
Supporting Ranked Search in Parallel Search

Cluster Networks

Fang Xiong Qiong Luo Dyce Jing Zhao
Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong
{xfang, luo, zhaojing}@cs.ust.hk

Abstract

Recent work by Cooper et al. proposed the Parallel Search Cluster
Network (PSCN) as an efficient P2P network overlay. Organized in clus-
ters, a PSCN allows peers within one cluster to share query workload, and
peers across clusters to share indexes. In this paper, we study the prob-
lem of supporting ranked keyword search in a PSCN. Because ranking
mechanisms, such as TF×IDF, require global information, we investigate
how to acquire and distribute the global information in a PSCN. It turns
out that this process can be done efficiently by taking advantage of the
architectural features of the PSCN. We compare ranked search in a PSCN
with that in an unstructured network as well as in a super-peer network,
and the results show that our approach is feasible and efficient.

1 Introduction

Recently, Peer-to-Peer (P2P) search networks have been a popular way for data
sharing among a large number of peers, in which each peer provides its data
to other peers as a server as well as works as a client to request data from
other peers. There are two extremes of existing P2P networks, one is flooding-
based (e.g., Gnutella [1] and Kazaa [2]), in which queries are broadcasted in the
networks, and the other routing-based, in which queries are forwarded based on
some addressing mechanisms such as Distributed Hash Table (DHT) [12, 15] or
semantics [16]. Some P2P networks lie between the two extremes, for example,
the super-peer network [19], in which queries transmitted from normal peers
to super-peers are directed, while among super-peers queries are broadcasted.
Although routing-based networks have been shown efficient in resource location,
flooding-based networks, due to the simplicity of implementation, maintain their
wide usage in practice and call for further research efforts on their improvement.
In this paper, we choose a new type of flooding-based network, called a Parallel
Search Cluster Network [7], or PSCN in short, and study a basic problem in
supporting ranked search.

1

The PSCN is identified through the SIL (Search/Index Link) model [8].
In this model, a connection between peers is categorized into either a search
link (transmitting queries and results) or an index link (transmitting indexes
and index updates). These links are either forwarding (allowing the recipient to
forward the received content) or non-forwarding. Therefore, there are four types
of links in a P2P network: NSL (Non-forwarding Search Link), FSL (Forwarding
Search Link), NIL (Non-forwarding Index Link), and FIL (Forwarding Index
Link).

Based on SIL, a pure search network such as Guntella is one with only
FSLs (Figure 1(a)), and a pure index network such as PlanetP [10] is one with
only FILs (Figure 1(b)). Both of them are unstructured P2P networks, even
though they forward queries and replicate indexes in different ways. A super-
peer network is one with FSLs and NILs from normal peers to super-peers as
well as NILs between super-peers (Figure 1(c)). Finally, a PSCN is a network
consisting of clusters of peers, with FSLs between peers in a cluster and one
NIL from each peer to one randomly selected peer in each other cluster. Figure
1(d) shows an example PSCN, with the outgoing links from Clusters 2 and 3
omitted for clarity. It is shown that PSCN is efficient in load balancing, resource
utilization, and fault tolerance [8].

As an architectural model for P2P networks, SIL discusses search and indexes
in general terms. In the meantime, with the increasing scale and sophistication
of P2P networks, keyword search techniques have been developed for data object
ID search [12, 15] as well as for content search [10, 14, 16] in various P2P network
overlays. Since PSCN is a newly identified P2P architecture, we study how to
support content search in it, specifically, how to support the ranking mechanism
efficiently by taking advantage of its architectural characteristics.

One widely adopted ranking mechanism for keyword search is TF×IDF [13].
It evaluates the importance of a keyword by considering both the frequency
of the keyword occurring in a specific document and that in the document
collection. As a result, the ranking process requires aggregate information such
as the total number of documents that contain a certain keyword. In a dynamic,
decentralized P2P network environment, special care needs to be taken to meet
this requirement. For instance, PlanetP [10] approximates TF×IDF at the
peer level in order to save storage and communication cost in an unstructured
P2P network. As another example, Shen et al. build a hierarchical summary
structure that indexes at document, peer, and super-peer levels for a super-peer
network.

Based on these previous results on unstructured networks and super-peer
networks, we examine how the ranking mechanism can be supported in a PSCN.
The process of ranked search in a PSCN is as follows:

1. Every peer builds the local index on its own documents, and transmits
its local index across clusters through NILs so that each cluster has the
indexes of all peers in the network.

2. At the query time, the querying peer forwards the query through FSLs
to other peers of the cluster that it resides in. After the local aggregate

2

(a) pure search network (b) pure index network

(c) super-peer network

1

2

3

(d) parallel search cluster networks

(normal) peer super-peer FSL NIL FIL cluster

Figure 1: Network overlays under SIL model representation

3

information related to the query are returned from the involved peers
in the cluster, the querying peer merges them into the global aggregate
information that are related to the query, and sends the information to
the involved peers.

3. Next, each involved peer evaluates the query over the indexes it stores,
ranks its query results locally, and sends the locally ranked query results
back to the querying peer. Finally, the querying peer merges the locally
ranked query results into globally ranked ones and returns all or top-K of
them to the user.

