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Abstract—To facilitate software quality assurance, defect prediction metrics, such as source code metrics, change churns, and 

the number of previous defects, have been actively studied. Despite the common understanding that developer behavioral 

interaction patterns can affect software quality, these widely used defect prediction metrics do not consider developer behavior. 

We therefore propose micro interaction metrics (MIMs), which are metrics that leverage developer interaction information. The 

developer interactions, such as file editing and browsing events in task sessions, are captured and stored as information by 

Mylyn, an Eclipse plug-in. Our experimental evaluation demonstrates that MIMs significantly improve overall defect prediction 

accuracy when combined with existing software measures, perform well in a cost-effective manner, and provide intuitive 

feedback that enables developers to recognize their own inefficient behaviors during software development.  

Index Terms—Defect prediction, software quality, software metrics, developer interaction, Mylyn  

——————————  —————————— 

1 INTRODUCTION

UALITY assurance is a typical resource-constrained 
activity when the time-to-market requirements of 

software delivery must be met. In an embedded software 
market, for example, it is reported that only a four-week 
delay in software delivery can cause a serious 22% reve-
nue loss if the overall software lifetime is 52 weeks [1]. 
Demand for the rapid release of software to the market is 
a critical issue for companies in most sectors of software 
markets. Even though it is important to meet such an ur-
gent demand, careless quality assurance can entail tech-
nical debt [64]. The negative impact of a defective soft-
ware reputation is often fatal in the market. Thus, quality 
assurance becomes critical immediately before the soft-
ware release; however, at that stage, time and human re-
sources are typically insufficient for eliminating every 
latent defect by the deadline. Developers or quality assur-
ance managers therefore urgently require a technique that 
effectively predicts defects and enables the application of 
best efforts in resolving them. 

For this reason, defect prediction has been an active re-
search area in software engineering [2], [3], [4], [5], [6], [7], 
[8], [9], [10]; many effective defect prediction metrics have 
been proposed. In particular, source code metrics (CMs) 
and change history metrics (HMs) have been widely used 
with reasonable prediction accuracy as a de facto stand-
ard for performance benchmarks [11], [12], [61] and in-

dustry practices. For example, Chidamber and Kemerer 
(CK) metrics [13] and McCabe’s cyclomatic complexity 
[14] are the most popular CMs in use. The number of re-
visions, authors, and past fixes, along with the age of a 
file, are commonly used HMs for defect prediction [15]. 
Microsoft built the CRANE [16] system for predicting the 
failure-proneness of code components in Windows Vista 
based on software measures. In addition, Google1 lever-
ages past bugfix information [62] to highlight areas of 
code that are creating issues. The effectiveness of CMs 
and HMs has been widely discussed in industry and aca-
demia. 

However, despite the understanding that developer be-
havioral interaction can affect software quality, currently 
available CMs and HMs do not address developer behav-
ior. Developers can err with an ineffective or inefficient 
habit in development processes; consequently, defects can 
be introduced. In previous studies, for example, LaToza 
et al. [18] surveyed the work habits of developers and 
found that work interruptions and frequent task switch-
ing affected software quality. In addition, Parnin et al. 
[19] reported that interruptions have negative effects on 
context recovery during programming tasks. Ko et al. [20] 
identified the possible behavioral causes of programming 
errors by using a breakdown model of human cognitive 
processes. These studies detected correlations between 
the behavior of developers and quality of software pro-
duction. Accordingly, it is desirable to exploit developer 
interaction information when building defect prediction 
models. 

Studying developer behavior is integral to the long-
term perspective on managing sustainable software quali-
 

1 Bug Prediction at Google, 
http://googleengtools.blogspot.com/2011/12/bug-prediction-
atgoogle.html 
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ty. Behavior-based software metrics can enlighten devel-
opers about best practices for improving the quality of 
software production. Developers must understand what 
is taking place in the development process and receive 
corrective feedback if any repeated error or inefficiency 
exists in their work behavior during development. 

To this end, we propose micro interaction metrics 
(MIMs) to capture the behavioral interactions of develop-
ers during development. We employ Mylyn2, an Eclipse 
plug-in for task-context storage and recovery [21]. Be-
cause developer interaction patterns affect software quali-
ty and developer productivity [18], [19], [20], metrics 
based on developer interactions can be important indica-
tors for predicting defects. In this paper, we compare the 
defect prediction performance of MIMs, CMs, and HMs 
using Eclipse subprojects that contain Mylyn data during 
the period between Dec 2005 and Jun 2010. Our evalua-
tion results show that MIMs significantly improve overall 
prediction accuracy when used along with CMs and HMs 
(Section 5.1). Moreover, they facilitate code inspection in a 
cost-effective way in terms of required effort, providing 
significant benefits with considerable defect detection 
(Section 5.2). Additionally, we acquire and compare 
MIMs from two different domains (open source versus 
closed source projects) to explore any difference of MIM 
ranks in terms of prediction contribution (Section 6.4). 

