
Active Query Caching for Database Web Servers

Qiong Luo, Jeffrey F. Naughton, Rajasekar Krishnamurthy, Pei Cao ?, and
Yunrui Li ??

Computer Sciences Department
University of Wisconsin-Madison

Madison, WI 53706, U.S.A.
{qiongluo, naughton, sekar}@cs.wisc.edu,

cao@cisco.com,yuli@us.oracle.com

Abstract. A substantial portion of web traffic consists of queries to
database web servers. Unfortunately, a common technique to improve
web scalability, proxy caching, is ineffective for database web servers
because existing web proxy servers cannot cache queries. To address this
problem, we modify a recently proposed enhanced proxy server, called
an active proxy, to enable Active Query Caching. Our approach works by
having the server send the proxy a query applet, which can process simple
queries at the proxy. This enables the proxy server to share the database
server workload as well as to reduce the network traffic. We show both
opportunities and limitations of this approach through a performance
study.
Keywords:Active query caching, proxy caching, database web servers,
query containment.

1 Introduction

Many web sites are constructed using back-end database systems and provide
form-based interface for users to submit queries. We call this kind of system a
database web server. With the rapid growth of user accesses to the Web, database
web servers encounter very heavy workloads and produce a growing percentage
of network traffic.

Web caching proxies are today’s main solution to improve web performance,
share server workload, and reduce wide area network traffic. However, queries
and responses of database web servers are uncacheable by existing web proxies,
which cache only static files. This motivates us to investigate the problem of how
to answer queries efficiently at a web proxy.

In this paper, we propose a new collaboration scheme between an active
proxy (an experimental enhanced web proxy server [4]) and a database web
server. In our approach, the web server passes a simple query processing ability
? Currently at Cisco Systems, Inc., 230 West Tasman Drive, San Jose, CA 95134,

U.S.A.
?? Currently at Oracle Corporation, 500 Oracle Parkway, Redwood Shores, CA 94065,

U.S.A.

D. Suciu and G. Vossen (Eds.): WebDB 2000, LNCS 1997, pp. 92–104, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Active Query Caching for Database Web Servers 93

to the proxy when needed, through a query applet. The proxy can then not only
answer queries that are an exact match to cached queries, but also queries whose
results are contained in the cached results of more general queries. This increases
the cache hit ratio of the proxy, and further decreases the number of trips to
the database web server. In turn, this reduces network traffic as well as the load
on the server, which allows the system to scale with the addition of multiple
proxies.

Our approach is inspired by the following three observations. First, despite
the high volume of user queries on the web, one interesting aspect is that these
queries are usually very simple from the web proxies’ point of view. This is
because the queries that database web servers allow users to submit are typically
form-based. If we consider a form to be a single table view and the blanks to be
filled in as the columns of the single table view, queries on the form can then be
treated as simple selection queries with conjunctive predicates over this single
table view. For example, although the back-end database of an on-line bookstore
may have a complex schema, queries submitted through the on-line form of the
bookstore are just selections with some title, author, publisher and price range
predicates on a single table view “books”.

Secondly, among these simple queries submitted to a database web server,
a significant portion of them further concentrate on some hot regions of data.
In the previous example of the on-line bookstore, there might be many similar
questions on the best sellers in a day’s sale. Studies on search engine query traces
[14,16] also report that web user queries to these search engines show excellent
locality on the data they access.

Finally, a common query stream pattern of individual users is refinement.
Typically users first ask a general query. Having viewed some results, they then
decide to refine the query with more restrictive conditions, and keep asking a
series of queries. The query refinement feature of our university on-line library
is a good example. When a set of initial query results on books comes back to
the user, a “refine your search” button also shows up so that the user can refine
the queries on publishing year, campus library locations, and other parameters.
These series of refining queries certainly provide temporal locality for query
caching.

The rest of the paper is organized as follows. Section 2 introduces the proxy
caching background of our work. Section 3 presents the system overview, and
Sect. 4 describes active query caching in more detail. Section 5 shows perfor-
mance results, Sect. 6 discusses related work, and finally conclusions are drawn
in Sect. 7.

