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ABSTRACT 
Many sensor network applications, such as object tracking and 
disaster monitoring, require effective techniques for event 
detection. In this paper, we propose a novel event detection 
mechanism based on matching the contour maps of in-network 
sensory data distribution. Our key observation is that events in 
sensor networks can be abstracted into spatio-temporal patterns of 
sensory data and that pattern matching can be done efficiently 
through contour map matching. Therefore, we propose simple 
SQL extensions to allow users to specify common types of events 
as patterns in contour maps and study energy-efficient techniques 
of contour map construction and maintenance for our pattern-
based event detection.  Our experiments with synthetic workloads 
derived from a real-world coal mine surveillance application 
validate the effectiveness and efficiency of our approach. 

1. INTRODUCTION 
Many sensor network applications monitor events in the physical 
world, such as disaster monitoring [3][29], habitat monitoring 
[19][27], industrial process control [1] and object tracking [12] 
[13][21].  A typical event detection mechanism in recent work on 
sensor databases is to set some thresholds for sensor readings in a 
query [1][12][29].  The intuition is that, when an event occurs, 
there will be changes in the readings of the sensors that are 
affected by the event.  For example, when an object moves, the 
accelerometer attached to the object will report an increased 
acceleration reading. Based on this reasoning, an application 
program using thresholds will regard an event has occurred when 
the sensor readings exceed the pre-defined thresholds. 

Although this threshold-based approach is simple in the 
implementation, it is usually difficult for users to specify suitable 
threshold values for their events of interest because these values 
depend on both the environment being monitored and the 
application semantics.  Moreover, thresholds alone may be unable 
to fully specify an event for some applications.  For instance, in a 
coal mine surveillance application that we are involved with, a 
gas leakage event is characterized as the gas_density sensor 
readings at the source following a gradual decreasing trend, which 

cannot be easily captured by discrete threshold values.  Therefore, 
we investigate a new alternative for event detection in sensor 
networks. 

Our proposed approach for event detection is based on the spatio-
temporal patterns in sensor readings instead of simple thresholds. 
Our observation is that, since sensor networks are deployed in a 
physical space and sensor readings are collected over time, the 
changes in the sensor readings of networked nodes that are caused 
by an event usually exhibit some spatio-temporal pattern. This 
observation has been confirmed by various field studies and 
analysis of real-world sensory datasets [11][14] [23][27]. 

Now that we convert the event detection problem into a pattern 
matching one, the next question is how to solve the pattern 
matching problem in sensor networks effectively and efficiently.    
There has been a great wealth of literature on pattern matching 
[2][28], but the challenge is to seek a solution that works for a 
resource-limited network in a distributed, real-time, and energy-
efficient way.  The solution we find is in contour maps of sensory 
data distribution. 

A contour map [5] of an attribute, e.g., temperature, for a sensor 
network is a topographic map that displays the distribution of the 
attribute value over the network.  In the map, the geometric space 
occupied by the network is partitioned into contiguous regions, 
each of which contains sensor nodes of a range of similar readings. 
These regions are called contour regions and the boundaries of 
the regions are called contour lines or contours in short.  We 
define a snapshot of a contour map, or a map snapshot in short, as 
the instance of the contour map at a specific point in time.  Figure 
1 shows a snapshot of the temp contour map (on the left) for a 2x2 
network grid topology (on the right).  The two contour regions in 
different colors represent different temperature readings. 
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Figure 1: Temperature contour mapping on a 2x2 grid 

Contour maps have been shown useful for a variety of sensor 
network surveillance applications [12][24].  They come naturally 
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to our work because they represent the sensory data distribution 
over time and space.  In our work, we propose energy-efficient 
techniques to construct and incrementally update a number of 2-D 
contour maps in a sensor network.  Using these contour maps as 
building blocks, we define events based on the spatio-temporal 
patterns exhibited in the contour maps.  More specifically, the 
spatial pattern of an event is captured by the contours in a map 
whereas the temporal pattern by the evolution of the contours 
over time.  In our approach, an event is detected when a user-
specified pattern matches the recent snapshots of a contour map 
that fall in a sliding window.  By this means, we solve the pattern 
matching problem, in turn the problem of event detection in 
sensor networks, through contour map matching. 

Since events in the physical world are of a great variety, we use a 
real-world coal mine surveillance application as a case study for our 
work. In this application, hundreds of sensor nodes are deployed 
throughout the channels in the mine to measure the density of 
oxygen, gas and dust as well as the temperature, humidity and 
structural integrity in the mine.  For the safety of the workers, there 
are two common classes of event-detection tasks in the application: 

• Gas, dust and water leakage detection. The coal mine manager 
wants to be notified immediately whenever the digging machines 
reach a source of gas, dust or underground water in the mine and a 
large amount of the substance breaks out. 

• Oxygen density monitoring.  A worker patrolling in the mine 
needs to find a nearby spot of a high oxygen density to take a break 
from time to time.  In addition, the manager requires the detection of 
regions of a low oxygen density. 

We have identified and defined three common types of events for 
this application in addition to a general pattern-based definition for 
events. Each type of event is specified using a set of parameters that 
describe the shapes of the contours in the map, including the 
pyramids, the faults, and the islands.  We have made simple SQL 
extensions to specify these types of events as user-defined methods 
and designed efficient algorithms to implement these methods in our 
event-oriented query processor.  Finally, we have evaluated our 
approach using synthetic workloads that are derived from the 
application. 

The remainder of this paper is organized as follows.  We describe 
the in-network construction and incremental update of the contour 
maps in Section 2.  We give our pattern-based event specification in 
Section 3.  In Section 4, we briefly present the design of our event-
oriented query processor, mainly on the query execution and the 
algorithms for contour map matching. In Section 5, we present a 
performance study of our approach using synthetic workloads 
derived from the real-world coal mine surveillance application. We 
discuss related work in Section 6 and conclude the paper in Section 
7. 

2. CONTOUR MAPPING 
In this section, we describe contour maps, the building blocks of our 
pattern-based event specification. Our approach to contour mapping 
is to construct and incrementally update a contour map hop by hop 
from bottom up in the network as a special kind of data aggregation 
[12][18][29], rather than collecting all sensor readings and 
transmitting them to a server (i.e., the base station) to construct the 
map centrally. The motivation is that, for current generation battery-
powered sensor nodes, power is the most limited resource and the 

communication cost on wireless radio channel is the dominating 
factor of power consumption. For instance, on the widely-used 
Crossbow MICA2 motes [6], the cost of transmitting a bit is about 
that of executing 1,000 instructions [19]. As a result, in-network 
contour mapping is more energy-efficient than a simple, centralized 
approach. 

Section 2.1 describes the in-network construction of a contour map 
and Section 2.2 the incremental update of the map. The spatial 
interpolation on a random network topology is described in Section 
2.3.  In the remainder of the paper, we use the two terms “sensor 
reading” and “attribute value” interchangeably. 

2.1 In-Network Map Construction 
In this paper, we assume a stationary sensor network and the base 
station knows each node’s location in 2-D Cartesian coordinates.  
This location information can be either measured manually, or 
acquired by special hardware, such as a GPS module, attached to a 
node.  Moreover, as in the work by Hellerstein et al. [12], we 
impose a rectangular m · n grid with the square cell length l on the 
network topology.  Each cell of the grid has at most one node inside 
but not on the cell boundaries.  The grid information (i.e., the values 
of m, n and l) is produced at the base station and is disseminated 
throughout the network.  Subsequently, each node in the network 
can calculate which grid cell it lies in. 

