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Abstract. Partial-match queries return data items that contain a sub-
set of the query keywords and order the results based on the statistical
properties of the matched keywords. They are essential for information
retrieval on large document repositories. However, most current peer-to-
peer networks for information retrieval are based on distributed hash-
ing and as such cannot support partial-match queries efficiently. In this
paper, we describe an efficient and scalable technique to support partial-
match queries on peer-to-peer networks. We observe that the combina-
tions of keywords in the queries are only a small subset of all possible
combinations of the keywords in the documents. Therefore, we propose a
distributed index structure, called a distributed pattern tree (DPTree),
to record frequent query patterns, i.e., combinations of keywords, learnt
from the query history at each node in the network. Using this index, a
query can identify its best matching patterns quickly and data lookup
can be done in logarithmic time with respect to the network size. Our
simulation studies on the TREC data sets have shown promising results
in comparison with other previous approaches.

1 Introduction

While the decentralized nature of peer-to-peer file sharing systems enables ro-
bustness and scalability, it also poses great challenges for resource lookup in these
systems. Most existing peer-to-peer approaches do not support complex queries
efficiently. Unstructured peer-to-peer systems maintain no forward knowledge
for remote computers. As a result they are essentially in the dilemma between
network coverage and bandwidth cost while searching, whether using simple or
complex queries. Structured peer-to-peer systems, such as Chord [6] and Pas-
try [2], are mostly based on distributed hash tables (DHT). They determine
the hosting peer(s) of a data item by applying hash functions on the descriptors
(e.g., the keys) of the data item. Therefore, they can quickly route a query to the
destination where matching data items can be found, but they only allow exact
match, i.e., the query and the descriptors of the data items must be identical.
Exact match does not meet the needs of full-text keyword queries. It is difficult
for such structured peer-to-peer systems to support more complex queries such
as partial-match queries efficiently.
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Generally speaking, a partial-match query returns data items that contain
the query keywords and ranks the results according to the matched keywords.
For example, a full-text retrieval system accepts keywords as the query, and
retrieves and ranks documents containing the keywords. There are many ranking
functions. In this paper, we adopt the inner product similarity because it ranks
documents purely based on the matched keywords without considering other
non-matching keywords in the documents. Inner product is not only simple but
also suitable for users who are looking for some relevant documents (i.e., most
web search users). For example, assessors for TREC relevance judgments consider
a document to be relevant to a query if any slice of the document is relevant to
the query [21].

We note that most existing peer-to-peer networks for information retrieval are
based on distributed hashing and as such cannot support partial-match queries
efficiently. In this paper, we propose to develop a distributed index called DP-
Tree which supports full-text partial-match queries efficiently on peer-to-peer
networks. The idea is that each node manages a list of relevant documents
for popular queries, and organizes the document lists to be searchable within
O(log N) time where N is the total number of participating nodes. In this pa-
per, we use the term pattern to represent the (unordered) set of keywords that a
query contains. While the number of possible patterns is astronomical, given the
large and ever-growing document repositories nowadays, we observe that only a
small portion of the patterns are frequently used in the queries. This observation
motivates us to focus on frequent patterns mined from the query history. In fact,
query history has been utilized successfully in many peer-to-peer search systems
to improve the performance [8, 11, 22].

To support the organization of patterns and pattern mining, we developed the
distributed pattern trees (DPTree). By definition, a DPTree is a tree structure
that can be implemented on one or more computers: a node can be implemented
on more than one computer, or alternatively, the whole tree can be implemented
on one computer. Each DPTree node corresponds to a pattern. In particular, the
root of a DPTree represents a single-word pattern, its children are responsible
for 2-word patterns, and its grand children correspond to 3-word patterns, etc.
Each node maintains an index to the list of documents matching the pattern
that the node maintains. For clarity, we hereafter use the terms DPTree node to
refer to the node itself, the pattern it maintains or the machine (or machines)
that implement the node when no ambiguity arise.

