
Systems Support for Pervasive Query Processing

Wenwei Xue Qiong Luo Lionel M. Ni

Department of Computer Science

The Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong

{wwxue, luo, ni}@cs.ust.hk

Abstract

Database queries, in particular, event-driven

continuous queries, are useful for many pervasive

computing applications, such as video surveillance. In

order to enable these applications, we have developed

a pervasive query processing framework called Aorta.

Unlike traditional database systems, a pervasive query

processor requires systems support for managing a

large number of networked, heterogeneous devices. In

this paper, we present the communication,

synchronization, and scheduling mechanisms in Aorta.

Even though these techniques have their roots in

distributed and parallel systems, we show how these

techniques are customized and applied for pervasive

query processing. In essence, communication between

heterogeneous devices enables network data

independence, synchronization on devices protects

action atomicity, and scheduling works for adaptive,

cost-based multi-query optimization. We have

conducted empirical studies on our prototype as well

as simulation studies to evaluate the system

performance.

1. Introduction

Pervasive (ubiquitous) computing is an exciting

vision in which various kinds of networked computing

devices “live” with people in the real world [19].

Monitoring physical-world phenomena (events) of

interest, pervasive computing applications integrate

data acquisition, communication and operations

(actions) on small devices that are embedded or mobile

in the world. For instance, in a building monitoring

scenario, a surveillance application automatically

operates remotely-controllable cameras to take photos

based on the variation in the readings of acceleration

sensors. In the meanwhile, it sends the photos to the

cell phone of the human manager who may be

currently off-duty. Due to the heterogeneous and

resource-constrained nature of the devices involved, to

date pervasive computing applications are usually

difficult to develop and optimize, and their

functionality and usefulness are limited.

Recent work in the database and networking areas,

including TinyDB [12], Cougar [4][5][21], Direct

Diffusion [7][10] and SINA [16], has illustrated the

effectiveness of using declarative database queries in

querying and tasking a network of sensors. Inspired

by these systems, we propose to use database queries

for the development and optimization of pervasive

computing applications. Specifically, we developed a

pervasive query processing framework called Aorta to

enable these applications. Using this framework, an

application can issue SQL-style queries embedded

with complex actions on devices (e.g., take a photo

towards a location on a camera). These actions

embedded in the queries will be executed

automatically in response to physical-world events

(e.g., object movement).

In this paper, we focus on the systems support

issues in Aorta. Specifically, we have designed and

implemented a number of mechanisms that are

customized for pervasive query processing: (1) a

uniform data communication layer that enables device

network data independence [9], (2) simple locking and

probing mechanisms for device synchronization, and

(3) two heuristic scheduling algorithms for adaptive,

cost-based multi-query optimization.

The remainder of this paper is organized as follows.

We give an overview of our query processing

framework in Section 2. We present the design of the

uniform data communication layer in Section 3. In

Section 4, we describe the device synchronization

mechanisms we have implemented in Aorta. In

Section 5, we propose heuristic algorithms for the

scheduling of multiple concurrent action requests. In

Section 6, we evaluate the performance of the Aorta

system prototype using both empirical studies and

simulation studies. We discuss related work in Section

7 and conclude in Section 8.

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICSCS’05)

1063-6927/05 $20.00 © 2005 IEEE

2. Aorta query processing

To give the background of the systems support, in

this section we briefly introduce the Aorta pervasive

query processing framework. We omit many details

about query processing and present only necessary

contents to make this paper self-contained. The

readers can refer to a previous paper of ours [20] for

more thorough description of the action-oriented query

optimization and execution techniques in Aorta.

2.1. Architecture of Aorta

The architecture of the Aorta system consists of

three major layers.

The top layer of Aorta is a declarative interface that

allows pervasive computing applications to specify

actions on devices through database queries. This

interface alleviates the problem of programmers

having to handle various programming APIs for

different types or models of devices. We extend the

SQL language to allow specifications of user-defined

actions and provide a library of system built-in actions

for accessing and operating devices.

The bottom layer of Aorta is a uniform data

communication layer that manages a number of

networked, heterogeneous devices. This layer ensures

that the Aorta system, not the individual applications,

is responsible for monitoring and tuning the current

network infrastructure and the physical status of the

devices. Applications only need to see an abstract

view of the devices. This abstract view enables

application programmers to pay their full attention to

the application semantics of their tasks rather than

worrying about the lower-level implementation issues,

such as data transmission loss, action failure and

resource consumption on the devices.

Finally, there is an action-oriented query processing

engine for queries embedded with actions in the

middle. Being the core of our framework, this engine

is responsible for generating, optimizing and executing

query plans. It interacts with the communication layer

to adapt to current device status and network workload.

It also provides mechanisms to enable device

synchronization and action workload scheduling

among multiple queries.

2.2. Declarative application interface

Many pervasive computing applications have an

event-driven and action-oriented processing nature:

when the application detects an event, a pre-defined

action on some type of devices is triggered. Based on

this observation, we implemented a declarative

interface in Aorta for applications to specify actions

and queries with actions embedded. We call this kind

of queries action-embedded queries.