Because wireless radio channels are unreliable, we adopt a multi-
path, ring-based routing scheme [4][20] for our in-network map 
construction instead of using a single-path, tree-based routing 
scheme [18][19][29].  In this multi-path routing scheme, the data 
transmitted by a node is received by and processed on every 
neighbor of the node that is one hop closer to the sink node.  We call 
these neighbors the parents of the node and the neighbors that are 
one hop farther from the sink the children of the node.  The same as 
in single-path routing, a node in multi-path routing needs to transmit 
its data only once in a sample period. 

2.1.1 Partial Map Aggregation 
In our in-network contour map construction, the data aggregate 
generated and transmitted by a node is the contour map of a sub-
network rooted at the node.  We call this data a partial map.  A 
partial map of a node consists of a set of disjoint contour regions. As 
shown in Figure 2, each contour region is an orthogonal polygon in 
2-D plane in our grid setting.  An orthogonal polygon is a polygon 
whose edges are in parallel with either the x-axis or the y-axis.  Two 
contour regions overlap if their intersection has a non-zero area 
[22].  Regions that do not overlap are disjoint.  We say that two 
disjoint regions are adjacent if they have one or more coincident 
edges (Figure 2 (a)). 

adjacent

overlapping

not adjacent

 
(a) Adjacent and overlapping regions  (b) Regions with holes 

Figure 2: Example contour regions 

A 2-D polygonal contour region is stored as a linked list [22] in a 
partial map.  Each element in the linked list is an array of vertices.  
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The first array in the linked list contains the vertices on the outer 
boundary of the region in a counterclockwise order. Each of the 
other arrays contains the vertices in a clockwise order on an inner 
boundary of the region, i.e., the boundary of a hole (Figure 2 (b)).  
Each vertex in an array is stored as a pair of x-y coordinates. 

The map construction starts from each node generating a partial map 
of its own.  The partial map contains a single contour region unit, 
which is the grid cell of the node.  After a node receives the partial 
maps from all children, it puts each contour region in these partial 
maps and its own into a new set Pw. We call Pw the working partial 
map of the node. Next, the node merges each pair of 
adjacent/overlapping regions in Pw that satisfies some criterion.  The 
merging repeats until no pair of adjacent/overlapping regions in Pw 
can be merged.  We call the partial map generated at the end of this 
merging the final partial map of the node, denoted as Pf.  Then Pf is 
transmitted to the parents of the node by broadcast. 

Such partial map aggregation on a node requires only simple 
operations on the polygonal contour regions.  Three main classes of 
operations involved are [22]: 

(1) Area calculation. Compute the area of a polygon using the 
coordinates of the vertices. 

(2) Relationship checking.  Identify whether two polygons overlap 
or are disjoint. If two polygons overlap, check whether they are 
exactly the same, one is contained in the other, or otherwise. If two 
polygons are disjoint, check whether they are adjacent. 

(3) Boolean operations. Compute the union, intersection and 
difference of two polygons. 

There are many existing algorithms in the literature for these basic 
polygon operations [22].  The small computation overhead and 
storage requirement of these algorithms make them applicable to 
current generation resource-limited sensor nodes. 

A crucial problem we have omitted so far is what criterion we 
should adopt for a node to determine whether two adjacent or 
overlapping contour regions in Pw can be merged or not.  The 
aggregation performance will be poor if we only merge regions that 
contain nodes having the same attribute value. Moreover, this 
criterion is unlikely to improve the mapping accuracy because 
readings sampled by physical sensors are intrinsically unreliable 
[29]. Another alternative is to divide the range of attribute value into 
a number of equal-width buckets and merge regions that are in the 
same bucket [12]. 

 
                       (a)                                                 (b) 

Figure 3: Adjacent contour regions with different relative size 

The major drawback of these criterions is that they only consider 
the attribute value but ignore another important factor, the area of 
a region. Combining region area with attribute value, we are able 
to capture the users’ tradeoff between the mapping accuracy and 
the communication cost in a more flexible way.  For instance, it is 
usually reasonable to merge a tiny contour region into a neighbor 

whose area is relatively much larger (Figure 3(a)), even if there is 
a large difference between the attribute values of nodes in these 
two regions. This merging saves communication cost of the tiny 
region without affecting the mapping accuracy much.  In contrast, 
from some users’ perspective, it may be undesirable to merge two 
adjacent regions when each of them has already occupied a large 
portion of the grid space (Figure 3(b)), even if the attribute values 
of the nodes in these two regions do not differ much. 

Addressing the drawback, we design a criterion for contour region 
merging that takes both the attribute value and the region area into 
account.  The criterion uses two user-specified parameters: (1) an 
error bound ε ∈ (0, 1), and (2) a merging limit p ∈ (0, 1]. ε 
specifies the maximum degree of inaccuracy that the user can 
tolerate for the contour map constructed.  p is the maximum area 
of the region to be merged in terms of the percentage of the grid 
area.  The values of these two parameters are provided by the user 
in the query specification. ε is mandatory and p is optional with a 
default value of one. 

A linear regression model v = f(x, y) = c0 + c1 · x + c2 · y [25] is 
built for each contour region in a partial map.  In the model, v is 
the sensor reading of a node at location (x, y); c0, c1, and c2 are the 
model coefficients and 1, x, y are the set of basis functions of the 
model.  Consider a region that contains n nodes whose locations 
and sensor readings are (x1, y1), (x2, y2), …, (xn, yn) and v1, v2, …, 
vn (n ≥ 3) respectively. The coefficients of the model for the 
region can be computed by solving the matrix equation: 

bAw =                            (1) 

where 
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When the initial partial map that contains a single region unit is 
generated by a node, the matrices w, A and b in the linear 
regression model built for the region are stored with the region in 
addition to an error bound that has a value of zero.  To ensure that 
the matrix A is non-singular [25], the model is built using three 
location-attribute pairs (x1, y1, v), (x2, y2, v) and (x3, y3, v).  (x1, y1) 
and v are the location and attribute value of the node; (x2, y2) and 
(x3, y3) are two different locations that are randomly picked inside 
the region unit and are not equal to (x1, y1).  Later, in the partial 
map aggregation on a node, the error bound εij of merging a pair 
of adjacent/overlapping regions (Ri, Rj) in Pw is computed using 
Equations (2)-(4): 
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In the equations, fi(x, y), σi and εi are the regression function, area 
and error bound of region Ri, and fj(x, y), σj and εj are those for 
region Rj.  fij(x, y) is the regression model built on Ri ∪ Rj.  To 
compute the coefficient vector wij of fij(x, y) using Equation (1), 
we set Aij and bij in the equation as follows [25]: 

Aij = Ai + Aj                                           (5) 

bij = bi + bj            (6)   

where Ai, bi are the matrices stored with region Ri , and Aj, bj are 
those of Rj.  αij in Equation (2) is a penalty factor computed using 
Equation (7).  σgrid = l2

 · m · n is the area of the grid. 
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Note that ∫∫
R

dσyxf ),( corresponds to the volume of the 3-D 

cylindroid that is beneath the surface f(x, y) over region R [15].  
Consequently, Equation (2) estimates the error bound εij of 
merging the pair of regions (Ri, Rj) as the accumulation of the 
errors derived from two sources: the percentage of variation in the 
cylindroid volume over each region (εij' in Equation (3)), and the 
previous degree of error inherited from each region (εij" in 
Equation (4)).  In the worse case, the value of εij for some pair of 
regions (Ri, Rj) computed using Equation (2) may exceed one.  
However, in this case the two regions are impossible to be merged 
so that no problem is incurred. 