A DPTree node is capable of initiating, forwarding and responding to queries.
During the search procedure, a DPTree node selectively records a query history,
from which frequent patterns can be mined periodically. A DPTree starts with
a single-word pattern (i.e., the root node) and is expanded and adapted dynam-
ically based on the frequent patterns found. The roots of the DPTree’s form
an addressable network using distributed hash tables. By applying mining tech-
nique on query history, our approach is able to answer most queries quickly and
precisely by managing a suitable number of frequent patterns. In addition, we
employ random access sequence on patterns to establish strict mapping between
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a pattern and the DPTree that it resides. This eliminates redundant patterns
across DPTree’s without breaking the storage and network load balance among
the peers. Another data structure called sub-tree summary enables a DPTree
node to estimate its entire sub-tree in an economical way, which spares overlay
maintenance cost.

We conducted simulation over TREC data and compared our system with
other two systems [3, 17] which are to be introduced in the next section. The
experimental results show that our approach achieves significant gain on search
effectiveness and efficiency.

The remainder of this paper is organized as follows: Section 2 introduces
some related works. Section 3 describes the basic DPTree approach in detail.
We discuss some improvements for the basic approach in section 4 concerning
redundancy and maintenance. Section 5 presents our experimental results and
Section 6 summarizes our work.

2 Related Work

To our current knowledge, no authoritative peer-to-peer approaches were found
for partial-match full-text queries. However, concerning the larger domain of
similarity search, there are some impressive works [3, 4, 13].

pSearch [3][4] and SSW [13] use Latent Semantic Indexing (LSI) to map doc-
uments into a semantic vector space and perform search based on the Euclidian
distance between the query point and the document points. In especial, pSearch
is developed on top of CAN. In addition to the use of LSI, pSearch applies
rolling index and register a document to p places in the CAN using p separate
partial semantic spaces. This reduces the dimensionality and therefore enables
CAN to manage full-text documents. In SSW, computers form clusters, each of
which manages non-overlapping regions of the semantic vector space. A clus-
ter is split into two at a certain cluster size when new nodes join the network.
Every computer in a cluster knows its region and splitting history, which are
used to compute a unique ID for the cluster. All the clusters form a circle with
clockwise ascending cluster ID’s. A query message computes a partial cluster ID
using available splitting history and hops along the circle in a greedy manner
until it reaches the cluster with the complete ID. Query routing is efficient in
both pSearch and SSW. pSearch and SSW split successively the vector space
into cells and position data points according to the cells that they reside in.
These approaches work well with similarity metrics such as cosine or Euclidian
distance. They are, however, inherently not applicable to partial match. This is
because although various document ranking metrics (e.g., inner product) can be
applied to process partial-match queries, none of the metrics follow the triangle
rule (i.e., dAC ≤ dAB + dBC for any three points A, B,and C, where dXY is the
distance between point X and point Y .). This indicates that documents relevant
to a query are not guaranteed to be similar to each other. As a result, the basic
assumption of pSearch and SSW does not hold that data points relevant to a
query reside in a small number of adjacent cells.



518 D.J. Zhao, D.L. Lee, and Q. Luo

Efforts were made to address the particular issue of partial-match query [5, 10,
15, 17, 18]. One approach [15] assigns every keyword set that appears in the net-
work a computer which indexes a list of relevant documents for the keyword set.
A document is said to be relevant to a keyword set if all of its keywords co-exist in
at least one slice (or a window) of the document. While this method does partial-
match search quickly, it bears large storage and maintenance overhead since, with
no selectivity, it will possibly supervise a huge number of keyword sets.

Another approach [17] applies joins in distributed database to work with
partial-match search. It maintains a list of documents for each single keyword.
To compute the result set for a multi-keyword query consisting of more than one
keywords, it starts with the first keyword and locates quickly a list of relevant
documents. A bloom filter is computed based on the document list retrieved
which is much smaller in size compared to the list of relevant documents. The
bloom filter is sent to the next keyword along with the query. Upon receiving
the query and the bloom filter, the computer responsible for the next keyword
will integrate the bloom filter and its document indices into a new relevant list.
This method is efficient for small data sets. However, it is shown [9] that the
bloom filter consumes significant bandwidth cost in large-scale networks.

