
0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2550458,
IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

Developer Micro Interaction Metrics for
Software Defect Prediction

Taek Lee, Jaechang Nam, Donggyun Han, Sunghun Kim, and Hoh Peter In

Abstract—To facilitate software quality assurance, defect prediction metrics, such as source code metrics, change churns, and

the number of previous defects, have been actively studied. Despite the common understanding that developer behavioral

interaction patterns can affect software quality, these widely used defect prediction metrics do not consider developer behavior.

We therefore propose micro interaction metrics (MIMs), which are metrics that leverage developer interaction information. The

developer interactions, such as file editing and browsing events in task sessions, are captured and stored as information by

Mylyn, an Eclipse plug-in. Our experimental evaluation demonstrates that MIMs significantly improve overall defect prediction

accuracy when combined with existing software measures, perform well in a cost-effective manner, and provide intuitive

feedback that enables developers to recognize their own inefficient behaviors during software development.

Index Terms—Defect prediction, software quality, software metrics, developer interaction, Mylyn

——————————  ——————————

1 INTRODUCTION

UALITY assurance is a typical resource-constrained
activity when the time-to-market requirements of

software delivery must be met. In an embedded software
market, for example, it is reported that only a four-week
delay in software delivery can cause a serious 22% reve-
nue loss if the overall software lifetime is 52 weeks [1].
Demand for the rapid release of software to the market is
a critical issue for companies in most sectors of software
markets. Even though it is important to meet such an ur-
gent demand, careless quality assurance can entail tech-
nical debt [64]. The negative impact of a defective soft-
ware reputation is often fatal in the market. Thus, quality
assurance becomes critical immediately before the soft-
ware release; however, at that stage, time and human re-
sources are typically insufficient for eliminating every
latent defect by the deadline. Developers or quality assur-
ance managers therefore urgently require a technique that
effectively predicts defects and enables the application of
best efforts in resolving them.

For this reason, defect prediction has been an active re-
search area in software engineering [2], [3], [4], [5], [6], [7],
[8], [9], [10]; many effective defect prediction metrics have
been proposed. In particular, source code metrics (CMs)
and change history metrics (HMs) have been widely used
with reasonable prediction accuracy as a de facto stand-
ard for performance benchmarks [11], [12], [61] and in-

dustry practices. For example, Chidamber and Kemerer
(CK) metrics [13] and McCabe’s cyclomatic complexity
[14] are the most popular CMs in use. The number of re-
visions, authors, and past fixes, along with the age of a
file, are commonly used HMs for defect prediction [15].
Microsoft built the CRANE [16] system for predicting the
failure-proneness of code components in Windows Vista
based on software measures. In addition, Google1 lever-
ages past bugfix information [62] to highlight areas of
code that are creating issues. The effectiveness of CMs
and HMs has been widely discussed in industry and aca-
demia.

However, despite the understanding that developer be-
havioral interaction can affect software quality, currently
available CMs and HMs do not address developer behav-
ior. Developers can err with an ineffective or inefficient
habit in development processes; consequently, defects can
be introduced. In previous studies, for example, LaToza
et al. [18] surveyed the work habits of developers and
found that work interruptions and frequent task switch-
ing affected software quality. In addition, Parnin et al.
[19] reported that interruptions have negative effects on
context recovery during programming tasks. Ko et al. [20]
identified the possible behavioral causes of programming
errors by using a breakdown model of human cognitive
processes. These studies detected correlations between
the behavior of developers and quality of software pro-
duction. Accordingly, it is desirable to exploit developer
interaction information when building defect prediction
models.

Studying developer behavior is integral to the long-
term perspective on managing sustainable software quali-

1 Bug Prediction at Google,
http://googleengtools.blogspot.com/2011/12/bug-prediction-
atgoogle.html

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

 T. Lee and H. P. In (corresponding author) are with Korea University,
Seoul, South Korea. E-mail: {comtaek, hoh_in}@korea.ac.kr

 J. Nam is with University of Waterloo, ON, Canada. E-mail:
jc.nam@uwaterloo.ca

 D. Han is with University Colleage London, London, United Kingdom.
E-mail: d.han.14@ucl.ac.uk

 S. Kim is with the Hong Kong University of Science and Technology,
Hong Kong, China. E-mail: hunkim@cse.ust.hk.

Q

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2550458,
IEEE Transactions on Software Engineering

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

ty. Behavior-based software metrics can enlighten devel-
opers about best practices for improving the quality of
software production. Developers must understand what
is taking place in the development process and receive
corrective feedback if any repeated error or inefficiency
exists in their work behavior during development.

To this end, we propose micro interaction metrics
(MIMs) to capture the behavioral interactions of develop-
ers during development. We employ Mylyn2, an Eclipse
plug-in for task-context storage and recovery [21]. Be-
cause developer interaction patterns affect software quali-
ty and developer productivity [18], [19], [20], metrics
based on developer interactions can be important indica-
tors for predicting defects. In this paper, we compare the
defect prediction performance of MIMs, CMs, and HMs
using Eclipse subprojects that contain Mylyn data during
the period between Dec 2005 and Jun 2010. Our evalua-
tion results show that MIMs significantly improve overall
prediction accuracy when used along with CMs and HMs
(Section 5.1). Moreover, they facilitate code inspection in a
cost-effective way in terms of required effort, providing
significant benefits with considerable defect detection
(Section 5.2). Additionally, we acquire and compare
MIMs from two different domains (open source versus
closed source projects) to explore any difference of MIM
ranks in terms of prediction contribution (Section 6.4).

In addition to providing outstanding performance,
MIMs have several other promising attributes. First, un-
like CMs and HMs, MIMs can provide fine-grained in-
formation. For example, a single commit to a source code
repository such as CVS records the final snapshot of the
changed code no matter how many micro changes have
actually occurred on source code files. This abstraction is
unfavorable in terms of collecting detailed information
about code changes. Thus, MIMs can create a synergy
with CMs and HMs to bolster the informative power of
software metrics in practice.

Second, MIMs are available early in the development
process: they can be extracted as soon as task session logs
are available in the integrated development environment
(IDE) before code is committed to a repository. This is a
major benefit, particularly in defect prediction applica-
tions. Early defect prediction can reduce the potential
costs associated with late defect detection and remedia-
tion.

Finally, MIMs provide inherently intuitive feedback to
developers about their interactions that are most relevant
to defect occurrence. By visualizing the MIMs, developers
can realize their “as is” and “to be” states of quality man-
agement activities. If MIMs can be implemented in an
IDE-centric tool, the feedback can provide developers
with a warning and assist them in taking corrective ac-
tions if necessary.

The full list of 24 MIMs is described in Table 1. Some
MIMs are from our previous study [23]; these are marked
with the dagger “†” symbol in Table 1. The unmarked 10
MIMs are newly proposed in this paper. The contribu-
tions of this study are outlined as follows:

2 Eclipse Mylyn, http://www.eclipse.org/mylyn

 Propose a new complementary set of MIMs that cap-
ture developer interaction information.

 Conduct an empirical evaluation on MIMs as defect
predictors by using various measures (e.g., F-measure,
cost-effectiveness, and predictive power based on gain
ratio).

 Present three additional case studies in industrial sec-
tors and report how the use of MIMs in industrial pro-
jects is different from that in open source projects
(Eclipse).

 Verify if main MIMs really depict well working habits
of developers as they think by interview questions

 Discuss empirical findings and the implications of the
evaluation results and an application of MIMs as a
software development tool.

2 RELATED WORK

Many researchers have proposed new defect prediction
algorithms and/or new metrics. However, they do not
explore and explain the research question of correlations
between the behavioral working patterns of developers
and post-release software defects. MIMs are a dedicated
metrics suite that can be used to address this question.

2.1 Defect Prediction Methods

CMs such as Chidamber and Kemerer (CK) [13] are wide-
ly used for defect prediction. Basili et al. [24] applied CK
metrics to eight information management systems.
Ohlsson et al. [14] used several graph metrics, including
McCabe’s cyclomatic complexity, on a telecom system.
Subramanyam et al. [25] used CK metrics on a commer-
cial C++/Java system; Gyimothy et al. [26] performed a
similar analysis on Mozilla. Nagappan and Ball [27] esti-
mated the pre-release defect density of Windows Server
2003 using a static analysis tool. Nagappan et al. [6] used
CMs to predict post-release defects at the module level in
five Microsoft systems. Zimmermann et al. [28] applied
several code metrics to Eclipse.

In addition, HMs have been proposed and widely used
for defect prediction. Nagappan et al. [29] proposed the
code churn metric, which is related to the amount of
changed code. They showed that code churn is very effec-
tive for defect prediction. Moser et al. [15] used the num-
ber of revisions, authors, past fixes, and file age as defect
predictors. Kim et al. [4] used previous defect information
to predict future defects. Hassan [2] adopted the concept
of entropy for change metrics. They determined that their
approach is often better than both the code churn ap-
proach and the method based on previous bugs.
D’Ambros et al. [11] conducted an extensive comparison
of existing bug prediction approaches using CMs, HMs,
past defects, and the entropy of change metrics. In addi-
tion, they proposed two novel metrics: the churn and en-
tropy of source code metrics.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2550458,
IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 3

TABLE 1
LIST OF MICRO INTERACTION METRICS. COLUMN PI SHOWS THE PERFORMANCE INDEX (PI) DENOTED BY THE NORMALIZED GAIN

RATIO VALUE IN SECTION 5.3.

Type Level Metrics Name PI Desciption

Editing

Interaction

File NumEditEvent† 0.73 Number of edit events observed for a file.

NumEditingDevelopers 1.00 Number of developers that edited a file in the history. A single file

can be edited by more than one developer.

Task NumRareEdit† 0.65 Number of edit events with low DOI attribute values (less than the

median of the DOIs of all events in a task session).

NumParallelEdit† 0.24 Number of files edited in parallel in a task session. For example, if

task T has file edit events over time, such as f1, f2, f2, and f2, task T

has file editions for only two distinct files; i.e., f1 and f2. Thus,

NumParallelEdit becomes 2 for task T.

NumRepeatedEdit† 0.27 Number of files edited more than one time during a task session.

In the above example of NumParallelEdit, NumRepeatedEdit be-

comes 1 for task T. Only the file f2 was edited more than one time

(three times).

Browsing

Interaction

File NumSelectionEvent† 0.5 Number of selection events observed for a file.

Task NumParallelBrws† 0.22 This definition is similar to that of NumParallelEdit except that it is

for browsing events. Browsing events are a special case of selection

events with an event time duration that is more than or equal to 1

s. The time duration of an interaction event can be computed by

referencing StartDate and EndDate attributes in a task session log

(=EndDate-StartDate)

NumRareBrws† 0.47 A definition similar to that of NumRareEdit, except for browsing

events.

NumRepeatedBrws† 0.22 A definition similar to that of NumRepeatedEdit, except for brows-

ing events.

Time

Interval

File TimeSinceLastTask 0.23 Time elapsed since the last task for a file. It measures how recently

developers have accessed the file.

(Avg†|Max)TimeIntervalEditEdit

(Avg†|Max)TimeIntervalBrwsBrws

(Avg|Max)TimeIntervalBrwsEdit

(0.24|0.31)

(0.29|0.33)

(0.2|0.34)

Average/maximum time interval between sequential interaction

events (e.g., between two editing events, between two browsing

events, and between a browsing event and an editing event).

Task NumInterruptions 0.16 Number of pauses in a task session. Count the cases in which the

time gap between interaction events during a task session is great-

er than 15 min. Like Parnin et al. [19], we used the threshold of 15

mins.

Time

Spent

File HourPerEditing

HourPerBrowsing

0.54

0.65

Average time spent per an editing or browsing interaction event

for a file.

Task TimeSpent†

TimeSpentBeforeEdit†

TimeSpentAfterEdit†

0.16

0.21

0.22

TimeSpent: Total time in finishing a task session. TimeSpentBe-

foreEdit and TimeSpentAfterEdit: Spans of time before the initial edit

and after the last edit during a task session.

Work

Effort

Task NumMultiTasks† 0.28 Number of multiple tasks assigned to the same developer during a

working period of time for a given task.

RatioCodeUnderstandingEffort 0.27 Time spent browsing files divided by the total task session time (=

browsing time + editing time). We assumed a portion of the time

spent in browsing files was for understanding code given in a task.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2550458,
IEEE Transactions on Software Engineering

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Other defect prediction methods have likewise been
proposed. Khomh et al. [31] studied the impact of anti-
patterns; i.e., deficient design choices against object-
oriented systems. They found that the presence of anti-
patterns is a powerful predictor of both defects and
change rates in systems. Zimmermann and Nagappan [9]
predicted defects in Windows Server 2003 using network
analysis of dependency graphs among binaries. They
used dependency graphs to identify defect-prone central
program units. Meneely et al. [32] proposed developer
social network-based metrics to capture the developer
collaboration structure and predict defects using it. Bac-
chelli et al. [33] proposed popularity metrics based on e-
mail archives. They assumed that the most discussed files
were more defect-prone.