Actions are Aorta system built-in or user-defined

functions that operate devices. For a user-defined

action, the user must pre-compile the code block of the

action into a dynamically linked library, and use the

CREATE ACTION command provided by the

declarative interface to register it along with an action

profile to Aorta. An action profile is an XML text file

that describes the high-level semantics of the action

and will be used in query optimization. As an example,

the following command registers a user-defined action

sendphoto(), which sends a photo (image file) to a

phone with MMS support.

 CREATE ACTION sendphoto(String phone_no,

String photo_pathname)

 AS “lib/users/sendphoto.dll”

 PROFILE “profiles/users/sendphoto.xml”

After an action is registered to Aorta, applications

can specify and register queries with the action

embedded using the CERATE AQ command. Figure 1

shows an example action-embedded query in Aorta.

Figure 1. The example snapshot query

As illustrated in this example, the specification of

an action-embedded query appears to be an event-

driven continuous query with a name. In this query,

the system-provided action photo(camera_ip, location,

directory) operates the camera with IP address

camera_ip to move its head to the direction pointing to

location and to take a medium-size photo; then the

action stores the photo to directory. The constraint

s.accel_x > 500 in the query condition specifies the

events of interest (e.g., someone pushes the door and

causes a movement of the door together with the

sensor attached on it). The set of candidate cameras

that are suitable for executing the photo() action

whenever an event is detected is specified using the

system-provided Boolean function coverage

(camera_id, location). This Boolean function returns

TRUE if the camera with ID camera_id has a view

range that covers location.

2.3. Cost-based query optimization

As shown in the example in Figure 1, the snapshot

query states that whenever a sensor detects a

CREATE AQ snapshot AS

SELECT photo(c.ip, s.loc, “photos/admin”)

 FROM sensor s, camera c

 WHERE s.accel_x > 500

 AND coverage(c.id, s.loc)

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICSCS’05)

1063-6927/05 $20.00 © 2005 IEEE

movement at a certain speed, all cameras are examined

to see whether they can take a photo towards the

sensor’s location (e.g., whether they are candidates for

executing the photo() action upon this event).

However, even if multiple candidate devices are

available to take the action, it is sufficient to let some,

instead of all, devices to take the action. This

application semantics in pervasive computing brings

opportunities to query optimization. In Aorta, the

query optimizer will select the current “best” camera in

terms of cost among all candidates to execute the

action.

The cost-based device selection optimization is

necessary because the cost of an action execution on

different candidate devices may be different.

Furthermore, if a device is selected for too much

workload, it may slow down or malfunction. For

generality, we define the cost of an action on a device

as the execution time of the action on the device.

Consider the cost of the system built-in action

photo() in Figure 1. On the AXIS 2130(R) PTZ

network cameras [3] we used, the time spent on

moving the head of a camera to a target position

depends on the current position of the head (the pan,

tilt, zoom values). As a result, when a photo() action is

executed on a camera, the starting head position of the

camera affects the execution time (cost) of the action

on it. Moreover, the execution of a photo() action

moves the head of the camera to a new position, which

in turn affects the cost of the subsequent photo() action

to be executed on it.

In this example we see that, the cost of an action

execution on a device may depend on the current

physical status of the device. Furthermore, an action

execution may change the current physical status of the

device and in turn the cost of subsequent action

executions on the device. In the photo example, the

current physical status of a camera that is related to the

photo() action is the camera head position. For other

actions on other types of devices, the device physical

status concerned may be different, e.g., the depth of a

sensor in a multi-hop network affects the cost of

connecting the sensor for some operation on it.

To enable cost-based device selection optimization

for action execution, we put actions as first-class

citizens (query operators) inside query execution plans.

An action operator contains the name, the input

parameters, and the pointer to the method to be

executed. Furthermore, we make concurrent queries

that have the same embedded action (the name of the

function is the same, but the input parameter values

may be different) share a single action operator in their

query plans. We add the query ID to the input tuples

of a query so that the operator knows which tuples are

for which query. Such action operator sharing saves

system resources and facilitates group optimization of

actions.

We have proposed a cost model for the optimizer to

estimate the cost of an action execution on a candidate

device. The core component of the cost model is the

action profile, which specifies the composition of an

action in terms of the sequential and/or parallel

execution of a number of atomic operations. The costs

of atomic operations are obtained from empirical

measurements. The cost of an action is then estimated

based on the action profile and the estimated costs of

the atomic operations on the type of devices. Our

results from a number of experiments have validated

that our cost model is reasonably accurate. The cost

model is also used by the two heuristic scheduling

algorithms that we propose in Section 5.

In addition to the query optimization and execution

issues, a number of systems issues must be addressed

to support pervasive query processing in our

framework. Specifically, pervasive query processing

requires data communication across networks of

heterogeneous devices, synchronization on the devices,

and scheduling action workload among the devices.

The design and implementation of these systems

support mechanisms is the focus of this paper.