In addition to providing outstanding performance, 
MIMs have several other promising attributes. First, un-
like CMs and HMs, MIMs can provide fine-grained in-
formation. For example, a single commit to a source code 
repository such as CVS records the final snapshot of the 
changed code no matter how many micro changes have 
actually occurred on source code files. This abstraction is 
unfavorable in terms of collecting detailed information 
about code changes. Thus, MIMs can create a synergy 
with CMs and HMs to bolster the informative power of 
software metrics in practice. 

Second, MIMs are available early in the development 
process: they can be extracted as soon as task session logs 
are available in the integrated development environment 
(IDE) before code is committed to a repository. This is a 
major benefit, particularly in defect prediction applica-
tions. Early defect prediction can reduce the potential 
costs associated with late defect detection and remedia-
tion. 

Finally, MIMs provide inherently intuitive feedback to 
developers about their interactions that are most relevant 
to defect occurrence. By visualizing the MIMs, developers 
can realize their “as is” and “to be” states of quality man-
agement activities. If MIMs can be implemented in an 
IDE-centric tool, the feedback can provide developers 
with a warning and assist them in taking corrective ac-
tions if necessary. 

The full list of 24 MIMs is described in Table 1. Some 
MIMs are from our previous study [23]; these are marked 
with the dagger “†” symbol in Table 1. The unmarked 10 
MIMs are newly proposed in this paper. The contribu-
tions of this study are outlined as follows: 

 

2 Eclipse Mylyn, http://www.eclipse.org/mylyn 

 Propose a new complementary set of MIMs that cap-
ture developer interaction information. 

 Conduct an empirical evaluation on MIMs as defect 
predictors by using various measures (e.g., F-measure, 
cost-effectiveness, and predictive power based on gain 
ratio). 

 Present three additional case studies in industrial sec-
tors and report how the use of MIMs in industrial pro-
jects is different from that in open source projects 
(Eclipse). 

 Verify if main MIMs really depict well working habits 
of developers as they think by interview questions 

 Discuss empirical findings and the implications of the 
evaluation results and an application of MIMs as a 
software development tool. 

2 RELATED WORK 

Many researchers have proposed new defect prediction 
algorithms and/or new metrics. However, they do not 
explore and explain the research question of correlations 
between the behavioral working patterns of developers 
and post-release software defects. MIMs are a dedicated 
metrics suite that can be used to address this question. 

2.1 Defect Prediction Methods 

CMs such as Chidamber and Kemerer (CK) [13] are wide-
ly used for defect prediction. Basili et al. [24] applied CK 
metrics to eight information management systems. 
Ohlsson et al. [14] used several graph metrics, including 
McCabe’s cyclomatic complexity, on a telecom system. 
Subramanyam et al. [25] used CK metrics on a commer-
cial C++/Java system; Gyimothy et al. [26] performed a 
similar analysis on Mozilla. Nagappan and Ball [27] esti-
mated the pre-release defect density of Windows Server 
2003 using a static analysis tool. Nagappan et al. [6] used 
CMs to predict post-release defects at the module level in 
five Microsoft systems. Zimmermann et al. [28] applied 
several code metrics to Eclipse. 

In addition, HMs have been proposed and widely used 
for defect prediction. Nagappan et al. [29] proposed the 
code churn metric, which is related to the amount of 
changed code. They showed that code churn is very effec-
tive for defect prediction. Moser et al. [15] used the num-
ber of revisions, authors, past fixes, and file age as defect 
predictors. Kim et al. [4] used previous defect information 
to predict future defects. Hassan [2] adopted the concept 
of entropy for change metrics. They determined that their 
approach is often better than both the code churn ap-
proach and the method based on previous bugs. 
D’Ambros et al. [11] conducted an extensive comparison 
of existing bug prediction approaches using CMs, HMs, 
past defects, and the entropy of change metrics. In addi-
tion, they proposed two novel metrics: the churn and en-
tropy of source code metrics. 
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TABLE 1 
LIST OF MICRO INTERACTION METRICS. COLUMN PI SHOWS THE PERFORMANCE INDEX (PI) DENOTED BY THE NORMALIZED GAIN 

RATIO VALUE IN SECTION 5.3. 