Similar to the previous work, the indexes transmitted across clusters in a
PSCN can be at the peer level, instead of at the document level. At the peer
level, the global ranking is done for peers to indicate which peers are most likely
to possess matching documents. To obtain these documents, the querying peer
needs to forward the query to the top-kp peers in the global peer rank, each of
which in turn ranks its documents locally. Finally, the querying peer merges
the query results and selects the global top-K documents.

Different from the previous work, ranking in a PSCN has the following char-
acteristics: (a) the most time-consuming tasks in the query processing, i.e., local
aggregate information collection and local ranking calculation, are distributed
over all peers in one cluster; this distribution spreads the query processing load
across peers evenly, thus reducing the maximum requirement for the capabilities
of individual peers and improving the scalability of the network; (b) there is no
global index built for every existing keyword in the network; rather, the collec-
tion of aggregate information and the calculation of ranking are performed with
respect to an incoming query, which reduces the load on peers; (c) each query
is answered within the cluster where the query is submitted, without affecting
the completeness of the query result, which improves the query response time
and saves communication cost.

The remainder of this paper is organized as follows. We discuss related work
in Section 2 and present our design and implementation of ranked search in a
PSCN in Section 3. We show our experimental results in Section 4 and conclude
in Section 5.

2 Related work

Exact-match keyword search has been supported in existing flooding-based net-
works such as Napster [3] and Gnutella [1], where keyword search on short file
descriptions is sufficient for identifying the desired multimedia files. In compar-
ison, DHT-based schemes, such as CAN [12] and Chord [15], place data objects
by data object IDs and consequently support search on the IDs.

Most recently, ranked content search has been supported in unstructured
networks [10], super-peer networks [14], and semantic overlays [16], where tex-
tual documents are shared in the network. These papers adapt information
retrieval techniques including the Vector Space Model (VSM), inverted indexes,

4

and Latent Semantic Indexing (LSI) to support ranked search in P2P networks,
and all of them use the TF×IDF term weight calculation or its variation as the
basic building block in ranking.

Even though the ranking formulas are similar among different network over-
lays, their implementations differ significantly due to the differences in the ar-
chitectural features. On one extreme, networks with central peers or super-peers
maintain indexes and handle ranking at these powerful peers only [14]. On the
other extreme, unstructured pure index networks, such as PlanetP, replicate in-
dexes everywhere in the network and therefore are able to handle global ranking
at each peer [9, 10]. In contrast, in a PSCN index replicas of all peers are dis-
tributed within each cluster, and the query processing load is also shared within
the cluster. As a result, the storage overhead and index update cost at each
PSCN peer is reduced in comparison with the unstructured pure index network,
and the heavy workload on super-peers is also avoided in a PSCN.

Finally, unstructured P2P networks, super-peer networks and PSCNs can be
uniformly represented in the Search/ Index Link (SIL) model [8]. We study the
ranked search in a PSCN and compare it with those in other network overlays
using the model.

3 Ranked keyword search in a PSCN

In this section, we first briefly review the Vector Space Model (VSM) and the
TF×IDF ranking mechanism, and then present in detail our implementation of
ranked keyword search in a PSCN.

3.1 VSM and TF×IDF

VSM (Vector Space Model) represents a document as a vector of weights, which
are assigned to the keywords in the document. Similarly, a keyword query is also
represented as a vector of weights of query keywords. The rank of a document
with respect to a query, or the relevance between the document and the query, is
computed as the similarity between the document vector and the query vector,
e.g., the dot product of the two vectors.

A widely used method to assign weights to keywords is TF×IDF, where
TF (Term Frequency) is the frequency that a keyword occurs in a document,
and IDF (Inverse Document Frequency) is the inverse of the frequency that a
keyword occurs in the document collection. The intuition of this mechanism is
the following: if a keyword occurs frequently in a document, it is likely to be a
keyword that can describe the document content well, and thus is an important
keyword; if a keyword occurs frequently in many documents, it is less useful to
differentiate a document from others.

There are several variations of TF×IDF implementation [13]. In this paper,
we adopt the equations suggested by Witten et al. [17]:

wD,t = 1 + log(fD,t) wQ,t = log(1 + N/ft) (1)

5

where wD,t is the weight of term t in document D, fD,t the number of times
that term t occurs in document D, wQ,t the weight of term t in query Q, N the
total number of documents in the collection, and ft the number of documents
in which term t occurs.

Subsequently, the similarity between document D and query Q is calculated
as follows:

Sim(Q,D) =

∑
t∈Q

wD,t × wQ,t

|D| (2)

where |D| = ∑
t∈D fD,t.

The statistics used in TF×IDF calculation can be obtained from an inverted
index. Given a document collection, for each term t an inverted index records
which documents contain the term, and the term frequency (fD,t) in these
documents. In addition, some aggregate information is included in the index,
such as the total number of documents, N , in the collection and the number
of documents in which a term occurs, ft. In the remainder of this paper, we
assume the existence of the inverted index at each peer.

3.2 Local index in a PSCN

In a PSCN, each peer maintains its local index, i.e., the index about its local
documents. This index can be built at the document level or at the peer level.

