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Abstract

Database queries, in particular, event-driven 

continuous queries, are useful for many pervasive 

computing applications, such as video surveillance.  In 

order to enable these applications, we have developed 

a pervasive query processing framework called Aorta.

Unlike traditional database systems, a pervasive query 

processor requires systems support for managing a 

large number of networked, heterogeneous devices. In 

this paper, we present the communication, 

synchronization, and scheduling mechanisms in Aorta.  

Even though these techniques have their roots in 

distributed and parallel systems, we show how these 

techniques are customized and applied for pervasive 

query processing. In essence, communication between 

heterogeneous devices enables network data 

independence, synchronization on devices protects 

action atomicity, and scheduling works for adaptive, 

cost-based multi-query optimization. We have 

conducted empirical studies on our prototype as well 

as simulation studies to evaluate the system 

performance. 

1. Introduction

Pervasive (ubiquitous) computing is an exciting 

vision in which various kinds of networked computing 

devices “live” with people in the real world [19].  

Monitoring physical-world phenomena (events) of 

interest, pervasive computing applications integrate 

data acquisition, communication and operations 

(actions) on small devices that are embedded or mobile 

in the world.  For instance, in a building monitoring 

scenario, a surveillance application automatically 

operates remotely-controllable cameras to take photos 

based on the variation in the readings of acceleration 

sensors.  In the meanwhile, it sends the photos to the 

cell phone of the human manager who may be 

currently off-duty.  Due to the heterogeneous and 

resource-constrained nature of the devices involved, to 

date pervasive computing applications are usually 

difficult to develop and optimize, and their 

functionality and usefulness are limited. 

Recent work in the database and networking areas, 

including TinyDB [12], Cougar [4][5][21], Direct 

Diffusion [7][10] and SINA [16], has illustrated the 

effectiveness of using declarative database queries in 

querying and tasking a network of sensors.  Inspired 

by these systems, we propose to use database queries 

for the development and optimization of pervasive 

computing applications.  Specifically, we developed a 

pervasive query processing framework called Aorta to 

enable these applications.  Using this framework, an 

application can issue SQL-style queries embedded 

with complex actions on devices (e.g., take a photo 

towards a location on a camera).  These actions 

embedded in the queries will be executed 

automatically in response to physical-world events 

(e.g., object movement). 

In this paper, we focus on the systems support 

issues in Aorta.  Specifically, we have designed and 

implemented a number of mechanisms that are 

customized for pervasive query processing: (1) a 

uniform data communication layer that enables device 

network data independence [9], (2) simple locking and 

probing mechanisms for device synchronization, and 

(3) two heuristic scheduling algorithms for adaptive, 

cost-based multi-query optimization.   

The remainder of this paper is organized as follows.  

We give an overview of our query processing 

framework in Section 2.  We present the design of the 

uniform data communication layer in Section 3.  In 

Section 4, we describe the device synchronization 

mechanisms we have implemented in Aorta.  In 

Section 5, we propose heuristic algorithms for the 

scheduling of multiple concurrent action requests.  In 

Section 6, we evaluate the performance of the Aorta 

system prototype using both empirical studies and 

simulation studies.  We discuss related work in Section 

7 and conclude in Section 8. 

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICSCS’05) 

1063-6927/05 $20.00 © 2005 IEEE 



2. Aorta query processing 

To give the background of the systems support, in 

this section we briefly introduce the Aorta pervasive 

query processing framework.  We omit many details 

about query processing and present only necessary 

contents to make this paper self-contained.  The 

readers can refer to a previous paper of ours [20] for 

more thorough description of the action-oriented query 

optimization and execution techniques in Aorta. 

2.1. Architecture of Aorta 

The architecture of the Aorta system consists of 

three major layers. 

The top layer of Aorta is a declarative interface that 

allows pervasive computing applications to specify 

actions on devices through database queries.  This 

interface alleviates the problem of programmers 

having to handle various programming APIs for 

different types or models of devices.  We extend the 

SQL language to allow specifications of user-defined 

actions and provide a library of system built-in actions 

for accessing and operating devices. 

The bottom layer of Aorta is a uniform data 

communication layer that manages a number of 

networked, heterogeneous devices.  This layer ensures 

that the Aorta system, not the individual applications, 

is responsible for monitoring and tuning the current 

network infrastructure and the physical status of the 

devices.  Applications only need to see an abstract 

view of the devices.  This abstract view enables 

application programmers to pay their full attention to 

the application semantics of their tasks rather than 

worrying about the lower-level implementation issues, 

such as data transmission loss, action failure and 

resource consumption on the devices. 

