
Distributed Cross-Layer Scheduling for In-Network Sensor Query Processing

Hejun Wu Qiong Luo Wenwei Xue
 Department of Computer Science

The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

{whjnn, luo, wwxue}@cs.ust.hk

Abstract

In-network sensor query processing is a cross-layer
design paradigm in which networked sensor nodes
process data acquisitional queries in collaboration with
one another. As power efficiency is still one of the most
severe constraints in this paradigm, we propose a
distributed, cross-layer scheduling scheme for it. In
this scheme, each node employs its MAC, routing, and
query layers to negotiate with its parent its timing for
transmission and constructs a schedule for its query
processing. It then follows the schedule to compute,
communicate, and sleep in each query processing cycle.
This scheduling reduces wasted listening and receiving
as well as the switching between active and sleeping
modes. Consequently, it results in 50-60% of power
saving on real sensor nodes in our experiments.
Additionally, it outperforms two existing scheduling
schemes both on schedule construction efficiency and
on schedule quality.

1. Introduction

In-network sensor query processing systems such as
Cougar [23] and TinyDB [12][13] are promising for
data acquisitional applications of wireless sensor
networks (WSNs) [1]. With these systems, a user
injects SQL-style queries such as “select temperature
from sensors”, or “select avg(light) from sensors” into
the network through a PC. The networked sensor nodes
then work together to process the queries and send
results back to the PC. This in-network query
processing paradigm is more efficient and flexible than
centralized query processing [1]. Nevertheless, power
consumption remains a critical issue in these systems
[2][3]. In this paper, we propose a distributed, cross-
layer scheduling scheme for in-network sensor query
processing to address the power efficiency problem.

An immediate solution to reducing the power
consumption is to make the nodes sleep as much as
possible [9][12][13][16][24]. Along this direction, a
number of sleep scheduling schemes have been adopted
to enable nodes to sleep periodically during sensor query
processing [13][24]. These schemes roughly schedule
active and sleeping modes at a certain layer of a WSN
but do not use cross-layer information to construct a
complete query processing schedule. There are other

schemes that schedule the communication timings of
nodes during sensory data collection [7][9][16], but they
also ignore the operations in query processing such as
query injection, computation, and aggregation.

To further optimize the power efficiency of in-
network sensor query processing, we propose a
distributed cross-layer scheduling scheme. It involves
the interaction of the three layers, namely, the medium
access control (MAC) layer [20][24], the routing layer
[8][10][21], and the query layer [13][23]. As the query
processing systems usually use tree networks
[12][13][23], we focus on tree networks in this paper.
Similar to the existing schemes, our scheme aims to
reduce the energy waste [24] in WSNs.

It has been well established that idle listening
[11][20], overhearing, collision, and control packet
overhead are major sources of energy waste. Among
these four sources, idle listening and overhearing are the
dominating ones [17]. In our previous experience with
the MICA2 [6] networks, these two factors cost more
than 70% of the power during query processing [22].
Therefore, in our scheduling scheme, we focus on
reducing idle listening and overhearing and identify a
number of constraints for schedule construction to
reduce collision.

Specifically, in our scheme a node first checks what
transmission timing is applicable in its query processing
cycle and sends this information to its parent. This
applicable transmission timing is the possible time
within which the node can transmit. Then, the parent
sends the node the assigned transmission timing based
on the applicable transmission timing information
received. Next, the node arranges its schedule for its
other query processing tasks in all layers. Finally, the
node starts to follow its schedule for query processing
and it no longer needs to listen or to send control
packets before transmission. These steps require the
information about neighbors only. Without causing
confusion, we refer to the neighbors of a node as the
nodes within its transmission range, including its parent
and children.

We have implemented our scheduling scheme on
real sensor nodes by modifying the source code of
TinyOS and TinyDB [19]. We have also performed
initial experiments on real sensor nodes as well as on an
emulator to evaluate our scheduling scheme.
Additionally, we have conducted simulation studies to
compare our scheme with two other existing scheduling

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

schemes. The results show that our scheme significantly
improves the power efficiency of in-network sensor
query processing.

The remainder of this paper is organized as follows.
Section 2 reviews the related work on scheduling
schemes in WSNs. Section 3 gives an overview of our
scheduling module. Sections 4 and 5 present the design
and implementation of our proposed scheme. We
discuss our experimental results in Section 6 and
conclude in Section 7.

2. Related Work

Scheduling has been applied to different layers of a
WSN to enable a sensor node to sleep without affecting
its other activities. For instance, TinyDB schedules at
the query layer: a node wakes up at the start time of each
sample interval [13] and keeps active for a fixed period,
typically four seconds [3]. S-MAC schedules at the
MAC-layer: a node sleeps for some time, and then it
wakes up and listens to the wireless channel [24]. As
these scheduling schemes only roughly control the
active and sleeping timings, they do not reduce the
energy waste significantly. In the following, we discuss
several scheduling schemes that operate at a finer
granularity and are closely related to ours.

Florens et al. studied a centralized scheduling
algorithm for data distribution and collection in WSNs
[7]. In their algorithm, the sink allocates the
transmission timing to all other nodes in a WSN. This
centralized nature requires the sink to know the current
network topology, which is usually difficult in practice.
Furthermore, it is often costly to disseminate schedules
from the sink to all other nodes in a network.

To avoid the problem in centralized scheduling, a
number of distributed scheduling schemes have been
proposed. A representative scheme is Flexible Power
Scheduling (FPS), which is a distributed on-demand
power-management protocol for tree networks [9]. In
this protocol, a parent randomly chooses reserved slots
and broadcasts the reserved slots. A child sends a
request for a specific reserved slot if it has some
message to send, and the parent confirms the request if
the slot has not been requested by other children. The
protocol helps reduce the collision between children of
the same parent, a.k.a., siblings.