Type Level Metrics Name PI Desciption 

Editing 

Interaction 

File NumEditEvent† 0.73 Number of edit events observed for a file. 

NumEditingDevelopers 1.00 Number of developers that edited a file in the history. A single file 

can be edited by more than one developer. 

Task NumRareEdit† 0.65 Number of edit events with low DOI attribute values (less than the 

median of the DOIs of all events in a task session). 

NumParallelEdit† 0.24 Number of files edited in parallel in a task session. For example, if 

task T has file edit events over time, such as f1, f2, f2, and f2, task T 

has file editions for only two distinct files; i.e., f1 and f2. Thus, 

NumParallelEdit becomes 2 for task T. 

NumRepeatedEdit† 0.27 Number of files edited more than one time during a task session. 

In the above example of NumParallelEdit, NumRepeatedEdit be-

comes 1 for task T. Only the file f2 was edited more than one time 

(three times).  

Browsing 

Interaction 

File NumSelectionEvent† 0.5 Number of selection events observed for a file. 

Task NumParallelBrws† 0.22 This definition is similar to that of NumParallelEdit except that it is 

for browsing events. Browsing events are a special case of selection 

events with an event time duration that is more than or equal to 1 

s. The time duration of an interaction event can be computed by 

referencing StartDate and EndDate attributes in a task session log 

(=EndDate-StartDate) 

NumRareBrws† 0.47 A definition similar to that of NumRareEdit, except for browsing 

events. 

NumRepeatedBrws† 0.22 A definition similar to that of NumRepeatedEdit, except for brows-

ing events. 

Time  

Interval 

File TimeSinceLastTask 0.23 Time elapsed since the last task for a file. It measures how recently 

developers have accessed the file. 

(Avg†|Max)TimeIntervalEditEdit 

(Avg†|Max)TimeIntervalBrwsBrws 

(Avg|Max)TimeIntervalBrwsEdit 

(0.24|0.31) 

(0.29|0.33) 

(0.2|0.34) 

Average/maximum time interval between sequential interaction 

events (e.g., between two editing events, between two browsing 

events, and between a browsing event and an editing event). 

Task NumInterruptions 0.16 Number of pauses in a task session. Count the cases in which the 

time gap between interaction events during a task session is great-

er than 15 min. Like Parnin et al. [19], we used the threshold of 15 

mins. 

Time 

Spent 

File HourPerEditing 

HourPerBrowsing 

0.54 

0.65 

Average time spent per an editing or browsing interaction event 

for a file. 

Task TimeSpent† 

TimeSpentBeforeEdit† 

TimeSpentAfterEdit† 

0.16 

0.21 

0.22 

TimeSpent: Total time in finishing a task session. TimeSpentBe-

foreEdit and TimeSpentAfterEdit: Spans of time before the initial edit 

and after the last edit during a task session. 

Work 

Effort 

Task NumMultiTasks† 0.28 Number of multiple tasks assigned to the same developer during a 

working period of time for a given task. 

RatioCodeUnderstandingEffort 0.27 Time spent browsing files divided by the total task session time (= 

browsing time + editing time). We assumed a portion of the time 

spent in browsing files was for understanding code given in a task. 
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Other defect prediction methods have likewise been 
proposed. Khomh et al. [31] studied the impact of anti-
patterns; i.e., deficient design choices against object-
oriented systems. They found that the presence of anti-
patterns is a powerful predictor of both defects and 
change rates in systems. Zimmermann and Nagappan [9] 
predicted defects in Windows Server 2003 using network 
analysis of dependency graphs among binaries. They 
used dependency graphs to identify defect-prone central 
program units. Meneely et al. [32] proposed developer 
social network-based metrics to capture the developer 
collaboration structure and predict defects using it. Bac-
chelli et al. [33] proposed popularity metrics based on e-
mail archives. They assumed that the most discussed files 
were more defect-prone. 

2.2 Developer Interaction History 

Recently, researchers have used developer interaction 
histories to facilitate software development and mainte-
nance. Kersten et al. [21], [34] proposed a task context 
model and implemented Mylyn to store/restore the task 
context when developers switch their task context. Be-
cause Mylyn is becoming increasingly popular, the data 
sets of developer interaction histories are being frequently 
captured. Murphy et al. [35] analyzed statistics relating to 
IDE usage by employing Mylyn data. They identified the 
most frequently employed user interface components and 
commands. By analyzing Mylyn task session data, Ying 
and Robillard [36] found that different types of tasks (e.g., 
bug-fixing or feature enhancement) are associated with 
different editing styles. This is useful information for 
software development tool designers. 