Finally, there is an action-oriented query processing 

engine for queries embedded with actions in the 

middle.  Being the core of our framework, this engine 

is responsible for generating, optimizing and executing 

query plans.  It interacts with the communication layer 

to adapt to current device status and network workload.  

It also provides mechanisms to enable device 

synchronization and action workload scheduling 

among multiple queries.  

2.2. Declarative application interface 

Many pervasive computing applications have an 

event-driven and action-oriented processing nature: 

when the application detects an event, a pre-defined 

action on some type of devices is triggered.  Based on 

this observation, we implemented a declarative 

interface in Aorta for applications to specify actions 

and queries with actions embedded.  We call this kind 

of queries action-embedded queries.

Actions are Aorta system built-in or user-defined 

functions that operate devices.  For a user-defined 

action, the user must pre-compile the code block of the 

action into a dynamically linked library, and use the 

CREATE ACTION command provided by the 

declarative interface to register it along with an action 

profile to Aorta.  An action profile is an XML text file 

that describes the high-level semantics of the action 

and will be used in query optimization.  As an example, 

the following command registers a user-defined action 

sendphoto(), which sends a photo (image file) to a 

phone with MMS support.  

   CREATE ACTION sendphoto(String phone_no, 

String photo_pathname) 

    AS     “lib/users/sendphoto.dll” 

    PROFILE      “profiles/users/sendphoto.xml” 

After an action is registered to Aorta, applications 

can specify and register queries with the action 

embedded using the CERATE AQ command.  Figure 1 

shows an example action-embedded query in Aorta.   

Figure 1. The example snapshot query  

As illustrated in this example, the specification of 

an action-embedded query appears to be an event-

driven continuous query with a name.  In this query, 

the system-provided action photo(camera_ip, location, 

directory) operates the camera with IP address 

camera_ip to move its head to the direction pointing to 

location and to take a medium-size photo; then the 

action stores the photo to directory.  The constraint 

s.accel_x > 500 in the query condition specifies the 

events of interest (e.g., someone pushes the door and 

causes a movement of the door together with the 

sensor attached on it).  The set of candidate cameras 

that are suitable for executing the photo() action 

whenever an event is detected is specified using the 

system-provided Boolean function coverage

(camera_id, location).  This Boolean function returns

TRUE if the camera with ID camera_id has a view 

range that covers location.

2.3. Cost-based query optimization 

As shown in the example in Figure 1, the snapshot 

query states that whenever a sensor detects a 

CREATE AQ snapshot AS

SELECT  photo(c.ip, s.loc, “photos/admin”) 

 FROM     sensor  s, camera  c 

 WHERE     s.accel_x > 500  

 AND          coverage(c.id, s.loc) 
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movement at a certain speed, all cameras are examined 

to see whether they can take a photo towards the 

sensor’s location (e.g., whether they are candidates for 

executing the photo() action upon this event).  

However, even if multiple candidate devices are 

available to take the action, it is sufficient to let some, 

instead of all, devices to take the action.  This 

application semantics in pervasive computing brings 

opportunities to query optimization.  In Aorta, the 

query optimizer will select the current “best” camera in 

terms of cost among all candidates to execute the 

action.   

The cost-based device selection optimization is 

necessary because the cost of an action execution on 

different candidate devices may be different.  

Furthermore, if a device is selected for too much 

workload, it may slow down or malfunction.  For 

generality, we define the cost of an action on a device 

as the execution time of the action on the device. 

Consider the cost of the system built-in action 

photo() in Figure 1.  On the AXIS 2130(R) PTZ 

network cameras [3] we used, the time spent on 

moving the head of a camera to a target position 

depends on the current position of the head (the pan, 

tilt, zoom values).  As a result, when a photo() action is 

executed on a camera, the starting head position of the 

camera affects the execution time (cost) of the action 

on it.  Moreover, the execution of a photo() action 

moves the head of the camera to a new position, which 

in turn affects the cost of the subsequent photo() action 

to be executed on it. 

In this example we see that, the cost of an action 

execution on a device may depend on the current

physical status of the device.  Furthermore, an action 

execution may change the current physical status of the 

device and in turn the cost of subsequent action 

executions on the device.  In the photo example, the 

current physical status of a camera that is related to the 

photo() action is the camera head position.  For other 

actions on other types of devices, the device physical 

status concerned may be different, e.g., the depth of a 

sensor in a multi-hop network affects the cost of 

connecting the sensor for some operation on it. 

To enable cost-based device selection optimization 

for action execution, we put actions as first-class 

citizens (query operators) inside query execution plans.  

An action operator contains the name, the input 

parameters, and the pointer to the method to be 

executed.  Furthermore, we make concurrent queries 

that have the same embedded action (the name of the 

function is the same, but the input parameter values 

may be different) share a single action operator in their 

query plans.  We add the query ID to the input tuples 

of a query so that the operator knows which tuples are 

for which query.  Such action operator sharing saves 

system resources and facilitates group optimization of 

actions.   