2 Background

Caching proxies are widely deployed in several places: at the network boundaries
to serve local users, in the network infrastructure to reduce wide area network
traffic, or in front of server farms to share server workload (called reverse proxies,
or httpd accelerators).

One major limitation of current caching proxy servers is the lack of collabo-
ration with original content providers. This causes a large amount of web traffic

94 Q. Luo et al.

to be uncacheable to web proxies. Recent studies [3,12,19] have shown that the
percentage of uncacheable requests is growing over time and that two major rea-
sons are queries (URLs that include question marks) and response status (the
server response code does not allow a proxy to cache the response) [19].

Unlike other proxy caching schemes, which only cache non-executable web
objects, the Active Cache scheme [4] allows servers to associate a piece of Java
code (called a cache applet) with a document. An active proxy (a proxy that
supports the Active Cache scheme) can cache these cache applets from web
servers, along with the associated documents. For efficiency or security concerns,
the active proxy has the freedom of not invoking a cache applet but directly
forwarding a request to the server. However, if the proxy regards a request as
a hit in its cache, it will invoke the corresponding cache applet to do some
processing rather than just sending the cached document to the user.

Cache applets get their name because of their similarity to Java applets,
which are lightweight, originate from a server, and can communicate with the
server. Our query applet is an extension to the generic cache applet. A straight-
forward function of the query applet would be to cache the query results at the
proxy and return the results to users when they ask queries that are identical to a
cached query. We call this passive query caching. To further reduce the workload
on the server, we have added two more functions to the query applet – query
containment checking and simple selection query evaluation. Having these two
functions, the query applet can perform active query caching, where the proxy
not only answers queries that are identical to a cached query, but also answers
queries that are more restrictive than a cached query.

3 System Overview

We have developed a prototype system consisting of a database web server and an
active proxy with the active query caching capability. The system architecture,
along with the handling process is shown in Fig. 1. The shaded parts represent
the components we implemented.

In this system, we used a modified version of the active proxy [4], which
was originally developed on the CERN httpd code base [20]. The modifications
included allowing CGI requests with query strings in GET or POST methods
to be cached, and loosening certain security inspections and resource limits on
cache applets. We also used a CERN httpd as the web server. The database
server was the IBM DB2 Universal Database Server V5.2 with a JDBC driver.

As illustrated in Fig. 1, the three components we have implemented are the
query front-end, the query applet, and the query back-end. They reside on the
client side, the proxy (after the proxy gets the applet from the server), and the
web server.

When a user submits a query to the query front-end, the front-end program
will convert the user query into an HTTP request and send it to the proxy. The
proxy then examines the URL to see if it is a cache hit at the proxy. If it is
a cache hit and the server form URL has a corresponding query applet in the
proxy, the proxy will invoke the query applet. Otherwise, the proxy will forward
the request to the web server.

Active Query Caching for Database Web Servers 95

Back End

Active

Proxy

User

Web

Server

Database

Server

Query

Result

Client Proxy Server

Query

Result

in XML

HTTP R
eq

ue
st

on
 M

iss

Res
ult

 in
 X

M
L

Query

Applet

Front

End Result in XML

HTTP Request

Result in XML

HTTP Request

Query

Result

in XML

Fig. 1. System architecture

On the web server, the query back-end program transforms an HTTP request
into a SQL query and sends it through JDBC to the back-end database. The
query back-end program then retrieves result tuples from the database server,
wraps them into an XML file with an XML representation of relational data
proposed by Bos [2], and sends the XML file to the proxy. If the server decides
to send a query applet to the proxy, the query back-end program will send a
query applet header along with the query result.

If a query applet header is sent to the proxy along with the document, the
proxy will obtain the applet from the server and associate it with the server form
URL. The next time the proxy receives a request to the server form URL with
a query, it will invoke the corresponding query applet.