However, one problem of FPS is that it does not
reduce the collisions between neighbors that are not
siblings. Suppose two nodes A and B are neighbors, and
node A receives at times 1 and 2 from its children. If
node B transmits at time 1 or 2, collision will occur at
node A at time 1 or 2. In such scenarios, collisions may
become even worse with scheduling than without.

Another example of distributed scheduling is a
scheme proposed by Sichitiu [16]. In this scheme, a
source node first broadcasts a special route setup packet,
RSETUP, to set up a route and a temporary schedule

with a neighbor. If the RSETUP packet finally arrives
at the sink, the nodes along the path will set their
temporary schedules to be permanent schedules;
otherwise, the temporary schedule of the source node
will be removed. If collision occurs during this setup
process, the RSETUP packet will be postponed to the
earliest time when the node does not transmit or receive.

Nevertheless, Sichitu’s scheme does not consider the
scenarios in which nodes may not get a schedule.
Because the nodes are synchronized under the
scheduling scheme and their tasks are similar, collisions
may occur frequently. Consequently, even after the
RSETUP transmission of a node is postponed, collisions
may still occur when the transmission is started again.
In our experience with real WSNs, we often find that the
sink cannot receive data from some nodes. These nodes
are called dead nodes. The query result accuracy in
sensor query processing is low if the number of dead
nodes is large.

In consideration of the existing schemes and our
goal of improving the power efficiency of in-network
sensor query processing, we design our scheme to have
the following three unique features. First, our scheme
considers all tasks in query processing, including
transmission as well as query injection, computation and
in-network aggregation. Second, our scheme attempts
to allocate consecutive sleeping and transmission
timings to nodes. This consecutiveness helps save
power; otherwise, frequent switching of running modes
would increase power consumption [25]. Third, all
layers of a query processing system are involved in the
schedule construction and execution. This cross-layer
design improves the efficiency of the resulting schedule
as there is detailed timing information for each operation.

3. System Overview

A typical WSN setup for in-network sensor query
processing is shown in Figure 1. In this WSN, every
node has a unique ID. The server is used to post queries
to the sensor network and to receive query results from
the network via the sink connected to it. The sink
forwards commands and queries to the sensor nodes.
The sensor nodes process the queries and generate query
results. Finally, query results are forwarded towards the
sink, which in turn forwards these results to the server.

Sink node
ID: 0

Sensor node
ID: 2

Server

Sensor node
ID: 3

Sensor node
ID: 4

Sensor node
ID: 1

Figure 1. A typical WSN setup

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

In such a WSN, data acquisition is usually done in
the form of continuous queries [13], which collect data
at a fixed sample interval and repeat for a long time.
Due to their long running nature, these continuous
queries benefit more from a good schedule than
snapshot queries, which return results only once. In this
paper, we focus on continuous queries.

The architecture of a query processing system with
our scheduling module is shown in Figure 2. The
scheduling module is illustrated in the dashed box on the
left. The system works as follows. First, the routing
layer constructs a routing tree. Then, the sink may inject
a query into the network. A node starts to construct a
schedule when it receives a query. When all nodes
involved in the query have constructed their schedules,
the sink broadcasts a synchronization signal. In turn,
these nodes synchronize with the sink and start to run
following their schedules. During this process, both the
construction of the routing tree and that of the schedules
are reported from bottom up to the sink. When all
children of the sink have reported, the sink knows that
the routing tree or the schedule construction has
completed.

R o u tin g L a ye r

Q u e ry L a ye r

M A C L a ye r

R ou te M a in te n an c e

S e le c tion / P ro je c tion / Jo in / A g g re ga t io n

T ra n s m is s ion /
R e c e i v in g

R ou te S e le c tio n

C o llis i on D e te c tion

S c h e d u lin g M o d u le

S c h e d u le C on s tru c tio n

T im e S yn c h ron iz a tion

Q u e ry S c h e d u lin g

Schedule
Execution

Figure 2. Architecture of scheduling module

In the system, the scheduling module is mainly
responsible for three tasks. First, schedule construction.
Even though schedule construction is performed at the
routing layer, it requires information from both the
query layer and the routing layer. Second, time
synchronization. Time synchronization is done at the
MAC layer. We adopt the synchronization mechanism
designed by Su Ping, which has an accuracy of a few
milliseconds [15]. Since the time unit is at the level of a
hundred milliseconds in our scheme, this accuracy is
sufficient. Third, schedule execution. The execution of
the schedule on a node is to control the timing for each
task at all three layers.

We use a slot as the time unit in a schedule and
number slots in the form of periodic modular m, if a
sample interval has m slots [9]. Specifically, the slot
number s of the slot that starts at time t is computed in
Equation (1), given the slot length ls, the schedule start
time t0, and the number of slots m in a sample interval.

mmod
ls

tts 0

⎥⎦
⎥

⎢⎣
⎢ −= (1)

We define the length of a slot as the period within
which the largest data packet can be successfully
transmitted out of a node. Consequently, a slot assigned
to a task in query processing may be longer than needed.
Nevertheless, the power consumption caused by this
difference is little (at the micro-joule level on MICA2
motes). Furthermore, this additional time can be used to
tolerate the time synchronization errors.