The regression model can be easily extended to use polynomial of 
a higher degree if necessary [25]. Moreover, we can adopt any 
model that is guaranteed to be continuous over an arbitrary 
contour region and can be incrementally recomputed in a way 
similar to Equations (5)-(6). 

After giving the equations to estimate the merging error bound, 
we present the procedure of contour region merging in the partial 
map aggregation on a node in Algorithm 1.  The algorithm calls 
the function checkMerging to examine whether a pair of regions 
in Pw can be merged or not.  In this function, the error caused by a 
merging must not exceed the user-specified ε, and the size of the 
union of the two regions must be smaller than the sum of their 
sizes (Line 2 in Function checkMerging). This is because a large 
final partial map Pf requires a large communication cost so that its 
size should be reduced as much as possible to save the energy.  
sizeof(R) returns the total number of bytes of R stored in the 
partial map. This size is proportional to the total number of 
vertices on all boundaries of R. 

Algorithm 1 merges regions in Pw pair by pair in a decreasing 
order of the merging benefit. The benefit of merging a pair of 
regions (Ri, Rj) is the inverse of εij / Δij. The intuition is that, the 
smaller the error bound εij of the merged region and the larger the 
size reduction Δij achieved by the merging, the larger the merging 
benefit.  After two regions are merged into a new region, the new 
region is immediately checked to see whether it can be further 
merged with other regions in Pw (Line 9). The process repeats 
until no more adjacent/overlapping regions in Pw can be merged. 

Algorithm 1  Contour Region Merging 
Input: the working partial map Pw 
Output: the final partial map Pf 

1: build an empty balanced binary search tree T; 
2: for each Ri (1 ≤ i < n) in Pw do     /* n is the number of regions in Pw */
3:    for each Rj (i < j ≤ n) in Pw do  checkMerging(Ri, Rj, T); 
4: while T is not empty do 
5:    extract node a from T that has the smallest key value; 
6:    merge the pair of regions (Ri, Rj) that a points to into a region R; 
7:    delete all nodes in T that point to either Ri or Rj;   
8:    remove Ri and Rj from Pw; 
9:    for each Rk in Pw do  checkMerging(R, Rk, T);  

10:    insert R into Pw;     /* the linear regression model and error bound of
11: while true do                            R are fij(x, y) and εij correspondingly */ 
12:    randomly select a pair of overlapping regions (Ri, Rj) in Pw; 
13:    if there is no such pair then  break;     /* exit the loop */     
14:    ri = sizeof(Ri – Rj) + sizeof(Rj);   rj = sizeof(Rj – Ri) + sizeof(Ri);     
15:    if  ri < rj then  Ri = Ri – Rj;  else  Rj = Rj – Ri; 
16: return Pf = Pw; 
Function  checkMerging(Ri, Rj, T)  

1: if Ri and Rj overlap or are adjacent then 
2:    if εij ≤ ε and (Δij = sizeof(Ri) + sizeof(Rj) – sizeof(Ri ∪ Rj)) > 0 then 
3:       insert a node in T that has key value of εij / Δij; 
4:       store a pointer to each of Ri and Rj with the node; 

 

There may be overlapping regions in Pw that cannot be merged with 
each other according to our merging criterion.  However, we need to 
ensure every two regions in Pf are disjoint so that there is no 
duplicate in the contour map constructed.  To solve this problem, we 
remove the intersection of two overlapping regions that are non-
mergeable from one of them so that the total size of the two regions 
is smaller after such removal (Lines 11-15 in the algorithm).  The 
intersection is randomly removed from a region if the size reduction 
is the same for both regions. 

2.1.2 Size Reduction of Partial Maps 
The final partial map Pf output by Algorithm 1 on a node is usually 
of a large size.  Each boundary of a contour region in the map 
consists of a sequence of (x, y) value pairs and all these lengthy 
pieces of information must be encapsulated into the radio packets 
and transmitted to the parent of the node in multi-path routing. In 
order to save the communication cost in this transmission, we adopt 
two techniques to reduce the size of Pf on each node.  One technique 
is a scheme to compress the contours in the map and the other an 
optimization of the map transmission based on packet snooping. 
They both trade more computation cost for potentially less 
communication cost. 

First, we use a scheme on each node to compress Pf before the node 
transmits it to the parents. The compression scheme includes two 
steps.  In the first step, the node checks each contour region with 
holes in Pf to see whether any inner boundary of the region is the 
outer boundary of another region in Pf.  If this is true, the inner 
boundary of the first region is replaced by a pointer to the outer 
boundary of the second region. By this means, only one copy of 
every contour line in the map needs to be transmitted. 

The second step of the compression scheme is based on a nice 
property of the contour regions in our scenario, which is all edges of 
a region are orthogonal. Suppose there are totally n vertices V1, V2, 
…, Vn (n ≥ 4) on a region boundary.  Because the vertices are stored 
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in a specific order, we can reduce one half of the size of the 
boundary by storing the vertices V1, V3, …, Vn-1 only.  Later when 
the whole boundary needs to be recovered in the contour region 
merging, the vertex v2i (1 ≤ i ≤ n/2) can be uniquely identified by v2i-1 
and v2i+1 based on the counterclockwise or clockwise order of the 
triple of vertices (v2i-1, v2i, v2i+1) [22]. 

In addition to the contour compression scheme, we adopt a simple 
optimization based on packet snooping [18] for the transmission of 
Pf on a node. The motivation of this optimization is that the packet 
size in a sensor network has a limit L that is determined by the 
hardware or network protocols.  Consequently, if the size of Pf on a 
node is larger than L, the node has to divide the map into multiple 
packets for transmission. This case is very likely to happen when the 
sensor readings vary significantly along space, which causes the 
final partial map on a node to consist of many small regions that 
cannot be merged.  Note that a variable number of packets per 
partial map does not affect the synchronization of the multi-path 
routing ring [4][20], because all packets for a partial map on a node 
are still transmitted within the fixed epoch allocated for the level in 
the ring that the node belongs to. 

The snooping-based optimization is executed in parallel with the 
data transmission on each node.  A node transmits its whole Pf in a 
single packet if the size of Pf is not larger than L.  Otherwise, the 
node sorts the contour regions in Pf in an increasing order of their 
areas and transmits as many regions ahead in the order as possible in 
a packet. The node then removes all transmitted regions from Pf and 
snoops on the packets that are transmitted by the neighbors in the 
same hop.  For each such packet Pnf snooped, the node removes 
each untransmitted region in Pf that is contained in some region in 
Pnf.  Next the node begins a second round of transmission and the 
transmission iteration repeats until Pf becomes empty on the node.  
In each round of the iteration, if L is smaller than the size of any 
region in Pf, the node transmits a region with the smallest size in 
multiple packets. 

This technique is feasible because multiple-path routing produces 
duplicate packets.  As a result, small contour regions in the final 
partial map of a node may have been aggregated into larger ones on 
the same-hop neighbors. The transmission of these small regions on 
a node can be suppressed if the node detects that they are contained 
in some large regions on the same-hop neighbors of the node and 
that they have been transmitted by the neighbors. 

2.2 Incremental Map Update 
Our compression techniques reduce the size of a partial map, but it 
is still considerable. Moreover, in real-world surveillance 
applications, events are rare [9] and sensor readings are mostly 
unchanged or only slightly changed over time [14]. Consequently, 
consecutive map snapshots constructed for these events are 
extremely similar and incremental updates of the maps could save a 
large amount of energy.  In contrast, if we blindly reconstruct a new 
map snapshot in every sample period of a continuous query, the 
energy of the nodes in the network will be depleted quickly due to 
the heavy communication cost. 