The query applet maintains a mapping between the cached queries and their
corresponding results. When the query applet is invoked upon a request, it ex-
tracts the query from the request parameters and examines its own cache. If the
new query is the same as a cached query, the cached result will be returned; if
the new query is more restrictive than a cached query, it is then evaluated on the
result of the cached query, and new query results are generated and sent back
to the user. Otherwise, the query applet forwards the request to the web server
and caches the query and result from the server before passing the result to the
client.

Note that in practice one HTTP request may be transformed into several
SQL queries or involve more complex operations at the server side. However, the
proxy does not need to know about this because all it sees is single table views
expressed by forms. Also, in our implementation we only deal with XML files,
not HTML files. This scenario is possible in automatic business data exchange

96 Q. Luo et al.

applications. If HTML pages are needed, servers can modify the query applet
code to generate the HTML.

In our implementation each query applet corresponds to a form URL at a
web server, so it answers all the queries submitted to that form. When multiple
query applets are present at the proxy, each of them manages its own query
cache.

4 Active Query Caching

4.1 Query Caching Scheme

We chose caching at the query level rather than at the table level or seman-
tic region level for a number of reasons. The most prominent reason is its low
overhead, which is crucial to a web proxy. As discussed in Sect. 1, form-based
queries at the proxy are treated as selection queries with simple predicates over a
single table view. This greatly simplifies query containment checking and query
evaluation at the proxy.

Moreover, the query level granularity fits well in the Web context. Firstly,
each query corresponds to an individual user request so that later refinement
queries from a user can be answered easily based on earlier queries. Secondly, if
there are some hot queries during a period of time, many queries can be answered
from the results of these hot queries.

In contrast, table level caching does not seem to apply naturally for proxy
caching. It requires the proxy to get the base data (usually large), store all of
it, translate simple form queries into complex queries on base data, and eval-
uate them at the proxy. This is undesirable in terms of resource consumption,
efficiency, and proxy autonomy. To take advantage of the dynamic nature of
caching, we chose query level caching, which seems more feasible and efficient
than table level caching at this point.

Semantic region caching [7,8] has a finer granularity than query level caching
and has the nice feature of non-redundancy. However, this advantage does not
come for free. The expense of checking overlap among regions, coalescing regions,
splitting queries among regions, and merging regions into the final query result is
a lot more expensive than simple query containment checking and selection query
evaluation. The small size of web query results causes region fragmentation and
constantly triggers coalescence. Finally, it is complex to determine how “current”
a coalesced region is in cache replacement.

4.2 Query Containment Checking

Query containment testing for general conjunctive queries is NP-complete [6].
However, there are polynomial time algorithms for special cases [17]. For our
simple selection queries, which are a special case, we identify a sufficient condition
to recognize subsumed queries efficiently. The worst-case time complexity of our
query containment checking algorithm is polynomial in terms of the number of
simple predicates in the Conjunctive Normal Form (CNF) query condition. The
simple predicates we handle include semi-interval comparison predicates (e.g.,

Active Query Caching for Database Web Servers 97

Field1 > 5, Field2 <= 3) and SQL string “LIKE” predicates (e.g., Field3 LIKE
’%Java Programming%’).

Table 1. Two simple selection queries

Query1 Query2
SELECT List1 SELECT List2
FROM Table1 FROM Table2
WHERE WhereCondition1 WHERE WhereCondition2

Given the above two queries, Query1 and Query2, whose where-conditions
have been transformed into CNF, we recognize that Query1 is contained in
Query2 (we call Query1 a subsumed query of Query2 and Query2 a super-query
of Query1) if all of the following conditions are satisfied:

– Table1 and Table2 are the same table (or view).
– Fields in List1 are a subset of the fields in List2.
– WhereCondition1 is more restrictive than WhereCondition2.
– If WhereCondition1 and WhereCondition2 are not equivalent, all fields that

appear in WhereCondition1 also appear in List2.

In general the last condition is not a necessary condition. We specify it be-
cause eventually we need to evaluate a subsumed query on the query result of
its super-query. Thus, we must guarantee that the result of the super-query con-
tains all fields that are evaluated in the where-condition of the subsumed query.
So we use the current sufficient condition for simplicity and efficiency. At this
point, our query containment checking reduces to the problem of recognizing if
one CNF where-condition is more restrictive than another CNF where-condition.
The following two propositions further reduce the problem to testing if a simple
predicate is more restrictive than another simple predicate.