2.2 Developer Interaction History

Recently, researchers have used developer interaction
histories to facilitate software development and mainte-
nance. Kersten et al. [21], [34] proposed a task context
model and implemented Mylyn to store/restore the task
context when developers switch their task context. Be-
cause Mylyn is becoming increasingly popular, the data
sets of developer interaction histories are being frequently
captured. Murphy et al. [35] analyzed statistics relating to
IDE usage by employing Mylyn data. They identified the
most frequently employed user interface components and
commands. By analyzing Mylyn task session data, Ying
and Robillard [36] found that different types of tasks (e.g.,
bug-fixing or feature enhancement) are associated with
different editing styles. This is useful information for
software development tool designers.

Parnin et al. [19] presented an in-depth study about de-
veloper interruption times and suitable strategies for re-
suming an interrupted programming task. Parnin et al.
showed that the time interval between developer interac-
tion activities during a task session is usually less than
one minute (i.e., developer interruption time generally
exceeds one minute when an interruption occurs). In ad-
dition, they showed that developers engage in a variety of
non-editing activities (e.g., navigation of recorded notes,
assigned task history, and code revision history) to recov-
er task context before making their first edit in a session.

Robbes and Lanza [37] developed a software evolution
monitoring prototype to understand fine-grained devel-
opment session information that is not usually recorded
by current version control systems. By monitoring devel-
opers’ IDE usage pattern, their approach captures seman-
tic change of individual operations occurred between de-
veloper commits. In addition, Robbes et al. [38] take ad-
vantage of the fine-grained semantic changes and pro-
pose new logical-coupling measurements to detect logi-
cally coupled software entities by measuring how often
they changed together during development. Zou et al.
[39] discussed how interaction coupling could be detected
in task interaction histories and their case study showed
that information pertaining to interaction coupling is
helpful for comprehending software maintenance activi-
ties.

Shin et al. [10] used developer activity metrics, such as

team cohesion, miscommunication, and misguided effort,
to predict software vulnerabilities. Bettenburg et al. [40]
investigated how information relating to the social struc-
tures and communications between developers and users
could be used to predict software quality. Bettenburg et
al. quantified the degree of social communication interac-
tions among people. Shin et al. and Bettenburg et al. [10],
[40] addressed defect prediction issues by using infor-
mation pertaining to developer activities and communica-
tions. However, the above studies do not explore the ef-
fects of comprehensive interactions of a developer in the
IDE.

3 MICRO INTERACTION METRICS

In this section, we introduce background of Mylyn and
explain our proposed MIMs in detail.

3.1 Mylyn

To extract MIMs, we used Mylyn, which records and
shares the context of developer tasks and interactions.
Technically, the Mylyn Monitor3 enables collecting infor-
mation about developer activities in Eclipse. Figure 1
shows Mylyn task session logs, which consist of several
‘InteractionEvent’ tags in XML format. The ‘Kind’ attrib-
ute denotes the interaction type—selection, edit, com-
mand, propagation, prediction, and manipulation—as
shown in Figure 1. For example, edit events are recorded
when developers edit a file. Propagation events occur
when a developer uses automatic refactoring features in
Eclipse.

Fig. 1. Mylyn log data and interaction event type

Each event is recorded with attributes such as
‘StartDate,’ ‘EndDate,’ ‘StructureHandle,’ and ‘Interest.’
The ‘StartDate’ and ‘EndDate’ attributes represent the
event start and end times. The ‘StructureHandle’ attribute
denotes the corresponding files and methods in the event.
For edit events, for example, the ‘StructureHandle’ attrib-
ute indicates the file being edited. The ‘Interest’ value, or
degree of interest (DOI), indicates the developer’s interest
in the corresponding file. The DOI value is measured by

3 http://wiki.eclipse.org/Mylyn_Integrator_Reference

…

<InteractionEvent … />

…

<InteractionEvent StructureKind="java"

StructureHandle="=org.eclipse.mylyn.tasks.cor

e/src<org.eclipse.mylyn.tasks.core

{AbstractTask.java[AbstractTask~addParentCont

ainer~QAbstractTaskContainer;" StartDate=

"2007-11-25 05:54:35.595 PST"

OriginId="org.eclipse.jdt.ui.CompilationUnitEditor

" Navigation="null" Kind="edit" Interest="3.0"

EndDate="2007-11-25 05:55:34.314 PST"

Delta="null" />

…

<InteractionEvent … />

…
Type Description

Selection Select a file in the explorer

Edit Edit a file in the editor

Command Invoke command by developer

Propagation Propagated interaction

Prediction Predict future interaction

Manipulation Manipulation DOI value

Mylyn Task Session Log

Interaction Types

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2550458,
IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 5

the frequency of interactions with a file element and the
recency of interactions, which help developers identify
relatively important files for a task. Mylyn automatically
computes DOI values [21], [34]. More information about
Mylyn and its data are available at the Mylyn project
home page.

In this study, we considered only the direct events ‘Se-
lection’ and ‘Edit’ that are generated when accessing files.

3.2 Design of MIMs

In this section, the design rationale for MIMs and their
two design levels—file and task—which are derived from
Mylyn task session data, are described.

3.2.1 Design Rationale

The design goal of MIMs is to catch developer interac-
tions that are associated with committing errors. We con-
sidered the following hypothetical possibilities for error-
prone developer interactions from existing exploratory
studies: interruptions during task sessions [19], [20], fre-
quent task switching (i.e., a short time for code under-
standing before starting a new or previous task context)
[18], any out-focused file accessing off the mainstream of
the task context [34], and repeated editing of files with
many previous changes [4]. These may directly or indi-
rectly have a negative impact on developers’ productivity
and/or the quality of their code.

TABLE 2

MIM DESIGN IN TERMS OF THE GOAL QUESTION METRIC

Goal: Find behavioral interactions of developers that may degrade

software quality

Goal-driven Questions Related MIMs

GQ1 - How frequently do

developers edit files?

NumEditEvent

NumParallelEdit

NumRareEdit
NumRepeatedEdit

NumEditingDevelopers

GQ2 - How frequently do

developers browse files?

NumSelectionEvent

NumParallelBrws
NumRareBrws

NumRepeatedBrws

GQ3 - When was the most
recent work? (How much time

has passed since the last task?)

TimeSinceLastTask

GQ4 - How much time do
developers spend to work on

files?

HourPerEditing
HourPerBrowsing

TimeSpent

TimeSpentBeforeEdit
TimeSpentAfterEdit

GQ5 - How many times are

developers interrupted? (Or:

How long are time intervals
with no activity?)

NumInterruptions

(Avg|Max)TimeIntervalEditEdit

(Avg|Max)TimeIntervalBrwsBrws
(Avg|Max)TimeIntervalBrwsEdit

GQ6 - How many tasks do

developers undertake at a given
time?

NumMultiTasks

GQ7 - How many times do

developers work on rarely

accessed files in a task context?

NumRareBrws

NumRareEdit

GQ8 - How much time do

developers take to understand

an assigned task (or to recover
a task context) before making

their first edit, or to review

what they have done after their
last edit?

TimeSpentBeforeEdit

TimeSpentAfterEdit

RatioCodeUnderstandingEffort

The Goal Question Metric (GQM) [43] was internally
used at a high-level to answer several interesting ques-
tions regarding MIM measures. GQM defines a meas-
urement model with three levels: conceptual (a goal is
defined to explain measurement reasons), operational
(questions are asked to study and achieve the specific
goal), and quantitative (metrics are associated with ques-
tions to enable the answering of each one in a measurable
way). Table 2 outlines our objective, interesting questions,
and associated MIMs to answer the corresponding ques-
tions; some MIMs are included in multiple question cate-
gories. In Section 5.4, these question categories (GQs) are
evaluated to show which ones are relatively more effec-
tive at predicting defects.

3.2.2 File vs. Task Design Levels

Mylyn data basically comprises task-level session in-
formation; a single task can involve one or several files
(see Figure 2). Therefore, we captured properties from
two different dimensions when designing MIMs: file level
and task level. Some MIMs are computable at the file lev-
el, while others are computable at the task level. The de-
sign level of each MIM is delineated in Table 1.

Fig. 2. Time split for extraction of metrics and post-

defect counting periods

File-level MIMs capture specific interactions of a devel-
oper on a certain file in task sessions. NumEditEvent is a
file-level MIM; it counts the number of edit events for a
file in a task session. In Figure 2, for example, Task 4 has
edit events for files ‘f1.java’ and ‘f2.java.’ NumEditEvent
for the specific file ‘f2.java’ will be just one in terms of file
level, even though Task 4 has a total of two file-edit
events in a task-level unit.

By contrast, task-level MIMs capture task-scoped prop-
erties over a task session, rather than file-specific interac-
tions. For example, NumInterruptions is a representative
task-level MIM; it counts the number of temporal pauses
between interaction events during the overall task ses-
sion.

Thus, task-level MIMs characterize a global property
over a task session; moreover, they affect the local file-
level activities of developers within the given session. For
example, using information from Figure 2, suppose that a
developer worked on Task 4 in very distracting condi-
tions. NumInterruptions for Task 4 would be measured
with a high value. In the meantime, Task 4 has interaction
events for two files, ‘f1.java’ and ‘f2.java,’ meaning that
these two Task 4 files were edited in negative working
conditions (i.e., with a high frequency of interruptions).
Thus, the surrounding properties (workspace conditions)
measured by the task-level MIMs would affect the quali-

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2550458,
IEEE Transactions on Software Engineering

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

ties of the sub-associated activities, such as file editing
and browsing. Therefore, file instances with the same task
session ID would share the same properties as task-level
MIMs. Conclusively, in the Task 4 example of Figure 2,
the two file instances, ‘f1.java’ and ‘f2.java,’ would have
the same metric value of NumInterruptions.

4 EXPERIMENTAL SETUP

In this section, we describe our experimental setup for
comparing the performance of MIMs with CMs and HMs
for defect prediction. In addition, we present our research
questions, overall experimental process, and a baseline
dummy classifier for the performance comparison.

4.1 Research Questions

To evaluate MIMs, we define four research questions as
shown in Table 3. RQ1 and RQ2 were studied with
Eclipse project data. Then, case studies on three industrial
projects were conducted to address RQ3. For RQ1, we
tested whether MIMs are useful as cost-effective indica-
tors of software quality. Then, for RQ2, we identify posi-
tive and negative developer behavioral interactions for
software quality assurance. Lastly, for RQ3 and RQ4, we
investigated how MIMs function in commercial projects
and MIM ranks vary in 7 different project domains (i.e.,
open source plus commercial projects). The evaluation of
each of the above questions is respectively presented in
Sections 5.1 (RQ1), 5.3 (RQ2), 6.2 (RQ3), and 6.3 (RQ4).

TABLE 3
RESEARCH QUESTIONS

RQ1 Can MIM improve defect prediction performance when

used with existing code metrics (i.e., CM and HM)?

RQ2 What MIMs are particularly effective contributors to defect

prediction improvement?

RQ3 Are MIMs effective as defect predictors in commercial

projects compared to a random predictor?

RQ4 How do MIM ranks vary in different project domains (e.g.,

open source plus commercial projects)?

4.2 Experimental Process

In defect prediction experiments, we used the common
bug classification process [7], [8], [15], as shown in Figure
3, which helps predict whether a given unknown file in-
stance is buggy.

Fig. 3. Steps involved in defect prediction process

First, we collect all valid files from Mylyn task session
logs as instances (in the machine learning sense) and
count the number of post-defects in each file. Here, post-
defects refer to the number of defects reported after a
software release (e.g., time P in Figure 2). We label a file
as ‘buggy’ if it contains at least one post-defect. Other-
wise, we label the file as ‘clean.’ The post-defect counting
process is detailed in Section 4.2.2. Then, we extract the
MIMs, CMs, and HMs for each instance, as explained in
Section 4.2.3. Finally, we train the prediction models us-
ing the machine-learning algorithms implemented in We-
ka [45]. The trained prediction models classify instances
as ‘buggy’ or ‘clean.’

4.2.1 Data Integrity Checking

Before data collection, we checked the data integrity of
the Mylyn task session log by investigating an actual task
scenario of a developer of one of the commercial projects
of Table 11 and the recorded Mylyn log. We asked for
permission to record video while the developer was
working on the task. The video4 could correctly explain
what he did over time and when he was interrupted dur-
ing the task session. Therefore, we could check if interac-
tion events recorded in the Mylyn task session log in fact
captured the developer’s actual behaviors inside the vid-
eo. Table 4 is the Myln task session log recorded for the
video. By comparing the Mylyn log with the video, we
obtained a clear understanding of the general structure of
the Mylyn task session logs and recognized what was
required to preprocess over the raw log data. Following is
what we determined:

 The Mylyn log correctly depicted four files that were

actually browsed or edited in the video. The length
of the recorded Mylyn log and length of the actual
work scenario of the video were consistent. The total
editing and browsing times in the Mylyn log also
corresponded to the ones observed in the video.