Denote the total number of peers currently in the network as Np, and the
number of documents at the peer j (1 ≤ j ≤ Np) as nj . The document vector
vdjr of the rth document located at peer j, djr, is:

vdjr = (keywordjr,1, keywordjr,2, ..., keywordjr,ljr)
keywordjrv = (wordjrv, countjrv) (1 ≤ v ≤ ljr)

where ljr denotes the number of unique terms in document djr, wordjrv(1 ≤
v ≤ ljr) the vth term in document djr, and countjrv(1 ≤ v ≤ ljr) the number
of times that term wordjrv occurs in document djr. This document vector is
calculated after stop word removal and stemming.

After document vectors are calculated for all documents, the local index at
a peer is built by merging these vectors at one of the two levels - the document
level or the peer level. The local index at the document level uses the term
frequency with respect to each document whereas that at the peer level records
the term frequency with respect to each peer. Apparently, the peer-level local
index is at a coarser granularity than the document-level one.

The local index at peer j at the document level takes the following form:

doclistj = (dj1, dj2, ..., dj,nj)
numlistj = (Dj1, Dj2, ..., Dj,nj)
termlistj = (termj1, termj2, ..., termj,mj)
termjk = (tjk, tf listjk) (1 ≤ k ≤ mj)
tflistjk = (tfjk1, tfjk2, ..., tfjk,gjk

)
tfjkw = (locjkw, fjkw) (1 ≤ w ≤ gjk)

6

where doclistj is the list of nj documents located at peer j, Djr(1 ≤ r ≤ nj) the
number of terms contained in document djr, mj the number of unique terms
at peer j, tjk the kth term at peer j, gjk the number of documents at peer j
in which term tjk occurs, locjkw(1 ≤ w ≤ gjk) the wth document at peer j
in which term tjk occurs, and fjkw(1 ≤ w ≤ gjk) the term frequency of tjk in
document locjkw: fjkw = {countjrv|locjkw = djr&wordjrv = tjk}.

In comparison, the local index at the peer level takes a simpler form:

termlistj = (termj1, termj2, ..., termj,mj
)

termjk = (tjk, fjk) (1 ≤ k ≤ mj)

where mj is the number of unique terms occurring at peer j, tjk the kth term
at peer j, and fjk =

∑
1≤w≤gjk

fjkw the number of times that term tjk occurs
at peer j. In addition, the local index at the peer level records the total number
of terms occurring at peer j: Dj =

∑
1≤r≤nj

Djr.

3.3 Search in a PSCN

In a PSCN, besides its own local index each peer stores a copy of the local indexes
of some peers from other clusters, so that the global aggregate information for
the entire network can be computed within one cluster, and therefore a query
can be answered within one cluster.

3.3.1 Search using the document-level index

In this subsection, we assume that the indexes transmitted across clusters are
at the document level.

Suppose a query Q = (keyword1, keyword2, ..., keywordq) consisting of q
unique terms is submitted to a peer, which we call the querying peer. The
querying peer forwards the query to other peers in the cluster and the collection
of the aggregate information is activated.

On receiving the query, a peer p calculates its local aggregate information
as follows:

docp =
∑

j∈P

nj

doc frequp =
∑

j∈P&tjk=keywordu

gjk (1 ≤ u ≤ q)

where docp is the total number of documents whose local indexes are stored in
peer p’s index repository P , and doc frequp the number of documents containing
term keywordu whose local indexes are stored at peer p.

After peer p returns its local aggregate information to the querying peer, the
querying peer calculates the global aggregate information with respect to query
Q as follows:

N =
∑

p∈C

docp =
∑

1≤j≤Np

nj

DFu =
∑

p∈C

doc frequp (1 ≤ u ≤ q)

7

Recall that N is the total number of documents, Np the total number of peers
in the network, and nj the number of documents at peer j. C denotes the
current cluster, while DFu represents the total number of documents in the
network that contain term keywordu. Note the global aggregate information is
calculated as the sum of the local aggregate information returned by every peer
p in the current cluster. Furthermore, the aggregate information is collected
with respect to the q keywords in the query, instead of all keywords existing in
the network.

After the global aggregate information is computed at the querying peer, it
is forwarded to other peers in the cluster for document ranking. The similarity
between document djr and query Q is adapted from Equations 1 and 2:

Simjr,Q =

∑
1≤u≤q

[1 + log(freqjru)]× log(1 + N/DFu)

Djr

freqjru =
{

countjrv ∃k, v, keywordu = tjk = wordjrv

e−1 otherwise

The ranking is performed locally at each peer within the cluster in parallel.
Finally, the local ranking results of the peers are returned to the query-

ing peer and are merged into globally ranked results with respect to query Q.
When the number of relevant documents in the network is much more than user
requirement, we will return only the top-K documents.

3.3.2 Search using the peer-level index

The process of searching using indexes at the peer level is similar to that us-
ing indexes at the document level, except the computation of the aggregate
information and rank.

Given a query Q = (keyword1, keyword2, ..., keywordq), a peer p calculates
its local aggregate information as follows:

peerp =
∑

j∈P

1

peer frequp =
∑

j∈P&tjk=keywordu

1 (1 ≤ u ≤ q)

where peerp is the total number of peers whose local indexes are stored at peer
p’s index repository P , and peer frequp the number of peers whose local indexes
are stored at peer p and whose documents contain term keywordu.