3 Partial-Match Search Using Distributed Pattern Trees

Our observation is that compared to the huge number of possible keyword sets,
only a very small portion of them are frequently used as queries. Therefore, it
is unnecessary as well as infeasible to create a document list for every possible
pattern. This motivates us to use distributed pattern trees that extend them-
selves from query history. The DPTree’s manage a tree hierarchy of popular
query patterns. Every node for a DPTree is associated with a pattern and is rep-
resented by a cluster of strongly connected computers responsible for a pattern.
The parent-child relationship between two DPTree nodes indicates the contain-
ment relationship between their patterns. A pattern P2 is said to contain another
pattern P1 if and only if all keywords that appear in P1 also exist in P2. The
root of a DPTree is a pattern of a single keyword. The root nodes are positioned
using distributed hash table while the single-word patterns that they manage
serve as the key. Among a few applicable DHT’s [1, 2, 6], we choose Chord [6]
for placement of pattern tree roots.

During a series of query sessions, every DPTree node selectively collects its
query history and mines the frequent patterns periodically. The DPTree’s, ini-
tially consisting of only roots, are then expanded dynamically as new frequent
patterns are discovered. A keyword based search starts from one single word
clusters and is propagated along the pattern trees until the patterns that best
match the query are reached.

3.1 Overlay Formation

We now discuss the construction of the overlay network. In essence, our approach
uses distributed pattern trees on top of the Chord protocol. Figure 1 displays a
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Fig. 1. Distributed pattern trees positioned along a Chord ring

simple example of the network containing five DPTree’s, rooted at A, B, C, D,
and E, respectively. Each node is labelled with the pattern that it manages.

In the initial state, a DPTree contains only the root, which corresponds to a
single-word pattern. The DPTree’s are generated dynamically. When a DPTree
node Ni receives a query, it checks if it fully matches the query. If so, it answers
the query. If not, it checks if any of its child nodes matches the query. If a match
is found, the query is forwarded to the corresponding child node for processing.
Otherwise, Ni is considered the best matching node and the answers are returned
from Ni. Since Ni does not fully match the query, it records the query in its query
history. Algorithm 1. describes this query logging procedure.

Algorithm 1. Query logging during a search session
Input:

N is a node of a DPTree
Q is a query message
P is the peer that initiates a query

Procedure: query(N,Q, P )
1: if N fully matches Q then
2: retrieve(N,Q, P )
3: else
4: if ∃N ′, N ′ is a child of N and N ′ matches Q then
5: query(N ′, Q, P );
6: else
7: retrieve(N,Q, P );
8: log Q in the local query history

Procedure: retrieve(N,Q, P )
9: flood Q within the cluster of computers for N ;

10: return the highest-ranked documents to P ;

A DPTree node, say node N0, monitors its own query history. It mines peri-
odically the frequent query patterns using any pattern mining methods such as
Apriori [19] and Eclat [14]. If N0 contains t words, the pattern mining process
mines all frequent patterns containing t + 1. A new node is created for each of
the mined frequent patterns and becomes the child of N0.
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In the DPTree, the parent and child nodes can communicate with each other
and know each other’s patterns. Suppose N0 manages pattern P0. To create a
child node, N1, whose pattern is P1 (P0 ⊂ P1), the list of documents maintained
by N0 is split such that documents that match N1 are moved to N1. In addition,
queries in N0’s query history that are longer than P0 are moved N1.

Recall that DPTree nodes are distributed on a set of machines and that a
DPTree node can be implemented on more than one machine. To minimize the
network cost for DPTree node splitting and to balance the overlay maintenance
overhead among the peers, we use a splitting strategy as follows,

1. for every machine involved, count the number of its indexed documents that
match P1 and rank the machines using their counts;

2. assign machines to the new node N1 in descending order of the machines’
ranks;

3. stop splitting when the storage for the document indices are roughly balanced
between the machines managing node N0 and those managing node N1.