 Some events in the log had zero time duration; their

StartDate and EndDate attributes were the same (e.g.,
ID 17 or 22 in Table 4). This type of event occurred
when a file was initially opened by double-clicking
or when it was skimmed without meaningful actions.
Thus, these events did not actually capture a valid
time duration of developer interactions. Therefore,
we filtered out the events with zero time duration
when extracting MIMs that quantify developer activ-
ities of actual file browsing and editing interactions
in Figure 3.

 The attribute StartDate of an event was initially

marked when a file (or a method) of StructureHan-
dle gets a developer’s focus on the Package Explorer
window tab or on the Editing window tab in the
Eclipse IDE. The attribute EndDate of an event was
updated when the focus was lost from the Editing
window tab by moving onto other entities of Struc-
tureHandle.

4 http://youtu.be/gfZ0T3AjCaM

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2550458,
IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 7

 There was a certain span of an empty time zone in

which no update of StartDate or EndDate was ob-
served. During the period of empty time, we could
confirm that the developer was doing nothing in the
Eclipse IDE. For example, there was no update of
StartDate or EndDate in an event between 17:01:46
and 17:05:06 in Table 4; we confirmed that the devel-
oper engaged in activities of web surfing to obtain
some information and was working on a database
during that very time period in the video (16m:59s–
20m:19s).

TABLE 4

LOG EXAMPLE OF A MYLYN TASK SESSION USED IN DEVELOP-

ER’S VIDEO INVESTIGATION

4.2.2 Data Collection and Defect Counting (Step 1)

In our experiments, we used a total of 5,973 Mylyn task
sessions from Eclipse Bugzilla between December 2005
and June 2010.5

We set the release time P of Eclipse 3.5 (Galileo at June
24, 2009) to explicitly separate the metric extraction peri-
od and post-defect counting period, as shown in Figure 2.
All metrics (MIMs, CMs, and HMs) for instances were
computed before P; post-defects were counted after P.

The instances had to be present in both time periods
(i.e., before and after time P) for the collecting of metrics
and counting of defects. If a file was not present during
the metric collection period, no metrics were available to
build prediction models. On the other hand, if a file was
not present in the post-defect counting period, the defect
number for the file was always zero, which was mislead-
ing. To ensure that we only used files that existed in both
periods, we confirmed their existence in the Eclipse CVS

5 Mylyn was released in December 2005 and has been widely used since then.

repository.
We used edited file information in Mylyn tasks to

count post-defects. Each task session log is directly at-
tached to a bug report; therefore, we checked whether the
resolution of the corresponding bug report indicated a
fixed bug or not. If it was not fixed or not a bug (e.g., it
was a feature enhancement or trivial issue), we did not
count the edited files in the task as post-defects. For ex-
ample, suppose that Tasks 5 and 6 were registered in the
fixed bug reports, while Task 7 was registered as a feature
enhancement bug report, as shown in Figure 2. In this
case, the post-defect number of ‘f3.java’ would be two,
because Task 7 was for feature enhancement.

In our experiments, we did not use conventional post-
defect counting heuristics [46], [47] because they are lim-
ited in obtaining defect information. The links between
bugs and committed changes (e.g., CVS) are typically au-
tomatically mined from change logs and bug reports us-
ing heuristics, such as searching for specific keywords
(e.g., ‘bug’ or ‘fix’) and bug IDs in the change logs. How-
ever, the accuracy of these heuristics depends on the qual-
ity of the change logs. Bird et al. [51] found that there are
many missing links because of the absence of bug refer-
ences in change logs. Developers possibly do not leave
change logs even if they actually fixed bugs in the code
change, or they provide a wrong bug reference in the
logs. The absence of bug references in change logs results
in biased defect information and affects defect prediction
performance.

CVS logs are manually recorded by developers,
whereas Mylyn task logs are automatically recorded by
the Eclipse IDE tool and linked (attached) to the corre-
sponding bug report in the Bugzilla. Therefore, Mylyn
logs are more beneficial than CVS logs.

4.2.3 Metric Extraction (Step 2)

The extraction of MIMs is straightforward. First, file-level
MIMs are computed for file instances. For task sessions,
only the specific interaction events that target a file in-
stance are aggregated from the metric extraction period
(Figure 2). Then, file-level MIMs for the file instance are
computed with the specific event data. Second, task-level
MIMs are computed and propagated to sub-activities of
associated files, as explained in Section 3.2.2.

If a file has been edited many times during several
tasks, the file will have multiple MIM values that have
been computed from each task. Thus, the average of these
values is adopted for the file instance. As shown in Figure
2, for example, ‘f1.java’ takes two different values com-
puted from Tasks 2 and 4 so that the two values are aver-
aged and handled as the final MIM value of the file.
However, in the case of MaxTimeInverval* metrics, the
maximum of the multiple values is handled as a final
MIM value.

To evaluate performance, CMs and HMs were addi-
tionally extracted during the metric extraction period
(Figure 2). Because CMs are snapshot metrics, they are
extracted at time P. The Understand tool6 was used to

6 Understand 2.0, http://www.scitools.com/products/understand/

ID Kind StartDate EndDate StructureHandle

1 selection 16:44:47 17:10:14 BuildArchApproach.java

2 selection 16:48:44 16:52:37 BuildArchApproach.java

3 edit 16:48:45 16:49:28 BuildArchApproach.java

4 selection 16:45:50 16:48:38 BuildArchApproach.java

5 edit 16:45:53 16:47:34 BuildArchApproach.java

6 selection 16:57:55 17:09:21 BuildArchApproachModel.java

7 selection 16:49:36 17:10:14 BuildArchApproach.java

8 edit 16:49:39 17:10:17 BuildArchApproach.java

9 selection 16:57:53 17:09:21 BuildArchApproachModel.java

10 selection 16:47:38 16:47:38 BuildArchApproach.java

11 edit 16:47:55 16:47:55 BuildArchApproach.java

12 selection 16:49:34 16:49:34 BuildArchApproach.java

13 selection 16:45:19 17:09:47 AKToolMain.java

14 selection 16:45:24 16:45:24 BuildArchApproach.java

15 selection 17:09:47 17:09:47 AKToolMain.java

16 selection 17:16:32 17:18:02 BuildArchApproachDB.java

17 edit 17:18:05 17:18:05 BuildArchApproachDB.java

18 selection 16:45:08 16:45:21 BuildArchApproach.java

19 edit 16:45:21 16:45:22 BuildArchApproach.java

20 selection 16:57:54 16:57:54 BuildArchApproachModel.java

21 selection 16:58:14 17:10:21 BuildArchApproachDB.java

22 selection 16:53:10 16:53:10 BuildArchApproach.java

23 selection 16:58:14 17:18:07 BuildArchApproachDB.java

24 edit 16:58:23 17:18:01 BuildArchApproachDB.java

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2550458,
IEEE Transactions on Software Engineering

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

extract the CMs. The tool extracts 24 file-level and 18
class-level metrics, such as CK [13] and object-oriented
metrics. If a file has more than one class, the file-level
metrics are derived from multiple class-level metrics. The
Understand tool provides two types of metrics: ‘Avg*’
and ‘Count*.’ ‘Avg*’ class-level metrics are averaged to
generate file-level metrics from multiple classes in a file.
However, the values are summed together when the file-
level metrics are extracted from ‘Count*’ class-level met-
rics. All 42 of the CMs used in our experiments are listed
in Table 5.

TABLE 5

LIST OF SOURCE CODE METRICS (CMS)

Metrics Description

AvgCyclomatic Average cyclomatic complexity

MaxCyclomaticStrict Maximum strict cyclomatic complexity

CountLine Number of all lines

CountLineBlank Number of blank lines

RatioCommentToCode Ratio of comment lines to code lines

MaxCyclomaticModified Maximum modified cyclomatic complexity

AvgCyclomaticModified Average modified cyclomatic complexity

AvgEssential Average Essential complexity

CountDeclFunction Number of functions

CountStmtExe Number of executable statements

CountStmt Number of statements

CountLineCodeDecl Number of lines containing declarative code

CountSemicolon Number of semicolons

CountLineCode Lines of code

AvgCyclomaticStrict Average strict cyclomatic complexity

CountLineCodeExe Number of lines containing executable code

MaxCyclomatic Maximum cyclomatic complexity

CountLineComment Number of lines containing comment

CountDeclClass Number of classes

CountStmtDecl Number of declarative statements

SumCyclomaticStrict Sum of strict cyclomatic complexity

SumCyclomatic Sum of cyclomatic complexity (WMC)

SumCyclomaticModified Sum of modified cyclomatic complexity

SumEssential Sum of essential complexity of methods

AvgLine Average number of lines

AvgLineBlank Average number of blank

AvgLineCode Average number of code lines

AvgLineComment Average number of comment lines

PercentLackOfCohesion Lack of cohesion in methods (LCOM)

CountClassBase Number of immediate base classes

CountClassCoupled Coupling between object classes (CBO)

CountClassDerived Number of child classes (NOC)

CountDeclClassVariable Number of class variables (NIV)

CountDeclInstanceMethod Number of instance methods (NIM)

CountDeclInstanceVariable Number of instance variables

CountDeclMethod Number of local methods (NOM)

CountDeclMethodAll Number of local methods (RFC)

CountDeclMethodDefault Number of local default methods

CountDeclMethodPrivate Number of local private methods (NPM)

CountDeclMethodProtected Number of local protected methods

CountDeclMethodPublic Number of local public methods (NOPM)

MaxInheritanceTree Maximum depth of Inheritance Tree (DIT)

In addition, 15 HMs were collected by using the ap-
proach of Moser et al. [15]. All HMs were collected from
the change history stored in the Eclipse CVS repository
(http://archive.eclipse.org/arch/). They are listed in Ta-
ble 6.

The Refactorings metric, which is an indicator of wheth-
er a file change involved refactoring [15], was obtained by
mining CVS commit logs. We counted the number of re-
factored revisions of a file by searching the keyword ‘re-
factor’ in commit logs [15]. The Age metric indicates the
period when a file existed [15]. The BugFixes metric repre-
sents the number of fixed bugs. To count BugFixes, we
used a search for explicit Bugzilla bug IDs in the commit
logs.

Fixed bugs (and not feature enhancements) were
marked as bug-fix changes [15]. Specific keywords, such
as ‘bug’ or ‘fix,’ were searched (‘postfix’ and ‘prefix’ were
excluded [15]).

TABLE 6

LIST OF HISTORY METRICS (HMS)

Metrics Description

Revisions # of file revisions

Refactorings # of times a file was refactored

BugFixes # of times a file was involved in bug fixes

Authors # of distinct authors committing a file

LOC_Added Sum of the lines of code added to a file

Max_LOC_Added Maximum number of lines of code added

Avg_LOC_Added Average number of lines of code added

LOC_Deleted Sum of the lines of code deleted in a file

Max_LOC_Deleted Maximum number of lines of code deleted

Avg_LOC_Deleted Average number of lines of code deleted

CodeChurn Sum of (added LOC - deleted LOC)

Max_CodeChurn Maximum CodeChurn for all revisions

Avg_CodeChurn Average CodeChurn per revision

Age Age of a file in weeks

Weighted_Age Age considering LOC_Added

4.2.4 Creating a Training Corpus (Step 3)

To evaluate MIMs under the different subjects listed in
Table 7, a training corpus of Eclipse subproject groups
was constructed for the Metrics extraction period in Figure
2. Actually, the selected projects (subjects) consist of a
larger volume of source code files than the number of
instances listed in Table 7. Nevertheless, for experimental
purposes, we used only the file instances that simultane-
ously existed in both Mylyn task session logs and CVS
change logs.

We divided the subjects as follows: Mylyn, Team,
JDT/Core, Etc., and All. The Mylyn subject comprised the
collected files belonging to the package names
org.eclipse.mylyn or org.eclipse.mylar7; i.e., the Eclipse sub-
project Mylyn. The Team subject included files that be-
longed to the package name org.eclipse.team; i.e., the
Eclipse platform subproject Team. Likewise, the instance
files belonging to the package names org.eclipse.jdt and
org.eclipse.core were grouped to the JDT/Core subject. All
remaining package names were grouped as the Etc. sub-

7 Mylar is the former name of Mylyn.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2550458,
IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 9

ject, which consisted of the Eclipse plug-in development
environment (26%), Eclipse platform user interface
(13.5%), JFace (10.3%), Eclipse platform compare (7.4%),
Equinox (6.8%), and others (36%). Lastly, the All subject
included all files of Mylyn, Team, JDT/Core, and Etc.