The global aggregate information with respect to query Q is as follows:

Np =
∑

p∈C

peerp

PFu =
∑

p∈C

peer frequp (1 ≤ u ≤ q)

where Np is the total number of peers in the network and PFu the number
of peers in the network that contain term keywordu. The global aggregate

8

information is the sum of the local aggregate information from every peer p in
the current cluster C, the same as the case of using indexes at the document
level.

The peer ranking is calculated by the similarity between peer j and query
Q, adapted from Equations 1 and 2:

Simj,Q =

∑
1≤u≤q

[1 + log(freqju)]× log(1 + Np/PFu)

Dj

freqju =
{

fjk ∃k, keywordu = tjk

e−1 otherwise

The global ranking result obtained at the querying peer is the ranking of
peers, indicating the relevance between a peer and a query. To rank the relevant
documents, the querying peer contacts the top-kp peers directly, which will rank
their own documents based on their local indexes at the document level. The
calculation of similarity between document djr and query Q is adapted from
Equation 1 and 2:

Simjr,Q =

∑
1≤u≤q

[1 + log(freqjru)]× log(1 + nj/Gu)

Djr

freqjru =
{

countjrv ∃k, v, keywordu = tjk = wordjrv

e−1 otherwise

Gu =
{

gjk ∃k, keywordu = tjk

∞ otherwise

The locally ranked top-K documents returned by each of the top-kp peers will
be sorted at the querying peer by the similarity, and the globally ranked top-K
documents will be presented to the user.

3.3.3 Discussion

In a P2P environment, the local index at a peer can be replicated over the
network in various ways for different overlays, and ranked search is performed
based on the replicated indexes. We have presented the process of ranked search
in a PSCN, but the same process can be applied in other overlays with slight
modification. In our experiments, we modified the algorithm for a super-peer
network and an unstructured P2P network to make comparisons with the PSCN.

In a super-peer network, indexes of normal peers are replicated at super-
peers. As a result, the index information stored at all super-peers is sufficient
for generating the global aggregate information. Thus, in order to perform
ranked search in a super-peer network, all super-peers together are equivalent
to one cluster in a PSCN. In an unstructured network, with the full replication
of indexes at each peer, both the global aggregate information and the global
rank can be calculated at the querying peer locally.

Advanced information retrieval methods, e.g., LSI, can be applied on top
of TF×IDF, to improve the quality of query results and the efficiency of query

9

Table 1: Network overlay parameter setting
Parameter Description Default value

Np #peers 100

Pa Average out-degrees per peer 5

Pm Maximum out-degrees per peer 10

SN #super-peers 5

CN #clusters 15

processing. Nevertheless, a simple but basic tenique such as TF×IDF is suffi-
cient for the purpose of comparing ranked search in different overlays.

4 Experiments

In this section, we report simulation results on ranked search in a PSCN in
comparison with those in a super-peer network and in an unstructured pure
index network (shortened as unstructured in the following). The performance
metrics include precision, processing time, bandwidth usage, storage cost, and
update handling cost.

4.1 Setup

All of our experiments were conducted on a 4-CPU 3.2GHz Pentium machine
with 1GB of memory running Microsoft Windows XP Professional. We simu-
lated three network overlays (PSCN, super-peer, and unstructured) and distrib-
uted documents and indexes to the simulated networks.

We adopted the parameter setting of the network overlays (Table 1) from
the work by Cooper et al. [7]. This setting has been shown suitable for search-
dominant (as opposed to update-dominant) networks, e.g., the PSCN. Peers in
an unstructured network, super-peers in a super-peer network, and peers within
one cluster in a PSCN, are strongly connected, respectively. These connections
are generated using the PLOD algorithm [11]. In a super-peer network, every
normal peer is linked to a super-peer. The number of normal peers linked to
a super-peer follows a normal distribution with the mean of Np/SN and the
variance of Np/(4 ∗ SN), generated by the Box-Muller transformation [5]. In
a PSCN, each peer is assigned to a cluster. The number of peers assigned to
a cluster also follows a normal distribution, with the mean of Np/CN and the
variance of Np/(4 ∗ CN).

We experimented with five document collections (Table 2), of which the first
four (CACM, CISI, CRAN, and MED) are from SMART [6] and the last one
(FT) from TREC [4]. As the SMART collections are much smaller than FT,
we mainly experimented with SMART for time efficiency unless we saw a need
for FT. Over the SMART collections, the average length of a keyword is L = 6
characters, the average query size (the number of keywords in a query) is q = 13,
and the average number of unique terms contained in a document is w = 42.

10

Table 2: Document collections
Size

Collection #queries #documents #terms (MB)

CACM 64 3, 204 122, 533 2.10

CISI 112 1, 460 94, 824 2.32

CRAN 225 1, 400 137, 661 1.57

MED 30 1, 033 84, 897 1.04

FT 50 210, 158 42, 206, 171 564

We distributed documents over peers following either the uniform distri-
bution (default) or Weibull distribution. Under the uniform distribution of
SMART collections, there are DN = 71 documents and W = 1923 unique
terms per peer, with one term occurring in DL = 2 documents on average.
For the Weibull distribution, we adopted the parameter setting of α = 0.7 and
β = 46 from PlanetP [10], as this setting simulates a typical document sharing
environment where the majority of all documents are provided by 9% of the
peers.