Node N0 notifies the creation of the new node N1 to its parent. The parent
is responsible for two tasks:

1. it checks if the same pattern exists by polling all of its children with pattern
P1; if the same pattern is found, it asks the two corresponding tree nodes to
merge into one;

2. if P1 does not exist in the children, the parent continues to look for chil-
dren that match a sub-pattern of P1 and build unidirectional links from the
matching children to N1.

The unidirectional links (shown as dotted curves in Figure 1) are used to
ensure that every pattern of the pattern tree can be reached from the root in
a greedy manner. These links lower the search cost by relaxing the strict tree
structure of DPTree.

At the initial stage, there may be insufficient query history available for pat-
tern tree generation. As an alternative, a pattern tree can extend itself by mining
the frequent patterns based on the label of its indexed documents.

3.2 Maintenance and Search

A machine or a peer in our peer-to-peer network is capable of initiating two
classes of operations: the maintenance operation when a peer joins or leaves the
network and the search operation when a peer submits a query. In this section,
we discuss how these operations are performed in the order that they appear
during the lifetime of a peer.

The maintenance and search operations involve four types of messages. Table 1
lists the information that the four types of messages carry, where foreign index
means the index for a document on a remote peer.

Among these messages, peer join and document registration messages are for
the peer joining operation; query and peer leave messages are for search and
peer leaving operations, respectively.
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Table 1. Description of messages used in the system

Message Name Message Information

peer join peer label, peer address
document registration document label, registration key,

peer address
query keyword list, peer address

peer leave foreign indices, query history, peer address

Peer Joining. When a peer Pnew joins a network, it first computes the label
for itself and generates a peer join message. While a peer label can be defined in
various ways, we use the centroid of the peer’s local document set as the peer’s
label. This method takes advantage of data locality and query locality, and hence
helps to reduce maintenance and search costs.

Pnew sends its peer join message to an existing peer P0 randomly selected in
the network. The message is then directed to a DPTree root Nr which matches
the most frequent word in Pnew ’s local repository. Nr can be located by following
the tree edges from P0 to P0’s tree root, Nr0, and along the Chord ring from
Nr0 to Nr. This operation is efficient because:

1. the height of a DPTree is small, since DPTree height is bounded by the
lengths of the user queries which are typically short [23];

2. searching on the Chord ring takes only logarithmic time with respect to the
number of pattern trees, and only the tree roots are positioned along the
Chord ring.

Upon receiving Pnew ’s join message, Nr computes its recruiting priority with
respect to Pnew . The recruiting priority of all of Nr’s child nodes are also com-
puted. The recruiting priority between a tree node N and Pnew indicates how
likely Pnew is going to join N . Formally, N ’s recruiting priority is defined as
follows.

rp(Pnew , N) = LN ∗ Sim(Pnew, N), LN = ARN ∗ (FIN/CapN),

where Sim(Pnew, N) denotes the similarity between Pnew and C. The label of
a DPTree node is the pattern that it manages. The factor LN in the equation
evaluates N ’s workload for maintaining foreign indices and for processing query
requests. To compute LN we use N ’s recent access rate ARN (i.e., the number of
messages received/forwarded/returned during a time unit) and the consumption
ratio (i.e., the percentage of storage that’s already consumed) of N ’s local stor-
age which is represented by N ’s current storage for foreign indices, FIN , over
N ’s capacity, CapN . This indicates that the possibility of a new peer joining a
DPTree node is subject to two factors: the peer’s relevance to the tree node and
the maintenance overhead of the node. Therefore, the use of recruiting priority
helps balance the load among the tree nodes.
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If Nr gets the highest recruiting priority, Pnew joins the cluster responsible for
Nr. Otherwise, the peer join message is forwarded to the child of Nr which has
the highest recruiting priority and the join process continues in a similar way.
After the peer joins a tree node, it prepares the document registration messages
for each of its local documents. The registration key in a document registration
message is a word appearing in the document and is used to find a pattern tree
root. Pnew ’s documents are then published to all of the relevant tree nodes using
the document registration messages.