TABLE 7
FILE INSTANCES AND POST-DEFECTS COLLECTED BEFORE AND

AFTER P, RESPECTIVELY, IN FIGURE 2

Subjects
of

instances
(files)

% of
defects

of
involved

developers

% of change
history

coverage
Mylyn 1084 16.9% 37 73%

Team 364 40.1% 3 1%

JDT/Core 244 12.7% 12 9%

Etc. 1385 11.2% 39 19%

All 3077 16.7% 91 20%

The term “coverage” in Table 7 represents the percent-

age that the instances cover the change history in the CVS
logs. For example, 20% coverage of the All subjects indi-
cates that the 3,077 file instances covered 20% of all the
change files observed in the CVS logs during the data
collection period.

4.2.5 Building a Prediction Model (Step 4)

A process of feature selection [49] is required to select
effective features (i.e., metrics) for use in model construc-
tion. The metrics extracted in Section 4.2.3 were used as
features to build a prediction model. We used the correla-
tion-based feature subset (CFS) [59] for feature selection.
Using CFS is to resolve the multicollinearity problem be-
tween correlated features [49]. CFS is an algorithm that is
used to search for a more greatly reduced size of a subset
of features without irrelevancy and redundancy between
features in the classification problems [60]. For our pur-
pose, CFS can be used to select an appropriate size of an
effective subset of metrics, thereby avoiding the model
construction overfitting problem. CFS evaluates the
worth of a subset of metrics by considering the individual
predictive ability of each metric along with the degree of
redundancy between them. Subsets of metrics that are
highly correlated with the buggy class while having a low
inter-correlation are preferred.

In CFS-based feature selection, the ten-fold cross vali-
dation process was used. The training corpus data was
split into ten folds; CFS selected the best features (metrics)
in a fold. This selection process was iterated for each of
the ten folds. Finally, only the metrics that were nominat-
ed at least more than twice (in two different folds) were
finally adopted in the model construction.

Next, a classification algorithm was required to build
the prediction model for the created corpus. The random
forest algorithm implementation in Weka [47] was pri-
marily used in our experiments because its performance
was good, as noted in Section 5.1.3. Random forest [42] is
a meta-algorithm consisting of many decision trees that
outputs the class that is the mode of the classes output by
individual trees. There have been several other studies
using this algorithm for bug prediction on account of its
good performance [12], [56].

In addition, for the performance comparison experi-

ment outlined in Section 5.1.3, prediction models using
other machine learning algorithms were built, such as
naive Bayes, logistic regression, decision tree, and ran-
dom forest.

4.2.6 Prediction and Evaluation (Step 5)

To evaluate the accuracy of our prediction models, F-
measure was used. A composite measure of precision and
recall, F-measure is widely used in data mining [49], [50].
We used the following outcomes to define precision, re-
call, and F-measure: predicting a buggy instance as buggy
(b→b); predicting a buggy instance as clean (b→c); and
predicting a clean instance as buggy (c→b).

 Precision: The number of instances correctly classi-
fied as buggy (Nb→b) divided by the total number of
all instances classified as buggy.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑃(𝑏) =
𝑁𝑏→𝑏

𝑁𝑏→𝑏 + 𝑁𝑐→𝑏

 (1)

 Recall: The number of instances correctly classified

as buggy (Nb→b) divided by the total number of real

buggy instances.

𝑅𝑒𝑐𝑎𝑙𝑙 𝑅(𝑏) =
𝑁𝑏→𝑏

𝑁𝑏→𝑏 + 𝑁𝑏→𝑐

 (2)

 F-measure: A harmonic mean of precision P(b) and
recall R(b) for buggy instances.

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝐹(𝑏) =
2 × 𝑃(𝑏) × 𝑅(𝑏)

𝑃(𝑏) + 𝑅(𝑏)
 (3)

As a model validation technique, we used ten-fold
cross validation, which has been widely used in previous
studies [3], [15], [32], [49] to avoid overfitting. An F-
measure value obtained from ten-fold cross validation
varies because ten folds are randomly partitioned. There-
fore, ten-fold cross validation was repeated 10 times for
each model to avoid any sampling bias [60], [65], [66] by
randomizing order of the dataset before each cross valida-
tion.

For a hypothesis test, particularly concerning RQ1 (Ta-
ble 3), we used the Wilcoxon rank-sum test (also known
as the Mann–Whitney U test) [44] instead of t-test because
F-measure outcomes from cross validation did not follow
a Normal distribution as shown Figure 4. The Wilcoxon
rank-sum test is a non-parametric statistical hypothesis
test that assesses whether one of two samples in inde-
pendent observations has higher values. If the p-value is
smaller than 0.05 (at a 95% confidence level), the null hy-
pothesis H0 is rejected and the alternative hypothesis Ha is
accepted. For RQ1, the null hypothesis H0 is “F-measure
has no statistical difference between MIM+CM+HM and
CM+HM for the experiment conditions.” The alternative
hypothesis Ha is “F-measure of MIM+CM+HM is higher
than that of CM+HM in the experiment conditions.”

In addition, the prediction models were evaluated in
terms of cost effectiveness (effort). Different defect predic-
tion models may have variable quality assurance costs
when they are adopted. Defect prediction models were

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2550458,
IEEE Transactions on Software Engineering

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

used to prioritize files from the highest likelihood to the
lowest likelihood in terms of defect proneness; then, the
prioritized files were inspected in turn. Therefore, the cost
of code inspection to find defects was reduced by as
much as the prediction model was accurate. The details
are presented in Section 5.2.

4.3 Dummy Classifier

To simplify the performance comparison, a baseline was
introduced: the so-called dummy classifier, in which a
change file is randomly guessed as buggy or clean. Be-
cause there are only two labels of changes, buggy and
clean, the dummy predictor can also achieve a certain
prediction accuracy. For example, if 16.7% of changes in a
project are buggy, by predicting all changes as buggy, the
buggy recall would be 1, and the precision would be
0.167. In addition, the dummy predictor can randomly
predict that a change is buggy or clean with a 0.5 proba-
bility. In this case, the buggy recall would be 0.5; howev-
er, the precision would still be 0.167. In our experiment,
the F-measure of the dummy predictor was used as a
baseline when showing the classification results; i.e., as-
suming that the dummy predictor randomly predicts 50%
as buggy and 50% as clean. For example, for a project
with 16.7% buggy changes, as shown in Table 7, the

dummy buggy F-measure would be 0.25 (= 2 ×
0.5×0.167

0.5+0.167
).

5 PERFORMANCE EVALUATION RESULTS

In this section, we present evaluation results primarily for
the research questions RQ1 and RQ2 shown in Table 3.

5.1 Performance Improvement with MIM

This section evaluates the contribution of MIMs in terms
of performance improvement under several experimental
conditions such as different subjects, different model
training periods, and different machine learners.

5.1.1 Different Subjects

To evaluate MIM prediction performance, we compared
metric sets, as shown in Figure 4. Defect prediction mod-
els were built for the five different subjects, as shown in
Table 7. Only the metrics selected by CFS (Section 4.2.5)
were used in the model building.

TABLE 8
METRICS SELECTED BY CFS IN EACH METRICS SUITE FOR ALL

SUBJECT

Metrics Suite Selected Metrics

MIM+CM+HM
MIM-HourPerBrowsing, MIM-NumEditEvent, MIM-
NumEditingDevelopers, MIM-NumRareEdit, CM-
CountLineComment, CM-AvgLineCode

CM+HM
CM-CountStmtExe, CM-CountDeclMethodAll, HM-
#ofBugFixing, HM-#OfRevision, HM-Age, HM-
WeightedAge

MIM
HourPerBrowsing, NumEditEvent, NumEditingDevel-
opers, NumRareEdit

HM #ofBugFixing, #OfRevision, Age, WeightedAge

CM

MaxCyclomaticStrict, CountLine, RatioCommentTo-
Code, AvgCyclomaticModified, CountDeclFunction,
CountStmtExe, CountLineComment, SumCyclomat-
icStrict, SumEssential, AvgLine, AvgLineCode,
CountDeclInstanceMethod, CountDeclMethodAll

Table 8 shows the selected metrics for each metrics

suite in the All subject. The model training period covered
December 2005 to June 2009. The trained models predict-
ed post-defects reported during the future period of one
year after the Eclipse release time P (June 2009 in Figure
2).

Fig. 4. Performance comparison of prediction models by different
subjects. Vertical lines are each median of F-measure distributions.

TABLE 9
F-MEASURE MEDIANS AND EFFECT SIZES FOR EACH METRIC SET

IN DIFFERENT SUBJECTS. FIGURES WITHOUT PARENTHESES ARE

MEDIANS, AND THOSE WITH PARENTHESES ARE EFFECT SIZES

COMPARATIVE TO MIM+CM+HM

Subject
MIM+CM

+HM
CM+HM MIM HM CM Dummy

All 0.494
0.313

(-0.941)
0.53

(+0.356)
0.315

(-0.927)
0.154
(-1)

0.25

Mylyn 0.4
0.321

(-0.376)
0.385

(-0.073)
0.338

(-0.353)
0.25

(-0.629)
0.25

Team 0.666
0.52

(-0.646)
0.642

(-0.103)
0.52

(-0.646)
0

(-1)
0.44

JDT-Core 0.333
0

(-0.454)
0.366

(+0.099)
0.076

(-0.321)
0

(-0.267)
0.20

Etc 0.6
0.285

(-0.952)
0.62

(+0.072)
0.263

(-0.982)
0.086

(-0.999)
0.18

Figure 4 shows the performance of each set of metrics

in different subjects in terms of F-measure distributions
from 10 times ten-fold cross validations. We gained 100 F-
measures from the repeated cross validation process and
drew density plots (histograms) with the 100 F-measures.

Although the F-measure values varied, there was a
clear trend in which MIM+CM+HM outperformed
CM+HM for every subject. In other words, adding MIM
to CM+HM improved the prediction performance of the
existing CM and HM. In addition, there was an overall
trend in which the MIM performed better than the CM
and HM for all the subjects, as shown in Figure 4.

Table 9 lists the median of the F-measure distributions
for each metric set and the effect size compared to the

All Mylyn Team JDT-Core Etc

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

C
M

H
M

M
IM

C
M

+
H

M
M

IM
+

C
M

+
H

M

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

F-Measure

D
e

n
s
it
y

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2550458,
IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 11

case of MIM+CM+HM. The effect size is Cliff’s delta [17],
which is computed using the formula delta = (2W/mn)-1,
where W is the W statistic of the Wilcoxon rank-sum test,
and m and n are the sizes of two compared distributions.
The magnitude of effect size is usually assessed using the
thresholds provided in the study by Romano et al. [63].
That is, |delta|<0.147 “negligible”, |delta|<0.33 “small”,
|delta|<0.474 ”medium”, and otherwise “large”. For ex-
ample, at the first row (All subject) in Table 9, the effect
size between MIM+CM+HM and CM+HM is -0.941
whose sign is minus because median of MIM+CM+HM is
greater than median of CM+HM and magnitude of the
effect size is regarded as “large”. In Table 9, the gray
shaded cells indicate that the Wilcoxon rank-sum test
rejected the null hypothesis of RQ1 (p-value < 0.05). Con-
clusively, it was statistically confirmed that combining
MIMs with CMs and HMs can improve the overall defect
prediction performance.

5.1.2 Different Model Training Periods

Because MIMs are a type of process metrics like HMs,
their performance can be influenced by different periods
of model training. In this section, we therefore describe
prediction models built by using MIM, CM, and HM met-
rics extracted from three time periods: one year (June
2008 – June 2009), two years (June 2007 – June 2009), and
over three years (December 2005 – June 2009). The aim of
this experiment was to consider the performance sensitiv-
ity of MIMs and HMs for incremental periods of metric
collection and model training. In contrast, CM was inde-
pendent of these model training periods because it is a
snapshot metric of code structure at the time P (Figure 2).

A new version of Eclipse is annually released in June.
Thus, the ‘one year’ scenario assumes that the prediction
model is trained with historical data of one period of the
Eclipse release (the past year for training and the next
year for prediction). The ‘two years’ scenario assumes
that the prediction model is trained with historical data of
two Eclipse releases (the past two years for training and
the next year for prediction). Likewise, the ‘over three
years’ scenario is for the case of model training with his-
torical data of more than three Eclipse releases (more than
the past three years for training and the next year for pre-
diction).

In this experiment, the percentage of defects was a stat-
ic 16.7% for the three experiments as the All subject in
Table 7 was used. Metrics selected by CFS (Table 8) were
used for model construction in each period of model
training.

Figure 5 shows the performance of each set of metrics
in different training periods in terms of the F-measure
distributions from 10 times ten-fold cross validations. We
obtained 100 F-measures from the repeated cross valida-
tion process and drew density plots (histograms) with the
100 F-measures.