After the local indexes were built, we replicated the indexes in each network.
In an unstructured network, peers are connected with FILs, and the local indexes
of all peers are replicated everywhere. In a super-peer network, the local index of
each normal peer is replicated at a super-peer through the NIL. In a PSCN, every
peer replicates its local index to each of the other clusters through the NILs.
Finally, for indexing at the peer level, only peer-level indexes are replicated,
thus each peer has both its document-level index and its peer-level index as well
as the peer-level indexes of other peers.

4.2 Precision

As the total number of returned results per query is usually large, e.g., the
average number of results for the CACM queries is 1262, which is far beyond
user requirement, we decide to limit the number of returned results and measure
the quality of top-K query results by precision.

Since the index information of all documents in the network is accessible
when performing ranked search in each of the three overlays, the precision in
each overlay is the same as that performed in a central environment.

We examine the effect of k, the ratio of the total number of results returned
to the user to the total number of results, on the MED collection (Figure 2),
using either the document-level index or the peer-level index. Since kp, the
number of peers participating in the local document ranking, has no significant
effect on precision, we set it to be 10 for all experiments. Not surprisingly, the
precision decreases when more results are returned. As shown in the figure,
when k = 0.05, the precision using the document-level index remains around
0.5 whereas that using the peer-level index is about 0.4. With this k value, the
average number of results is 376, and the average number of results returned
to the user is 19. Therefore, we set the number of results returned to the user,

11

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

The ratio of returned results (k)

P
re

ci
si

on

DOC PEER

Figure 2: Average precision over MED collection. DOC represents using indexes
at the document level, and PEER using indexes at the peer level.

K = 20, as the default value.

4.3 Processing time

Recall ranked keyword search in a PSCN is performed in several steps. Us-
ing indexes at the document level, it goes through local aggregate information
collection (LAI), global aggregate information merging (GAI), local ranking cal-
culation (LR) and global ranking merging (GR). Using indexes at the peer level,
it goes through local aggregate information collection (LAI), global aggregate
information merging (GAI), local peer ranking calculation (LPR), global peer
ranking merging (GPR), local document ranking calculation (LDR) and global
document ranking merging (GDR). In Figures 3 and 4, we show the processing
time spent on each step for the large document collection FT. This collection is
chosen in order to show the difference more clearly.

In Figures 3 and 4, GAI, GR, GPR, and GDR are omitted, because for each
of them, the processing time is lower than 10 milliseconds, the smallest time
unit reportable on Windows XP, and is consequently reported as 0. In Figure 3,
LR is more time-consuming than LAI, because in addition to the common task
of searching in indexes, LR needs to calculate the similarity for each document.
In Figure 4, the time of LAI is almost the same as that of LPR, in that the
number of peers for similarity calculation is only a few. LDR consumes much
less time because at the top-kp peers, only their local documents are considered
for ranking.

Common in both figures, the majority of the processing time is spent on local
processing (LAI plus LR when using indexes at the document level, and LAI
plus LPR when using indexes at the peer level). This suggests it is beneficial to
distribute the query processing load evenly in a cluster; otherwise, the bottleneck
will be at the super-peers in a super-peer network or at the querying peer in an
unstructured network. Also, the processing time remains stable for different K

12

0

1000

2000

3000

4000

5000

6000

7000

10 20 30 40 50 60 70 80 90 100

The number of returned results (K)

P
ro

ce
ss

in
g

tim
e

(m
s)

 LAI LR

Figure 3: Average processing time spent on each step of ranked search in a
PSCN, using indexes at the document level over the FT collection.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

10 20 30 40 50 60 70 80 90 100

The number of returned results (K)

Pr
oc

es
si

ng
 ti

m
e

(m
s)

LAI LPR LDR

Figure 4: Average processing time spent on each step of ranked search in a
PSCN, using indexes at at the peer level over FT collection.

13

0

10

20

30

40

50

60

5 15 25 35 45 55 65 75 85 95
Query size

Pr
oc

es
sin

g
tim

e
(m

s)

DOC-LAI

DOC-LR

PEER-LAI

PEER-LPR

Figure 5: Average processing time with different query sizes, over CACM,
CRAN, CISI and MED collections.

values, because even though the number of returned results is not large, each
document in the network has to be taken into consideration for ranking.

Comparing Figure 3 and 4, we see that the processing time is much less if the
search uses indexes at the peer level. This is because the size of the peer-level
index is much smaller, resulting in less time used for searching in indexes.

The query size, or the number of keywords in a query, has an effect on the
processing time. As shown in Figure 5, we recorded the processing time spent
on LAI and LR when using the document-level index, as well as that spent on
LAI and LPR when using the peer-level index, with different query sizes. The
common trend is that the processing time grows slowly with the increase in the
query size, since it takes more time to look up more keywords in indexes.