Proposition 1. Given

WhereCondition1 = P1 AND P2 AND ...Pm,
WhereCondition2 = Q1 AND Q2 AND ...Qn,

WhereCondition1 is more restrictive than WhereCondition2 if

∀i, 1 ≤ i ≤ n, ∃k, 1 ≤ k ≤ m, Pk is more restrictive than Qi.

Proposition 2. Given

Pk = R1 OR R2 OR ...Rx,
Qi = S1 OR S2 OR ...Sy,

Pk is more restrictive than Qi if

∀v, 1 ≤ v ≤ x,∃u, 1 ≤ u ≤ y, Rv is more restrictive than Su.

98 Q. Luo et al.

Finally, given two simple predicates F1 op1 c1, F2 op2 c2, it is straightforward
to test whether the former is more restrictive than the latter. Intuitively, F1 and
F2 should be the same field, and the relationship among the two operators op1,
op2, and the two constants c1, c2, should make the first predicate more restrictive
than the second one. For example, “price <= 10” is more restrictive than “price
< 20”.

4.3 Query Cache Management

Since our cached query definitions use the CNF format, we transform user queries
into CNF and store the AND-OR tree format at the proxy. The query cache
consists of these query trees and their corresponding query results. A mapping
table (called the query directory) is used to record the correspondence between
queries and their results. Note that query definitions and their actual results
are stored separately because query containment checking can be done by only
comparing query trees and do not need the actual query results.

There is a choice about whether we should cache the query result of a sub-
sumed query. One argument for caching it is that we may answer new queries
faster on it because its result size is smaller than that of its super-query. The
problem is the large redundancy between this query and its already cached super-
query. Since web queries tend to return a small number of records per request,
we chose not to cache any subsumed queries of a cached query. As a result, the
cache hit ratio is improved because of less data redundancy in the cache.

There are three cache replacement schemes available in our implementation:
LFU (Least Frequently Used), LRU (Least Recently Used), and benefit-based.
The first two are straightforward. The third one is a combination of the other two
in that it uses reference frequency and recency as parameters of the benefit. We
define the benefit of a cached query as a weighted sum of the reference frequency
and the recency. The heuristic behind the benefit metric is intuitive. If a query
was used as a super-query for many new queries, it is likely that it will serve
later queries also. This is a reflection of spatial locality – that the query covers a
hot region of data. If a query was used as a super-query recently, we believe that
it will probably be used as a super-query for subsequent queries soon if users are
doing query refinement. This can be thought as temporal locality.

5 Experiments

5.1 On Excite Query Trace

Many web caching studies have used real traces [3,9,18] or synthetic web work-
loads [1]. However, these real traces or generated workloads usually do not in-
clude CGI script requests or queries. What we really needed was a trace that
recorded user queries to a specific database web server. Fortunately we obtained
a real query trace of around 900K queries 1 over one day from a popular search
engine, Excite [10].
1 In accordance with the notation in [14], a search engine query means a user’s request

of a specific page of the query results of a specific keywords sequence.

Active Query Caching for Database Web Servers 99

Search engines have their special features that may differ from other database
web servers. The main differences include: their search forms conceptually have
only one column (keywords), their query results are URLs, and these results are
sent page by page upon user requests. Despite these differences, we feel that it is
useful to investigate the effect of active query caching on search engine queries,
because these queries represent web user query patterns to a popular class of
web information sources.

A recent study [14] by Markatos has shown that 20-30% of the 900K queries
in the Excite query trace can be answered directly from cache if the query results
are cached. This caching is equivalent to what we called passive query caching.
We set out our experiments to examine how much more opportunity exists for
active query caching.

We transformed the search engine trace into a SQL query stream on two
columns – keywords and page number and ran it through our query caching
module. All experiments started from a cold query cache. The cache replacement
policy was LRU.