Motivated by this observation, we propose an incremental update 
scheme to maintain a contour map after the first map snapshot has 
been constructed.  This scheme is shown in Algorithm 2.  In the 
algorithm, each node stores its working partial map Pwo and final 
partial map Pfo in the previous sample period. The node then 

generates its final partial map Pfn in the current sample period based 
on Pwo, Pfo and its working partial map Pwn in this period. 

Algorithm 2 computes Pfn on a node by calling Algorithm 1 with a 
partial map P as the input (Line 15). P consists of three sets of 
contour regions: (1) the regions in Pwo that correspond to the update 
units in Pwn (Lines 2-6), (2) the regions in Pwn (Line 7), and (3) the 
regions in Pwo that do no overlap any of those in (1) and (2) sent by 
the same child (Lines 8-14).  It contains all information a parent 
node gets from its children in the current sample period, and the 
information obtained in the previous sample period that can be 
reused. 

If a node detects a region in Pfn is the same as a region in Pfo, the 
region in Pfn is replaced by an update unit before the transmission of 
Pfn.  The update unit contains the new error bound, regression model 
and the leftmost vertex on the outer boundary of the region (Lines 
21-22).  By this means, we save the communication cost of the 
lengthy boundaries of the region. The leftmost vertex on a 
polygonal boundary is the one that has the smallest x-coordinate 
among all vertices on the boundary.  If there are multiple vertices 
have the same smallest x-coordinate, we define the leftmost vertex 
as the upper one among them.  The update unit can even be 
removed if the regression model of the corresponding region has not 
changed and the error bound has not increased (Line 23). 

Algorithm 2  Incremental Update of Partial Map 
Input: the working and final partial maps Pwo and Pfo in the previous sample 
            period,  the working partial map Pwn in the current sample period   
Output: the final partial map Pfn in the current sample period 

1: P = ∅; 
2: for each update unit U in Pwn do 
3:    find Ri  in Pwo sent by the same child Ch as U that U.p is the leftmost

          vertex on the outer boundary of Ri; 
4:    if Ri is missing in Pwo then  request Ri from Ch; 
5:    εi = U.ε;   fi(x, y) = U.f;          /* εi and fi(x, y) are the error bound and 
6:    insert Ri into P;                                  linear regression model of Ri */ 
7: for each region Ri in Pwn do  insert Ri into P; 
8: for each region Ri in Pwo do 
9:    missing = true; 

10:    for each region Rj in P do 
11:       if Ri and Rj are not sent by the same child then  continue; 
12:       if Ri ∩ Rj ≠ ∅ then   
13:          missing = false;   break; 
14:    if missing then  insert Ri into P;  
15: Pwo = P;   call Algorithm 1 using P as the input; 
16: for each region Ri in Pfn do 
17:   origin = false;
18:    for each region Rj in Pfo do 
19:       if Ri = = Rj then 
20:         origin = true;   create a new update unit U; 
21:          U.ε = εi;   U.f = fi(x, y); 
22:          U.p = the leftmost vertex on the outer boundary of Ri; 
23:          if Ri.f ≠ Rj.f or Ri.ε > Rj.ε  then  insert U into Pfn;  
24:         break;
25:    if origin then  remove Ri from Pfn; 
26: Pfo = Pfn;   return Pfn; 
 

When a parent node receives an update unit from a child, the 
corresponding region of the unit is located from the parent’s Pwo 
via the leftmost vertex stored in the update unit.  It is possible that 
the region cannot be found in Pwo of the parent, because of the 
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transmission failure from the child to the parent in the previous 
sample period.  In this case, the parent gets back the region from 
the child by a request message (Line 4).  Note that a parent node 
can easily identify which region in its Pwo is from which child by 
attaching the id of the child that sent the region to the node.  The 
algorithm finally updates Pwo and Pfo to P to Pfn, respectively. 

2.3  Spatial Interpolation on Random Network 
Topologies 

The topology of a sensor network in practice is usually a random 
connected graph instead of a grid.  When we establish a grid on 
top of a random topology, some cells in the grid may be empty.  
These empty cells will not be involved in the in-network contour 
map construction, because none of them have a node inside.  This 
absence of some cells makes the final partial map Psf output by 
the sink incomplete, i.e., the union of all regions in Psf covers only 
part of the entire grid.  This problem will also occur on a grid 
topology if the partial maps of some nodes are lost due to the 
unreliability of radio transmission. 

To make Psf, the final partial map at the sink, always complete 
regardless of the network topology and packet loss, we perform 
spatial interpolation on Psf. The interpolation is an iterative 
process.  In each iteration, a grid cell c that is not contained in any 
region in Psf but is adjacent to some region in Psf is identified.  
Then for each region R in Psf adjacent to c, the value d = max(0, 
|maxn – minn| – |maxo – mino|) is computed for R.  maxo and mino are 
the maximum and minimum values of the regression function of R 
over region R; maxn and minn are those of the function over region 
R ∪ c.  c is finally merged into the adjacent region in Psf that has 
the smallest d value.  The merged region inherits the regression 
model and error bound of the original region in Psf.  The iteration 
stops when each cell in the grid is contained in some region in Psf. 

3.  PATTERN-BASED EVENT 
SPECIFICATION 

Having presented the construction and maintenance of contour 
maps, we define the events and event-driven queries studied in 
our work. 

3.1 Definitions 
In our pattern-based approach, an event is specified as a kind of 
spatio-temporal pattern in a contour map of an attribute, as given 
in Definition 1. 

Definition 1. [Event] An event is a time series E = ((t1, P1), (t2, 
P2), …, (tn, Pn)) with an equal time interval Δt between any two 
consecutive elements.  Each element Pi = (Ri1, Ri2, …, Rim) in the 
time series is a user-specified partial map of attribute A on a 
sensor network topology (1 ≤ i ≤ n).  Each contour region Rij in Pi 
is associated with a single attribute value vij (1 ≤ j ≤ im).  T = tn – t1 
is called the event duration. 

We say a snapshot C of the contour map of A matches Pi if and 
only if every region in Pi matches its overlapping regions in C 
within a user-specified confidence level (1 – α) ∈ (0, 1). 

We say the contour map of A matches E at time t if and only if for 
each Pi, it matches the snapshot Ci of the contour map of A at time 
t –  Δt ·  (n – i).  t is called the time of event detection.■ 

This definition requires a user to give a specific time series of 
partial maps as the spatio-temporal pattern generated by an event.  
In each sample period of the query that monitors the event, this 
use-specified pattern is compared with the snapshots of a contour 
map to determine whether the event has occurred. Δt in the 
definition is the length of the query sample period.  The reason we 
only consider a contour map of one attribute in the definition is to 
make the structure of an event as simple as possible. Moreover, 
we only require partial maps instead of complete map snapshots 
from the user so that the user does not need to consider the 
regions in the grid that are of no interest. 

A drawback of our event definition is that, if a user does not have 
perfect knowledge about an event, the user may not be able to 
specify the value distribution of an attribute over space and the 
variation of this distribution over time incurred by the event.  As a 
first attempt to address this limitation, we further define three 
common types of events that we observe in several sensor 
network applications, especially the coal mine application that we 
described in the Introduction.  Each type of event corresponds to a 
rough shape in a contour map and is specified using a set of 
parameters to fix the relative positions and values of the contour 
regions in the shape. To distinguish from these common events, 
we call the events defined by Definition 1 “general events” in the 
remainder of the paper. 