We have proposed a cost model for the optimizer to 

estimate the cost of an action execution on a candidate 

device.  The core component of the cost model is the 

action profile, which specifies the composition of an 

action in terms of the sequential and/or parallel 

execution of a number of atomic operations.  The costs 

of atomic operations are obtained from empirical 

measurements.  The cost of an action is then estimated 

based on the action profile and the estimated costs of 

the atomic operations on the type of devices.  Our 

results from a number of experiments have validated 

that our cost model is reasonably accurate.  The cost 

model is also used by the two heuristic scheduling 

algorithms that we propose in Section 5. 

In addition to the query optimization and execution 

issues, a number of systems issues must be addressed 

to support pervasive query processing in our 

framework.  Specifically, pervasive query processing 

requires data communication across networks of 

heterogeneous devices, synchronization on the devices, 

and scheduling action workload among the devices.  

The design and implementation of these systems 

support mechanisms is the focus of this paper. 

In the following sections, we present in detail our 

design considerations and approaches for the data 

communication, device synchronization and action 

workload scheduling mechanisms in Aorta.   

3. Uniform data communication layer 

Pervasive computing applications usually involve 

heterogeneous devices that have completely different 

hardware architectures and software APIs.  Moreover, 

even for the same type of devices, the capabilities and 

interfaces of different models may vary widely.  

Examples of these devices include smart sensors, 

network cameras, cell phones, smart cards, and so on.   

We have designed and implemented a uniform data 

communication layer in Aorta.  The goal of the 

communication layer is to handle heterogeneous 

networking protocols and to provide a dynamic, logical 

view of networked devices for applications.  This layer 

mainly consists of three components: (1) the profiles of 

devices, (2) the scan operators for devices, and (3) a 

set of basic communication methods for each type of 

devices.  We describe these components in order.   For 

brevity, in the remainder of the paper we say “a type of 

devices” in short for “a type or model of devices”. 

3.1. Device profiles 
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The communication layer maintains the profiles of 

devices.  In Aorta, we use device profiles to describe 

the physical characteristics of devices.  These profiles 

are generated and registered to the system and are 

updated dynamically by the system administrator. 

A typical example of profiles that are common to all 

types of devices involved in Aorta is the device

catalog.  A device catalog is an XML text file that 

keeps the names of the attributes supported by the type 

of devices (e.g., temperature and light for sensors), the 

pointers to the system built-in methods for acquiring 

the values of the attributes, and the information about 

the semantics and properties of the attributes. 

Furthermore, for each type of devices, there is also 

an atomic_operation_cost.xml file included in its 

profiles.  This file lists all atomic operations on the 

type of devices and their corresponding estimated costs.  

We define an atomic operation as the smallest unit of 

operation that a type of devices can perform.  

Examples of atomic operations on devices include 

“take a photo of a specified size (small, medium or 

large)” on cameras, “receive an SMS/MMS message” 

on phones, and “beep/blink once” on sensors.

The estimated cost of an atomic operation is 

measured by our homegrown programs using some 

cost metric; the cost metric we currently use is the time 

required to finish the operation.  Our tests show that an 

atomic operation has almost the same cost on devices 

of the same type.  These estimated costs will be used 

by the query engine in query optimization. 

3.2. Scan operators for devices 

The communication layer abstracts each type of 

devices into a virtual relational table.  It then provides 

special “scan operators” as simple interfaces for the 

query engine to acquire device data tuples from these 

virtual tables.  Each tuple of a virtual device table (e.g., 

the sensor table) is from a specific device of the 

corresponding type; it is generated on-the-fly when 

requested by the query engine.  Such virtual table 

abstraction has been widely adopted by previous work 

[12][21] in sensor databases and proved to be effective 

for encapsulating device data.  With such abstraction, 

the query engine can regard the underlying device 

network as a distributed database consisting of various 

horizontally partitioned device tables.  

The attributes of a virtual device table can be either 

real-time data such as sensor readings and camera 

video feeds, or static data such as sensor locations (we 

assume the location of a sensor is fixed), camera IP 

addresses and phone numbers.  We call the former 

sensory attributes and the latter non-sensory attributes.

We categorize the attributes that describe device status 

(e.g., sensor or phone battery voltages, camera zoom 

level) into sensory attributes, since their values are 

acquired by “sensing” the current physical status of the 

devices.  Consequently, the implementation of a scan 

operator on different attributes varies by the categories 

of the attributes.  Specifically, sensory data must be 

acquired dynamically whereas non-sensory data may 

be stored statically. 