As shown in Figure 5 and Table 10, MIM could consist-
ently improve the performance of CM+HM no matter
what period of model training was applied. The im-
provements were still statistically significant; the gray
shaded cells in Table 10 indicate cases with p-values low-

er than 0.05. The MIM and HM performances were sensi-
tive to differences in the model training periods, while
CM was not. Incremental periods of model training tend-
ed to improve the overall performance of the MIM and
HM process metrics.

Fig. 5. Performance comparison of prediction models by different
training periods. Horizontal lines are each median of F-measure
distributions.

TABLE 10
F-MEASURE MEDIAN VALUES FOR EACH METRIC SET IN DIFFER-

ENT PERIODS OF MODEL TRAINING. FIGURES WITHOUT PAREN-

THESES ARE MEDIANS, AND THOSE WITH PARENTHESES ARE

EFFECT SIZES COMPARATIVE TO MIM+CM+HM

Period
MIM+CM

+HM

CM

+HM
MIM HM CM Dummy

One Year 0.368
0.236
(-0.83)

0.305
(-0.398)

0.291
(-0.556)

0.154
(-0.978)

0.25

Two Years 0.445
0.263

(-0.955)
0.357

(-0.736)
0.319

(-0.834)
0.154
(-1)

0.25

Over Three
Years

0.494
0.313

(-0.941)
0.53

(0.356)
0.315

(-0.927)
0.154
(-1)

0.25

MIM performance was quite sensitive because a short

period has a relatively smaller number of developer in-
teraction events in Mylyn task sessions than a longer pe-
riod. The informative power from MIMs is not sufficient
if MIMs are drawn from small amounts of developer in-
teraction logs. However, HM was relatively less sensitive
than MIM. In our analysis, the representative HMs select-
ed by CFS (Table 8) showed few changed portions in both
buggy and clean instances as the time period was extend-
ed.

5.1.3 Different Machine Learners

Choosing a different machine learner can produce differ-
ent performance results. In this section, we therefore
compare the results of prediction models using four dif-
ferent classification algorithms widely adopted in defect
prediction studies [45], including Decision Tree, Logistic
Regression, Naïve Bayesian, and Random Forest. The All
instances (Table 7) for the metric extraction period (Figure

MIM+CM+HM CM+HM MIM HM CM

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

O
n
e
 Y

e
a
r

T
w

o
 Y

e
a
rs

O
v
e
r T

h
re

e
 Y

e
a
rs

0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

F-Measure

D
e

n
s
it
y

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2550458,
IEEE Transactions on Software Engineering

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

2) and metrics selected by CFS (Table 8) were used in this
model construction experiment.

Figure 6 shows the performance of each set of metrics
in different machine learners in terms of the F-measure
distributions from 10 times ten-fold cross validations. We
obtained 100 F-measures from the repeated cross valida-
tion process and drew density plots (histograms) with the
100 F-measures.

Fig. 6. Performance comparison of prediction models by different
machine learners. Horizontal blue line is performance baseline of the
Dummy classifier.

TABLE 11
F-MEASURE MEDIAN VALUES FOR EACH METRIC SET IN DIFFER-

ENT MACHINE LEARNERS. FIGURES WITHOUT PARENTHESES

ARE MEDIANS, AND THOSE WITH PARENTHESES ARE EFFECT

SIZES COMPARATIVE TO MIM+CM+HM

Learner

MIM

+CM

+HM

CM

+HM
MIM HM CM Dummy

DecisionTree 0.511
0.073
(-1)

0.52
(0.069)

0.065
(-1)

0
(-1)

0.25

Logistic 0.036
0.037

(-0.022)
0.036

(-0.0007)
0.036

(-0.033)
0

(-0.4)
0.25

NaiveBayesian 0.179
0.176

(-0.116)
0.171

(-0.081)
0.156

(-0.236)
0.185

(0.129)
0.25

RandomForest 0.494
0.313

(-0.941)
0.53

(0.356)
0.315

(-0.927)
0.154
(-1)

0.25

As shown in Figure 6, the F-measure distributions from

different machine learners varied; however, they showed
the trend of MIM’s better performance over the others,
which could improve the combination of CM+HM (ex-
cept Logistic Regression). The median values between
MIM+CM+HM and CM+HM in Decision Tree and Ran-
dom Forest were statistically different by the Wilcoxon
rank-sum test (the gray shaded cells in Table 11).

Among the median values, Random Forest was the best
choice in model construction over all the metric sets;
therefore, we adopted it in the other experiments men-
tioned in Section 4.2.5. In contrast, Logistic Regression
was the worst choice for model construction in our exper-

iment. F-measure performance of distributions from Lo-
gistic Regression skewed a lot to zero. Interestingly, Na-
ïve Bayesian was not the best choice in model construc-
tion but the best one for CM.

5.2 Cost Effectiveness of MIM Application

In this section, we describe our test for determining if
adopting MIM is practical and cost-effective in terms of a
code inspection process by simulating and comparing
costs and benefits of different defect prediction models.

The cost of using a defect prediction model is critical. In
practice, a defect prediction model is intended to reduce
the cost of efforts spent inspecting the code space to find
defects. A high performance prediction model should
guarantee the detection of most defects with a low cost.
Thus, a cost-benefit analysis for using a prediction model
is an emerging concern in recent defect prediction studies
[30], [52], [53], [54], [55], [56].

To quantify cost, we simply used lines of code (LOC)
for files because Arisholm et al. [55] found that the cost of
quality assurance activities in a software module tended
to be proportional to the size of the module.

To quantify benefits, we counted the number of total
defects found by code inspection utilizing a defect predic-
tion model. Accordingly, with the lower cost but higher
benefit, improved performance is expected in the cost
effectiveness evaluation.

5.2.1 File Prioritization in Defect Proneness

To detect defects as early as possible, the inspection can-
didates of 3,077 files (the All subject in Table 7) had to be
prioritized in order of their defect proneness. The file in-
stances were prioritized from the highest to lowest prob-
ability in terms of defect proneness using defect predic-
tion models. The prediction models were built for the All
subject (Table 7); the CFS and random forest algorithms
were used for feature selection and model construction,
respectively, as explained in Section 4.2.5. To predict the
defect proneness probability of an instance, the models
were trained with the remaining 3,076 instances, except
the instance to predict. Thus, model training and predic-
tion were iterated for obtaining the defect proneness
probabilities of all file instances. Then, the instances were
sorted by the probabilities. After the prioritization pro-
cess, a simulation was performed of the top ranked file
(the highest probability of defect proneness) being in-
spected first through its code space. The next ranked files
continued to be inspected in turn until all given files were
exhaustively inspected and all hidden defects were finally
found.

5.2.2 Cost Benefit Analysis

Figure 7 shows the defects found during the code inspec-
tion process with prediction models. The horizontal axis
represents the percentage of cumulative LOCs inspected
through all 3,077 files; the vertical axis represents the per-
centage of defects cumulatively found by the code inspec-
tion process supported with defect prediction models.
The optimal model [22] is the other baseline introduced in
this section, which orders files according to their defect

MIM+CM+HM CM+HM MIM HM CM

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

D
e
c
is

io
n
T

re
e

L
o
g
is

tic
N

a
iv

e
B

a
y
e
s
ia

n
R

a
n
d
o
m

F
o
re

s
t

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

F-Measure

D
e

n
s
it
y

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2550458,
IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 13

density (i.e., the number of defects). Defect prediction
models should be as close as possible to this optimal
model.

As shown in the cost-benefit simulation results of Fig-
ure 7, MIM significantly reduced code inspection efforts
in identifying hidden defects. For example, the dummy
could be regarded as a typical strategy attempted by a
code inspector who did not consider using any effective
defect prediction model in the inspection process. As
shown by the results, the code inspector could identify
only approximately 25% of defects using 25% of inspec-
tion effort by employing the dummy strategy. However,
in contrast, the inspector could find approximately 63% of
defects with the same 25% of effort in the case in which
MIM was used. Therefore, using a prediction model ena-
bles a code inspector to reduce the cost of inspection ef-
fort and find hidden defects as early as possible. Using
HM or CM was still beneficial; however, it was not as
advantageous as using MIM. In comparison, Optimal
could find 100% defects with just 21% inspection effort.
MIM, HM, and CM could find 59%, 35%, and 21% defects
respectively with the same inspection effort.

Fig. 7. Cost-benefit simulation result of applying defect prediction
models in the code inspection process

5.3 Predictive Power of Individual Metrics

Each metric contributes to defect prediction performance
to its own extent. In this section, we present a comparison
of the entire suite of 81 metrics, which includes 24 MIMs,
42 CMs, and 15 HMs, as mentioned in Section 4.2.3.

To evaluate the predictive power of each metric, we
measured the gain ratio [49] of MIMs, CMs, and HMs by
applying ten-fold cross validation in Weka, and ranked
them according to the normalized gain ratio values (i.e.,
by scaling the maximum ratio value to one). The gain ra-
tio indicates how well a metric discriminates instance as
buggy or clean. Usually, the effectiveness of the metrics
can be variously evaluated depending on the machine
learning algorithm used; however, metrics with a high

gain ratio are generally considered important [57], [58].
The All subject in Table 7 was used in this analysis.

Figure 8 presents the top (most effective) 30 out of the 81
metrics in order of the gain ratio values. Many MIMs
were ranked higher than HMs and CMs.

Fig. 8. Predictive power of top ranked metrics. The metrics were
prioritized by the normalized gain ratio values.

The best predictor in the MIM category was NumEd-
itingDevelopers (the number of developers working on a
single file). For code quality prediction, this metric was as
a good indicator for determining if files were assigned to
and changed by many developers in the history.

In addition, the NumEditEvent, NumRareEdit, HourP-
erBrowsing, and HourPerEditing metrics were other good
indicators for predicting code quality. It is likely that the
quality of code declines according to how long and fre-
quently the developers change the code. Moreover, it is
possible that developers can make mistakes (propagate
bugs) when working on rarely accessed files (NumRareEd-
it).

Of the HM category, the most effective metrics were
WeightedAge followed by #ofBugFixes. Certainly, temporal
information and bug fixing records were good indicators
for forecasting post-defects, as confirmed in [4][15].
NumOfAuthor (HM) was another good defect predictor;
its rationale is similar to that of NumEditingDevelopers
(MIM). NumEditingDevelopers measures the number of file
editors observed in a task session, while NumOfAuthor
measures the number of file editors observed during the
whole file lifespan. A task session corresponds to the time
gap between opening a bug report and resolving the bug
report. In our opinion, it is a good clue for defect predic-
tion to see how many code editors involved in resolving

0 0.2 0.4 0.6 0.8 1

CM-CountLine (++)

CM-AvgLine (0)

HM-#OfRevision (++)

MIM-NumInterruptions (0)

CM-AvgLineCode (0)

HM-NumOfAuthors (0)

MIM-AvgTimeIntervalBrwsEdit (0)

MIM-TimeSpentBeforeEdit (0)

MIM-NumParallelBrws (0)

MIM-NumRepeatedBrws (0)

MIM-TimeSpentAfterEdit (0)

MIM-TimeSinceLastTask (0)

MIM-AvgTimeIntervalEditEdit (0)

MIM-NumParallelEdit (0)

MIM-NumRepeatedEdit (0)

MIM-RatioCodeUnderstandingEffort (0)

HM-#ofBugFixing (+++)

MIM-NumMultiTasks (0)

MIM-AvgTimeIntervalBrwsBrws (0)

MIM-MaxTimeIntervalEditEdit (0)

MIM-MaxTimeIntervalBrwsBrws (0)

MIM-MaxTimeIntervalBrwsEdit (0)

HM-WeightedAge (0)

MIM-NumRareBrws (0)

MIM-NumSelectionEvent (++)

MIM-HourPerEditing (0)

MIM-HourPerBrowsing (0)

MIM-NumRareEdit (0)

MIM-NumEditEvent (+)

MIM-NumEditingDevelopers (++)

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2550458,
IEEE Transactions on Software Engineering

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

an issued bug.
The CM category contained the remaining top-ranked

metrics after the above-mentioned top MIM and HM pre-
dictors outlined in Figure 8.

In Figure 8, the signs in parentheses next to the metric
names show the direction of the metric’s impact on the
number of post-defects. For defective sample files (i.e., >=
of post-defects), we computed the Pearson correlation
coefficient between the metric value and the number of
post-defects. We denoted the signs with the following
rules: +++: coefficient >= 0.4; ++: 0.3 <= coefficient < 0.4; +:
0.2 <= coefficient < 0.3; and 0: -0.2 < coefficient < 0.2.
There was a negative impact (e.g., TimeSinceLastTask = -
0.13), but it was too small to determine the direction of
the impact. Note that a high gain ratio does not always
guarantee a high correlation because of some non-linear
relationships between the metrics and defects.