We compared hit ratios of active query caching and passive query caching at
various cache sizes. The legend “20KQ passive” in Fig. 2 means passive query
caching using a cache of 20K queries. Other legends have similar meanings. If
we use the assumption of 4KB per query result page [14], the query cache sizes
of 20KQ, 50KQ, and 100KQ can be roughly translated into 80MB, 200MB, and
400MB correspondingly, while the cache sizes used in [14] vary between 500MB
to 2GB.

0%

10%

20%

30%

40%

50%

60%

70%

100KQ 300KQ 500KQ 700KQ
Queries run

H
it

ra
tio

20KQ Passive 50KQ Passive 100KQ Passive

20KQ Active 50KQ Active 100KQ Active

Fig. 2. Query cache hit ratios on Excite query trace

From Fig. 2 we can clearly see that there is much more opportunity for active
query caching than passive query caching. The whole trace of 900K queries has

100 Q. Luo et al.

29% non-unique queries, which is the upper limit of the cache hit ratio of passive
query caching with a sufficiently large cache. In contrast, we can achieve 45%-
65% hit ratios in active query caching with a small to medium size cache. Notice
that active query caching with a query cache size of 20K queries outperforms
passive query caching with a cache size of 100K queries by a factor of three.

5.2 On Synthetic Data and Queries

No matter how high the cache hit ratios are, they are just part of the story.
To identify the performance implications of our prototype system, we generated
synthetic relational data and query streams for our experiments and measured
actual query response times.

In the following experiments we ran the CERN httpd server and the active
proxy on two Sun Ultra10 300Mhz machines with the SunOS 5.6 Operating Sys-
tem. The DB2 server was running on a Pentium Pro 200MHz PC with Windows
NT Operating System. All machines are in our department local area network
and query caches start cold.

First, we measured the response times of a query stream when the workload
of the database server was varied. We used a stream of 100 queries to measure
the response time when the database server was idle, when it had 6 other clients,
and when it had 12 other clients. The measurements were made with R20, R40
and R60 query streams (RX reads that X% queries are subsumed queries). In this
experiment, a cache size of 10 queries was sufficient to achieve the performance
gain, since we generated subsumed queries immediately after their super-queries.
In practice the cache size should be sufficiently large to ensure that the super-
queries are in the cache when their subsumed queries arrive.

0

1

2

3

4

5

6

0 6 12
Number of other clients

R
e

sp
on

se
 ti

m
e

(in
 s

e
co

nd
s)

R20 w/o cache R40 w/o cache R60 w/o cache
R20 w/ cache R40 w/ cache R60 w/ cache

Fig. 3. Response time as server workload varies

Active Query Caching for Database Web Servers 101

The response time variation in Fig. 3 shows the impact of subsumed query
distribution on response times with active query caching. Unlike the case without
caching, the query response times with active query caching decrease when the
percentage of subsumed queries increases. For the R40 and R60 query streams,
the response time for the proxy with the cache is better than the case without
the cache, which means these hit ratios offset the query applet overhead at the
proxy. Although for the R20 query stream the response time with caching is
slightly more than the response time without a cache, the proxy with caching
can still share 20% of the workload with the server.

We then measured the breakdown of the time spent by a query at the various
stages in a query applet. We considered the three cases – the new query could
be identical to a query in the cache, be a subsumed query to a cached query,
or need to be evaluated at the server. “Load + Save” refers to the time that
the query applet takes to load the query directory from disk when it is invoked
by the proxy plus the time taken for saving the query directory to disk before
it finishes. “Check + Evaluate” includes the time that the query applet spends
checking the query cache to see if the new query is subsumed by any cached
query, and the time that the query applet spends evaluating the query from the
cache. Finally, “Fetch from server” is the time spent sending the query to the
server and waiting for the result back, if the query cannot be answered from the
cache. The results are shown in Fig. 4.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

I(10) S(10) M(10) I(400) S(400) M(400)
Identical, Subsumed, or Missed query

(with cache size in #queries)

E
la

ps
ed

 ti
m

e
(in

 s
ec

on
ds

)