3.3. Basic communication methods 

In order to enable data acquisition and transmission 

across heterogeneous devices, the communication 

layer implements a common interface that defines a set 

of basic communication methods such as connect(), 

close(), send() and receive().  These methods wrap 

around the heterogeneous networking protocols of the 

various types of devices in Aorta.  Each type of 

devices inherits this interface in its own 

communication module, with a specific 

implementation based on the software programming 

APIs supported by the type of devices. 

These basic communication methods are the 

building blocks of many query operators in the query 

engine, for example, the scan operators and action 

operators.  The uniform interface provided by these 

methods shields the engine from the heterogeneity and 

complexity of the underlying device network. 

The design of the device profiles, scan operators 

and basic communication methods all follow a generic 

structure. Our consideration is to make the 

communication layer easily extensible for new types of 

devices in the future.   

4. Device synchronization 

Device synchronization is another important issue 

in pervasive computing systems design.  The major 

goal of device synchronization is to ensure the correct 

application semantics of individual actions executed on 

unreliable physical devices.  Our current Aorta system 

prototype mainly includes two device synchronization 

mechanisms: (1) a locking mechanism, and (2) a 

probing mechanism.  

The locking mechanism is used to avoid concurrent 

execution of multiple actions on a single device.  

When a device has been selected to execute an action, 

the optimizer will lock it until it finishes executing the 

action (i.e., the call to the code block of the action 

method returns).  Subsequent actions on this device 

cannot start before the device is unlocked. 

To illustrate the necessity of such locking 

mechanism, let us consider queries embedded with the 

photo() action again.  Suppose a camera has been 
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selected by the optimizer to execute a photo() action 

for a query among all candidates.  When the camera is 

executing the action, it is selected to execute a photo() 

action for another query.  As a result, the head of the 

camera will be redirected to the second target position 

before it finishes taking the first photo.  Such 

interference between concurrent photo() actions on a 

device leads to either unclear (blurred) photos or 

photos taken at wrong positions.  Furthermore, it is 

possible that when a camera is busy with the first 

action, it will fail to execute the second action or has a 

very long delay for it.  We observed all of these 

problems in practice and our locking mechanism 

eliminated these problems. 

The probing mechanism is for the optimizer to 

examine each candidate before deciding whether it 

should be included in the device selection optimization.  

A probe on a candidate device includes the 

transmission of several messages between the 

optimizer and the device.   

The major role of the probing mechanism is to 

check the current availability of a candidate device.  

This availability checking is necessary because 

physical devices in pervasive computing are 

intrinsically unreliable.  They may join, move around, 

or leave the network dynamically in a way 

unpredictable to the system.  As examples, the current 

generation sensors usually communicate via a wireless 

radio channel of a high packet loss rate [6]; a camera 

may suffer from network connection delay and 

produce blurred photos occasionally; and a phone may 

become unreachable when its owner moves into an 

area that is out of the coverage of the service provider.   

Consequently, the optimizer must establish 

connection to a candidate device and make sure it is 

currently available before proceeding to estimate its 

cost for executing an action.  A system-provided 

TIMEOUT value is set for each type of devices to 

break the probe on unresponsive devices. These 

malfunctioning devices will be automatically excluded 

in the device selection optimization.   

Additionally, by probing a candidate device the 

optimizer can gather information about the current 

physical status of the device.  This information is 

useful and even necessary in the device selection 

optimization.  What kind of device physical status is 

concerned and how it is considered in the optimization 

is specified in the action profile. 

5. Action workload scheduling 

In this section, we discuss the problem of action 

workload scheduling in Aorta.  As action-embedded 

queries are continuous queries with a long-running 

nature, it is expected that there will always be a large 

number of queries running concurrently in the system.  

In this scenario, multiple action requests from different 

queries may appear in the optimizer at the same time or 

within a short time interval. Consequently, a 

scheduling mechanism is necessary to distribute 

multiple action requests to the devices that are 

currently available.  We define an action request as the 

request from a query for the execution of an action 

with instantiated input parameter values for the action. 

We first formulate the action workload scheduling 

problem in Aorta in Section 5.1.  We then present two 

heuristic algorithms to solve the problem in Section 5.2.   

5.1. Problem formulation 

Given multiple action requests that appear in a 

shared action operator, the Action Workload 

Scheduling Problem we consider in Aorta is 

formulated in Figure 2.  The object function of the 

problem is to minimize the maximum completion time 

(or called makespan) of the set R of action requests. 

The completion time is defined as the interval between 

the time when these requests appear in the shared 

action operator and the time when all of them have 

been serviced.  We chose this object function because 

our goal is to balance the action workload on all 

available devices and improve device utilization. 