Depending on the operations in a task, a slot can be a
sleeping slot, a transmission slot, a processing-listening
/ receiving (PL/R) slot, or a query injection /
maintenance (Q/M) slot. In a transmission slot, a node
sends a packet. In a PL/R slot, a node listens to the
wireless channel and receives data packets, if any. In a
Q/M slot, a node listens to the channel for a new query,
or sends or receives route maintenance packets. Most
routing protocols need such route maintenance packets
to manage routes between nodes [4][10].

In the following, we present schedule construction
and execution in detail. We omit the details of time
synchronization as it is not the focus of this paper.

4. Schedule Construction

Figure 3 shows the schedule construction module.
The algorithm NegotiateTransmissionSlots negotiates
the transmission slots for a node. It has two sub-
procedures: DetermineApplicableTransmissionSlots that
determines the applicable transmission slots for the node,
and AllocateChildrenTransmissionSlots that allocates
the transmission slots to the children of the node. After
the transmission slots are allocated for a node,
ConstructSchedule constructs the schedule on the node.

NegotiateTransmissionSlots

DetermineApplicableTransmissionSlots AllocateChildrenTransmissionSlots

Allocated
Transmission
Slots ConstructSchedule

Neighbor Information, Local Information

Schedule

Figure 3. Schedule Construction

This schedule construction module attempts to
follow a number of constraints so that in the resulting
schedule query results can be successfully transmitted to
the sink. These constraints are listed in Section 4.1.

4.1. Constraints for Schedule Construction
We formulate the following four constraints for

schedule construction.

(i) Neighbor nodes have different transmission slots.
(ii) Siblings have different transmission slots.
(iii) For any two neighbor nodes A and B, all children

of node A have different transmission slots from
node B.

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

(iv) The transmission slots of a parent node in each
sample interval are later than its children.

Constraint (i) ensures that the signals from a sender
do not clash with its neighbors’. However, if siblings
are not neighbors, they may simultaneously send packets
to their parent, where collision would occur. Constraint
(ii) is to avoid this kind of collision. Constraint (iii)
prevents another kind of collision, illustrated in Figure
4. In this figure, A and B are neighbors, and D is the
child of A. As B and D may not be neighbors, it is
possible that B and D transmit simultaneously, which
causes collision at node A. In addition to the first three
constraints, Constraint (iv) is necessary to allow a parent
to merge or to aggregate the query results from its
children. However, if there is no packet merging or
aggregation at the parent, Constraint (iv) is unnecessary.

C

S

A

BD

Figure 4. An example for Constraint (iii)

All of these constraints focus on collisions at the
parent node of a sender instead of completely collision-
free schedules because it is impractical for a WSN to set
up completely collision-free schedules in a distributed
way due to the high overhead. Moreover, most of the
times completely collision-free schedules are
unnecessary for query processing systems in practice;
these systems can work well as long as the query results
of a node can be successfully received by its parent. An
example of this non-parent collision is shown in Figure
5. In this example, nodes D and E are both neighbors of
B. If D and E transmit simultaneously, B may receive
colliding messages from D and E. However, the parents
A and C can still get correct messages since collisions do
not occur at nodes A and C.

E

C

M K

A B

D

P
Q

Node P is the parent
of Q

Node M and K are
neighbors
(NOT parent-child)

Figure 5. An example of the collision

Next, we prove that these constraints are sufficient to
ensure no collisions occur at the parents of the senders.

Property 1. Constraints (i) - (iii) ensure that no
collisions occur at the parent of a sender during
transmission.

Proof. We prove by contradiction. Suppose a collision
occurs at the parent P of a sender S and the four
constraints are observed. By the definition of collision
[18], there are two possible causes: (1) several neighbors
of P, including S, are sending to P simultaneously, or (2)
nodes S and P are sending simultaneously.

Assume that the collision occurs due to the first
cause. If among all sending neighbors, only sender S is
a child of P, then S has the same transmission slot as
some neighbors of P, which violates Constraint (iii).
Otherwise, it violates Constraint (ii). Hence, the first
cause is impossible as long as the constraints are
observed.

The second cause contradicts with Constraint (i)
since nodes S and P are neighbors.

4.2. Negotiation of Transmission Slots
 Following the constraints, we design the algorithm

in the scheduling module to reduce the collisions.
Algorithm 1 shows NegotiateTransmissionSlots in this
module, which runs on each node. It has two inputs.
One is the table of neighbor information, denoted as
NbrTbl. This table stores the information of a neighbor
node such as its node ID, hop count, parent node ID,
timestamp of the last received route maintenance packet,
and a flag indicating whether it is a child of the node.

Algorithm 1 . NegotiateTransmissionSlots
Input: NbrTbl , LocalInf
Output: TSI
1: switch (event)
2: case: ScheduleTimer fired
3: if ATS == null & (IsLeaf() or CTS != null)
4: ATS= DetermineApplicableTransmissionSlots
 (NbrTbl , LocalInf)
5: if ATS != null
6: if !IsSink()
7: send ATS to parent
8: else
9: TSI = AllocateSinkTransmissionSlots(ATS)
10: output TSI
11: if HasChildren() & CTS == null
12: CTS = AllocateChildrenTransmissionSlots
 (NbrTbl , LocalInf, CATS)

13: if CTS !=null
14: send CTS to children
15: case: received TSIQ from a non child / parent neighbor Q
16: mark TSIQ as non-applicable slots for transmission
17: case: received ATSK from a child K
18: insert ATSK to CATS
19: case: received CTSP from the parent node P
20: extract TSI from CTSP and broadcast TSI to neighbors
21: output TSI

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

The other input, denoted as LocalInf, is the
information of the node itself, such as the node ID, the
parent node ID and the hop count. The output is the
information of the allocated transmission slots of the
node.