Search. The search consists of two steps. In the first step, when a peer P
initiates a query, the query message is propagated to the DPTree roots that
match one of the query keywords. A query is routed from the starting peer to
the relevant roots in the same way as a peer join message is routed. Note that it
is possible that a query word does not match any of the DPTree’s on the Chord
ring. In this case, a failure message is returned since the query word is obviously
beyond the global vocabulary.

In the second step, a separate search process is executed on each of the relevant
DPTree’s. Upon receiving a query message, a DPTree node (or, more precisely, a
peer responsible for the DPTree node) first checks whether it is the most similar
node to the query, and responds to the query if it is. Otherwise, the query is
propagated to a randomly selected child node that is more similar to the query.
The detailed procedure is described in Algorithm 1. in Section 3.1.

When the second step completes, we are able to identify the tree nodes that
best satisfy the query, although they may not be perfect matches. When a tree
node decides to answer a query, it uses the document labels of its foreign indices
to compute the relevance score and returns the top M results, where M is a
pre-defined number. If multiple DPTree’s are contacted during a search process,
the query initiator will do a local re-ranking after all query results are returned.

Peer Leaving. When a peer leaves the network, it hands its foreign indices
and query history to one of its neighbors in the cluster. If a leaving peer is the
last peer in the cluster, it contacts a neighboring cluster which bears the lowest
maintenance overhead and asks the neighbor to take over its task.

In addition to the activities mentioned previously, a peer may fail unexpect-
edly. Our system is insensitive to single peer failure due to the use of clusters.
As an alternative, the foreign indices can be replicated within a cluster. Should
a peer fail, the peers within the same cluster will seamlessly take over its job.

4 Improvements

After we describe the basic model, we are now able to estimate theoretically the
performance of our DPTree approach. The network costs can be formulated as
follows.

CSearch = O(log N ′ + QLength + 2 ∗ M); (1)
CJoin = O(log N ′ + (log N ′ + TSize) ∗ D ∗ W ). (2)
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We use N ′ to denote the number of clusters that manage DPTree roots, and
use N to denote the number of peers in the overlay network. N ′/N is about 1/3
in our experiments. Equation (1) summarizes the search cost for a query with
QLength query words if M query results are to be returned. Equation (2) shows
the join cost for a new peer with D documents and on average W words per
document. TSize is the average number of nodes contained in a DPTree. The
first item in the equation is the overlay maintenance cost, while the second item
is the document registration cost.

The above equations for cost estimation suggest DPTree’s superiority in
searching. However, they also reveal the non-trivial cost for peer joining or
leaving. In this section, we propose two methods, random access sequence and
sub-tree summary, to cope with the considerable maintenance cost.

4.1 Random Access Sequence

The DPTree-based network contains a certain degree of redundancy. For exam-
ple, a query with three words A, B and D may be directed to DPTree(A) as
well as DPTree(B). In a network as shown in Figure 1, both node AD under
DPTree(A) and node BD under DPTree(B) will have query ABD in their query
history. Therefore, it is possible that the pattern ABD will appear in more than
one DPTree, as shown in blue in Figure 2.
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BC CD
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 root

A tree node is managed
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ABD

ABD

Fig. 2. Redundancy in the network

To eliminate redundant patterns, we generate a random access sequence
(RAS) for every multi-keyword query. RAS determines the order that the query
keywords are processed. When a query is initiated, the search process generates
the random access sequence of the query, and contact DPTree’s according to
the order of the single keywords listed in RAS. Similarly, when a new frequent
pattern is mined, RAS is used to determine which DPTree is going to create a
node for the new pattern. Given a multi-keyword query Q, the random access
sequence is generated as described in Algorithm 2.