In the following sections, we present in detail our

design considerations and approaches for the data

communication, device synchronization and action

workload scheduling mechanisms in Aorta.

3. Uniform data communication layer

Pervasive computing applications usually involve

heterogeneous devices that have completely different

hardware architectures and software APIs. Moreover,

even for the same type of devices, the capabilities and

interfaces of different models may vary widely.

Examples of these devices include smart sensors,

network cameras, cell phones, smart cards, and so on.

We have designed and implemented a uniform data

communication layer in Aorta. The goal of the

communication layer is to handle heterogeneous

networking protocols and to provide a dynamic, logical

view of networked devices for applications. This layer

mainly consists of three components: (1) the profiles of

devices, (2) the scan operators for devices, and (3) a

set of basic communication methods for each type of

devices. We describe these components in order. For

brevity, in the remainder of the paper we say “a type of

devices” in short for “a type or model of devices”.

3.1. Device profiles

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICSCS’05)

1063-6927/05 $20.00 © 2005 IEEE

The communication layer maintains the profiles of

devices. In Aorta, we use device profiles to describe

the physical characteristics of devices. These profiles

are generated and registered to the system and are

updated dynamically by the system administrator.

A typical example of profiles that are common to all

types of devices involved in Aorta is the device

catalog. A device catalog is an XML text file that

keeps the names of the attributes supported by the type

of devices (e.g., temperature and light for sensors), the

pointers to the system built-in methods for acquiring

the values of the attributes, and the information about

the semantics and properties of the attributes.

Furthermore, for each type of devices, there is also

an atomic_operation_cost.xml file included in its

profiles. This file lists all atomic operations on the

type of devices and their corresponding estimated costs.

We define an atomic operation as the smallest unit of

operation that a type of devices can perform.

Examples of atomic operations on devices include

“take a photo of a specified size (small, medium or

large)” on cameras, “receive an SMS/MMS message”

on phones, and “beep/blink once” on sensors.

The estimated cost of an atomic operation is

measured by our homegrown programs using some

cost metric; the cost metric we currently use is the time

required to finish the operation. Our tests show that an

atomic operation has almost the same cost on devices

of the same type. These estimated costs will be used

by the query engine in query optimization.

3.2. Scan operators for devices

The communication layer abstracts each type of

devices into a virtual relational table. It then provides

special “scan operators” as simple interfaces for the

query engine to acquire device data tuples from these

virtual tables. Each tuple of a virtual device table (e.g.,

the sensor table) is from a specific device of the

corresponding type; it is generated on-the-fly when

requested by the query engine. Such virtual table

abstraction has been widely adopted by previous work

[12][21] in sensor databases and proved to be effective

for encapsulating device data. With such abstraction,

the query engine can regard the underlying device

network as a distributed database consisting of various

horizontally partitioned device tables.

The attributes of a virtual device table can be either

real-time data such as sensor readings and camera

video feeds, or static data such as sensor locations (we

assume the location of a sensor is fixed), camera IP

addresses and phone numbers. We call the former

sensory attributes and the latter non-sensory attributes.

We categorize the attributes that describe device status

(e.g., sensor or phone battery voltages, camera zoom

level) into sensory attributes, since their values are

acquired by “sensing” the current physical status of the

devices. Consequently, the implementation of a scan

operator on different attributes varies by the categories

of the attributes. Specifically, sensory data must be

acquired dynamically whereas non-sensory data may

be stored statically.

3.3. Basic communication methods

In order to enable data acquisition and transmission

across heterogeneous devices, the communication

layer implements a common interface that defines a set

of basic communication methods such as connect(),

close(), send() and receive(). These methods wrap

around the heterogeneous networking protocols of the

various types of devices in Aorta. Each type of

devices inherits this interface in its own

communication module, with a specific

implementation based on the software programming

APIs supported by the type of devices.

These basic communication methods are the

building blocks of many query operators in the query

engine, for example, the scan operators and action

operators. The uniform interface provided by these

methods shields the engine from the heterogeneity and

complexity of the underlying device network.

The design of the device profiles, scan operators

and basic communication methods all follow a generic

structure. Our consideration is to make the

communication layer easily extensible for new types of

devices in the future.

4. Device synchronization

Device synchronization is another important issue

in pervasive computing systems design. The major

goal of device synchronization is to ensure the correct

application semantics of individual actions executed on

unreliable physical devices. Our current Aorta system

prototype mainly includes two device synchronization

mechanisms: (1) a locking mechanism, and (2) a

probing mechanism.

The locking mechanism is used to avoid concurrent

execution of multiple actions on a single device.

When a device has been selected to execute an action,

the optimizer will lock it until it finishes executing the

action (i.e., the call to the code block of the action

method returns). Subsequent actions on this device

cannot start before the device is unlocked.