Fetch from Server Load+Save Check+Evaluate

Fig. 4. Breakdown of the time spent in the query applet

The breakdown of the time spent at the various stages in the query applet
shows that even in an intra-departmental network, the time taken to contact the

102 Q. Luo et al.

server and get the result back is a major portion of the total time. From other
experiments (not shown here) we observed that roughly 40% of the “Fetch from
Server” time was spent at the database server and the remaining 60% was spent
on the network. The time taken to evaluate the subsumed query from the result
of the cached query is considerable. This time was also seen to be proportional
to the size of the result file of the cached query as the file I/O of reading this file
and writing the result back was seen to dominate this time. Within “Check +
Evaluate” the portion of the time taken to check and find a super-query is quite
small. Finally, we see that the time taken to load and save the cache directory is
considerable. This time increases almost linearly with increase in cache size, and
becomes comparable to the time taken to contact the server when the cache size
is 400 queries. This cost would have been avoided if the query directory could
be kept in memory in the active proxy. Unfortunately, this is not feasible in the
current implementation of the active proxy.

6 Related Work

With the increase of dynamic content on the web, researchers have started study-
ing the general problem of caching dynamic content from various aspects. Chal-
lenger et al. [5] have focused on how to efficiently identify and update obsolete
pages in the web server cache. Florescu et al. [11] have proposed a customiz-
able cache system at data-intensive web sites. Our approach complements these
server-side techniques because it addresses the problem in the context of web
proxies and aims at sharing the database web server workload and reducing net-
work traffic. Furthermore, we focused on evaluating new queries on the cached
results while the others just return the cached results on an identical query.

Caching dynamic content at proxies has also been studied in [15] by Smith
et al. Their approach allows web content providers to specify result equivalence
in generated documents so that the proxy can utilize the equivalence to re-
turn a cached result to a new request. However, they do not consider database
query containment or evaluate subsumed query at the proxy. Compared with the
declarative nature and limited scope of [15], the Active Cache scheme provides
a simple and flexible interface to web servers at the price of a possible overhead
associated with the mobile code.

Finally, our active query caching can be viewed as a special case of answering
queries using views [13] if we consider cached queries to be materialized views.
However, these views come and go dynamically because of the nature of caching.
Moreover, as a first step of query caching at web proxies, we only consider
answering a query using one view instead of multiple views and thus reduce the
problem to simple query containment checking.

7 Discussion and Conclusions

In this paper, we have studied active query caching for database web servers. We
have shown the opportunities that active query caching brings through a trace-
driven simulation on real query traces and a prototype implementation. We have

Active Query Caching for Database Web Servers 103

also identified the performance bottlenecks in the current implementation of the
active proxy framework.

The active proxy made it possible for us to study active query caching at
proxies for database web servers. Nevertheless, since the active proxy is in its
prototype stage and active query caching is a brand-new application of the active
proxy, we learned a few lessons from our experience. One major issue is that the
active proxy does not provide any memory-resident structure for cache applets.
This is not a limitation of the Active Cache protocol but is related to the CERN
httpd proxy implementation. Two factors are involved. One is that the CERN
proxy does not have memory-resident cache. The other is that CERN proxy forks
one process per request and so the cache applet’s memory structure cannot be
directly passed back to the proxy. This limitation had a strong negative effect
on our implementation’s performance. Finally we note that Java in its current
stage does have performance complications in spite of its attractive features of
portability, security, and ease of implementation.

As the first step of active proxy query caching for database web servers,
this prototype is a simple functional system rather than a mature one. There
are many ways that our work can be extended. We are investigating ways of
sharing memory structure between the proxy and the query applet to address the
bottleneck. We plan to utilize indices on the query directory or other techniques
to further reduce the time of query containment checking and query evaluation.
We are also investigating other query caching schemes and cache replacement
policies in this framework.

Acknowledgements. We would like to thank Jin Zhang for his technical sup-
port and helpful discussions on the active proxy prototype system, and Evangelos
Markatos for his discussion on Excite search engine query trace. We would also
like to thank Kevin Beyer, Jim Gast, and Chun Zhang for their comments.