Figure 2.  The action workload scheduling 
problem in Aorta 

Our action workload scheduling problem can be 

reduced to the classic makespan minimization problem 

in scheduling theory on unrelated parallel machines 

with sequence-dependent job setup time and machine 

eligibility restrictions [13].  The classic problem is 

known to be NP-hard.  Although there are a large 

number of algorithms proposed in the operational 

research area for various kinds of scheduling problems, 

to the best of our knowledge there is little previous 

work that considers a problem that is equivalent to our 

workload scheduling problem. The Simulated 

Problem:  Action Workload Scheduling

Input:   A set R of n action requests (r1, r2, , rn).

 A set D of m devices (d1, d2, , dm) that is 

available for servicing some requests in R.

Each ri R (1 i n) has a candidate device 

set Di D.

 Each pair of (ri, dj) (dj Di) corresponds to a 

weight that is equal to the cost of servicing 

request ri (i.e., executing the action) on 

device dj.

Output: A schedule of R on D (each ri R is 

 assigned to and serviced by a device d Di)

 with the makespan of R minimized. 
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Annealing (SA) algorithm proposed by 

Anagnostopoulos et al. [2] is the only one we know in 

the literature that has considered all restrictions in the 

algorithm design (unrelated machines, the sequence-

dependent job setup time, and the machine eligibility 

restrictions for jobs.

In comparison with the classic problem, our 

problem has the following two special features that are 

unique in pervasive computing: 

1) Physical status change on devices.  As 

described in Section 2.3, after executing an action, the 

current physical status of a device may change, which 

will in turn change the cost of the subsequent action 

executed on the device.  This concept is similar to the 

sequence-dependent job setup time in the classic 

problem.  However, in our problem the case is 

sequence-dependent action execution time instead. 

2) Real-time processing requirement in pervasive 

computing.  As events in pervasive computing are 

often transient (e.g., object movement), the action 

upon an event should be executed in a real-time 

fashion in order to respond to the event promptly.  

Consequently, the computational cost of our 

scheduling algorithm must be small even if the given 

input size is large.  Many existing algorithms in 

scheduling theory have a considerable computational 

cost, so they are inapplicable in our scenario.

As a result, we decide to design and implement our 

own heuristic algorithms to solve the problem.   

5.2. Heuristic scheduling algorithms 

Existing algorithms for the classic parallel machine 

scheduling problems can be approximately divided 

into two categories: (1) algorithms with concurrent job 

assignment and processing, and (2) algorithms with 

sequential job assignment and processing.  We call 

scheduling algorithms in these two categories CAP and 

SAP algorithms, respectively.  

For the CAP scheduling algorithms, the assignment 

and processing of the jobs are performed in parallel.  

After a job is assigned to a machine, it is immediately 

executed on the machine.  In comparison, for the SAP 

algorithms, these two procedures are performed in 

sequence.  A job assigned to a machine is queued on 

the machine first, and may be reassigned to another 

machine later before the assignment procedure finishes.  

The processing procedure will not start until the 

assignment procedure finishes.  

As typical examples, the SA algorithm [2] is a SAP 

algorithm and the well-known List Scheduling (LS) 

greedy algorithm in scheduling theory [13] is a CAP 

algorithm.  Whenever a machine becomes idle, the LS 

algorithm schedules any eligible job that has not yet 

been scheduled on the machine. 

Based on this SAP/CAP classification of the 

scheduling algorithms, we have designed and 

implemented two heuristic algorithms to solve the 

action workload scheduling problem in Aorta.  They 

are shown in Figure 3.  Algorithm 1 is SAP and 

Algorithm 2 is CAP.  We proposed these two different 

algorithms to compare and evaluate their performance 

under different workloads.  

Algorithm 1 consists of two subcomponents, which 

we call LERFA (Least Eligible Request First 

Assignment) and SRFE (Shortest Request First 

Execution).  Both of them are greedy algorithms.  

LERFA performs the assignment with the heuristics 

being the number of candidate devices of each request.  

It starts with the request that has the least number of 

candidate devices (i.e., the least eligible request), and 

assigns the request to the candidate device that will 

have the minimum total estimated workload if this 

request is serviced on the device.  It then goes on to 

assign the next least eligible request until it finishes the 

assignment of all requests to devices.  If two requests 

have the same number of candidate devices, LERFA 

assigns them in a random order.  

SRFE prioritizes and services the requests that have 

been assigned to a single device.  It always selects the 

request with the least estimated cost (i.e., the shortest 

request) for the device to service.  As the execution of 

an action may change the physical status of a device, 

the physical status of the device is updated before 

selecting each new request for the device to service.

Algorithm 2 is also a greedy algorithm with the 

heuristic being servicing the shortest request first.  