5.4 Predictive Power of Question Categories

Table 2 presents the goal-driven questions (GQs) that we
organized. To determine how relevant each question cat-
egory is for identifying post-defects, we evaluated the
defect prediction models built with each MIM question
category. The more relevant the question, the higher the
relative performance of the prediction model built with
the MIM question category. A performance comparison
of defect prediction models built with different MIM
question categories should help users understand the
effectiveness of each MIM category and properly select an
interesting category for the specific implementation and
application.

Fig. 9. Performance comparison of the question categories in Table 2

Figure 9 is the performance comparison result. Each
boxplot is drawn with 100 F-measures from 10 times ten-
fold cross validation. The vertical dashed blue line is the
baseline performance of the Dummy classifier (i.e., F-
measure 0.25, the All subject in Table 7).

Figure 9 includes eight question categories, GQ1 to
GQ8, from Table 2. It additionally includes eight question
categories denoted with the prefix “~“, which means that

only the designated MIM question category is excluded
from the prediction model construction. For example,
~GQ1 means that the category does not include the MIMs
relating to GQ1. These eight additional categories with
the “~” prefix are intended to help identify by how much
performance is reduced if a particular MIM question cat-
egory is omitted from the model construction. Lastly, we
included the ALL reference category, which is comprised
of all 24 MIMs listed in Table 1. Note that the CFS feature
selection algorithm was applied to ~GQ1 through ~GQ8
and to ALL in order to relieve the multicollinearity prob-
lem.

As shown in Figure 9, most MIM question categories
clearly demonstrated effective predictive power as defect
indicators, except for GQ6 and GQ7, whose F-measure
medians were lower than the 0.25 F-measure of the
dummy classifier.

The highest performance categories were GQ1 (fre-
quent editing activities) and GQ2 (frequent browsing ac-
tivities), followed by GQ3 (time elapsed since the last
task). The performances of GQ1 and GQ2 were almost
similar to the performance of ALL, which means GQ1 and
GQ2 are predominant from the contribution point of view.
In most of the omission cases, the model performances
were not degraded but for GQ4 (time spent in working on
files). The omission of GQ4 made the performance slight-
ly decreased. Lastly, we could determine that the overall
model performance did not depend on some superstars of
MIMs, but the different question categories of MIMs were
complementary in terms of their performance contribu-
tions.

Medians of the GQ1 and GQ2 F-measure distributions
were 0.51 and 0.46 respectively, which thereby showed an
approximately 200% higher performance than the F-
measure (0.25) of the dummy classifier.

6 COMMERCIAL DOMAIN CASE STUDY

Developers may show different behavioral interactions
depending on the project domain; e.g., open source or
commercial. These differing circumstances can yield dif-
fering work motivations, time, physical space, and so on
for developers. Consequently, these differences can alter
developers’ working habits or patterns. In this section, we
describe a case study of three commercial projects for ex-
ploring RQ3 and RQ4 listed in Table 3.

6.1 Data Collection and MIM Extraction

To collect Mylyn data and extract MIMs from it, we stud-
ied three more Java projects. Table 12 briefly summarizes
the three projects relating to development domains, cod-
ing periods, number of involved developers, and the
number of file instances that we studied. Actually, the
projects consist of a larger volume of source code files
than the number of instances listed in Table 12. Neverthe-
less, for experimental purposes, we used only the files
that are available and permitted. We obtained permission
from the project directors and thereby acquired Mylyn
log data of involved developers (however, we could not
access source code on account of intellectual property

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2550458,
IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 15

constraints).
In Table 12, the numbers in parentheses show the de-

velopers that were actually involved; the numbers with-
out parentheses show the developers analyzed in our
study. We only examined the developers who were coop-
erative in providing Mylyn data.

TABLE 12

SUMMARY OF STUDIED COMMERCIAL PROJECTS

Project Domain Period
of

involved
developers

of
instances

(files)

P1

Web and internal infor-

mation systems for a
newspaper publishing

company

8 months 9 (15) 553

P2
Software architecture
decision making tool 2 months 1 (1) 62

P3
Smart TV and Android

phone applications 3 months 1 (2) 308

We collected Mylyn data and extracted MIMs from the

developers during the project periods as explained in Sec-
tion 4. However, we could not count the number of post-
defects, as was done in the study in Section 4.2.2, because
the analyzed versions of projects (Table 12) were at a pre-
market release stage; therefore, no information of post-
delivered field defects existed. Instead, we used infor-
mation from internal reports of bugs that developers
found and reported from their quality assurance activities
(e.g., code inspection and peer review processes).

For MIM performance evaluation, we split the project
development period into three parts. Two early parts
(two-thirds) of the period were used for prediction model
training. Then, the trained model predicted the number of
defects reported in the remainder (one-third) of the future
period.

6.2 Developer Interview for MIM Validation

For the MIM validation, we interviewed 11 developers of
Table 12 when the projects were completed and asked
them to answer some questions about their programming
habits. Then, we compared their responses with actual
measurements of their relevant MIMs. This section aimed
to verify if programming habits captured by MIMs con-
sistently corresponded to the interview results. Details
about all interview questions and answer cases are pre-
sented in Table 14. The MaxTimeInterval notation includes
MaxTimeIntervalEditEdit, MaxTimeIntervalBrwsBrws, and
MaxTimeIntervalBrwsEdit; that is, MaxTimeInterval com-
putes the maximum time interval between file-accessing
interaction events in a task session.

For example, in the interview, we questioned the de-
velopers on “How many files do you intensively edit while
working on a task?” They answered the question with mul-
tiple choices: “A – On average, just one or two” or “B - Usu-
ally several files here and there due to a project property.” Lat-
er, we extracted NumMultiTasks and NumParallelEdit re-
spectively from task sessions of one group of developers
who responded with A, and the other group of develop-
ers who responded with B. We then compared MIM dis-
tributions from each of the two groups. In the example,

we expected that NumMultiTasks and NumParallelEdit of
group B might be higher than those of group A in terms
of the boxplot comparison.

In the interview, some MIMs could not be questioned
with any interview form, whereas the others could be. In
interview design, for example, an MIM, such as NumEdi-
tEvent, is difficult to question because developers do not
count and remember their actions. Therefore, we only
focused on the topics on which we could do interview.

Conclusively, we confirmed that MIMs predominantly
corresponded to the interview results. Some of MIM
measurements for each of the response groups (e.g., A or
B) were discriminative in terms of median and skewed
distribution of boxplots, as shown in Figure 10. We con-
ducted statistical tests to determine whether the medians
of the response groups in Figure 10 showed statistically
significant differences. We used the Wilcoxon rank sum
test for two samples (i.e., groups A and B). Otherwise, we
used the Kruskal-Wallis test (i.e., in a case with more than
two samples). Table 13 lists the test results. The under-
lined pairs of questions and metrics are the statistically
significant ones (95% confidence level). We could not see
a statistical significance in all the cases.

TABLE 13

RESULTS OF STATISTICAL TESTS TO CHECK IF RESPONSE

GROUPS OF BOXPLOTS IN FIGURE 10 SIGNIFICANTLY DIFFER

The interview results showed interesting exceptions to

our expectations, as listed in Table 14. For example, two
groups of developers with different opinions on “IQ1 -
How many files do you intensively edit while working on a
task?” showed almost similar distributions for NumParal-
lelEdit. However, they showed totally different distribu-
tions for NumMultiTasks when answering the same ques-
tion. It is possible that many of them misunderstood the
concepts of multitasking task sessions and editing several
files at the same time. Actually, NumMultiTasks could
better classify the opinions of the two response groups
than NumParallelEdit in response to the same question.

In terms of balancing time resource allocations between
developer’s actual coding and code understanding activi-
ties, RatioCodeUnderstandingEffort could not capture a sta-
tistically significant difference between the three response
groups. As shown in the results for the IQ3 and IQ5 re-
sponse groups, it was not easy to capture opinions on the
developer’s effort. This could have been because develop-
ers tend to exaggerate the degree of effort that they exert
on their job or have trouble quantifying it.

A B C D E

Q1-NumMultiTasks Wilcoxon 8.80E-12 1 3

Q1-NumParallelEdit Wilcoxon 0.9075 3 3

Q2-NumRareBrws Wilcoxon 0.00034 6.5 3

Q2-NumRareEdit Wilcoxon 0.0018 2 1

Q3-RatioCodeUnderstandingEffort Wilcoxon 0.41 0.69 0.72

Q3-TimeSpentBeforeEdit Wilcoxon 0.001 0.019 0.098

Q4-TimeSpentAfterEdit Wilcoxon 0.003 0.48 0.116

Q5-RatioCodeUnderstandingEffort Kruskal-Wallis 0.58 0.709 0.702 0.731

Q6-AvgTimeIntervalEditEdit Wilcoxon 0.54 0.16 0.2

Q7-MaxTimeInterval Kruskal-Wallis 8.43E-05 0.34 0.13 2.24 1.12 2.5

Q8-NumInterruptions Wilcoxon 0.1965 3 2

Questions and Metrics Test method p-value
Medians

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2550458,
IEEE Transactions on Software Engineering

16 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

TABLE 14
INTERVIEW QUESTIONS AND ANSWERS, AND EXPECTED OBSERVATIONS FOR RELEVANT MIMS. THE ANSWERS COLUMN CATEGORIZ-

ES CASES IN WHICH DEVELOPERS ANSWERED THE GIVEN QUESTIONS. GROUP SIZE MEANS PORTIONS OF EACH RESPONSE GROUP

Interview Questions Answers Relevant MIMs
Expected Observations

(Group size in percentage)

IQ1 - How many files do

you intensively edit

while working on a task?

A – On average, just one or two. NumParallelEdit

NumMultiTasks

Group B might have a higher box-

plot than group A.

(A:B=44%:56%)
B – Usually several files here and

there due to a project property.

IQ2 – If you find a bug

during code review,

where is the bug usually

located?

A – Bugs tend to be found occasional-

ly at unexpected code files.
NumRareEdit

NumRareBrws

Group A might have a higher box-

plot than group B.

(A:B=78%:22%)
B – Bugs tend to be found mainly at

code entities (e.g., files or functions)

that have been frequently edited so

far.

IQ3 – Do you spend

enough time in under-

standing the code con-

text before beginning

necessary code change

for an assigned task?

A - I usually spend enough long time

in understanding context of code or

in finding a necessary solution before

beginning code modification in ear-

nest for an assigned task.

TimeSpentBeforeEdit

RatioCodeUnderstandingEffort

Group A might have a higher box-

plot than group B.

(A:B=50%:50%)

B - I quickly plunge into assigned

tasks because I am usually accus-

tomed to them.

IQ4 – Do you scrupu-

lously review code

changes to check if any

possible bug exists or to

test something further,

even after you have

finished a task?

A – Yes, I tend to carefully review my

edited code for any error possibility.
TimeSpentAfterEdit Group A might have a higher box-

plot than group B.

(A:B=67%:33%)

B – No, I tend to finish a task right

away after the last code editing be-

cause typically no problem occurs.

IQ5 – How do you allo-

cate portions of your

effort between actual

coding and code under-

standing in terms of time

when working on a giv-

en task?

A – Actual coding time < code under-

standing time.
RatioCodeUnderstandingEffort Group A might have a higher box-

plot than group C, and group B

might have a position between

group A and C.

(A:B:C=11%:56%:33%)

B – Actual coding time ≈ code under-

standing time.

C – Actual coding time > code under-

standing time

IQ6 – What is your cod-

ing style for a given

task?

A – Once I finish understanding a

given task, I tend to quickly and flu-

ently continue editing code.

AvgTimeIntervalEditEdit Group B might have a higher box-

plot than group A, because devel-

opers of group B can need occa-

sionally additional time in under-

standing task context between code

change activities.

(A:B=67%:33%)

B – I simply start a given task and

then edit and understand code, on

and off, on the fly.

IQ7 – How often do you

rest while coding?

A – Every 10 minutes. MaxTimeIntervalEditEdit

MaxTimeIntervalBrwsBrws

MaxTimeIntervalBrwsEdit

Group D and E might have higher

boxplots than groups A and B, and

group C might have a position in

the middle of them.

(A:B:C:D:E=10%:10%:20%:40%:20%)

B – Every 40 minutes.

C – Every hour.

D – Every two hours.

E – Every three hours.

IQ8 – How often do

interruptions occur dur-

ing a task?

A – Every hour (or more often). NumInterruptions Group A might have a higher box-

plot than group B.

(A:B=40%:60%)
B – Every two hours / one or two

times a day (for 10~30 minutes).

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2550458,
IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 17

Fig. 10. Consistency comparison between interview results about programming habits of 11 industrial developers and
their actual measurements of relevant MIMs. Explanation about the interview questions and answers are presented in
Table 12.