Figure 4 shows the shapes in the contour map incurred by the 
three types of events, which we call the pyramid, the fault, and 
the island respectively. 

(a) Pyramid (b) Fault (c) Island  
Figure 4: Illustration of three common types of events 

Intuitively, a pyramid event generates a continuous, gradual 
increasing or decreasing trend of attribute value in all directions 
originated from a small region in the space.  For instance, when 
the gas begins to leak in the coal mine, the contour map of the 
gas_density attribute matches a decreasing pyramid event, with 
the inmost region of the event in each map snapshot containing 
the source of the leakage.   

Different from a pyramid event, a fault event corresponds to a 
sudden and large change in the level of the attribute value in the 
space.  For instance, when the underground water begins to leak 
in the coal mine, the humidity map matches a fault event.  One 
region involved in the event definition suffers from the water 
leakage but the other does not. Note that water leakage is different 
from gas leakage in that the change in humidity does not occur in 
all directions as that in the gas_density attribute does. 

Different from both pyramids and faults, an island event 
corresponds to a region in the space that has a consistently large 
or small level of the attribute value. For instance, when a worker 
in the coal mine wants to find a place of a high oxygen level to 
take a break, it corresponds to detecting a large-valued island 
event in the oxy_density map.   

In the following, we give the formal definitions of these three 
types of events. 
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Definition 2. [Pyramid Event] Given a user-specified bucket 
size k, a snapshot C of the contour map of attribute A matches an 
increasing pyramid event if and only if a list of contour regions P 
= (R1, R2, …, Rn) in C satisfies the following four conditions: 

(1) Each region Ri in P is associated with a bucket, i.e., it 
corresponds to a range of attribute values [bi · k, (bi + 1) · k) (1 ≤ i ≤  
n).  bi ≥ 0 is an integer and bi+1 – bi ≥ 1.  R1 is called the inmost 
region and Rn the outmost region of the pyramid event. 

(2) Ri is a hole in Ri+1 and the ratio of their areas σi / σi+1 ≤ sf.  sf ∈ 
(0, 1) is a user-specified scaling factor. 

(3) σ1 ≥ σ.  σ > 0 is a user-specified area bound. 

(4) n ≥ N.  N > 1 is a user-specified nesting level. 

Given a user-specified event duration T, we say the contour map 
of A matches an increasing pyramid event at time t if and only if 
every snapshot of the contour map falling into the interval [t – T, t] 
matches an increasing pyramid event, and the inmost regions of 
the event found in any two consecutive map snapshots have an 
overlapping area of at least σ · (1 – α).  (1 – α) ∈ (0, 1) is a user-
specified confidence level.  t is called the time of event detection. 

A decreasing pyramid event is defined symmetrically by 
replacing “bi+1 – bi ≥ 1” with “bi+1 – bi  ≤ 1” in Condition (1).■ 

Note that we do not require the value of each bi in Definition 2 to 
be fixed by the user.  It can be any integer as long as the condition 
bi+1 – bi ≥ 1 (1 ≤ i ≤  n) is satisfied. 

Definition 3. [Fault Event] Given a user-specified bucket size k, 
a snapshot C of the contour map of attribute A matches a fault 
event if and only if two contour regions R1 and R2 in C satisfy the 
following three conditions: 

(1) R1 is associated with the bucket [b1 · k, (b1 + 1) · k) and R2 the 
bucket [b2 · k, (b2 + 1) · k).  b1, b2 ≥ 0 are two integers and b2 – b1 
≥Δ.  Δ ≥ 1 is a user-specified degree of difference. 

(2) R1 and R2 are adjacent. The coincident polygonal curve on 
their outer boundaries has a length of at least N · l.  N ≥ 1 is a user-
specified number of coincident cell edges.  l is the width of a cell. 

(3) The areas of the two regions σ1 ≥ σ and σ2 ≥ σ.  σ > 0 is a user-
specified bound of area. 

Given a user-specified event duration T, we say the contour map 
of A matches a fault event at time t if and only if every snapshot 
of the contour map falling into the interval [t – T, t] matches a 
fault event, and the corresponding regions of the event in any two 
consecutive map snapshots have an overlapping area of at least σ · 
(1 – α).  (1 – α)∈ (0, 1) is a user-specified confidence level.  t is 
called the time of event detection.■ 

Definition 4. [Island Event] Given a user-specified threshold 
value τ > 0, a snapshot C of the contour map of attribute A 
matches a large-valued island event if and only if a contour region 
R can be found in C that satisfies the following two conditions: 

(1) R is associated with a range of attribute values [τ, +∞). 

(2) The area of R is not smaller than σ.  σ > 0 is a user-specified 
area bound. 

Given a user-specified event duration T, we say the contour map 
of A matches a large-valued island event at time t if and only if 

every snapshot of the contour map falling into the interval [t – T, t] 
matches a large-valued island event, and the regions of the event 
in any two consecutive map snapshots have an overlapping area 
of at least σ · (1 – α). (1 – α) ∈ (0, 1) is a user-specified confidence 
level.  t is called the time of event detection. 

A small-valued island event is defined symmetrically by replacing 
“[τ, +∞)” with “(–∞, τ]” in Condition (1).■ 

Finally, we note that even though there are a number of user-
specified parameters in the definitions, most of the parameters 
have default values in our implementation.  As a result, when 
users use these events in the form of system-provided functions, 
their effort is minimized. 

3.2 Event-Driven Queries 
Based on the definitions of the events, we extend an existing 
SQL-style sensor query language [19][29] to support the 
specification of our pattern-based event detection.   

We encapsulate the general events and the three common types of 
events as system built-in Boolean methods.  The four methods are 
event(mapSnapshot, confFile), pyramid(mapSnapshot, confFile), 
fault(mapSnapshot, confFile) and island(mapSnapshot, confFile), 
correspondingly. The first parameter of each method is a snapshot 
of a contour map. The second parameter is the pathname of an 
XML configuration file given by the user.  This file lists the 
sequence of partial maps that define a general event, or the values 
of the parameters that define a common event.  A method returns 
true when the contour map matches the use-specified pattern at 
the current time; otherwise it returns false. 

All of these methods are used in the WHERE clause of an SQL 
query.  Multiple methods that are evaluated on different contour 
maps can be connected by the AND/OR SQL keywords to specify 
complex relationships between events. We call queries that are 
embedded with one or more of these methods event-driven 
queries. The SELECT clause of an event-driven query may 
contain attributes, SQL aggregates as well as user-defined 
functions. Two example event-driven queries are listed as follows: 

Query 1: 
SELECT       c.snapshot 
FROM     contour_map(temp,0.2, 0.5) c 
WHERE      event(c.snapshot, “fire_emergency.xml”) 
SAMPLE PERIOD     10 sec 
 

Query 2: 
SELECT      alarm() 
FROM     contour_map(gas_density,0.3) c 
WHERE     pyramid(c.snapshot, “gas_leakage.xml”) 
 

As shown in these two example queries, the construction of a 
contour map used by some event is specified in the FROM clause 
using the table-valued function contour_map(attribute,ε, p).  The 
first parameter of this function is the attribute of the map, and the 
latter two are the user-specified parameters ε and p for the map 
construction. Note that p is optional, as shown in Query 2.  
Similar to the sensors table [19], each contour_map function 
defines a virtual table for the query.  The table contains two main 
fields, timestamp and snapshot. snapshot is the map snapshot at 
timestamp. A list of contour_map functions, possibly on different 
attributes, can appear in the FROM clause of a single query. 
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4.  EVENT-ORIENTED QUERY 
PROCESSING 

Given the pattern-based event specification, we now present our 
event-oriented query processing framework.  We focus on how 
the system built-in methods are handled during the execution of 
continuous queries (Section 4.1) and the algorithms for contour 
map matching (Section 4.2). 