Consequently, we call the algorithm SRFAE (Shortest 

Request First Assignment and Execution).  In each 

round of the assignment and execution, the algorithm 

always selects an unserviced request with the least 

estimated cost on some device, assigns it to and 

services it immediately on the device.  If the device is 

currently busy with a previously assigned request, the 

newly assigned request is queued in the device’s 

request input queue.  The requests queued in the input 

queue of a device are serviced in the FIFO order.  

After an action request is assigned to a device and 

serviced or queued on the device, SRFAE updates the 

assigned workload of the device.  The estimated costs 

of other unserviced requests that can be serviced by the 

device are also recalculated to reflect the workload 

increase on the device.  Such cost recalculation is 

based on the new physical status of the device after 

servicing the newly assigned request.  The purpose is 

to provide accurate information for the next round of 

assignment and execution. 
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Figure 3.  Heuristic algorithms for action 
workload scheduling 

Note that both our algorithms and the existing SA 

and LS algorithms result in a schedule that is nearly 

optimal but not guaranteed to be optimal.  In general, 

scheduling problems can be formulated into a 0/1 

Mixed Integer Program (MIP) and be solved optimally 

by solving the MIP [2].  However, as our problem is 

NP-hard, the optimal MIP is too computationally 

expensive to be feasible in our scenario even if the 

given input size is small.  This expensiveness has been 

verified by the results of Anagnostopoulos et al. [2]:  

with an input size n = 4 and m = 8, the optimal MIP 

required nearly one and a half hour running time on a 

machine with a 1GHz CPU.   

6. Experiments

In order to evaluate the performance of our Aorta 

system prototype, we have developed an action-

enabled monitoring application on it for the pervasive 

lab in our department.  The pervasive lab is 

established to accommodate cross-area research 

activities on pervasive computing.  It has desktops 

with removable hard disks, and various types of 

devices such as sensors, cameras, and phones.  

Without loss of generality, we mainly present the 

results of our empirical and simulation studies for 

queries embedded with the photo() action.  

6.1. Experimental setup 

The experiments involved one Pentium R(M) 

1.5GHz notebook with 512MB memory, two AXIS 

2130(R) PTZ network cameras [3], and ten Berkeley 

MICA2 motes with MTS310CA sensor boards [6].  

The two cameras were mounted on the ceiling of the 

pervasive lab.  The ten motes were put at ten different 

places of interest in the lab.  The location of each mote 

was in the view range of at least one camera.  To 

ensure that photos towards the same location taken by 

the two cameras had almost the same visual quality 

(i.e., view size), we configured each camera to 

automatically tune its zoom level based on the 

distance between itself and the target location. 

Our Aorta system prototype with the pervasive lab 

monitoring application was implemented in Java (JDK 

1.4.1).  A package that contains the source code and 

configuration files of the system is available at the 

Aorta project web site http://www.cs.ust.hk/aorta.

6.2. Effects of device synchronization 

We first show the effects of the device 

synchronization mechanism we implemented in Aorta 

using results from empirical studies.  We generated 10 

Algorithm 1.1:  Least Eligible Request First Assignment 

1. for each device dj (1 j m) in D do

2.     initialize its assigned workload Wj = 0;

3. i = 1; 

4. while there are unassigned requests do

5. for each request r that has i candidate devices do

6. for each candidate device dk of r do

7. Crk = the estimated cost for servicing r on dk;

8. Ek = Wk + Crk;

9.        select the device dl that has the least E value among 

           the i candidate devices of r and assign r to dl;

10. Crl = the estimated cost for servicing r on dl;

11. Wl += Crl;

12. i ++;

Algorithm 1.2:  Shortest Request First Execution

(on a single device d)

1.  lock d;

2. while there are unserviced requests do

3.     update the current physical status of d;

4. for each remaining request r do

5. Cr = the estimated cost for servicing r

    at this moment; 

6.     select the request with the least C value and service it; 

7.  unlock d;

Algorithm 2:  Shortest Request First Assignment and             

                        Execution 

1. for each request ri (1 i n) in R do

2. for each device dj in Di do

3.        insert (ri, dj) as a node in a balanced binary search  

           tree T, the key of the node is the weight of this 

           request-device pair;  

4. for each device dj (1 j m) in D do

5.     initialize its assigned workload Wj = 0;

6.     lock dj;

7. while T is not empty do

8.     extract the node a from T that has the least key value; 

9.     Find (ri, dj) that a corresponds to and assign request ri

        to device dj;

10. if dj is currently free then

11.      service ri on dj;

12. else 

13.      queue ri in the input queue of dj;

14. w = the key value of a;

15.   delete a from T and mark ri as serviced; 

16. for each unserviced request rl in R do

17.  if dj Dl then

18. Clj = the estimated cost for servicing rl on dj after

                       servicing ri;

19. al = the node that corresponds to (rl, dj) in T;

20.          update the key value of al to be Clj + w;

21. for each device dj (1 j m) in D do

22.     unlock dj;

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICSCS’05) 

1063-6927/05 $20.00 © 2005 IEEE 



queries embedded with the photo() action and 

registered them with the system in a batch.  In this 

workload, a photo of Mote i's location was required to 

be taken by the i-th query every minute (1  i  10).