Under the Weibull distribution, the number of documents located at an
individual peer varies dramatically, leading to the diversity of the size of a single
local index and the diversity of the processing time consumed by different peers.
As you can see in Figure 6, for both LAI and LR, the time goes up steadily with
the number of documents processed by a peer. Thus, it makes sense to distribute
the query processing load evenly, in order to reduce the query response time.

Finally, we compare the processing time in different network overlays. We
show the processing time when using the document-level index in Figure 7,
while the one using the peer-level index in Figure 8. Through the comparison
between the two figures, we see that the trends in both cases are similar, but the
processing time is slightly more when using the document-level index. Clearly,
the processing time in the unstructured network is much more than that in the
other two, because all work is done by the querying peer. The processing time
in the super-peer network is about 30% more than that in the PSCN, because
the workload is distributed among the super-peers as opposed to within one
cluster in the PSCN.

14

0

20

40

60

80

100

120

20 140 260 380 500 620 780 960 114013201640

The number of documents processed per peer

P
ro

ce
ss

in
g

tim
e

(m
s)

LAI LR

Figure 6: Average processing time for LAI and LR with different numbers of
documents, using the document-level index over CACM, CRAN, CISI and MED
collections.

4.4 Network bandwidth

In addition to the local processing time, we study the network bandwidth usage
for ranked search in different overlays. It includes both the network bandwidth
used for query processing and that for index transmission.

There are four types of messages when performing ranked search: queries, the
local aggregate information, the global aggregate information and local ranking
results. Table 3 lists the bandwidth consumption formulas for these messages.
In the following, we first describe the composition of these formulas, and then
comment on the estimated bandwidth consumption values.

In a PSCN, each message is transmitted for Pa ∗Nc/2 times, where Pa is the
average out-degrees per peer, and Nc = Np/CN the average number of peers in
a cluster. The average size of a query message in bytes is C ∗ L ∗ q, where C is
the number of bytes to represent one character, L the average keyword length,
and q the average query size. For the local/global aggregate information, it
takes I bytes to represent the number of documents or peers, and I bytes to
represent the term frequency for each of the q terms. There are in total one
global aggregate information message and Nc − 1 local aggregate information
messages from all peers in a cluster except the querying peer. Thus, the total
bandwidth used to transmit the aggregate information is I ∗ (q + 1) ∗Nc.

Using indexes at the document level, there are K document entries in each
local ranking result. For each document entry, we assume it spends I bytes for
the document ID and D bytes for the similarity value. Thus, the total number
of bytes used for the local ranking results is (I + D) ∗K ∗Nc. Similarly, when
using indexes at the peer level, it takes (I + D) ∗ kp ∗Nc bytes in total for local
peer ranking results. Subsequently, C ∗ L ∗ q ∗ kp bytes are used to forward the
query to the kp peers, and (I + D) ∗K ∗ kp bytes for local document ranking
results.

The bandwidth usage formulas for a super-peer network are composed in a

15

0

100

200

300

400

500

600

700

800

5 15 25 35 45 55 65 75 85 95
Query size

Pr
oc

es
si

ng
 ti

m
e

(m
s)

Cluster Super-peer Unstructured

Figure 7: Average processing time in three overlays, using indexes at the docu-
ment level over CACM, CRAN, CISI and MED collections.

0

100

200

300

400

500

600

700

800

5 15 25 35 45 55 65 75 85 95
Query size

P
ro

ce
ss

in
g

tim
e

(m
s)

 Cluster Super-peer Unstructured

Figure 8: Average processing time in three overlays, using indexes at the peer
level over CACM, CRAN, CISI and MED collections.

16

Table 3: Network bandwidth consumption per query
Overlay- Bandwidth usage formula Value
Index level (bytes) (KB)

Cluster- [C ∗ L ∗ q + I ∗ (q + 1) ∗Nc 38
DOC +(I + D) ∗K ∗Nc] ∗ Pa ∗Nc/2

Cluster- [C ∗ L ∗ q + I ∗ (q + 1) ∗Nc 26
PEER +(I + D) ∗ kp ∗Nc] ∗ Pa ∗Nc/2

+C ∗ L ∗ q ∗ kp + (I + D) ∗K ∗ kp

Super- [C ∗ L ∗ q + I ∗ (q + 1) ∗ SN 20
DOC +(I + D) ∗K ∗ SN] ∗ Pa ∗ SN/2

+C ∗ L ∗ q + (I + D) ∗K

Super- [C ∗ L ∗ q + I ∗ (q + 1) ∗ SN 15
PEER +(I + D) ∗ kp ∗ SN] ∗ Pa ∗ SN/2

+C ∗ L ∗ q + (I + D) ∗K
+C ∗ L ∗ q ∗ kp + (I + D) ∗K ∗ kp

Unstructured 0 0

similar way, except that it takes C ∗ L ∗ q bytes at the beginning to transfer
a query from a normal peer to a super-peer, and (I + D) ∗K bytes at last to
return results to the normal peer. In an unstructured network, since all index
information is available locally, there is no need to forward a query and the
bandwidth usage for query processing is 0.