The use of random access sequence avoids redundant patterns across DP-
Tree’s. As a result, the cost for document registration and search is decreased.
In addition, applying RAS does not break the balance of the storage and
network workload because the access sequence of a query is random. Therefore,
although the search process favors some DPTree’s over others with respect to



524 D.J. Zhao, D.L. Lee, and Q. Luo

Algorithm 2. Random access sequence
Input:

Q is a query message
Output:

Q whose keywords are re-ordered
Procedure: RAS(Q)
1: order the keywords in Q alphabetically;
2: srandom(Q)
3: s = number of keywords in Q;
4: for i=s to 2 do
5: p = [random() mod (i − 1)] + 1;
6: swap the i th keyword and the (i − p)th keyword in Q;
7: return Q;

a single query, globally the storage and network overheads of the DPTree’s are
not biased.

4.2 Sub-tree Summary

It is shown that the bulk of the peer joining cost comes from document reg-
istration. The reason is that in the document registration procedure, when a
document tries to find relevant patterns in a DPTree, it has to explore every
node of the DPTree, which involves a large amount of data transmission among
the peers. We use a data structure called sub-tree summary to avoid unneces-
sary DPTree node access and as such to reduce the document registration cost
by avoiding unnecessary DPTree node access.

In essential, every DPTree node keeps a summary of the sub-tree under it.
The summary of a sub-tree contains the following information:

– the location of the sub-tree root;
– for every node N in the sub-tree, a < PN , RN > pair, where PN is the pattern

for node N and RN is the minimum relevance score that N permits.

A document is forwarded to node N if the relevance score between the docu-
ment and PN is greater than RN . Using the sub-tree summaries, a new document
will have to access only the DPTree nodes along the path to a relevant node.

To estimate the relevance score threshold RN for a pattern tree node N , the
following information is used:

– The relevance score of every foreign index that N contains.
– The maximum number of foreign indices that N will maintain, denoted as

M ′
N . N is set to be proportional to the number of queries that N does not

perfectly match but answered.
– An amplification factor γ(γ > 1) which is universal for all nodes.

We assume that with respect to a pattern PN , the relevance score distribution
of all its relevant documents follows the Zipf’s law. We use the current set of
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foreign index to approximate the distribution curve. We set the maximum foreign
index number with two values: M ′

N and MN = γ ∗ M ′
N . We use M ′

N and MN to
compute two relevance score thresholds, R′

N and RN , respectively (R′
N > RN ).

RN is sent to N ’s parent node for sub-tree summarizing. We will explain later
in this section why we use two thresholds.

The sub-tree summaries are built as follows:

– DPTree node creation. When a DPTree node N0 creates a new child
N , it creates a summary for the resulting sub-tree containing only N . The
summary contains the location of node N and < PN , 0 >. When the sub-tree
summary for any DPTree is updated, the node propagates the update to its
parent, whose sub-tree summary is updated consequently.

– Foreign index update. A node N knows its relevance score threshold RN

which is used for sub-tree summarizing.
• When a foreign index is deleted from node N , N uses the resulting new

list of foreign indices to compute the new values for its two relevance score
thresholds R′

N new and RN new (R′
N new > RN new , RN > RN new). If

R′
N new < RN , we update the pair < PN , RN > with < PN , RN new >

for all nodes along the path from N to the pattern tree root.
• When a foreign index is inserted into node N , nothing is done. However,

when a document reaches a node N but is rejected, N will compute
the updated value for its relevance score thresholds RN new and replace
< PN , RN > with < PN , RN new > if RN new > RN .

This method greatly reduces the number of peers accessed for document regis-
tration, and thus reducing the registration cost. However, it introduces overheads
for sub-tree summary update. We minimize the sub-tree summary update cost
by setting a looser relevance score threshold than the actual estimation. This
allows the sub-tree summaries to be updated only after a number of successive
index deletions have been done. It should be noted that the value of the ampli-
fying factor γ is a trade off between the redundant peer access cost and sub-tree
summary update cost.

5 Experiments

To evaluate the proposed distributed index, we compare our method to the
Bloom filter approach [17] which is specifically for partial-match queries and
pSearch [3] which is a well-studied peer-to-peer search method.