To illustrate the necessity of such locking

mechanism, let us consider queries embedded with the

photo() action again. Suppose a camera has been

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICSCS’05)

1063-6927/05 $20.00 © 2005 IEEE

selected by the optimizer to execute a photo() action

for a query among all candidates. When the camera is

executing the action, it is selected to execute a photo()

action for another query. As a result, the head of the

camera will be redirected to the second target position

before it finishes taking the first photo. Such

interference between concurrent photo() actions on a

device leads to either unclear (blurred) photos or

photos taken at wrong positions. Furthermore, it is

possible that when a camera is busy with the first

action, it will fail to execute the second action or has a

very long delay for it. We observed all of these

problems in practice and our locking mechanism

eliminated these problems.

The probing mechanism is for the optimizer to

examine each candidate before deciding whether it

should be included in the device selection optimization.

A probe on a candidate device includes the

transmission of several messages between the

optimizer and the device.

The major role of the probing mechanism is to

check the current availability of a candidate device.

This availability checking is necessary because

physical devices in pervasive computing are

intrinsically unreliable. They may join, move around,

or leave the network dynamically in a way

unpredictable to the system. As examples, the current

generation sensors usually communicate via a wireless

radio channel of a high packet loss rate [6]; a camera

may suffer from network connection delay and

produce blurred photos occasionally; and a phone may

become unreachable when its owner moves into an

area that is out of the coverage of the service provider.

Consequently, the optimizer must establish

connection to a candidate device and make sure it is

currently available before proceeding to estimate its

cost for executing an action. A system-provided

TIMEOUT value is set for each type of devices to

break the probe on unresponsive devices. These

malfunctioning devices will be automatically excluded

in the device selection optimization.

Additionally, by probing a candidate device the

optimizer can gather information about the current

physical status of the device. This information is

useful and even necessary in the device selection

optimization. What kind of device physical status is

concerned and how it is considered in the optimization

is specified in the action profile.

5. Action workload scheduling

In this section, we discuss the problem of action

workload scheduling in Aorta. As action-embedded

queries are continuous queries with a long-running

nature, it is expected that there will always be a large

number of queries running concurrently in the system.

In this scenario, multiple action requests from different

queries may appear in the optimizer at the same time or

within a short time interval. Consequently, a

scheduling mechanism is necessary to distribute

multiple action requests to the devices that are

currently available. We define an action request as the

request from a query for the execution of an action

with instantiated input parameter values for the action.

We first formulate the action workload scheduling

problem in Aorta in Section 5.1. We then present two

heuristic algorithms to solve the problem in Section 5.2.

5.1. Problem formulation

Given multiple action requests that appear in a

shared action operator, the Action Workload

Scheduling Problem we consider in Aorta is

formulated in Figure 2. The object function of the

problem is to minimize the maximum completion time

(or called makespan) of the set R of action requests.

The completion time is defined as the interval between

the time when these requests appear in the shared

action operator and the time when all of them have

been serviced. We chose this object function because

our goal is to balance the action workload on all

available devices and improve device utilization.

Figure 2. The action workload scheduling
problem in Aorta

Our action workload scheduling problem can be

reduced to the classic makespan minimization problem

in scheduling theory on unrelated parallel machines

with sequence-dependent job setup time and machine

eligibility restrictions [13]. The classic problem is

known to be NP-hard. Although there are a large

number of algorithms proposed in the operational

research area for various kinds of scheduling problems,

to the best of our knowledge there is little previous

work that considers a problem that is equivalent to our

workload scheduling problem. The Simulated

Problem: Action Workload Scheduling

Input: A set R of n action requests (r1, r2, , rn).

 A set D of m devices (d1, d2, , dm) that is

available for servicing some requests in R.

Each ri R (1 i n) has a candidate device

set Di D.

 Each pair of (ri, dj) (dj Di) corresponds to a

weight that is equal to the cost of servicing

request ri (i.e., executing the action) on

device dj.

Output: A schedule of R on D (each ri R is

 assigned to and serviced by a device d Di)

 with the makespan of R minimized.

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICSCS’05)

1063-6927/05 $20.00 © 2005 IEEE

Annealing (SA) algorithm proposed by

Anagnostopoulos et al. [2] is the only one we know in

the literature that has considered all restrictions in the

algorithm design (unrelated machines, the sequence-

dependent job setup time, and the machine eligibility

restrictions for jobs.

In comparison with the classic problem, our

problem has the following two special features that are

unique in pervasive computing:

1) Physical status change on devices. As

described in Section 2.3, after executing an action, the

current physical status of a device may change, which

will in turn change the cost of the subsequent action

executed on the device. This concept is similar to the

sequence-dependent job setup time in the classic

problem. However, in our problem the case is

sequence-dependent action execution time instead.

2) Real-time processing requirement in pervasive

computing. As events in pervasive computing are

often transient (e.g., object movement), the action

upon an event should be executed in a real-time

fashion in order to respond to the event promptly.

Consequently, the computational cost of our

scheduling algorithm must be small even if the given

input size is large. Many existing algorithms in

scheduling theory have a considerable computational

cost, so they are inapplicable in our scenario.

As a result, we decide to design and implement our

own heuristic algorithms to solve the problem.