Parnin et al. [19] presented an in-depth study about de-
veloper interruption times and suitable strategies for re-
suming an interrupted programming task. Parnin et al. 
showed that the time interval between developer interac-
tion activities during a task session is usually less than 
one minute (i.e., developer interruption time generally 
exceeds one minute when an interruption occurs). In ad-
dition, they showed that developers engage in a variety of 
non-editing activities (e.g., navigation of recorded notes, 
assigned task history, and code revision history) to recov-
er task context before making their first edit in a session. 

Robbes and Lanza [37] developed a software evolution 
monitoring prototype to understand fine-grained devel-
opment session information that is not usually recorded 
by current version control systems. By monitoring devel-
opers’ IDE usage pattern, their approach captures seman-
tic change of individual operations occurred between de-
veloper commits. In addition, Robbes et al. [38] take ad-
vantage of the fine-grained semantic changes and pro-
pose new logical-coupling measurements to detect logi-
cally coupled software entities by measuring how often 
they changed together during development. Zou et al. 
[39] discussed how interaction coupling could be detected 
in task interaction histories and their case study showed 
that information pertaining to interaction coupling is 
helpful for comprehending software maintenance activi-
ties. 

Shin et al. [10] used developer activity metrics, such as 

team cohesion, miscommunication, and misguided effort, 
to predict software vulnerabilities. Bettenburg et al. [40] 
investigated how information relating to the social struc-
tures and communications between developers and users 
could be used to predict software quality. Bettenburg et 
al. quantified the degree of social communication interac-
tions among people. Shin et al. and Bettenburg et al. [10], 
[40] addressed defect prediction issues by using infor-
mation pertaining to developer activities and communica-
tions. However, the above studies do not explore the ef-
fects of comprehensive interactions of a developer in the 
IDE. 

3 MICRO INTERACTION METRICS 

In this section, we introduce background of Mylyn and 
explain our proposed MIMs in detail. 

3.1 Mylyn 

To extract MIMs, we used Mylyn, which records and 
shares the context of developer tasks and interactions. 
Technically, the Mylyn Monitor3 enables collecting infor-
mation about developer activities in Eclipse. Figure 1 
shows Mylyn task session logs, which consist of several 
‘InteractionEvent’ tags in XML format. The ‘Kind’ attrib-
ute denotes the interaction type—selection, edit, com-
mand, propagation, prediction, and manipulation—as 
shown in Figure 1. For example, edit events are recorded 
when developers edit a file. Propagation events occur 
when a developer uses automatic refactoring features in 
Eclipse. 
 

 
Fig. 1. Mylyn log data and interaction event type 

Each event is recorded with attributes such as 
‘StartDate,’ ‘EndDate,’ ‘StructureHandle,’ and ‘Interest.’ 
The ‘StartDate’ and ‘EndDate’ attributes represent the 
event start and end times. The ‘StructureHandle’ attribute 
denotes the corresponding files and methods in the event. 
For edit events, for example, the ‘StructureHandle’ attrib-
ute indicates the file being edited. The ‘Interest’ value, or 
degree of interest (DOI), indicates the developer’s interest 
in the corresponding file. The DOI value is measured by 
 

3 http://wiki.eclipse.org/Mylyn_Integrator_Reference 

…

<InteractionEvent … />

…

<InteractionEvent StructureKind="java" 

StructureHandle="=org.eclipse.mylyn.tasks.cor

e/src&lt;org.eclipse.mylyn.tasks.core

{AbstractTask.java[AbstractTask~addParentCont

ainer~QAbstractTaskContainer;" StartDate= 

"2007-11-25 05:54:35.595 PST"

OriginId="org.eclipse.jdt.ui.CompilationUnitEditor

"  Navigation="null" Kind="edit" Interest="3.0" 

EndDate="2007-11-25 05:55:34.314 PST"

Delta="null" />

…

<InteractionEvent … />

…
Type Description

Selection Select a file in the explorer

Edit Edit a file in the editor

Command Invoke command by developer

Propagation Propagated interaction

Prediction Predict future interaction

Manipulation Manipulation DOI value

Mylyn Task Session Log

Interaction Types
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the frequency of interactions with a file element and the 
recency of interactions, which help developers identify 
relatively important files for a task. Mylyn automatically 
computes DOI values [21], [34]. More information about 
Mylyn and its data are available at the Mylyn project 
home page. 

In this study, we considered only the direct events ‘Se-
lection’ and ‘Edit’ that are generated when accessing files. 

3.2 Design of MIMs  

In this section, the design rationale for MIMs and their 
two design levels—file and task—which are derived from 
Mylyn task session data, are described. 