In Table 3, we calculate the bandwidth consumption using the formulas and
the actual value of each parameter in our simulation environment. For instance,
C = 1, I = 4, D = 8. We see that the network bandwidth consumption
using indexes at the peer level is 22 − 31% less than that using indexes at the
document level, due to the small value of kp compared with K. The bandwidth
consumption in a super-peer network is 41 − 47% less than that in a PSCN,
because the size of the strongly connected network formed among the super-
peers is smaller than the average size of a cluster, resulting in less bandwidth
spent on flooding.

Finally, we give a back-of-envelope calculation of the bandwidth consumption
for index transmission. In a PSCN, each index, either at the document level
or at the peer level, is transferred for CN − 1 times; in a super-peer network,
the index of each normal peer is required to be transmitted to one super-peer;
and in an unstructured P2P network, the index of each peer is transmitted for
Np − 1 times to be replicated everywhere. Thus, the unstructured network has
the largest bandwidth consumption on index transmission, and the bandwidth
consumption in the PSCN is CN − 1 times of that in the super-peer network
due to the index replication.

4.5 Storage cost

Peers are required to provide some space for index storage. To discuss the space
usage, we first examine the size of the local index at a peer, either DI for the

17

Table 4: Storage cost per peer
Overlay- Storage space Value
Index level (bytes) (KB)

Cluster-DOC DI ∗ CN 855

Cluster-PEER PI ∗ CN + DI 347

Super-DOC DI ∗Np/SN 1, 140

Super-PEER PI ∗Np/SN + DI 444

Unstructured-DOC DI ∗Np 5, 698

Unstructured-PEER PI ∗Np + DI 1, 990

Table 5: Storage cost in the entire network
Overlay- Storage space Value
Index level (bytes) (KB)

Cluster-DOC DI ∗ CN ∗Np 85, 500

Cluster-PEER (PI ∗ CN + DI) ∗Np 34, 700

Super-DOC 2 ∗DI ∗Np −DI ∗ SN 11, 115

Super-PEER PI ∗Np + DI ∗Np 7, 635

Unstructured-DOC DI ∗Np ∗Np 569, 800

Unstructured-PEER PI ∗Np ∗Np + DI ∗Np 199, 000

document-level index or PI for the peer-level index.
For the document-level index, it takes 2 ∗ I bytes to represent the document

ID and the number of terms contained in a document, for each of the DN
documents located at one peer. For each of the W keywords occurring at one
peer, it spends C ∗L bytes on the keyword itself, and I bytes on the number of
the documents that contain the keyword. A keyword occurs in DL documents
on average. For each of these documents, it uses I bytes for the document ID
and I bytes for the term frequency in the document. Thus, DI = 2 ∗ I ∗DN +
(C ∗ L + I + 2 ∗ I ∗DL) ∗W , measured as 57KB in our experiments. For the
peer-level index, it takes I bytes to represent the number of terms occurring at
a peer, and (C ∗L + I) bytes for each of the W keywords occurring at the peer.
So, PI = I + (C ∗ L + I) ∗W , measured as 19KB in our experiments, which is
about one third of the size of the document-level index.

In a PSCN, in addition to its own local index, a peer needs to store (Np −
Nc)/Nc = CN −1 indexes of peers from other clusters; in a super-peer network,
a super-peer takes charge of N/SN − 1 indexes from normal peers; and in an
unstructured P2P network, all of the N indexes are stored at each peer. Based
on the measured values of DI and PI, we list the storage cost per peer (or super-
peer) for each overlay in Table 4, and the storage cost in the entire network in
Table 5. We see that in a PSCN, the maximum requirement of storage space for
a single peer is 22− 25% lower than that in a super-peer network, even though
the total storage cost is 4.5−7.7 times higher due to the index replication across
clusters.

18

4.6 Update handling

Finally, we study the cost incurred by updates in a PSCN. We first discuss
document updates, and then turn to peer updates. Document updates include
the addition of new documents as well as the deletion and the modification of
existing documents. All of the updates are represented by document update vec-
tors, with the term frequency set to be positive or negative accordingly. In the
following, we restrict document updates to document additions for simplicity.

The cost incurred by document updates is reflected in the processing time
used to merge document update vectors into an existing index, and the band-
width used to transmit document update vectors. The latter is related to the
average size of a document update vector. For each of the w keywords occurring
in a document, it spends C ∗ L bytes on the keyword itself and I bytes on the
term frequency, so the average size of a document update vector is (C ∗L+I)∗w
bytes, or 420 bytes in our experiments.

Instead of handling document update vectors one at a time, we can combine
several document update vectors to build an update index for batch processing.
In Figure 9, we show the document update cost for peer-level indexes. The
curves stand for the processing time, while the bars indicate the size of the
update index. As the number of document updates increases, the processing
time spent on merging document update vectors into an existing index increases
linearly. In comparison, when using the update index, the time spent on merging
remains at a stable low level, while the time used to build the update index
grows linearly. However, the update index is built only once at the peer where
a batch of document updates occur, while the merging process takes place at
each peer receiving the update information. As to the size of the update index,
it increases with the number of updates, which is the common trend over four
different document collections.

Peer updates, either the joining or the leaving of peers, are simpler to handle
than document updates. Since the index information of each peer is stored
separately, there is no need to merge the updates into an existing index. Network
bandwidth consumption is the size of the local index of the joining/leaving peer
multiplied by the number of times for index transmission, which is similar to
the discussion of the bandwidth usage for index transmission in Section 4.4.