5.2. Heuristic scheduling algorithms

Existing algorithms for the classic parallel machine

scheduling problems can be approximately divided

into two categories: (1) algorithms with concurrent job

assignment and processing, and (2) algorithms with

sequential job assignment and processing. We call

scheduling algorithms in these two categories CAP and

SAP algorithms, respectively.

For the CAP scheduling algorithms, the assignment

and processing of the jobs are performed in parallel.

After a job is assigned to a machine, it is immediately

executed on the machine. In comparison, for the SAP

algorithms, these two procedures are performed in

sequence. A job assigned to a machine is queued on

the machine first, and may be reassigned to another

machine later before the assignment procedure finishes.

The processing procedure will not start until the

assignment procedure finishes.

As typical examples, the SA algorithm [2] is a SAP

algorithm and the well-known List Scheduling (LS)

greedy algorithm in scheduling theory [13] is a CAP

algorithm. Whenever a machine becomes idle, the LS

algorithm schedules any eligible job that has not yet

been scheduled on the machine.

Based on this SAP/CAP classification of the

scheduling algorithms, we have designed and

implemented two heuristic algorithms to solve the

action workload scheduling problem in Aorta. They

are shown in Figure 3. Algorithm 1 is SAP and

Algorithm 2 is CAP. We proposed these two different

algorithms to compare and evaluate their performance

under different workloads.

Algorithm 1 consists of two subcomponents, which

we call LERFA (Least Eligible Request First

Assignment) and SRFE (Shortest Request First

Execution). Both of them are greedy algorithms.

LERFA performs the assignment with the heuristics

being the number of candidate devices of each request.

It starts with the request that has the least number of

candidate devices (i.e., the least eligible request), and

assigns the request to the candidate device that will

have the minimum total estimated workload if this

request is serviced on the device. It then goes on to

assign the next least eligible request until it finishes the

assignment of all requests to devices. If two requests

have the same number of candidate devices, LERFA

assigns them in a random order.

SRFE prioritizes and services the requests that have

been assigned to a single device. It always selects the

request with the least estimated cost (i.e., the shortest

request) for the device to service. As the execution of

an action may change the physical status of a device,

the physical status of the device is updated before

selecting each new request for the device to service.

Algorithm 2 is also a greedy algorithm with the

heuristic being servicing the shortest request first.

Consequently, we call the algorithm SRFAE (Shortest

Request First Assignment and Execution). In each

round of the assignment and execution, the algorithm

always selects an unserviced request with the least

estimated cost on some device, assigns it to and

services it immediately on the device. If the device is

currently busy with a previously assigned request, the

newly assigned request is queued in the device’s

request input queue. The requests queued in the input

queue of a device are serviced in the FIFO order.

After an action request is assigned to a device and

serviced or queued on the device, SRFAE updates the

assigned workload of the device. The estimated costs

of other unserviced requests that can be serviced by the

device are also recalculated to reflect the workload

increase on the device. Such cost recalculation is

based on the new physical status of the device after

servicing the newly assigned request. The purpose is

to provide accurate information for the next round of

assignment and execution.

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICSCS’05)

1063-6927/05 $20.00 © 2005 IEEE

Figure 3. Heuristic algorithms for action
workload scheduling

Note that both our algorithms and the existing SA

and LS algorithms result in a schedule that is nearly

optimal but not guaranteed to be optimal. In general,

scheduling problems can be formulated into a 0/1

Mixed Integer Program (MIP) and be solved optimally

by solving the MIP [2]. However, as our problem is

NP-hard, the optimal MIP is too computationally

expensive to be feasible in our scenario even if the

given input size is small. This expensiveness has been

verified by the results of Anagnostopoulos et al. [2]:

with an input size n = 4 and m = 8, the optimal MIP

required nearly one and a half hour running time on a

machine with a 1GHz CPU.

6. Experiments

In order to evaluate the performance of our Aorta

system prototype, we have developed an action-

enabled monitoring application on it for the pervasive

lab in our department. The pervasive lab is

established to accommodate cross-area research

activities on pervasive computing. It has desktops

with removable hard disks, and various types of

devices such as sensors, cameras, and phones.

Without loss of generality, we mainly present the

results of our empirical and simulation studies for

queries embedded with the photo() action.

6.1. Experimental setup

The experiments involved one Pentium R(M)

1.5GHz notebook with 512MB memory, two AXIS

2130(R) PTZ network cameras [3], and ten Berkeley

MICA2 motes with MTS310CA sensor boards [6].

The two cameras were mounted on the ceiling of the

pervasive lab. The ten motes were put at ten different

places of interest in the lab. The location of each mote

was in the view range of at least one camera. To

ensure that photos towards the same location taken by

the two cameras had almost the same visual quality

(i.e., view size), we configured each camera to

automatically tune its zoom level based on the

distance between itself and the target location.

Our Aorta system prototype with the pervasive lab

monitoring application was implemented in Java (JDK

1.4.1). A package that contains the source code and

configuration files of the system is available at the

Aorta project web site http://www.cs.ust.hk/aorta.