We apply the vector space model and label a document as a term vector.
“Term frequency inverse document frequency” (TFIDF) is used to compute the
weight of a term in a document. Since it is impractical to obtain the global doc-
ument frequency in a dynamic peer-to-peer system, we use the local document
frequency instead. Both our DPTree and the bloom filter method are built on
top of the Chord protocol.

Given a keyword based query, the goal of search is to find a specified number
of documents that are most relevant to the query.
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5.1 Simulation Setup

The document set consists of about 500,000 documents taken from Volumes 41

and 52of the TREC collection, consisting of about 500,000 documents. The query
keywords were generated from the global keyword database according to their
document frequencies in the Web repository maintained by the UC Berkeley and
Stanford Dig- ital Library projects (See http://elib.cs.berkeley.edu/docfreq/),
which consists of 49,602,191 pages.

All programs were written in Java (JDK 1.2.0) and run on a PC with 2.5G
Pentium 4 processor and 512M memory.

We used the following metrics in the simulation:

1. Effectiveness is measured by the average precision and recall. We define
the hit list for a query as a list of all available documents on the network
that match the query. Let the hit list be H and the returned result list be R

for any query. Precision is defined as |R∩H|
|R| , and recall is defined as |R∩H|

|H| .
2. Search Path Length is defined as the average number of logical hops

traversed by a query message before it reaches the destination.
3. Search cost is defined as the average number of messages that a query

incurs in the search process.
4. Maintenance cost is defined as the average number of messages used to

handle peer activities including peer joining and leaving.
5. Storage cost is defined as the average number of foreign indices that a peer

maintains.

The simulation parameters, their range of values and default settings are
specified in Table 2.

Table 2. Simulation parameters

Description Range Default

N Number of peers in the network 1k - 20k 10k
n Number of document per peer 1 - 20 5
L Length of queries 1 - 5
M Number of document returned 20
λ Number of operations per round 100
w Number of warm-up queries used 0 - 5k 1k

We used a large number of peers in the simulation to evaluate the scalability of
the three methods. The number of keywords in a query ranges from 1 to 5 with a
1 TREC Volume 4, May 1996 Collection includes material from the Financial Times

Limited (1991, 1992, 1993, 1994), the Congressional Record of the 103rd Congress
(1993), and the Federal Register (1994).

2 TREC Volume 5, April 1997 Collection includes material from the Foreign Broadcast
Information Service (1996) and the Los Angeles Times (1989, 1990).
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uniform distribution. This was to approximate the real-word query lengths [16].
We set the number of returned documents to 20, which is the typical number
of documents that most web users are willing to examine. To generate a new
peer, we varied the number of documents per peer from 1 to 20 and assigned
documents randomly selected from the TREC collection. As a result, duplicated
documents may exist in our simulation. Since our method applies mining tech-
niques in building up the distributed index, a longer warm-up period would
likely yield better search performance. To examine the effect of the mining tech-
niques, experiments with no warm-up queries and with a rich query history
were run.

5.2 Comparison

We conducted extensive experiments to compare our work with two other ap-
proaches: the Bloom filter approach and pSearch. According to the configuration
in [3], we let pSearch take 4 partial semantic spaces, and the dimension of each
partial semantic space was 2.3logN where N was the network size. Considering
the unavailability of a global document set, we randomly picked a subset of 5,000
documents from the TREC collection and LSI via singular value decomposition
(SVD) was applied to to the subset to generate the semantic space. For simplic-
ity, we denote our DPTree method by DPTree and the Bloom filter approach by
BLF (BLF for bloom filter) in the later experiments.

First, we compared the search effectiveness of the three methods. Figure 3
presents the precision-recall curve for networks with 1,000 to 20,000 nodes. Our
method (DPTree) yields a much higher search quality especially when the num-
ber of peers in the network is large. Its retrieval precision is about 35% better
than both of the other methods when the network size N = 20k. This was due
to the use of the distributed pattern trees. By mining the frequent patterns dy-
namically, our approach adapts user needs and is insensitive to network size. It
should be noted, however, that inner-product was used as the similarity measure
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in the experiments and that since pSearch was not designed for partial-match,
it is expected to yield poor performance.