There are four major variables in Algorithm 1.
Applicable Transmission Slots (ATS) describes all
possible slots for the node to transmit packets. Children
Applicable Transmission Slots (CATS) is the set of the
ATSs of all children of the node. Children
Transmission Slots (CTS) are the slots allocated by the
node to its children (if any), and the Transmission Slot
Information (TSI) describes the transmission slots
allocated by the parent of the node. These four variables
are all initialized as null.

Algorithm 1 uses a timer called ScheduleTimer,
which signals a timer event every time interval Tsh. Tsh
is set to be MAX_NBR_NUM * ls, where
MAX_NBR_NUM is a constant, the maximum number
of neighbors of a node, and ls is the length of a slot.
The length MAX_NBR_NUM * ls allows a node to have
sufficient time to receive the packets containing the
information of the transmission slots from its neighbors.

When there is a ScheduleTimer event, if the
applicable transmission slots of the node are not
determined yet, and if the node (1) is a leaf node or (2)
has successfully allocated transmission slots to its
children, DetermineApplicableTransmissionSlots is
called to determine the applicable transmission slots
(ATS) for the node. When the applicable transmission
slots are successfully determined, the node sends them
in a packet to its parent. After a parent node has
received all applicable transmission slots of its children,
AllocateChildrenTransmissionSlots is called to attempt
to allocate the transmission slots for the children. If the
allocation is successful, the parent sends the allocated
transmission slots (CTS) to its children.

When a node receives the allocated transmission
slots from its parent, Algorithm 1 on this node outputs
the allocated transmission slots (TSI) and broadcasts
them. If another node who is not the broadcasting
node’s child or parent receives this information, it marks
these slots as non-applicable slots for transmission (Line
16). That is, it will not use these slots as transmission
slots for its children or as applicable transmission slots
for itself. Since the sink node does not have a parent, it
allocates the transmission slots for itself when it has
finished the allocation of the transmission slots to all its
children (Line 9).

For reliability, a node replies an ACK when it
receives the applicable transmission slots from its child
or the allocated transmission slots from its parent.

4.2.1. The Sub-Procedures
Procedures 1 and 2 show two sub-procedures used in

Algorithm 1, DetermineApplicableTransmissionSlots
and AllocateChildrenTransmissionSlots.

Procedure 1 makes a node wait for two types of
neighbors that have not been allocated transmission
slots: (1) lower hop neighbors (Line 4); or (2) non-
sibling neighbors at the same hop but with a smaller
node ID than this node (Line 9). Lower hop nodes are
the nodes that have larger hop counts than this node.
This waiting mechanism makes the neighbors start at
different times to determine their applicable
transmission slots. The reason is that if the neighbor
nodes start this process simultaneously, there may be
conflicts in their applicable transmission slots.
However, this waiting mechanism may cause deadlocks
due to node failure or cyclic waiting. To break the
deadlocks, Procedure 1 uses two timeouts, HTimeout
and NTimeout. These timeouts will be discussed in
detail in Section 4.2.2 together with those timeouts used
in Procedure 2.

Using NeededPLRSlots and the known allocated

transmission slots of the neighbors, the function
FindAvailableSlots applies the four constraints to
determine the applicable transmission slots.
NeededPLRSlots is acquired from the query layer via
calling QueryLayer->GetNeededPLRSlot, which outputs
all slots needed in processing and receiving. To follow
Constraint (iv) in Section 4.1, FindAvailableSlots starts
searching for the available transmission slots that are
later than the latest allocated transmission slot of the
children. As illustrated by the example in Figure 6, the
operations of determining the applicable transmission
slots are similar to memory allocation. In Figure 6,
because slot 7 should be reserved for query processing
as required by the query layer, the applicable
transmission slots are 8-12.

Slot sequence number

1 8

Transmission slot of neighbors

Applicable transmission slots

3 4 5 9 10

Possible PL/R slots for the node (1-7)

6 72 11 12

Figure 6. Search applicable transmission slots

Procedure 1 . DetermineApplicableTransmissionSlots
Input: NbrTbl , LocalInf
Output: ATS if successful; otherwise null
1: HTimeout - -
2: if HTimeout > 0
3: for (i =0; i< NbrTbl.Size; i++) do
4: if IsLowerHopNbr(NbrTbl[i]) & !NbrTbl[i].TSI
5: return null
6: NTimeout - -
7: if NTimeout > 0
8: for (i =0; i< NbrTbl.Size ; i++) do
9: if IsSameHopSmallIDNbr(NbrTbl[i]) & !NbrTbl[i].TSI
10: return null
11: NeededPLRSlots = QueryLayer -> GetNeededPLRSlots()
12: ATS = FindAvailableSlots (NeededPLRSlots, LocalInf)
13: return ATS

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

Procedure 2 allocates transmission slots for the
children of a node. It makes the node wait for lower hop
non-children neighbors that have not been allocated
transmission slots yet (Line 4). This is to ensure the
transmission slots are allocated in the bottom-up order,
to observe Constraint (iii) in Section 4.1. In addition,
Procedure 2 does not allocate the transmission slots to
the children until the parent receives all of the applicable
transmission slots (ATS) from its children or CTimeout
is decreased to 0. Two reasons are involved. First, it
enables the children to receive their allocated
transmission slots in a single message to save the
communication cost. Second, it allows the parent to
allocate consecutive transmission slots to its children.