6.2. Effects of device synchronization

We first show the effects of the device

synchronization mechanism we implemented in Aorta

using results from empirical studies. We generated 10

Algorithm 1.1: Least Eligible Request First Assignment

1. for each device dj (1 j m) in D do

2. initialize its assigned workload Wj = 0;

3. i = 1;

4. while there are unassigned requests do

5. for each request r that has i candidate devices do

6. for each candidate device dk of r do

7. Crk = the estimated cost for servicing r on dk;

8. Ek = Wk + Crk;

9. select the device dl that has the least E value among

 the i candidate devices of r and assign r to dl;

10. Crl = the estimated cost for servicing r on dl;

11. Wl += Crl;

12. i ++;

Algorithm 1.2: Shortest Request First Execution

(on a single device d)

1. lock d;

2. while there are unserviced requests do

3. update the current physical status of d;

4. for each remaining request r do

5. Cr = the estimated cost for servicing r

 at this moment;

6. select the request with the least C value and service it;

7. unlock d;

Algorithm 2: Shortest Request First Assignment and

 Execution

1. for each request ri (1 i n) in R do

2. for each device dj in Di do

3. insert (ri, dj) as a node in a balanced binary search

 tree T, the key of the node is the weight of this

 request-device pair;

4. for each device dj (1 j m) in D do

5. initialize its assigned workload Wj = 0;

6. lock dj;

7. while T is not empty do

8. extract the node a from T that has the least key value;

9. Find (ri, dj) that a corresponds to and assign request ri

 to device dj;

10. if dj is currently free then

11. service ri on dj;

12. else

13. queue ri in the input queue of dj;

14. w = the key value of a;

15. delete a from T and mark ri as serviced;

16. for each unserviced request rl in R do

17. if dj Dl then

18. Clj = the estimated cost for servicing rl on dj after

 servicing ri;

19. al = the node that corresponds to (rl, dj) in T;

20. update the key value of al to be Clj + w;

21. for each device dj (1 j m) in D do

22. unlock dj;

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICSCS’05)

1063-6927/05 $20.00 © 2005 IEEE

queries embedded with the photo() action and

registered them with the system in a batch. In this

workload, a photo of Mote i's location was required to

be taken by the i-th query every minute (1 i 10).

We found that without device synchronization, in

each minute the photo() action requests of the 10

queries interfered with one another (i.e., mixed their

operations on the two cameras) in an unpredictable

fashion. More than half of the action requests failed

(i.e., connection to the camera timed out), resulted in

blurred photos, or took photos at wrong positions.

In contrast, with our device synchronization

mechanism implemented, the percentage of these

action failures reduced to nearly 10%. The large

decrease in the action failure rate is because with

device synchronization, the system will not assign a

new request to a camera that is busy serving another

request or is currently unavailable. The non-zero

action failure rate even with device synchronization

was due to the heavy workload caused by the ten

queries continuously operating on the two cameras.

Due to the hardware limitations of the physical devices,

zero action failure on them seems to be extremely rare

in real-world applications.

6.3. Evaluation of the scheduling algorithms

In this section, we present the performance

evaluation of five scheduling algorithms. The LERFA

+ SRFE and SRFAE algorithms are proposed by us.

The LS and SA algorithms are from previous work in

parallel machine scheduling. Finally, the RANDOM

algorithm was included as the baseline for comparison.

It randomly assigns action requests to available devices

for execution. All scheduling algorithms under study

assigned requests to devices as well as executed the

actions on them. The cost metric in our study was the

service time (i.e., the expected action execution time).

In order to enable controllable performance studies,

we developed a homegrown camera simulator to

simulate the AXIS 2130(R) PTZ network cameras in

the pervasive lab. We tuned the camera simulator

through extensive tests on the real cameras, so that a

photo() action (and other actions on camera) executed

on a simulated camera had similar effects (e.g., time

for head movement) to that on a real camera. All

experiments presented later in this section were

conducted using this camera simulator.

In the first set of experiments, we fixed the number

of cameras to be 10. We used three synthetic action

workloads, each of which consisted of 10, 20 and 30

action requests, respectively. In each workload, the

cost (service time) of an action request was randomly

selected from the interval [0.36, 5.36], which is the

range of the execution time (in seconds) of a photo()

action on an AXIS 2130(R) camera. For each request,

all of the 10 cameras were candidates for its execution.

Figure 4 shows the makespans achieved by the five

scheduling algorithms. Each point in the figure is the

average of results from ten independent runs. Note

that the makespan values shown in the figure included

both the computational cost of the scheduling

algorithm (the scheduling time), and the time spent on

servicing the requests on the cameras (the service time).

Makespan

0

5

10

15

20

25

10 20 30

#Requests

S
e

c
o

n
d

s

LERFA + SRFE SRFAE LS SA RANDOM

Figure 4. Performance of various scheduling
algorithms with a uniform workload

In the figure we see that, for all five algorithms, the

makespan increased when the total number of requests

increased. The performance of the RANDOM

algorithm was much worse than the other four. The

two algorithms we proposed had similar performance

and both of them outperformed the existing LS and SA

algorithms by about 20%-40%. For instance, in the

workload consisting of 20 requests, the makespans

achieved by LERFA + SRFE, SRFE, LS and SA were

5.73, 5.18, 8.21 and 7.29 seconds, respectively.