4.7 Summary

We have experimented with ranked search in a PSCN in comparison with that
in a super-peer or in an unstructured network. Through the experiments, we see
that compared with the processing time spent on local aggregate information
collection and local ranking calculation, the time used to merge local aggregate
information or to merge locally ranked results, is negligible. This suggests it
is beneficial to distribute the query processing load over peers; otherwise, the
bottleneck will be at the super-peers in a super-peer network or at the querying
peer in an unstructured network. As a result, the processing time and the
storage cost per peer in a PSCN is the lowest among the three overlays.

19

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10 20 30 40 50 60 70 80 90 100

The number of document updates

Pr
oc

es
si

ng
 ti

m
e

(m
s)

0

5

10

15

20

25

Th
e

si
ze

 o
f u

pd
at

e
in

de
x

(K
B)

CACM
CRAN
CISI
MED
document update vector merging
update index building
update index merging

Figure 9: Average time spent on document update processing and the size of
the update index, with different numbers of document updates, over CACM,
CISI, CRAN and MED collections.

However, the downside of a PSCN is the flooding communication within a
cluster and the index replication cost across clusters. The super-peer network
wins on the network bandwidth usage and the total storage cost due to the
directed query forwarding from normal peers to super-peers and the absence of
the index replication among normal peers.

Additionally, we find that compared with document-level indexes, peer-level
indexes save 70% of the processing time, 30% of the network bandwidth usage
and 30% of the storage space, with a slight decrease in precision.

5 Conclusion

We have presented our approach to supporting the basic TF×IDF ranking for
ranked search in a PSCN and have conducted extensive simulation experiments
to study its performance in comparison with a super-peer network and an un-
structured network. We find that ranked search can be done efficiently in a
PSCN by taking advantage of the architectural features of the clusters. The
most time-consuming tasks in the ranked search are distributed over the peers
within a cluster, and the storage cost per peer is low.

In the future work, we plan to add more advanced indexing techniques, such
as the LSI, to the basic TF×IDF method, to further reduce the index size and
to improve the precision of ranked keyword search in a PSCN.

References

[1] Gnutella. http://www.gnutella.com/.

20

[2] Kazaa. http://www.kazaa.com.

[3] Napster. http://www.napster.com/.

[4] TREC. http://trec.nist.gov/.

[5] G. E. P. Box and M. E. Muller. A note on the generation of random normal
deviates. The Annals of Mathematical Statistics, 29(2):610–611, June 1958.

[6] C. Buckley, A. Singhal, M. Mitra(, and G. Salton). New retrieval ap-
proaches using smart: Trec 4. In The Fourth Text REtrieval Conference
(TREC-4), pages 25–48, Gaithersburg, Maryland, USA, November 1995.

[7] B. F. Cooper and H. Garcia-Molina. SIL: Modeling and measuring scalable
peer-to-peer search networks (extended version). Technical report, Stanford
University, 2003.

[8] B. F. Cooper and H. Garcia-Molina. Studying search networks with SIL. In
Proceedings of IPTPS 2003, pages 216–224, Berkeley, CA, USA, February
2003.

[9] F. M. Cuenca-Acuna and T. D. Nguyen. Text-based content search and
retrieval in ad-hoc p2p communities. In Proceedings of NETWORKING
2002 Workshops, pages 220–234, Pisa, Italy, May 2002.

[10] F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen. PlanetP:
Using gossiping to build content addressable peer-to-peer information shar-
ing communities. In Proceedings of HPDC-12 2003, pages 236–249, Seattle,
WA, USA, June 2003.

[11] C. R. Palmer and J. G. Steffan. Generating network topologies that obey
power laws. In Proceedings of GLOBECOM 2000, volume 1, pages 434 –
438, San Francisco, CA, USA, 2000.

[12] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker. A
scalable content-addressable network. In Proceedings of SIGCOMM 2001,
pages 161–172, San Diego, CA, USA, August 2001.

[13] G. Salton, A.Wang, and C. Yang. A vector space model for information
retrieval. Journal of the American Society for Information Science, 18:613–
620, 1975.

[14] H. T. Shen, Y. Shu, and B. Yu. Efficient semantic-based content search
in p2p network. IEEE Transactions on Knowledge and Data Engineering,
16(7):813–826, July 2004.

[15] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications.
In Proceedings of SIGCOMM 2001, pages 149–160, San Diego, CA, USA,
August 2001.

21

[16] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information retrieval using
self-organizing semantic overlay networks. In Proceedings of SIGCOMM
2003, pages 175–186, Karlsruhe, Germany, August 2003.

[17] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing
and Indexing Documents and Images. Morgan Kaufmann, second edition,
1999.

[18] B. Yang and H. Garcia-Molina. Improving search in peer-to-peer networks.
In Proceedings of ICDCS 2002, pages 5–14, Vienna, Austria, July 2002.

[19] B. Yang and H. Garcia-Molina. Designing a super-peer network. In Pro-
ceedings of ICDE 2003, pages 49–60, Bangalore, India, March 2003.

22