In Figures 4, 5, and 6 we examined the scalability of the three methods in
terms of the search cost, search path length and system maintenance cost, re-
spectively.

Search path length is an important performance measure since it affects the
query response time. shows that the search path in our method is shortest. To
identify the destination for a query, our system takes almost only half of the
number of hops compared to the other two approaches. The search path length
was logarithmic with respect to the network size for all of the three methods,
but our method carried a smaller constant term since DHT was applied to the
tree roots instead of the entire set of peer computers in our system.

Figure 5 depicts the search cost in terms of the total number of messages
transferred for a query. Our methods outperformed the other two especially
when sufficient query history was available. With our default setting (N = 10k,
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w = 1k), DPTree on average spent about 70% less messages than pSearch and
about12% less than BLF. pSearch incurred a much higher cost during search
since it performed four separate searches over the entire network for every
query.

We evaluate the average maintenance cost of each method by setting the
rates that peers joined and left the network to be the same and varying the
network size from 1k to 20k nodes. No query was performed during this round of
experiments so that the system maintenance cost was isolated from the search
cost. Figure 6 presents the maintenance cost of the three methods. The effect of
sub-tree summary for DPTree was also measured, with the amplification factor
γ set to 1, 1.2 and 2. It can be observed that when the γ is at 1.2, applying sub-
tree summary can reduce the maintenance cost by 25% compared to our basic
approach (see Figure 6). Thus the effectiveness of sub-tree summary is justified.
However, Figure 6 also shows that except for pSearch, both our approach and
the bloom filter approach incur a considerable maintenance overhead when peer
membership changes very frequently.
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Fig. 8. Distribution of storage and network load among peers

To further analyze the network maintenance cost, we varied the number of
documents that a peer held from 1 to 20, and displayed in Figure 7 the over-
lay maintenance cost and the document registration cost separately. The y-axis
of Figure 7 is displayed in logarithmic scale. The experimental result indicates
that the vast majority of the maintenance cost for peer membership changes
comes from foreign document registration. Therefore, although our method in-
curs non-trivial network cost in a highly dynamic environment, we can apply
various techniques to reduce the cost. For example, lazy update can greatly re-
duce document registration cost when some peers keep joining and leaving the
network frequently. Moreover, document registration can even be suspended dur-
ing a period of heavy network traffic since it does not affect the correctness of
the overlay. As a result, we believe that our approach could scale in terms of
query efficiency, search cost as well as maintenance cost.

To estimate the workload distribution among all the peers, we plotted the
network and storage loads with respect to the peer ID’s in Figure 8. Figure 8(a)
displays the number of foreign indices that each peer maintains, and it shows
that the storage load for most peers was close to the average load. In addition,
the maximum number of foreign indices per peer does not exceed 1,500 while the
average number is 514. Figure 8(b) displays the number of messages processed
during a certain time period for 10,000 peers. It shows that the distribution of
network load is balanced among peers.

6 Conclusion

In this paper we proposed a distributed index that supports partial-match search.
We developed the distributed pattern trees that record query history in a selec-
tive way and extend themselves by mining frequent patterns from the query
history. The roots of the pattern trees are positioned on the overlay network us-
ing any distributed hash table method. We proposed the random access sequence
and sub-tree summary techniques to decrease the maintenance cost.

Experiments showed that our approach yields high precision for keyword-
based partial-match queries. Our method was also proven to be efficient in query
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routing. The performance of data look-up improves after a certain warm-up pe-
riod. It was also shown that our approach achieves good load balance. Although
peer membership changes incur a considerable maintenance overhead, the ma-
jority of the costs comes from foreign-index publishing, and the network cost for
the peer join operation was small. We argue that foreign-index publishing can
be suspended in a heavy traffic period and that peer join and data lookup are
not affected by this suspended operation. Moreover, applying lazy update can
further reduce the maintenance cost. As a result, our approach is scalable.
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