Procedure 2. AllocateChildrenTransmissionSlots
 Input: NbrTbl , LocalInf, and CATS
 Output: CTS if successful; otherwise null
1: PTimeout - -
2: if PTimeout > 0
3: for (i =0; i< NbrTbl.Size; i++) do
4: if IsLowHopNonChildNbr(NbrTbl[i]) & !NbrTbl[i].TSI
5: return null
6: CTimeout - -
7: if not received ATS of all children and CTimeout> 0
8: return null
9: CTS = FindAvailableChildrenSlots (CATS, LocalInf)
10: return CTS

The function FindAvailableChildrenSlots in
Procedure 2 allocates all children of a node with
transmission slots in consideration of their applicable
transmission slots and the allocated transmission slots of
the neighbors of the node. The constraints are observed
during the search for available slots. Figure 7 shows an
example of searching available slots for a child. In
Figure 7, the applicable transmission slots of the child
are 8-12 and the child needs two transmission slots. The
parent starts searching from 8 and finds that slots 8 and
9 are occupied by the neighbors of the node. Therefore,
the node allocates slots 10-11 to its child.

Slot sequence number

1
8

Transmission slot of neighbors

Applicable transmission slot of the child

3 4 5
9 10

6 72 8 9
11 12

Figure 7. Transmission slots of a child

4.2.2. Timeouts in the Sub-Procedures
Because a node waits for some nodes to be allocated

transmission slots in Procedure 1 or 2, deadlocks may
occur due to node failure or circular waiting between
neighbors. To break deadlocks, we use four timeouts in
these two procedures. Table 1 shows these timeouts.

HTimeout and NTimeout in Table 1 are used in
Procedure 1. HTimeout is designed for breaking the

deadlocks in waiting for lower hop nodes. Its value is
calculated using the hop count of the node and the
maximum number of hops (MaxHop). MaxHop is
obtained by making nodes broadcast their newest
knowledge about the maximum number of hops in the
network. With this initialization, the difference between
the HTimeouts of nodes at two consecutive hops is
MAX_NBR_NUM. This difference allows lower hop
nodes to receive sufficient information from neighbors
so that they can finish their schedule construction before
upper hop nodes start the schedule construction.

Table 1. Timeout variables
HTimeout (MaxHop - HopCount) * MAX_NBR_NUM
NTimeout NodeID
PTimeout NodeID
CTimeout max (ChildrenNodeID)

We set the value of NTimeout as the node ID. The
motivation is to make nodes time out at different times
so that they do not compete with each other when they
determine their applicable transmission slots.

The two timeouts in Procedure 2 are PTimeout and
CTimeout. The value of PTimeout is also the node ID.
Similar to NTimeout, this value enables the neighbors to
start the allocation of transmission slots for their
children at different times. The value of CTimeout is the
largest of the node IDs of the children. This value
allows the parent to wait for the child with the largest
node ID, which has the largest NTimeout.

In summary, the timeouts enable nodes to get
allocated transmission slots at different times and to
allow neighbors to exchange the information about their
slots. Hence, the transmission slots of nodes rarely have
conflicts.

4.3. Complete Schedule for Query Processing
With the allocated transmission slots, the procedure

ConstructSchedule arranges the time slots for PL/R,
Q/M, and sleeping of a node. The PL/R slots are
arranged to be sooner than the transmission slots so that
the query result is ready for transmission. The Q/M
slots are located before the end of every sample interval.
This arrangement of Q/M slots is to allow the nodes to
finish the transmission of the query results before they
receive new queries.

For reliability, ConstructSchedule is equipped with
the following two mechanisms. First, there are two
buffer slots before the PL/R slots in the schedule.
These buffer slots are used to accommodate
synchronization inaccuracy in query processing. Second,
the sink is allowed to be always active or to have a
schedule similar to other nodes, depending on if it is
powered by an external outlet or by battery. This
differentiation is to allow other nodes to receive a query
from the server as soon as possible with the sink’s
power consumption considered.

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

An example of complete schedules for a simple data
collection query in a 4-node and 3-hop WSN is
illustrated in Figure 8. Nodes 1 and 2 are leaf nodes at
the same hop count. Node 3 is the parent of nodes 1 and
2, and needs three transmission slots to transmit the
query results of nodes 1 and 2 and its own. The sink is
always active since it is powered by an external outlet.

Time
Le

af

 L
ea

f
Si

nk
0

TransmissionPL/R

Q/M Active (sink only)

SleepingRouting
tree

1 2

3

0

Node 1

Node 2

Node 3

H
op 0

H
op 1

H
op 2

H
op 2

Figure 8. An example of complete shedules

In addition to constructing a single query schedule as
shown in Figure 8, our scheme can construct schedules
for multiple queries. The multi-query construction
process runs query by query. After the schedule for one
query is constructed, the nodes will construct the
schedule for the next query, until the schedules of all
queries are constructed. During this process, the
algorithm will consider only the sleeping slots in the
existing schedules as applicable slots for transmission
and receiving.

5. Schedule Execution

After schedules are constructed on nodes involved in
query processing, the sink starts time synchronization.
The nodes begin to execute their schedules as soon as
they finish the time synchronization. The execution of a
schedule involves the timing control of all layers in a
WSN.

We adopted the query layer of TinyDB and modified
the service scheduler of TinyDB so that the scheduler
can roughly control the timing of query result
transmission. This timing control is necessary because
the MAC layer of a WSN does not allow long delays.

In our scheme, the MAC layer first checks whether it
is time for transmission when it receives a packet from
the query layer through the routing layer. If the time is
earlier than the allocated transmission time, the MAC
layer copies the message to a memory buffer, and sets
up a timer to automatically transmit the message when it
is time for the transmission. Note that, the interval of
waiting should be shorter than the interval between two
transmissions. Otherwise, the buffer may be overwritten
by another message. Therefore, the query layer is
designed to roughly control the transmission timing.
With this rough timing control in the query layer, the

delay in the MAC layer will not cause the overwriting
problem in the memory buffer.