4.1 Query Execution 
Query execution in our framework is event-oriented.  When a new 
event-driven query is issued by a user, the query text and the 
parameters for each contour_map function in the query are parsed 
into a query message. The message is then injected into the sensor 
network. When the query message is received by a node, the 
distributed query processor on the node generates a sub-query 
evaluation plan based on the information encapsulated in the 
message and begins to execute the plan. 

The sub-plan of a query on a node is in charge of the in-network 
contour map construction. After the query has been installed on 
the nodes, the contour maps in the query are constructed in the 
first sample period and are incrementally updated in the 
subsequent periods.  In the case that a map of the same attribute is 
already being used by other running queries, one snapshot of the 
map will be aggregated in the network every minimum sample 
period of these multiple queries, and the aggregation uses the 
minimum ε  and p values of those of the multiple event methods.  
By this means, multiple concurrent queries share a single 
construction and maintenance procedure of a contour map. 

This contour map sharing among multiple queries saves the 
energy consumption significantly while preserving the requirement 
of all queries on event detection accuracy. This benefit is achieved 
by using a linear regression model for contour region merging 
rather than using equal-width buckets [12] in the in-network 
contour mapping. For example, if two queries share a contour 
map using equal-width buckets of sizes k1 and k2, the map must be 
constructed using a bucket size k = gcd(k1, k2).  However, even if 
both k1 and k2 are large, k may be small so that the aggregation 
performance will be poor (e.g., k1 = 30, k2 = 100, and k = 10).  In 
contrast, using a linear regression model, the map is constructed 
in a way independent of the bucket size of each query. 

In addition to the sub-query plans on the nodes, a main evaluation 
plan is generated for a query at the base station.  The main plan is 
responsible for event detection according to the configuration 
files of the methods in the query.  Each method is implemented as 
a data structure in this main plan. The structure contains following 
fields: (1) a flag indicating whether the method defines a general 
event or a common event, (2) the user-provided partial maps for a 
general event or parameter values for a common event, and (3) a 
copy of each snapshot of M that falls in the sliding window [tc – T, 
tc].  Here M is the contour map that the method is evaluated on, tc 
is the current system time and T is the event duration. For brevity, 
in the following we call these map snapshots stored with a method 
in the main query plan “the map snapshots of the method”. 

At the end of a sample period of a query, each method in the 
query is evaluated using the map snapshots of the method.  The 
core of the evaluation procedure is a corresponding algorithm for 
contour map matching we design.  The algorithms are described 

in Section 4.2. If the combination of all methods in the WHERE 
clause is evaluated to true at this time, the data acquisition, 
aggregation or user-defined functions specified in the SELECT 
clause of the query are performed. 

4.2 Algorithms for Contour Map Matching 
We have designed and implemented four algorithms for contour 
map matching in our framework, one for the general events and 
each of the other three for a common type of events.  These 
algorithms strictly follow the definition of their corresponding 
events in Section 3.1.  Consequently, we only give the algorithm 
for matching a general event, Algorithm 3, as an example and 
omit those for the common events. 

We point out that the matching of a common event defined in a 
method requires further post-processing of the map snapshots of 
the method. Such post-processing is conducted before each map 
snapshot is stored with the method.  Specifically, we associate 
each grid cell with a bucket based on the mean value of the 
regression function [15] on this region in the map snapshot.  How 
the whole range of the attribute value is divided into a number of 
buckets is specified by the user in the configuration file of the 
method.  After associating a bucket with each grid cell, adjacent 
cells that are in the same bucket are merged and a different 
version of snapshot is obtained. 

Algorithm 3 Matching of a General Event 
Input: the general event E defined in method m 
Output: the current return value of m 

1: for each partial map Pi (1 ≤ i ≤ n) in E do 
2:    Ci = the map snapshot of m at the time tc – (n – i) · sp;   p = 0; 
3:    for each region Rj (1 ≤ j ≤ im) in Pi do 
4:       for each region Rk (1 ≤ k ≤ l) in Ci do 
5:          if (Rh = Rj ∩ Rk) ≠ ∅ then 
6:             p + = (σh / σj) · (| dσyxf

Rh
j∫∫ ),(  –  vj · σh  | / (vj · σh)); 

7:       if 1 – p < (1 – α) then  return false;  else  p = 0; 
8: return true; 

5. EXPERIMENTS 
In this section, we evaluate the performance of our proposed 
pattern-based event detection mechanism using a homegrown 
sensor network simulator. 

5.1 Experimental Setup 
We simulated the event detection scenario of a coal mine 
surveillance application in our experiments. As we have described 
in the previous sections, this application involves several event 
detection tasks, such as gas leakage detection, water leakage 
detection and oxygen density monitoring. The sensor readings and 
the coefficients of the regression model are all 2 bytes in the 
experiments.  We set the size limit of a packet in our simulator to 
be 49 bytes based on our application development experiences on 
the Crossbow MICA2 motes [6]. We use the GPCJ library [10] for 
the polygon operations in in-network contour mapping.      

5.1.1 Data Generation 
We have conducted field studies in a coal mine and collected a 
small amount of real-world sensory data.  This real-world dataset 
mainly contains three attributes: gas_density, oxy_density and 
humidity. However, due to the resource and environment 
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constraints, the collected data is coarse-grained in both temporal 
and spatial granularity.  The sample period of the nodes was set at 
the minute level and there were only a few nodes deployed in the 
mine. Consequently, we generated synthetic datasets based on the 
settings and the sensory data characteristics revealed in the real-
world dataset, and used the synthetic datasets in the experiments. 

Each synthetic dataset we generated contains the three attributes.  
The nodes form an N · N grid with a cell length of 10 meters.  
There is a node at the center of each grid cell and the sink node is 
at the upper-left corner of the grid.  The dataset contains 1000 
tuples from each node, with one tuple generated every second.  
The initial value vi0 for an attribute on a node i in the dataset is 
randomly selected from a set of seed values that we found most 
common for that attribute in the real-world dataset.  The attribute 
value on the node in a subsequent second is randomly picked 
from the range [vi0· (1 – d), vi0· (1 + d)] with a probability of Pi, or 
remains unchanged from the previous second with the probability 
of 1 – Pi.  The value of Pi for a node i is uniformly chosen from 
the range (0, 0.3].  d ∈ (0, 1) is the maximum variation percentage 
of the attribute value in the real-world dataset. 

Finally, we change the synthetic dataset to embed event data for 
each query workload. The event data contain spatial-temporal 
patterns that the query is supposed to detect.  They are embedded 
into the dataset by replacing the attribute values of the tuples in 
the dataset.  The locations of these patterns in the dataset are 
randomly selected.  The details of the query workload are given in 
Section 5.1.2. 

5.1.2 Query Workload 
For each synthetic dataset, we generated a query workload 
consisting of four classes of queries QC1-QC4 and ran the 
workload over the dataset in our experiments.  Each class in a 
workload contains 30 queries embedded with a kind of event 
detection method. QC1-QC4 contain the event, pyramid, fault and 
island methods, respectively.  Each query in a class is to detect a 
randomly generated event instance of the corresponding type. 