As shown in the boxplots for IQ3 of Figure 10, the

group of developers who answered, “A - I usually spend a
long time in understanding the context of code or in finding a
necessary solution before beginning code modification in ear-
nest for an assigned task,” did not actually spend a relative-
ly longer time than the other group of developers who
answered, “B - I quickly plunge into assigned tasks because I
am usually accustomed to them.” The MIM measurements of
response group B were somewhat higher than those of
group A. One possible reason for this phenomenon is that
developers actually spend more time in understanding
code than they perceive or believe, even though they do
not consciously recognize it.

6.3 Performance Evaluation Result

To address RQ3 of Table 3, we built a defect prediction
model using the random forest machine learner with a
subset of MIMs selected by the CFS algorithm. Table 15

shows the selected MIMs in each project. The number of
file instances used in performance evaluation for projects
P1, P2, and P3 was 553, 62, and 269 respectively. For the
evaluation, we used 10 times ten-fold cross validation.

Figure 11 presents F-measure distributions from the 10
times ten-fold cross validation process for the three pro-
jects, P1, P2, and P3. In the experiment, the ratio of buggy
samples in P1, P2, and P3 were 81.4%, 19.4%, and 16.4%,
respectively. Therefore, the F-measures of the dummy
classifier in P1, P2, and P3 were 0.62, 0.28, and 0.25, re-
spectively (Section 4.3).

The F-measure of the MIM-based defect prediction
model significantly outperformed that of the dummy
classifier in all the P1, P2, and P3 subjects. In Figure 11, F-
measure medians of P1, P2, and P3 were 0.88, 1, and 0.8
respectively. Interestingly, the prediction model of P2
could perfectly predict defects in more than 50% of cases.
Actually, the project P2 had a quite good condition for a
prediction model to predict defects; the project P2 had

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2550458,
IEEE Transactions on Software Engineering

18 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

relatively small size of files under development, and most
of developer activities were concentrated especially on
some limited files among the development files.

Fig. 11. Performance evaluation result of MIM-based defect predic-
tion models for the three commercial projects (Table 12). Vertical
dashed lines are performance baselines of the dummy classifier

TABLE 15
MIMS SELECTED BY CFS IN EACH COMMERCIAL PROJECT

Project Selected MIMs

P1
TimeSpentAfterEdit, MaxTimeIntervalBrwsBrws, NumSelection-
Event, TimeSinceLastTask

P2
NumEditEvent, NumEditingDevelopers, MaxTimeInter-
valBrwsEdit, NumParallelBrws, NumSelectionEvent, Rati-
oCodeUnderstandingEffort

P3
NumEditEvent, NumRareBrws, TimeSpentAfterEdit, NumRe-
peatedEdit, TimeSpentBeforeEdit, NumParallelBrws, MaxTimeIn-
tervalEditEdit, NumMultiTasks

In our case study, P1 had many defects because they

were not defects reported after product release (post-
delivery); rather, they were internally reported during
intensive testing and QA activities within a certain time.
However, P2 and P3 were relatively small-sized projects
compared to P1; therefore, testing and debugging could
be performed on them on the fly instead of a certain time
having to be allocated for some intensive QA activities.

6.4 MIM Ranks in Different Project Domains

In Section 5.3, we investigated MIM ranks based on gain
ratio. However, the ranks can be changed if project do-
main is changed. In this section, we addressed RQ4 of
Table 3, investigating how MIM ranks change in different
project domains including commercial and Eclipse pro-
jects.

Depending on projects, characteristics of developer in-
teractions are inevitably variable. Therefore, it is natural
that the MIM ranks can change depending on the project
domains. Actually, there are no universally acceptable
MIM ranks in terms of contribution to improving predic-
tion performance. Nevertheless, to introduce a reference
guide, we attempted to find MIM ranks that considered
variation from our seven studied projects (i.e., the three
projects in Table 12 and four projects in Table 7).

Figure 12 shows the results that we found from the
seven projects. For each of the seven projects, we comput-
ed MIM ranks based on the gain ratio, as done in Section
5.3. Consequently, each MIM has seven rank values. The
distributions of the seven values of each MIM are pre-
sented in boxplots in Figure 12, which are sorted by the
median of the seven rank values.

Fig. 12 Variation of MIM ranks observed over the seven projects

As shown in Figure 12, those of NumSelectionEvent,
NumEditEvent, NumEditingDevelopers, and NumRareEdit
were MIMs that generally ranked at high over the seven
projects. In addition, those of MIMs seemed to have rela-
tively smaller variations (i.e., shorter boxplot in length)
than any others, meaning that they had relatively low
project dependency. In other words, those of five MIMs
looked reliable in many projects even if the applied pro-
ject domains were changed.

In contrast, for example, those of RatioCodeUnder-
standingEffort, TimeSinceLastTask, and HourPerBrowsing
had comparatively larger variations (i.e., longer boxplot
in length) than any others, meaning that they had rela-
tively high project dependency. In other words, the influ-
ential power of the three MIMs could be quite variable
depending on the applied projects.

7 SUMMARIZATION AND DISCUSSION

In this section, we summarize the key findings from our
experiments in Sections 5 and 6, and discuss a possible
application with the proposded MIMs.

7.1 Summary of Findings

The following findings basically cover our research ques-
tions (Table 3) and include additional insights of interest.

 MIMs were promising defect predictors and could

improve performance up to 157% (effect size: 0.941;
CM+HM: 0.313 → MIM+CM+HM: 0.494; Table 9).

 MIMs could further cost-effectively facilitate the
code inspection process; e.g., up to 168% by using
only 21% of a full effort (HM: 35% → MIM: 59%; Fig-
ure 7).

 MIMs still worked well in the commercial projects
with good performance as defect predictors com-
pared to the dummy classifier (Section 6.3).

 NumSelectionEvents, NumEditEvents, NumEditingDe-

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2550458,
IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 19

velopers, and NumRareEdit MIMs were relatively
good predictors in file-level defect prediction (Figure
13). Similarly, MIMs relating to the category GQ1
(How frequently do developers edit files?) were
good predictors (Section 5.4). MIM ranks were varia-
ble depending on different experiment conditions
and project domains so that MIM ranks reported in
this paper can be different from the ones reported in
our previous study [23]. Therefore, by extending case
studies, we explored possible variation of the influ-
ential MIMs.

 Any long time intervals between developer’s file-
accessing activities were detrimental. Time interval-
related MIMs are indirect indicators associated with
develoepr’s concentration informing of how to be of-
ten disturbed or keep working with attention in
work (e.g., Table 15 and Figure 12).

7.2 Discussion on Possible Application

As a future application, the effective MIMs can be used to
implement a feature for an IDE tool such as an Eclipse
plug-in to detect and warn behavioral anomalies (or any
inefficient behaviors) of developers. The logs of Mylyn
task sessions are recorded in real-time at a local site while
developers edit or navigate codes, so MIMs can be com-
puted and visualized in real-time with a form of metrics
dashboard. All observations of particular MIM values of
developers who rarely make defects can be collected and
modeled during development. Using the information, an
IDE tool can provide developers with a warning of on-
line feedback to make them cautious and to reduce a po-
tential risk introducing defects. This type of mechanism
might help novice developers to learn the good working
habits of expert developers. As a result, the overall behav-
iors of developers can be improved. Even if this applica-
tion is not feasible as a real-time tool, it can still help de-
velopers by providing any regular feedback (e.g., off-line
reports) based on the MIMs come from talented develop-
ers who produce good quality of codes.

8 THREATS TO VALIDITY

Threats to the validity of this study were identified as
follows.

 Developers do not always submit their task context. A

lack of Mylyn data is a major threat to validity. Shar-
ing Mylyn data is not mandatory. Therefore, devel-
opers do not always submit their task context; more-
over, they can even choose which parts of their task
contexts to submit. Developers are typically not will-
ing to share their personal task context with the pub-
lic on account of privacy concerns. Therefore, data-
sharing security must be agreed upon by a sourcer
and analyzer in advance. In this study, we used the
publicly available data of Mylyn task sessions at-
tached to Eclipse projects and data permitted in our
additional case studies of commercial projects.

 The systems and developers referenced in this study may
not be representative. We selected projects as subjects
that have available Mylyn data, which could lead to
a project selection bias. In this study, 101 developers
were analyzed (91 from the Eclipse projects and 11
from the commercial projects). However, given the
number of developers referenced, we may not have
sufficiently addressed a wide spectrum of developer
types (e.g., different experience level, working condi-
tions, programming habits, etc.) for our research
questions. Therefore, additional studies are required
in the future.

 The Mylyn data that we used could be biased. As men-

tioned in the first bullet point, developers may not
have submitted their task context, or they could have
only submitted a portion of it. The lack of task con-
text information or the inclusion of biased Mylyn da-
ta could have affected the reliability of our conclu-
sions. The sample size used in our experiments (e.g.,
20% coverage of All subjects, Table 7) seemed to be
sufficient to study the statistical characteristics of a
population. Nevertheless, it was necessary for the
sample files to be independently collected from the
population to be good representatives. Therefore, to
address that issue, we designed and conducted an
additional statistical test, a Run test (also called a
Wald–Wolfowitz test), to confirm that our sample
files from the Mylyn logs were not biased, but were
evenly covered distributions of the entire population
(i.e., all of the file changes in the CVS logs). We used
the following process for the Run test. First, we col-
lected change files for the CVS logs and made a list X
of the collected file names without redundancy. We
then split list X in half, calling one half Xa and the
other half Xb (Xa and Xb had the same size). Second,
we collected change files from the Mylyn logs and
made a list Y of the collected file names without re-
dundancy. Third, we arbitrarily drew a file y from
list Y and checked whether file y was found in either
Xa or Xb. If file y was in Xa, we labeled it as “A” and
otherwise as “B.” However, if file y was in neither Xa
nor Xb, we skipped it. We continued to draw the next
file y from list Y until Y became empty. Finally, we
obtained a sequence outcome like ABBAAABAB….
AB (the size of the label sequence equals the number
of matched files between lists X and Y). We believe
that if no bias existed in our sample collection (i.e.,
our studied files from the Mylyn log), the sequence
outcome had to have randomness in its label enu-
meration. Conclusively, we applied the Run test to
that sequence outcome and finally confirmed that the
null hypothesis (H0) could not be statistically rejected
(the p-value was 0.922 > 0.05, 95% confidence inter-
val). In the Run test, H0 was “each element in the se-
quence is independently drawn from the same dis-
tribution.”

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2550458,
IEEE Transactions on Software Engineering

20 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

9 CONCLUSION

In this paper, we proposed and evaluated MIMs for im-
proving defect classification performance. The results of
our evaluation demonstrated that MIMs significantly con-
tributed to improving defect classification performance
when used together with the existing metrics suite
(CM+HM); i.e., an approximate 157% improvement was
shown from 0.313 to 0.494 on average in terms of the F-
measure (MIM+CM+HM vs. CM+HM; Table 9). In addi-
tion, MIMs were shown to cost-effectively facilitate code
inspection; i.e., 59% of total defects could be detected by
inspecting only 21% of limited source code designated by
the MIM-based defect prediction model (Figure 7).

Our study extended existing knowledge in the field of
software quality metrics by proposing novel metrics
based on the information of micro-level developer inter-
actions. Our findings concur with previous studies [18],
[19], [20] that suggest that developer interaction patterns
affect software quality.

In terms of future applications, MIMs show significant
promise for a variety of IDE-centric tools, such as pre-
commit warnings of dangerous changes (interaction logs
are available in the IDE without major privacy concerns).
Even if developers are not willing to submit their private
task logs to a remote repository server, MIMs can be lo-
cally implemented.

In this paper, MIMs were designed based on Mylyn.
However, the principle of MIMs can be implemented
with data from other Mylyn-like alternative tools. We
believe studying methods for capturing and understand-
ing developer interactions are an emerging irreversible
trend that has been already realized not only by academic
studies [35][41] but also by industry products8. Therefore,
we plan to extend MIMs by leveraging these sources of
developer interaction data. In addition, we will apply
MIMs to other problems, such as measuring programmer
productivity and software quality.

Overall, we expect that future defect prediction models
will use more information from developers’ direct and
micro-level interactions to improve defect prediction.
MIMs are a first step in this direction.

All data used in this study is publicly available at
https://sites.google.com/site/mimetrics/.

ACKNOWLEDGMENT

The authors are very grateful to Tim Menzies for his val-
uable comments on using Wilcoxon hypothesis testing, 10
times ten-fold cross validation, and the CFS feature selec-
tion algorithm.

REFERENCES

[1] F. Vahid and T. D. Givargis, Embedded System Design: A Unified

Hardware/Software Introduction. John Wiley & Sons, 2001.

[2] A. Hassan, “Predicting faults using the complexity of code changes,” in

Proceedings of the 31st International Conference on Software Engineer-

ing, ser. ICSE ’09, 2009, pp. 78–88.

[3] S. Kim, E.J. Whitehead Jr., and Y. Zhang, “Classifying software changes:

8 Tasktop, https://www.tasktop.com

Clean or buggy?” IEEE Trans. Softw. Eng., vol. 34, pp. 181–196, March

2008.