The task of the routing layer in the schedule
execution is to control the timing of transmission and
receiving the route maintenance messages. The timing
control process in the routing layer is similar to that in
the query layer.

6. Evaluation

To evaluate our scheme, we first used simulation to
compare the schedules of our scheme (denoted as DCS)
with those of Flexible Power Scheduling (FPS) [9] and
Sichitiu’s Scheduling (SS) [16]. Choosing simulation is
for a fair comparison of the schemes since Sichitiu’s
scheduling scheme is not applicable to the MICA2
motes [6] due to the memory limitation of the motes.

We then used a real MICA2 sensor network and an
emulated network to measure the performance of our
scheme. The real sensor network enabled us to study
the applicability and power consumption of our scheme
in real world in-network query processing. VMNet, on
the other hand, can provide us detailed runtime
information about the neighbors of each node, the
routing tree, and the schedules in a network.

Our scheme was implemented into TinyDB, a well-
known query processing system [12][13]. We denote
TinyDB with our scheme Optimized TinyDB and the
original version of TinyDB Original TinyDB. FPS and
SS are not applicable to query processing systems, as
they do not support queries but only schedule the
communication from sensor nodes to the sink. Hence,
we studied the performance improvement on query
processing for our scheme only.

6.1. Scheme Comparison

6.1.1. Simulation Setup
To compare the schemes, we used the same

experimental setup as that Sichitiu used [16]. The
simulated network consisted of 100 nodes randomly
deployed in an 80m*80m rectangular area and the
transmission range was 25m. Although the nodes were
randomly deployed, there was at least one path from
each node to the sink in the simulated network. For
fairness, we used the same slot length in FPS and SS as
in ours. In our measurement, the time required for
transmission the largest data packet on MICA2 motes
was about 80ms. Therefore, we set the slot length to be
120ms, which is sufficient to tolerate a time difference
of ± 20ms in synchronization.

Since FPS and SS are inapplicable to query
processing, we ran the three schemes to construct
schedules for a simple data collection application that
sampled the temperature of each node every 60 seconds.
In this application, we disabled the allocation of slots for

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

the computation of query processing in our scheme since
this application did not have a query layer.

6.1.2. Scheduling Overhead
First, we measured the time of constructing a

schedule in the three schemes. We regard the schedule
construction as finished when the schedule has been
unchanged for 10 simulated days (i.e., the time in the
simulated nodes elapsed 10 days). The schedule
construction time was the interval from the start time of
the schedule construction to the time the schedule was
last updated. The results are shown in Table 2.

Table 2 shows that SS took the longest time to
construct a schedule whereas FPS the shortest. This
result is because a node running SS cannot get a
schedule until the sink sends an ACK to the node, which
takes a long time especially when the node is far from
the sink. As a node running our DCS needs to wait for
some nodes, the construction time is also longer than
that of FPS. FPS is the simplest among the three and
omits some constraints considered in our scheme.
Consequently, it is the fastest in schedule construction.

Table 2. Scheduling overhead
Scheme Schedule construction time (seconds)

FPS 420
SS 7140

DCS 900

6.1.3. Schedule Comparison
To thoroughly compare the constructed schedules,

we chose two metrics that are directly related to the
performance of WSNs.

The first metric is the number of dead nodes. A
dead node is one from which the sink never receives
packets, either directly or indirectly. As sensory results
are obtained from individual nodes in a network, the
number of dead nodes affects the accuracy of query
results. Dead nodes can be further divided into two
classes. The first class is non-scheduled nodes, which
have no allocated transmission slots in a schedule. The
second class is conflict-scheduled nodes, which have
allocated transmission slots but these slots conflict with
those of their neighbors.

The second metric is the average frequency of
switching between an active slot and a sleeping slot
(AFS). We chose this metric to evaluate the schemes
because frequent switching between active and sleeping
modes in a node increases power consumption [14].
Given the number of switches between active and
sleeping, Sas, within a sample interval ls, AFS is
computed in Equation (2).

ls
SAFS as= (2)

Table 3 shows the number of dead nodes in the 100-
node network running the schemes. It can be seen that
the network running FPS had more conflict-scheduled
nodes than running DCS. The reason is as follows. FPS

only considers the collision avoidance among siblings.
However, neighbors that have different parents may take
the same transmission slots. These nodes are the
conflict-scheduled nodes. In comparison, DCS may
allocate conflict transmission slots to neighbors only
when the transmission slot information of neighbors is
lost.

Table 3 also shows that SS had no conflict-
scheduled nodes whereas FPS and DCS had no non-
scheduled nodes. The reason is rooted in the principles
of the scheduling schemes. In SS, after a node sends
RSETUP packet, the node often fails to receive the
ACK packet from the sink due to collisions. When this
happens, the receiving and transmission slots of the
nodes along the path are all wasted since the source
node will not send packets in these slots. These wasted
slots may in turn cause some nodes to have no slots to
send or to receive and to become the non-scheduled
nodes. In contrast, FPS and DCS do not result in such
wasted slots, and can always allocate schedules to nodes
of sufficiently long sample intervals.

Table 3. Number of dead nodes
 Scheme Conflict-schedule nodes Non-scheduled nodes

FPS 15 0
SS 0 13

DCS 4 0

The average frequency of switching between an
active slot and a sleeping slot (AFS) is shown in Table 4.
It demonstrates that DCS has the lowest frequency of
switching. This is because our scheme makes effort to
allocate consecutive transmission slots to nodes.