Figure 4 also illustrates that with a uniform

workload, the two algorithms we proposed scaled

better than the two existing algorithms. Both LS and

SA resulted in a nearly linear increase on the makespan

when the number of requests increased linearly. In

comparison, the two algorithms we proposed yielded

sub-linear increase. Such scalability is desirable in

pervasive computing, where real-time actions upon a

large number of events are often required. The

performance improvement of our proposed algorithms

over existing algorithms validated the effectiveness of

the heuristics we adopted.

Figure 5 shows the time breakdown of the five

algorithms with the workload consisting of 20 requests.

In the figure we see that the scheduling times of the

four algorithms other than SA were negligible in

comparison with the service time. As we described in

Section 5.1, negligible scheduling time is a

requirement of scheduling algorithms in pervasive

computing.

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICSCS’05)

1063-6927/05 $20.00 © 2005 IEEE

Among all five algorithms, the SA algorithm

achieved the least service time (4.81 seconds), which

happens to be the optimal schedule in this special case.

However, the scheduling time of SA was much longer

than those of the other four, which greatly affected the

overall performance of the algorithm. In comparison,

our proposed algorithms both achieved nearly optimal

schedules (the differences to the optimal schedule is

less than 1 second) with a negligible scheduling time.

Time Breakdown

0.16

2.49

0.160.180.16

14.95

5.00

8.05
5.57

4.81

LERFA +

SRFE

SRFAE LS SA RANDOM

Scheduling Algorithms

S
e

c
o

n
d

s

Scheduling Time Service Time

Figure 5. Time breakdown of the five
scheduling algorithms

We have also run a number of other experiments

with the number of cameras and requests varied but

still kept all cameras as candidates for each request in

the workload. The results show that with a uniformly

distributed workload, the performance of the four

scheduling algorithms (except for RANDOM) was

only affected by the average number of requests

scheduled on each device (i.e., #requests / #devices).

Next, we fixed the number of cameras and requests

involved in the scheduling to be 10 and 20,

respectively. We changed the action workload

distribution on the 10 cameras from a uniform

distribution to a skewed one. Specifically, in a skewed

workload, half of the 20 requests each had 10 cameras

as its candidate devices; for the other half, each could

only be serviced on a subset of the 10 cameras. The

size of the subset determined the skewness of the

request distribution. We define skewness to be the size

of the subset divided by the total number of cameras.

Figure 6 shows the makespans achieved by the five

algorithms when the workload skewness varied from

0.2 to 0.4. In the figure we see that, the SA algorithm

performed the worst with skewed workloads. This was

because the algorithm had a very long scheduling time,

which completely dominated the service time of the

scheduling. For the other four algorithms, the

makespans decreased when the skewness increased,

due to the increasing opportunity of distributing the

skewed workload to more candidate devices. Our

proposed algorithms still had the best performance

among all five.

Makespan

0

10

20

30

40

50

0.2 0.3 0.4

Workload Skewness

S
e

c
o

n
d

s

LERFA + SRFE SRFAE LS SA RANDOM

Figure 6. Performance of various scheduling
algorithms with a skewed workload

7. Related work

Recent work in pervasive computing has focused on

networks of homogeneous devices, e.g., RFID (Radio

Frequency Identification) tags [14] and cell phones

[17]. In comparison, Aorta manages a number of

heterogeneous devices and enables the data acquisition

and transmission across these devices through a

uniform data communication layer.

Flinn et al. [8] proposed the design of a remote

execution system in pervasive computing named

Spectra. The goal of Spectra is to improve application

performance and result quality while reducing the

energy consumption on mobile devices. The best

application execution plan selection in Spectra shares a

similar spirit with the device selection optimization in

Aorta. However, the authors of Spectra did not

consider the issue of device heterogeneity as we did in

Aorta. The clients (devices) in their implementation

were PC-grade machines in mobile computing as

opposed to our cameras, phones, and sensors.

There have been recent publications on event-

driven processing over distributed sensor networks.

Abdelzaher et al. [1] developed an environmental

programming paradigm called EnvioTrack that tracks

physical-world events and invokes pre-defined

computation for them. In Direct Diffusion [7][10], a

distributed communication paradigm was proposed for

disseminating data to sensor nodes that match the

interest of the data. The data is named attribute-value

pairs that encapsulate the semantics of the events

detected by nodes in the network. In comparison, in

Aorta we encapsulate the event-driven processing

nature of pervasive computing applications in the

specification of declarative database queries.

Furthermore, we focused on invoking various types of

actions on heterogeneous devices upon events.