We found that without device synchronization, in 

each minute the photo() action requests of the 10 

queries interfered with one another (i.e., mixed their 

operations on the two cameras) in an unpredictable 

fashion.  More than half of the action requests failed 

(i.e., connection to the camera timed out), resulted in 

blurred photos, or took photos at wrong positions.

In contrast, with our device synchronization 

mechanism implemented, the percentage of these 

action failures reduced to nearly 10%.  The large 

decrease in the action failure rate is because with 

device synchronization, the system will not assign a 

new request to a camera that is busy serving another 

request or is currently unavailable.  The non-zero 

action failure rate even with device synchronization 

was due to the heavy workload caused by the ten 

queries continuously operating on the two cameras.  

Due to the hardware limitations of the physical devices, 

zero action failure on them seems to be extremely rare 

in real-world applications.   

6.3. Evaluation of the scheduling algorithms 

In this section, we present the performance 

evaluation of five scheduling algorithms.  The LERFA 

+ SRFE and SRFAE algorithms are proposed by us.  

The LS and SA algorithms are from previous work in 

parallel machine scheduling.  Finally, the RANDOM 

algorithm was included as the baseline for comparison.  

It randomly assigns action requests to available devices 

for execution.  All scheduling algorithms under study 

assigned requests to devices as well as executed the 

actions on them.  The cost metric in our study was the 

service time (i.e., the expected action execution time).   

In order to enable controllable performance studies, 

we developed a homegrown camera simulator to 

simulate the AXIS 2130(R) PTZ network cameras in 

the pervasive lab.  We tuned the camera simulator 

through extensive tests on the real cameras, so that a 

photo() action (and other actions on camera) executed 

on a simulated camera had similar effects (e.g., time 

for head movement) to that on a real camera.  All 

experiments presented later in this section were 

conducted using this camera simulator.   

In the first set of experiments, we fixed the number 

of cameras to be 10.  We used three synthetic action 

workloads, each of which consisted of 10, 20 and 30 

action requests, respectively.  In each workload, the 

cost (service time) of an action request was randomly 

selected from the interval [0.36, 5.36], which is the 

range of the execution time (in seconds) of a photo() 

action on an AXIS 2130(R) camera.  For each request, 

all of the 10 cameras were candidates for its execution.   

Figure 4 shows the makespans achieved by the five 

scheduling algorithms.  Each point in the figure is the 

average of results from ten independent runs.  Note 

that the makespan values shown in the figure included 

both the computational cost of the scheduling 

algorithm (the scheduling time), and the time spent on 

servicing the requests on the cameras (the service time). 
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Figure 4.  Performance of various scheduling 
algorithms with a uniform workload 

In the figure we see that, for all five algorithms, the 

makespan increased when the total number of requests 

increased.  The performance of the RANDOM 

algorithm was much worse than the other four.  The 

two algorithms we proposed had similar performance 

and both of them outperformed the existing LS and SA 

algorithms by about 20%-40%.  For instance, in the 

workload consisting of 20 requests, the makespans 

achieved by LERFA + SRFE, SRFE, LS and SA were 

5.73, 5.18, 8.21 and 7.29 seconds, respectively.  

Figure 4 also illustrates that with a uniform 

workload, the two algorithms we proposed scaled 

better than the two existing algorithms.  Both LS and 

SA resulted in a nearly linear increase on the makespan 

when the number of requests increased linearly.  In 

comparison, the two algorithms we proposed yielded 

sub-linear increase. Such scalability is desirable in 

pervasive computing, where real-time actions upon a 

large number of events are often required.  The 

performance improvement of our proposed algorithms 

over existing algorithms validated the effectiveness of 

the heuristics we adopted. 

Figure 5 shows the time breakdown of the five 

algorithms with the workload consisting of 20 requests.  

In the figure we see that the scheduling times of the 

four algorithms other than SA were negligible in 

comparison with the service time.  As we described in 

Section 5.1, negligible scheduling time is a 

requirement of scheduling algorithms in pervasive 

computing.   
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Among all five algorithms, the SA algorithm 

achieved the least service time (4.81 seconds), which 

happens to be the optimal schedule in this special case.  