Table 4. Average frequency of switching
Scheme AFS (#switches / second)

FPS 0.203
SS 1.318

DCS 0.093

6.2. Query Processing Performance

6.2.1. Experimental Setup
We used 10 Crossbow MICA2 motes [6] to run the

optimized TinyDB and the original TinyDB. The tool
for measuring the power consumption of the motes was
an HP- 4156 oscilloscope in an electronic lab (Figure 9).

Figure 9. The power measurement setup

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

We also used VMNet [22] to emulate the MICA2
motes and evaluated our scheme on this realistic testbed.
We chose VMNet because it can provide detailed
runtime information of emulated nodes whereas a real
WSN cannot due to the limitation of the real sensor
nodes and the measuring equipment. VMNet emulates
networked sensor nodes at the CPU instruction level. It
directly executes binary code that is compiled for real
sensor nodes.

The configuration of the MICA2 motes that we used
and that VMNet emulated were the same. The sensor
board was MTS300CA and the processor board
MPR410CA. The sink consisted of an MIB510
interface board and an MPR410CA processor board.
The transmission power of the radio circuit (CC1000)
was 11.1mA [5] and the transmission range remained
constant in the experiments. The source code of TinyOS
and TinyDB running on the motes or on the emulated
nodes was version 1.1.0 [19].

The network topology of the emulated network in
VMNet is shown in Figure 10. An emulated network in
VMNet is called a VMN. There were three hops in this
VMN. This topology can be used to test Constraint (iii)
of Section 4, the most complex one among the four
constraints. In addition, node 6 was the neighbor of
nodes 8 and 9, and node 7 was the neighbor of nodes 1
and 5. These neighboring nodes were useful for testing
constraint (i) of Section 4. Finally, node 2 had two
children, which can be used to test the other two
constraints of Section 4.

We attempted to deploy the 10 real motes to have
the same topology as that of the VMN in Figure 10.
However, the resulting real network topology was not
exactly the same as that of the VMN. In particular, the
number of neighbors of a node in the real WSN may be
different from the corresponding node in the VMN,
because the transmission range of a real sensor node is
irregular [5]. Nevertheless, the two topologies were
similar enough for performance validation purposes.

We ran Query 1 with three representative sample
intervals - 2 seconds, 10 seconds and 60 seconds. We
chose this query to show whether the transmission slots
enable partial aggregation at the parent, since it involves
an aggregation function.

Query 1: SELECT avg(light) FROM sensors

6.2.2. Schedule for In-Network Aggregation
We examined the debugging messages in VMNet

that show the schedule when running the Optimized
TinyDB in the VMN. The schedules constructed by our
scheme on the emulated nodes are shown in Figure 10,
with the sleeping slots omitted for simplicity. The
resulting schedules observed all four constraints of
Section 4 and allowed the parent nodes to perform
partial aggregation. In particular, each parent node
needed to transmit only one packet in every sample
interval due to the partial aggregation.

Hop 1

Hop 2

Hop 3

Sink

16Q/M
5T
1-4PL/R

16Q/M
6T
2-5PL/R

16Q/M
5T
1-4PL/R

16Q/M
6T
2-5PL/R

16Q/M
8T
4-7PL/R

16Q/M
8T
4-7PL/R

16Q/M
7T
3-6PL/R

16Q/M
10T
6-9PL/R

16Q/M
11T
7-10PL/R

4 2 3

8

7
1 5

9
6

T: Transmission slots

Figure 10. The VMN topology with schedules

6.2.3. Power Consumption
After the schedules were constructed and the nodes

started query processing in the VMN, we measured the
average one-minute power consumption of nodes
running the Optimized TinyDB and the Original
TinyDB. Figure 11a shows the results. It can be seen
that the Optimized TinyDB reduces the average node
power consumption by 42%, 67%, and 75% at the
sample interval of 2s, 10s, and 60s, respectively. The
improvement is mainly due to scheduling: in each
sample interval, a node keeps active only for a few slots,
and sleeps in the other slots. Note that the original
TinyDB also made nodes sleep, but a node in the
original TinyDB was put into sleep only after it had
been active for at least 4096 milliseconds in a sample
interval. Due to this condition, even though such a node
would be sleeping for the remainder of the interval, the
total sleeping time in the original TinyDB was much
shorter than that in the optimized TinyDB.

Similarly, we measured the one-minute power
consumption of nodes in the 10-node real WSN.
Because it is slow to copy the measured power
consumption information out of the oscilloscope, we
picked nodes 2, 4, and 7 as the representative nodes and
measured them. The average power consumption of
these nodes was improved by 53%, 67%, and 64% at the
sample interval of 2s, 10s, and 60s, respectively, as
shown in Figure 11b. The difference between the power
consumption measured in VMNet and that in the real
WSN was within ±15%. Possible reasons for this
difference include the difference in the topologies and
the measurement errors of the oscilloscope [22].

 a. b.
Figure 11. Power consumption improvement

Measured in VMNet

0

0.5

1

1.5

2

2.5

3

3.5

4
4.5

5

2 10 60
Sample Interval (s)

P
ow

er
 C

on
su

m
pt

io
n

(J
ou

le
s)

Original TinyDB Optimized TinyDB

Measured in the 10-Node Real WSN

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2 10 60
Sample Interval (s)

Po
w

er
 C

on
su

m
pt

io
n

(J
ou

le
s)

Original TinyDB Optimized TinyDB

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

7. Conclusion and Future Work

We have presented the design and implementation of
our distributed, cross-layer scheduling scheme for
power-efficient in-network sensor query processing.
This scheme requires interaction between neighbors
only. Moreover, our scheme utilizes cross-layer
information: each node determines its slots from the
information of both the network and the query;
similarly, parents allocate slots to their children
considering the requirements of the queries being
processed. With this distributed and cross-layer design,
our scheme is able to reduce the number of dead nodes
and the switching frequency between active and
sleeping modes, and to support both data collection and
aggregation queries with significant power saving.