In a query workload, the queries in QC2, QC3 and QC4 involve 
the gas_density, humidity and oxy_density attributes respectively, 
so that they correspond to gas leakage detection, water leakage 
detection and oxygen density monitoring.  In contrast, each 10 out 
of the 30 queries in QC1 involve one of these three attributes so 
that QC1 can evaluate the performance of our mechanism in 
detecting general events that produce arbitrary spatio-temporal 
patterns in sensory data.  All of the 120 queries in the workload 
use the parameter values ε = 0.2 and p = 1 for the contour map 
construction and has a sample period of 1 second. The bucket size 
of a query in QC2-QC4 is uniformly picked from (0, 1000]. 

5.1.3 Performance Metrics 
We used accuracy of event detection and network traffic as the 
two metrics for performance evaluation. The accuracy of event 
detection measures the effectiveness of our approach and the 
network traffic reflects the power efficiency.  Both metrics are 
important for sensor network surveillance applications. 

The accuracy of event detection includes two sub-metrics similar 
to those used in Information Retrieval: (1) precision, which is the 
percentage of real events detected over all events reported by a 
query, and (2) recall, which is the percentage of events in the 

synthetic dataset that are successfully detected by a query.  The 
network traffic is defined as the total number of bytes transmitted 
by all nodes in the network during the execution of a query for a 
fixed period of time. 

5.1.4 Approaches Compared 
The main idea of our pattern-based event detection mechanism is 
to convert the problem of event detection in sensor networks into 
pattern matching and then contour map matching.  Therefore, the 
approach to contour map construction and maintenance is most 
important to the performance of our mechanism. Consequently, in 
our experiments we focused on evaluating the effectiveness of our 
linear regression based approach to in-network contour mapping. 

We compared the performance of our approach with two other 
alternative approaches: (1) equal-width bucket based in-network 
contour mapping [12], and (2) server-side contour mapping using 
our proposed regression model for contour region merging 
without in-network aggregation. The first alternative is for 
comparing equal-width bucket with linear regression in contour 
mapping whereas the second for comparing a centralized 
approach against in-network aggregation. We denote these 
approaches as INLR (In-Network Linear Regression), INEB (In-
Network Equal-width Bucket) and SSLR (Server-Side Linear 
Regression), correspondingly. 

For a fair comparison, all three approaches used multi-path 
routing for data transmission. Moreover, similar to INLR we 
applied simple techniques for duplicate elimination and 
incremental update on each node for INEB and SSLR. 

5.1.5 Parameters Considered 
We varied a number of system parameters in our simulator when 
comparing the performance of the three approaches of contour 
map construction.  These parameters are listed as follows: 

(1) Event Frequency (F).  It is the frequency at which the spatio-
temporal pattern of the event appears in the dataset.  For instance, 
suppose a pattern appears at 100 positions of a 1000-tuple dataset, 
the event frequency is computed as (100/1000) · 100% = 10%. 

(2) Network Diameter (D).  It is the width in meters of the square 
N · N grid. 

(3) Transmission Range (T).  It is the maximum distance between 
two nodes in a grid topology that can communicate with each 
other directly.  

(4) Link Loss Rate (R).  It is the probability with which a packet 
from a child node to its parent will be dropped in our simulator. 

5.2 Efficiency of Our Approach 
Before comparing the performance of our INLR with the other 
two approaches of contour mapping, we first validated the 
usefulness of the techniques it adopts.  These techniques include: 
(1) the contour compression scheme (Section 2.1.2), (2) the 
snooping based optimization of partial map transmission (Section 
2.1.2), and (3) the incremental update scheme (Section 2.2). 
Because none of these techniques affect the accuracy of event 
detection, we only show the results on network traffic. 

Figure 5 shows the network traffic of five variants of our INLR.  
The parameter setting we used in this experiment was F = 10%, D 

153



= 100m, T = 15m and R = 0%.  A value in the figure was the 
average of those of the 30 queries in a class when each of the 
queries was run individually over the dataset.  This is the same for 
all figures we showed in the following. 
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Figure 5: Network traffic of different INLR variants  

In Figure 5, ORI is the original version with none of the three 
techniques enabled in our approach.  CCS, SNP and IUS are the 
variants with only the contour compression scheme, the snooping 
based transmission optimization and the incremental update 
scheme enabled, respectively. Finally, INLR is the full version 
with all three techniques enabled. 

As shown in the figure, for the query workload we used, CCS, 
SNP and IUS saved about 25%, 55-70%, 65-75% communication 
cost in comparison with ORI. This saving indicates that the 
incremental update scheme is most beneficial in energy 
conservation among the three techniques, the next the snooping 
based transmission optimization, and then the contour 
compression scheme. When all three techniques are adopted 
together, they can save nearly 90% communication cost over ORI.  

5.3 Comparison of Three Approaches 
In this section, we varied each of the four system parameters while 
keeping the other parameters fixed to investigate the effect of the 
parameter on the performance of the three approaches.  Because 
there is no concept of bucket involved in the definition of general 
events, INEB was excluded for QC1 in the experiments due to its 
inapplicability to this class of queries.  For each query in QC2-
QC4, INEB used the same bucket size for the contour map 
construction as that used in INLR and SSLR for event detection. 

Our experimental results showed that QC1-QC4 revealed a 
similar performance trend among the three approaches for all 
parameter settings.  As a result, we only provide the results of 
QC2 as examples.  In all runs of the experiments, the three 
approaches consistently achieved a 100% precision no matter how 
each of the four system parameters was varied. Also, the accuracy 
of event detection was hardly affected by the variation of the 
other three parameters except for the link loss rate. Therefore, we 
only report the results on recall when the link loss rate varied. 

Figure 6 shows the recall of the three approaches when the 
network link loss rate was varied from 0 to 30%.  In the figure we 
see that, all three approaches failed to report several occurrences 
of the event when the link loss rate became large.  The accuracy 
of event detection achieved by our INLR was as good as SSLR 
and both of them outperformed INEB by 10-20% when the link 
loss rate is not zero. The poor recall of INEB is mainly because 
the packet loss makes an original large region in a bucket become 
individual small pieces, so those regions that satisfy the area 
bound requirement of our event definition can not be found. 
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Figure 6: Recall of the three approaches with different link 

loss rate (F = 10%, D = 100m, T = 15m) 

As for the network traffic, Figure 7 shows the metric values of the 
three approaches when the event frequency, network diameter, 
transmission range and link loss rate were varied in the range of 
5-20%, 50-200m, 10-30m and 0-30% respectively. The other 
parameters fixed for each sub-figure are listed in the figure title.  
The results in each of these sub-figures are described in order. 

As illustrated in Figure 7(a), both INLR and INEB consumed only 
10% more communication cost when the events appeared more 
frequently. This indicates that frequent occurrences of an event 
will not cause significant increase in network traffic of in-network 
contour mapping; the network traffic of an in-network approach 
remained small compared with a server-side approach. We limited 
the event frequency to be under 20% because events are usually 
rare in the physical world [9]. 

Figure 7(b) demonstrates that in-network contour mapping was 
more scalable in large networks than the naïve sever-side 
approach. INLR was slightly more scalable than INEB even 
though the difference between the two was small. 