However, the scheduling time of SA was much longer 

than those of the other four, which greatly affected the 

overall performance of the algorithm.  In comparison, 

our proposed algorithms both achieved nearly optimal 

schedules (the differences to the optimal schedule is 

less than 1 second) with a negligible scheduling time.  

Time Breakdown

0.16

2.49

0.160.180.16

14.95

5.00

8.05
5.57

4.81

LERFA +

SRFE

SRFAE LS SA RANDOM

Scheduling Algorithms

S
e

c
o

n
d

s

Scheduling Time Service Time

Figure 5. Time breakdown of the five 
scheduling algorithms 

We have also run a number of other experiments 

with the number of cameras and requests varied but 

still kept all cameras as candidates for each request in 

the workload.  The results show that with a uniformly 

distributed workload, the performance of the four 

scheduling algorithms (except for RANDOM) was 

only affected by the average number of requests 

scheduled on each device (i.e., #requests / #devices).

Next, we fixed the number of cameras and requests 

involved in the scheduling to be 10 and 20, 

respectively. We changed the action workload 

distribution on the 10 cameras from a uniform 

distribution to a skewed one.  Specifically, in a skewed 

workload, half of the 20 requests each had 10 cameras 

as its candidate devices; for the other half, each could 

only be serviced on a subset of the 10 cameras.  The 

size of the subset determined the skewness of the 

request distribution.  We define skewness to be the size 

of the subset divided by the total number of cameras.  

Figure 6 shows the makespans achieved by the five 

algorithms when the workload skewness varied from 

0.2 to 0.4.  In the figure we see that, the SA algorithm 

performed the worst with skewed workloads.  This was 

because the algorithm had a very long scheduling time, 

which completely dominated the service time of the 

scheduling.  For the other four algorithms, the 

makespans decreased when the skewness increased, 

due to the increasing opportunity of distributing the 

skewed workload to more candidate devices.  Our 

proposed algorithms still had the best performance 

among all five.     
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Figure 6. Performance of various scheduling 
algorithms with a skewed workload 

7. Related work 

Recent work in pervasive computing has focused on 

networks of homogeneous devices, e.g., RFID (Radio 

Frequency Identification) tags [14] and cell phones 

[17].  In comparison, Aorta manages a number of 

heterogeneous devices and enables the data acquisition 

and transmission across these devices through a 

uniform data communication layer.   

Flinn et al. [8] proposed the design of a remote 

execution system in pervasive computing named 

Spectra.  The goal of Spectra is to improve application 

performance and result quality while reducing the 

energy consumption on mobile devices.  The best 

application execution plan selection in Spectra shares a 

similar spirit with the device selection optimization in 

Aorta.  However, the authors of Spectra did not 

consider the issue of device heterogeneity as we did in 

Aorta.  The clients (devices) in their implementation 

were PC-grade machines in mobile computing as 

opposed to our cameras, phones, and sensors.   

There have been recent publications on event-

driven processing over distributed sensor networks.  

Abdelzaher et al. [1] developed an environmental 

programming paradigm called EnvioTrack that tracks 

physical-world events and invokes pre-defined 

computation for them.  In Direct Diffusion [7][10], a 

distributed communication paradigm was proposed for 

disseminating data to sensor nodes that match the 

interest of the data.  The data is named attribute-value 

pairs that encapsulate the semantics of the events 

detected by nodes in the network.  In comparison, in 

Aorta we encapsulate the event-driven processing 

nature of pervasive computing applications in the 

specification of declarative database queries.  

Furthermore, we focused on invoking various types of 

actions on heterogeneous devices upon events.   
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Finally, previous work on load balancing in 

distributed computing systems [11][15][18] studied the 

scheduling of a number of tasks on an interconnected 

network of computers.  In comparison, in our action 

workload scheduling problem there is no connection or 

communication among the devices for executing the 

workload.  We have further considered the physical 

status changes on devices and the real-time processing 

requirement in pervasive computing when designing 

our scheduling algorithms.  

8. Conclusions

In this paper, we focus on presenting the systems 

support issues in our Aorta pervasive query processing 

framework.  We have designed and implemented a 

uniform data communication layer that enables 

network data independence over a number of 

heterogeneous devices.  We have implemented locking 

and probing mechanisms in Aorta for device 

synchronization.  We have also proposed two heuristic 

algorithms to solve the action workload scheduling 

problem.  Our results from both empirical studies and 

simulation studies demonstrate that these systems 

mechanisms helped Aorta to balance device workload 

and to achieve good performance. 

Future work includes extending the uniform data 

communication layer to support new types of devices, 

studying more sophisticated device synchronization 

mechanisms, and investigating scheduling techniques 

for a large number of heterogeneous devices.  The 

Aorta source code and publications are available at the 

project web page http://www.cs.ust.hk/aorta.
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