Funding for this work was provided by DARPA through NAVY/SPAWAR
contract No. N66001-99-1-8908 and NSF through NSF Award CDA-9623632.

References

1. P. Barford and M. E. Crovella. Generating Representative Web Workloads for
Network and Server Performance Evaluation. Proc. Performance ’98/ACM SIG-
METRICS ’98.

2. Bert Bos. XML representation of a relational database.
http://www.w3.org/XML/RDB.html

3. Ramon Caceres, Fred Douglis, Anja Feldmann, Gideon Glass, and Michael Rabi-
novich. Web Proxy Caching: The Devil Is in the Details. In Workshop on Internet
Server Performance, 1998.

4. Pei Cao, Jin Zhang, and Kevin Beach. Active Cache: Caching Dynamic Contents
on the Web. Proc. IFIP International Conference on Distributed Systems Platforms
and Open Distributed Processing (Middleware ’98).

5. Jim Challenger, Arun Iyengar, and Paul Dantzig. A Scalable System for Consis-
tently Caching Dynamic Web Data. Proc. IEEE INFOCOM 99.

104 Q. Luo et al.

6. Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In Conference Record of the Ninth Annual ACM
Symposium on Theory of Computing, May 1977, pages 77-90.

7. Boris Chidlovskii, Claudia Roncancio, and Marie-Luise Schneider. Semantic Cache
Mechanism for Heterogeneous Web Querying. Proc. 8th World-Wide Web Confer-
ence (WWW8), 1999.

8. Shaul Dar, Michael J. Franklin, Bjorn T. Jonsson, Divesh Srivastava, Michael Tan.
Semantic Data Caching and Replacement. VLDB 1996.

9. Fred Douglis, Anja Feldmann, Balachander Krishnamurthy, and Jeffrey Mogul.
Rate of Change and other Metrics: a Live Study of the World Wide Web. In
Symposium on Internet Technology and Systems. USENIX Association, December
1997.

10. Excite Search Engine. http://www.excite.com/
11. Daniela Florescu, Khaled Yagoub, Patrick Valduriez, Valerie Issarny. Caching

Strategies for Data-Intensive Web Sites. INRIA Technical Report, INRIA, De-
cember 1999.

12. Steven D. Gribble and Eric A. Brewer. System design issues for Internet middleware
services: Deductions from a large client trace. In Proc. of the USENIX Symposium
on Internet Technologies and Systems, November 1997.

13. Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, Divesh Srivastava. Answer-
ing Queries Using Views. PODS, 1995 95-104

14. Evangelos P. Markatos. On Caching Search Engine Results. Technical Report 241,
ICS-FORTH, January 1999.

15. Ben Smith, Anurag Acharya, Tao Yang, Huican Zhu. Caching Equivalent and Par-
tial Results for Dynamic Web Content. Proc. of 1999 USENIX Symposium on
Internet Technologies and Systems.

16. Craig Silverstein, Monika Henzinger, Hannes Marais, and Michael Moricz. Analysis
of a Very Large AltaVista Query Log, SRC Technical note #1998-14.

17. Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Volume
II. Computer Science Press 1989, pp. 877 - 907.

18. Craig E. Wills, and Mikhail Mikhailov. Examining the Cacheability of User-
Requested Web Resources. In Proc. of the 4th International Web Caching Work-
shop, 1999.

19. Alec Wolman, Geoff Voelker, Nitin Sharma, Neal Cardwell, Molly Brown, Tashana
Landray, Denise Pinnel, Anna Karlin, and Henry Levy. Organization-Based Anal-
ysis of Web-Object Sharing and Caching. In Proceedings of the 2nd USENIX Con-
ference on Internet Technologies and Systems (USITS), October 1999.

20. W3C. http://www.w3.org/Daemon/.

	Introduction
	Background
	System Overview
	Active Query Caching
	Query Caching Scheme
	Query Containment Checking
	Query Cache Management

	Experiments
	On Excite Query Trace
	On Synthetic Data and Queries

	Related Work
	Discussion and Conclusions