[4] S. Kim, T. Zimmermann, E.J. Whitehead Jr., and A. Zeller, “Predicting

faults from cached history,” in Proceedings of the 29th International

Conference on Software Engineering, ICSE ’07, 2007, pp. 489–498.

[5] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code at-

tributes to learn defect predictors,” IEEE Trans. Softw. Eng., vol. 33, pp.

2–13, January 2007.

[6] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict compo-

nent failures,” in Proceedings of the 28th International Conference on

Software Engineering, ser. ICSE ’06, 2006, pp. 452–461.

[7] T. J. Ostrand, E. J. Weyuker, and R.M. Bell, “Predicting the location and

number of faults in large software systems,” IEEE Trans. Softw. Eng.,

vol. 31, pp. 340–355, April 2005.

[8] H. Zhang, “An investigation of the relationships between lines of code

and defects,” in ICSM 2009, 2009, pp. 274 –283.

[9] T. Zimmermann and N. Nagappan, “Predicting defects using network

analysis on dependency graphs,” in Proceedings of the 30th Interna-

tional Conference on Software Engineering, ser. ICSE ’08, 2008, pp. 531–

540.

[10] Y. Shin, A. Meneely, L. Williams, and J.A. Osborne, “Evaluating com-

plexity, code churn, and developer activity metrics as indicators of

software vulnerabilities,” IEEE Transactions on Software Engineering,

vol. 37, no. 6, pp. 772–787, 2011.

[11] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison of

bug prediction approaches,” in Mining Software Repositories (MSR),

2010 7th IEEE Working Conference on, May 2010, pp. 31 –41.

[12] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking Clas-

sification Models for Software Defect Prediction: A Proposed Frame-

work and Novel Findings,” Software Engineering, IEEE Transactions

on, vol. 34, no. 4, pp. 485–496, 2008.

[13] S. Chidamber and C. Kemerer, “A metrics suite for object oriented

design,” IEEE Trans. Softw. Eng., vol. 20, pp. 476–493, June 1994.

[14] N. Ohlsson and H. Alberg, “Predicting fault-prone software modules in

telephone switches,” IEEE Trans. Softw., vol. 22, no. 12, pp. 886 –894,

Dec. 1996.

[15] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of the

efficiency of change metrics and static code attributes for defect predic-

tion,” in Proceedings of the 30th International Conference on Software

Engineering, ICSE ’08, 2008, pp. 181–190.

[16] J. Czerwonka, R. Das, N. Nagappan, A. Tarvo, and A. Teterev,

“CRANE: Failure Prediction, Change Analysis and Test Prioritization

in Practice – Experiences from Windows,” in Software Testing, Verifica-

tion and Validation (ICST), 2011 IEEE Fourth International Conference

on, 2011, pp. 357–366.

[17] Cliff Norman, “Dominance statistics: Ordinal analyses to answer ordi-

nal questions,” Psychological Bulletin, Vol 114(3), Nov 1993, 494-509.

[18] T.D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:

A study of developer work habits,” in Proceedings of the 28th Interna-

tional Conference on Software Engineering, ser. ICSE ’06, 2006, pp. 492–

501.

[19] C. Parnin and S. Rugaber, “Resumption strategies for interrupted pro-

gramming tasks,” Software Quality Journal, vol. 19, no. 1, pp. 5–34,

Aug. 2010.

[20] A. Ko and B. Myers, “A framework and methodology for studying the

causes of software errors in programming systems,” J. Vis. Lang. Com-

put., vol. 16, pp. 41–84, February 2005.

[21] M. Kersten and G. Murphy, “Mylar: A degree-of-interest model for

ides,” in Proceedings of the 4th International Conference on Aspect-

oriented Software Development, ser. AOSD ’05, 2005, pp. 159–168.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2550458,
IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 21

[22] Thilo Mende and Rainer Koschke, “Revisiting the evaluation of defect

prediction models,” In Proceedings of the 5th International Conference

on Predictor Models in Software Engineering, 2009

[23] T. Lee, J. Nam, D. Han, S. Kim, and H.P. In, “Micro interaction metrics

for defect prediction,” in Proceedings of the 19th ACM SIGSOFT Sym-

posium and the 13th European Conference on Foundations of Software

Engineering, ser. ESEC/FSE ’11.

[24] V.R. Basili, L.C. Briand, and W.L. Melo, “A validation of object-oriented

design metrics as quality indicators,” IEEE Trans. Softw. Eng., vol. 22,

pp. 751–761, October 1996.

[25] R. Subramanyam and M. Krishnan, “Empirical analysis of ck metrics

for object-oriented design complexity: Implications for software de-

fects,” IEEE Trans. Softw., vol. 29, no. 4, pp. 297 – 310, april 2003.

[26] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-

oriented metrics on open source software for fault prediction,” IEEE

Trans. Softw., vol. 31, no. 10, pp. 897 – 910, oct 2005.

[27] N. Nagappan and T. Ball, “Static analysis tools as early indicators of

pre-release defect density,” in Proceedings of the 27th International

Conference on Software Engineering, ICSE ’05, 2005, pp. 580–586.

[28] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for

eclipse,” in Proceedings of the Third International Workshop on Predic-

tor Models in Software Engineering, PROMISE ’07, 2007.

[29] N. Nagappan and T. Ball, “Use of relative code churn measures to

predict system defect density,” in Proceedings of the 27th International

Conference on Software Engineering, ICSE ’05, 2005, pp. 284–292.

[30] H. Hata and O. Mizuno, “Bug Prediction Based on Fine-Grained Mod-

ule Histories,” ICSE 2012, 2012.

[31] F. Khomh, M. D. Penta, Y.-G. Gu´eh´eneuc, and G. Antoniol, “An ex-

ploratory study of the impact of antipatterns on class change- and fault-

proneness,” Empirical Software Engineering, vol. 17, no. 3, pp. 243–275,

Aug. 2011.

[32] A. Meneely, L. Williams, W. Snipes, and J. Osborne, “Predicting failures

with developer networks and social network analysis,” in SIGSOFT

’08/FSE-16: Proceedings of the 16th ACM SIGSOFT International Sym-

posium on Foundations of Software Engineering, 2008, pp. 13–23.

[33] A. Bacchelli, M. D’Ambros, and M. Lanza, “Are popular classes more

defect prone?” in Fundamental Approaches to Software Engineering,

vol. 6013, 2010, pp. 59–73.

[34] M. Kersten and G. Murphy, “Using task context to improve program-

mer productivity,” in Proceedings of the 14th ACM SIGSOFT Interna-

tional Symposium on Foundations of Software Engineering, SIGSOFT

’06/FSE-14, 2006, pp. 1–11.

[35] G.C. Murphy, M. Kersten, and L. Findlater, “How are java software

developers using the eclipse ide?” IEEE Softw., vol. 23, pp. 76–83, July

2006.

[36] A. Ying and M. Robillard, “The influence of the task on programmer

behaviour,” in Program Comprehension, 2011. ICPC’11. 19th IEEE In-

ternational Conference on, June 2011.

[37] R. Robbes and M. Lanza, “Characterizing and Understanding Devel-

opment Sessions,” in Program Comprehension, 2007. ICPC ’07. 15th

IEEE International Conference on, 2007, pp. 155–166.

[38] R. Robbes, D. Pollet, and M. Lanza, “Logical Coupling Based on Fine-

Grained Change Information,” in Reverse Engineering, 2008. WCRE

’08. 15th Working Conference on, 2008, pp. 42–46.

[39] Z. Lijie M.W. Godfrey, and A.E. Hassan, “Detecting interaction cou-

pling from task interaction histories,” in Program Comprehension,

2007. ICPC ’07. 15th IEEE International Conference on, June 2007, pp.

135 –144.

[40] N. Bettenburg and A. Hassan, “Studying the impact of social structures

on software quality,” International Conference on Program Compre-

hension, vol. 0, pp. 124–133, 2010.

[41] Zhongxian Gu, "Capturing and exploiting fine-grained IDE interac-

tions," Software Engineering (ICSE), 2012 34th International Conference

on , vol., no., pp.1630,1631, 2-9 June 2012

[42] A. Liaw and M. Wiener, “Classification and regression by random-

forest”, R news, vol. 2, no. 3, pp. 18-22, 2002.

[43] G. C. V. Basili and H. D. Rombach, “The Goal Question Metric Ap-

proach,” 1994.

[44] R.E. Walpole, R. Mers, and S.L. Myers, Probability & Statistics for Engi-

neers & Scientists. Pearson Prentice Hall, 2006.

[45] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H.

Witten, “The weka data mining software: An update,” SIGKDD Ex-

plor. Newsl., vol. 11, pp. 10–18, November 2009.

[46] A. Mockus and L. Votta, “Identifying reasons for software changes

using historic databases,” in Proceedings of the International Confer-

ence on Software Maintenance, 2000.

[47] J. ’Sliwerski, T. Zimmermann, and A. Zeller, “When do changes induce

fixes?” in Proceedings of the 2005 International Workshop on Mining

Software Repositories, ser. MSR ’05, 2005, pp. 1–5.

[48] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall,

and Premkumar Devanbu, “Don’t touch my code!: examining the ef-

fects of ownership on software quality”, ESEC/FSE ’11, pages 4–14,

2011

[49] E. Alpaydin, Introduction to Machine Learning, 2nd ed. The MIT Press,

2010.

[50] S. Scott and S. Matwin, “Feature engineering for text classification,” in

Proceedings of the Sixteenth International Conference on Machine

Learning, ser. ICML ’99, 1999, pp. 379–388.

[51] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and P.

Devanbu, “Fair and Balanced? Bias in Bug-Fix Datasets,” in

ESEC/FSE’09, 2009.

[52] F. Rahman, D. Posnett, A. Hindle, E. Barr, and P. Devanbu, “BugCache

for inspections: hit or miss?” in ESEC/FSE ’11: Proceedings of the 19th

ACM SIGSOFT symposium and the 13th European conference on

Foundations of software engineering. ACM Request Permissions, Sep.

2011.

[53] A. G. Koru, K. E. Emam, D. Zhang, H. Liu, and D. Mathew, “Theory of

relative defect proneness,” Empirical Software Engineering, vol. 13, no.

5, pp. 473–498, Oct. 2008.

[54] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener, “De-

fect prediction from static code features: current results, limitations, new

approaches,” Automated Software Engineering, vol. 17, no. 4, pp. 375–

407, Dec. 2010.

[55] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic and

comprehensive investigation of methods to build and evaluate fault

prediction models,” Journal of Systems and Software, vol. 83, no. 1, pp.

2–17, 2010.

[56] T. Mende and R. Koschke, “Effort-Aware Defect Prediction Models,” in

Software Maintenance and Reengineering (CSMR), 2010 14th European

Conference on, 2010, pp. 107–116.

[57] Shivaji, S. and Whitehead, E.J. and Akella, R. and Sunghun Kim, “Re-

ducing features to improve bug prediction,” in Automated Software

Engineering, 2009. ASE ’09. 24th IEEE/ACM International Conference

on, nov. 2009, pp. 600 –604.

[58] D. Kim, X. Wang, S. Kim, A. Zeller, S.C. Cheung, and S. Park, “Which

crashes should i fix first?: Predicting top crashes at an early stage to pri-

oritize debugging efforts,” IEEE Trans. Softw. Eng., vol. 99, 2011.

[59] M. Hall, “Correlation-based feature selection for machine learning,

1998,” Deptartment of Computer Science, Univiversity of Waikato.

[60] M. Hall and G. Holmes, “Benchmarking Attribute Selection Techniques

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2550458,
IEEE Transactions on Software Engineering

22 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

for Discrete Class Data Mining,” IEEE Trans. on Knowl. and Data Eng.,

vol. 15, no. 6, pp. 1437–1447, 2003.

[61] Foyzur Rahman and Premkumar Devanbu, “How, and Why, Process

Metrics Are Better”, ICSE 2013.

[62] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. Whitehead Jr.,

“Does bug prediction support human developers? findings from a

google case study”, ICSE’13, 2013, pp. 372-381.

[63] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate

statistics for ordinal level data: Should we really be using t-test and co-

hen's d for evaluating group differences on the NSSE and other sur-

veys?”, Annual meeting of the Florida Association of Institutional Re-

search, 2006.

[64] Philip B. Crosby, “Quality is Free: The Art of Making Quality Certain:

How to Manage Quality – So That It Becomes A Source of Profit for

Your Business,” McGraw-Hill Companies, 1979.

[65] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita, N. Ubayashi, and

A. E. Hassan, “Studying just-in-time defect prediction using cross-

project models”, Empirical Software Engineering, 2015.

[66] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the impact of

classification techniques on the performance of defect prediction mod-

els," ICSE’15, 2015, vol.1, no., pp.789-800.