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICSCS’05)

1063-6927/05 $20.00 © 2005 IEEE

Finally, previous work on load balancing in

distributed computing systems [11][15][18] studied the

scheduling of a number of tasks on an interconnected

network of computers. In comparison, in our action

workload scheduling problem there is no connection or

communication among the devices for executing the

workload. We have further considered the physical

status changes on devices and the real-time processing

requirement in pervasive computing when designing

our scheduling algorithms.

8. Conclusions

In this paper, we focus on presenting the systems

support issues in our Aorta pervasive query processing

framework. We have designed and implemented a

uniform data communication layer that enables

network data independence over a number of

heterogeneous devices. We have implemented locking

and probing mechanisms in Aorta for device

synchronization. We have also proposed two heuristic

algorithms to solve the action workload scheduling

problem. Our results from both empirical studies and

simulation studies demonstrate that these systems

mechanisms helped Aorta to balance device workload

and to achieve good performance.

Future work includes extending the uniform data

communication layer to support new types of devices,

studying more sophisticated device synchronization

mechanisms, and investigating scheduling techniques

for a large number of heterogeneous devices. The

Aorta source code and publications are available at the

project web page http://www.cs.ust.hk/aorta.

9. Acknowledgement

This work was supported by grants AoE/E-01/99,

HKUST6158/03E, HKUST6263/04E and

HKUST6264/04E, all from the Hong Kong RGC

(Research Grants Council).

10. References

[1] T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans, J.

George, S. George, L. Gu, T. He, S. Krishnamurthy, L.

Luo, S. Son, J. Stankovic, R. Stoleru, and A. Wood.

EnviroTrack: Towards an Environmental Computing

Paradigm for Distributed Sensor Networks. ICDCS

2004.

[2] Georgios C. Anagnstopoulos and Ghaith Rabadi. A

Simulated Annealing Algorithm for the Unrelated

Parallel Machine Scheduling Problem. In Proceedings

of the 8th International Symposium on Manufacturing

with Applications, 2002.

[3] Axis Communications. http://www.axis.com

[4] Philippe Bonnet, Johannes Gehrke, and Praveen

Seshadri. Querying the Physical World. IEEE Personal

Communications, Vol. 7, No. 5, October 2000.

[5] Philippe Bonnet, Johannes Gehrke, and Praveen

Seshadri. Towards Sensor Database Systems. MDM

2001.

[6] Crossbow Corp. http://www.xbow.com

[7] Deborah Estrin, John Heidemann, Ramesh Govindan,

and Satish Kumar. Next Century Challenges: Scalable

Coordination in Sensor Networks. MobiCom 1999.

[8] Jason Flinn, So Young Park, and M. Satyanarayanan.

Balancing Performance, Energy, and Quality in

Pervasive Computing. ICDCS 2002.

[9] Joseph M. Hellerstein. Toward Network Data

Independence. SIGMOD Record, Vol. 32, No. 3,

September 2003.

[10] Chalermek Intanagonwiwat, Ramesh Govindan, and

Deborah Estrin. Directed Diffusion: A Scalable and

Robust Communication Paradigm for Sensor Networks.

MobiCom 2000.

[11] Virginia Mary Lo. Heuristic Algorithm for Task

Assignment in Distributed Systems. IEEE Transaction

on Computers, Vol. 37, No. 11, November 1988.

[12] Samuel Madden, Michael J. Franklin, Joseph M.

Hellerstein, and Wei Hong. The Design of an

Acquisitional Query Processor for Sensor Networks.

SIGMOD 2003.

[13] Michael Pinedo. Scheduling Theory, Algorithms, and

Systems. 2nd Edition, Prentice Hall, 2002.

[14] Kay Römer, Thomas Schoch, Friedemann Mattern, and

Thomas Dübendorfer. Smart Identification

Frameworks for Ubiquitous Computing Applications.

PERCOM 2003.

[15] Keith W. Ross and David D. Yao. Optimal Load

Balancing and Scheduling in a Distributed Computer

System. Journal of the Association for Computing

Machinery, Vol. 38, No. 3, July 1991.

[16] Chien-Chung Shen, Chavalit Srisathapornphat, and

Chaiporn Jaikaeo. Sensor Information Networking

Architecture and Applications. IEEE Personal

Communications, Vol. 8, No. 4, August 2001.

[17] Frank Stajano and Alan Jones. The Thinnest Of Clients:

Controlling It All Via Cellphone. ACM SIGMOBILE

Mobile Computing and Communication Review, Vol.

2, No. 4, October 1998.

[18] Asser N. Tantawi and Don Towsley. Optimal Static

Load Balancing in Distributed Computer Systems.

Journal of the Association for Computing Machinery,

Vol. 32, No. 2, April 1985.

[19] Mark Weiser. The Computer for the 21st Century.

Scientific American, Vol. 265, No. 3, September 1991.

[20] Wenwei Xue and Qiong Luo. Action-Oriented Query

Processing for Pervasive Computing. CIDR 2005.

[21] Yong Yao and Johannes Gehrke. Query Processing for

Sensor Networks. CIDR 2003.

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICSCS’05)

1063-6927/05 $20.00 © 2005 IEEE