We have evaluated our scheme using simulation,
emulation, and real sensor nodes. The simulation results
show that our scheme outperforms the other two existing
schemes on both the number of dead nodes and the
switching frequency in the resulting schedule. The
emulation and the real WSN results demonstrate that our
scheme significantly reduces power consumption of in-
network sensor query processing.

Although the schedule construction time is relatively
short (at the minute level) for long-running queries, it is
still inefficient to reconstruct a schedule from scratch
when there is a change in the network topology or a new
query arrives. As one direction of future work, we are
studying incremental schedule update.

Acknowledgements
Funding for this work was provided by the Hong

Kong Research Grants Council (RGC) through
HKUST6263/04E.

References
[1] Philippe Bonnet, Johannes Gehrke, and Praveen

Seshadri, “Querying the Physical World”, IEEE Personal
Communications, vol. 7, no. 5, pp. 10-15, October, 2000.

[2] Athanassios Boulis and Mani B. Srivastava, “Node-
Level Energy Management for Sensor Networks in the
Presence of Multiple Applications”, PerCom, 2003.

[3] Phil Buonadonna, Joseph Hellerstein, Wei Hong, David
Gay, and Samuel Madden, “TASK: Sensor Network in a
Box”, EWSN, 2005.

[4] Benjie Chen, Kyle Jamieson, Hari Balakrishnan, and
Robert Morris, “Span: An Energy-Efficient Coordination
Algorithm for Topology Maintenance in Ad Hoc
Wireless Networks”, MOBICOM, 2001.

[5] Chipcon, http://www.chipcon.com.
[6] Crossbow Inc, http://www.xbow.com.
[7] Cédric Florens and Robert McEliece, “Packet

Distribution Algorithms for Sensor Networks”,
INFOCOM, 2003.

[8] Wendi Rabiner Heinzelman, Joanna Kulik, and Hari
Balakrishnan, “Adaptive Protocols for Information
Dissemination in Wireless Sensor Networks”,
MOBICOM, 1999.

[9] Barbara Hohlt, Lance Doherty, and Eric Brewer,
“Flexible Power Scheduling for Sensor Networks”,
IPSN, 2004.

[10] Chalermek Intanagonwiwat, Ramesh Govindan, and
Deborah Estrin, “Directed Diffusion: A Scalable and
Robust Communication Paradigm for Sensor Networks”,
MOBICOM, 2000.

[11] Philip Levis, Samuel Madden, Joseph Polastre, Robert
Szewczyk, Alec Woo, Eric Brewer, and David Culler,
“The Emergence of Networking Abstractions and
Techniques in TinyOS”, NSDI, 2004.

[12] Samuel Madden, Michael J. Franklin, Joseph M.
Hellerstein, and Wei Hong, “TAG: a Tiny AGgregation
Service for Ad-Hoc Sensor Networks”, OSDI, 2002.

[13] Samuel Madden, Michael J. Franklin, Joseph M.
Hellerstein, and Wei Hong, “The Design of an
Acquisitional Query Processor for Sensor Networks”,
SIGMOD, 2003.

[14] Kresimir Mihic, Tajana Simunic, and Giovanni De
Micheli, “Reliability and Power Management of
Integrated Systems”, Euromicro Symposium on Digital
Systems Design, 2004.

[15] Su Ping, “Delay Measurement Time Synchronization for
Wireless Sensor Networks”, IRB-TR-03-013 , Intel
Research Berkeley Lab, 2003.

[16] Mihail L. Sichitiu, “Cross-Layer Scheduling for Power
Efficiency in Wireless Sensor Networks”, INFOCOM,
2004.

[17] Mark Stemm and Randy H Katz, “Measuring and
Reducing Energy Consumption of Network Interfaces in
Hand-Held Devices”, IEICE Transactions on
Communications, vol. E80-B, no. 8, pp. 1125–1131,
August, 1997.

[18] Andrew S. Tanenbaum, Computer networks, Prentice
Hall, Hardcover, 4th edition, August 2002.

[19] TinyOS, http://www.tinyos.net.
[20] Alec Woo and David Culler, “A Transmission Control

Scheme for Media Access in Sensor Networks”,
MOBICOM, 2001.

[21] Alec Woo, Ternence Tony, and David Culler, “Taming
the Underlying Challenges of Reliable Multihop Routing
in Sensor Networks”, SenSys, 2003.

[22] Hejun Wu, Qiong Luo, Pei Zheng, and Lionel M. Ni,
“VMNet: Realistic Emulation of Wireless Sensor
Networks”, Technical Report HKUST-CS05-05,
HKUST, 2005.

[23] Yong Yao and Johannes Gehrke, “Query Processing for
Sensor Networks”, CIDR, 2003.

[24] Wei Ye, John Heidemann, and Deborah Estrin, “An
Energy-Efficient MAC Protocol for Wireless Sensor
Networks”, INFOCOM, 2002.

[25] Mohamed Younis and Tamer Nadeem, “Chapter 9:
Energy Efficient MAC Protocols of Ad Hoc Networks”,
Wireless Ad-Hoc and Sensor Networks, Ed. Ahmed
Safwat, Kluwer Academic Publishers (to appear).

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