In Figure 7(c) we see that, the network traffic in INLR decreased 
almost linearly and that of INEB increased almost linearly with 
the increase of the transmission range.  This is because when the 
transmission range of the nodes is large, the data from a node can 
be received by more nodes in the network that are far away from 
the node.  However, the small regions from two distant nodes was 
very likely to be in different buckets so that the communication 
cost in INEB for data forwarding throughout the network 
increased.  INLR could still merge these regions into large ones 
using the linear regression model so that its performance 
benefited from the increase of the transmission range. 

Figure 7(d) shows that the network traffic of SSLR decreased 
linearly when the link loss rate increased.  This is because many 
packets were dropped at the first few hops of the multi-hop 
routing and the upper hop nodes that are near the sink did not 
need to forward these packets any more. INLR was most 
indifferent to the link loss rate in terms of network traffic among 
the three.  However, the network traffic of INLR still slowly 
decreased when the link loss rate became larger. 

Interestingly, the network traffic of INEB increased when more 
packets were dropped.  The reason was that when some contour 
regions transmitted from a child node to its parent were lost in the 
transmission, the probability that on the parent node two regions 
in the same bucket would become adjacent or overlapping was 
lowered due to the missing of the region that connects them in 
space. Consequently, the aggregation performance of INEB got 
poor since many small, disjoint regions had to be transmitted 
instead of a single, large one. 

154



0

2

4

6

8

10

0% 10% 20% 30%
Event Frequency

N
et

w
or

k 
Tr

af
fic

 (M
B

)

INLR
INEB
SSLR

 

 

0

4

8

12

16

0 10 20 30 40
Transmission Range (meter)

N
et

w
or

k 
Tr

af
fic

 (M
B

)

INLR
INEB
SSLR

                         

  

0

20

40

60

80

100

0 100 200 300
Network Diameter (meter)

N
et

w
or

k 
Tr

af
fic

 (M
B

)

INLR
INEB
SSLR

 

      

0

2

4

6

8

0% 10% 20% 30% 40%
Link Loss Rate

N
et

w
or

k 
Tr

af
fic

 (M
B

)

INLR
INEB
SSLR

   

Figure 7: Network traffic of the three approaches with different parameters varying (a) event frequency (D = 100m, T = 15m, R = 
0%) (b) network diameter (F = 10%, T = 15m, R = 0%) (c) transmission range (F = 10%, D = 100m, R = 0%) (d) link loss rate (F = 

10%, D = 100m, T = 15m) 

As a summary of the results in Figure 7, our proposed INLR 
consistently outperformed the other two approaches in network 
traffic.  The network traffic of INLR is indifferent to the event 
frequency, scales well with a large network size and decreases 
properly when the transmission range gets larger. 

6. RELATED WORK 
There have been a number of recent publications on event-
oriented query processing for sensor databases. The Cougar 
sensor database encapsulates the logic of threshold-based event 
detection into asynchronous functions in the system [3].  TinyDB 
[12][19] processes events generated from a threshold-based query, 
a module hand-coded in the operating system, or an interrupt from 
some hardware component such as a switch or a motion detector.  
REED [1] extends TinyDB to support efficient in-network join 
operations, which are useful for event detection in industrial 
process control applications. In comparison, our approach does 
not require the existence of any hand-coded OS modules or 
hardware equipment. Instead, we define an event based on the 
spatio-temporal pattern it generates in sensor readings and 
perform pattern-based event detection by contour map matching. 

In the networking community, Directed Diffusion [13] detects the 
emergence of an animal by matching the sensor readings of a 
node with the pattern libraries stored on the node.  This pattern-
based event detection is similar to our approach.  A difference is 
that, instead of considering temporal pattern matching on 
individual nodes, we study the spatial pattern incurred by an event 
throughout the network and the evolution of this pattern over 
time. Another piece of work on event detection in sensor 
networks is DSWare [17], a sensor network middleware that 
provides event detection services based on node grouping.  A new 
event is registered to DSWare by inserting a tuple that specifies 
the semantics of the event into a system-level event table.  
Nevertheless, none of this line of work employs contour map 
matching as the means for event detection. 

Our in-network contour mapping has been influenced by the 
previous work of Hellerstein et al. [12].  Their work was to use 
the TinyDB query processor to construct contour maps for sensor 

network applications whereas ours is to use contour maps in our 
query processor as the means for event detection.  Furthermore, 
we have presented a systematic solution to the event detection 
problem, with emphasis on the multi-path routing, the linear 
regression model for contour region merging, and the size 
reduction and incremental update of the partial maps. 

Both Hellerstein et al. and we establish the grid topology for 
contour maps.  This regularity eases the event specification in our 
approach, because it is more complex for the users to specify 
contour regions if the boundaries are not straight lines but 
arbitrary planar curves.  In contrast, Solis and Obraczka have 
studied using isoclines as the basis for contour map construction 
instead of using polygonal regions [26].  In addition, they divided 
the range of attribute values into equal-width buckets and used 
single-path data routing. 

Deshpande et al. proposed to use a centralized probabilistic model 
to optimize the processing of various types of sensor queries [8]. 
The model captures the spatio-temporal correlations between the 
readings of multiple types of sensors on a node.  Although the 
authors commented that the model could be extended to a 
distributed version with continuous sampling for event detection, 
no detailed techniques have been presented in this regard yet.  

Linear regression has been shown effective for data compression 
[7] or redundancy suppression [16] in sensor networks to reduce 
the communication cost of sensory data acquisition. We use linear 
regression to construct the contour maps that represent the sensor 
reading distribution over a network. 

Finally, the detection of the common types of events that we 
define bears some similarity to the shape matching queries in 
traditional [2] or streaming [28] time series databases.  Since our 
work is targeted at sensor network surveillance applications, we 
focus on enabling the detection of these events in a simple but 
effective way via in-network contour mapping. 

7. CONCLUSION 
In this paper, we have proposed a pattern-based approach to event 
detection in sensor networks. Our approach is implemented by 
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matching user-specified patterns with the contour maps of sensory 
data distribution. We give a general pattern-based definition for 
the events, and propose simple SQL extensions to allow users to 
specify several common types of events as patterns in contour 
maps.  We propose a number of energy-efficient techniques for 
in-network contour mapping, including a linear regression based 
criterion for contour region merging, two techniques for size 
reduction of the partial map transmitted by a node, and an 
incremental update scheme. Our experimental results with 
synthetic workloads derived from a real-world coal mine 
surveillance application shows that our approach of in-network 
contour mapping can achieve a good accuracy. Moreover, it 
greatly saves the network traffic in comparison with an existing 
equal-width bucket based approach and a server-side approach 
with contour map matching. 

We are working on a prototype implementation of our proposed 
in-network contour mapping techniques on a kind of sensor nodes 
that are similar to the MICA2 motes. The algorithms implemented 
in the current prototype, including multi-path routing, regression-
based contour region merging and contour compression, are 
simplified from those presented in the paper, due to the resource 
constraints of the current generation motes.  Preliminary results 
on this prototype in our lab show that the computation cost of the 
current prototype is suitable for MICA2-grade sensor nodes when 
the network size is small (tens of nodes).  Moreover, we have 
deployed a 27-node network in a coal mine in the mainland China 
and plan to install and test the prototype on this real deployment 
after a robust version is finished.  Documentation and source code 
packages of this work are publicly available at our project web 
site www.cs.ust.hk/aorta. 

Other on-going work includes revising the pattern-based event 
specification to be more user-friendly, evaluating the performance 
of our mechanism using patterns of events from real-world 
datasets, and re-implementing and evaluating our approach, 
including the libraries required for polygon operations, on PDA-
grade micro-server sensor nodes. 
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