Lifetime. Finally, we evalu-

ated the system profits of a WSN in its network lifetime. In

this paper, we define the network lifetime as the time from

a network starts to the time that the first node runs out of

energy. We measured the total profits of various queries that

are injected and removed in the WSN during its lifetime. The

queries and their quality functions were randomly chosen

from a query pool, in which the quality requirement on each

query was with the range of L ∈ [1, 10000],D ∈ [0.1, 1],
T ∈ [0, 60000], where L, D, T are query lifetime, data

quality, and response time, respectively.

Figure 11 shows the detailed accumulated system profits

of QAS on AHS. The figure shows that, within the lifetime

of a network, the scheduling protocol with QAS can attain

more profits than others. QAS even outperforms the ”Low”
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Figure 11. Accumulated system profits over time

strategy in terms of lifetime, which keeps serving the lowest

possible quality during the network lifetime to save the cost.

The reason is that the ”Low” strategy cannot get profits when

the network fail to serve the lowest quality requirements

from the strict-requirement queries. In contrast, QAS will

not serve these queries if it finds the resources are not

enough. This way, QAS avoids the energy wastes.

7. Conclusion and Future Work

In this paper, we presented a quality aware scheduling

framework, QAS, which efficiently satisfies the user quality

requirements on queries. QAS runs on existing quality-

unaware scheduling protocols of WSNs and enables users

to specify their quality requirements using quality functions.

Given these quality functions, QAS determines the target

quality of each query, at which the ratio between the revenue

and the energy cost is maximal.

QAS effectively solves the energy waste problem in

sensor query processing that causes high quality requirement

queries to be unsatisfied but low quality requirement queries

to be overly satisfied. As shown in the experimental results,

QAS outperforms the baseline quality scheduling strategies.
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