3.2.1 Design Rationale 

The design goal of MIMs is to catch developer interac-
tions that are associated with committing errors. We con-
sidered the following hypothetical possibilities for error-
prone developer interactions from existing exploratory 
studies: interruptions during task sessions [19], [20], fre-
quent task switching (i.e., a short time for code under-
standing before starting a new or previous task context) 
[18], any out-focused file accessing off the mainstream of 
the task context [34], and repeated editing of files with 
many previous changes [4]. These may directly or indi-
rectly have a negative impact on developers’ productivity 
and/or the quality of their code. 

 
TABLE 2 

MIM DESIGN IN TERMS OF THE GOAL QUESTION METRIC 

Goal: Find behavioral interactions of developers that may degrade 

software quality 

Goal-driven Questions Related MIMs 

GQ1 - How frequently do 

developers edit files? 

NumEditEvent 

NumParallelEdit 

NumRareEdit 
NumRepeatedEdit 

NumEditingDevelopers 

GQ2 - How frequently do 

developers browse files? 

NumSelectionEvent 

NumParallelBrws 
NumRareBrws 

NumRepeatedBrws 

GQ3 - When was the most 
recent work? (How much time 

has passed since the last task?) 

TimeSinceLastTask 

GQ4 - How much time do 
developers spend to work on 

files? 

HourPerEditing 
HourPerBrowsing 

TimeSpent 

TimeSpentBeforeEdit 
TimeSpentAfterEdit 

GQ5 - How many times are 

developers interrupted? (Or: 

How long are time intervals 
with no activity?) 

NumInterruptions 

(Avg|Max)TimeIntervalEditEdit 

(Avg|Max)TimeIntervalBrwsBrws 
(Avg|Max)TimeIntervalBrwsEdit 

GQ6 - How many tasks do 

developers undertake at a given 
time? 

NumMultiTasks 

 

GQ7 - How many times do 

developers work on rarely 

accessed files in a task context? 

NumRareBrws 

NumRareEdit 

 

GQ8 - How much time do 

developers take to understand 

an assigned task (or to recover 
a task context) before making 

their first edit, or to review 

what they have done after their 
last edit? 

TimeSpentBeforeEdit 

TimeSpentAfterEdit 

RatioCodeUnderstandingEffort 

The Goal Question Metric (GQM) [43] was internally 
used at a high-level to answer several interesting ques-
tions regarding MIM measures. GQM defines a meas-
urement model with three levels: conceptual (a goal is 
defined to explain measurement reasons), operational 
(questions are asked to study and achieve the specific 
goal), and quantitative (metrics are associated with ques-
tions to enable the answering of each one in a measurable 
way). Table 2 outlines our objective, interesting questions, 
and associated MIMs to answer the corresponding ques-
tions; some MIMs are included in multiple question cate-
gories. In Section 5.4, these question categories (GQs) are 
evaluated to show which ones are relatively more effec-
tive at predicting defects. 

3.2.2 File vs. Task Design Levels 

Mylyn data basically comprises task-level session in-
formation; a single task can involve one or several files 
(see Figure 2). Therefore, we captured properties from 
two different dimensions when designing MIMs: file level 
and task level. Some MIMs are computable at the file lev-
el, while others are computable at the task level. The de-
sign level of each MIM is delineated in Table 1. 

 
Fig. 2. Time split for extraction of metrics and post-

defect counting periods 
 

File-level MIMs capture specific interactions of a devel-
oper on a certain file in task sessions. NumEditEvent is a 
file-level MIM; it counts the number of edit events for a 
file in a task session. In Figure 2, for example, Task 4 has 
edit events for files ‘f1.java’ and ‘f2.java.’ NumEditEvent 
for the specific file ‘f2.java’ will be just one in terms of file 
level, even though Task 4 has a total of two file-edit 
events in a task-level unit. 

By contrast, task-level MIMs capture task-scoped prop-
erties over a task session, rather than file-specific interac-
tions. For example, NumInterruptions is a representative 
task-level MIM; it counts the number of temporal pauses 
between interaction events during the overall task ses-
sion.  

Thus, task-level MIMs characterize a global property 
over a task session; moreover, they affect the local file-
level activities of developers within the given session. For 
example, using information from Figure 2, suppose that a 
developer worked on Task 4 in very distracting condi-
tions. NumInterruptions for Task 4 would be measured 
with a high value. In the meantime, Task 4 has interaction 
events for two files, ‘f1.java’ and ‘f2.java,’ meaning that 
these two Task 4 files were edited in negative working 
conditions (i.e., with a high frequency of interruptions). 
Thus, the surrounding properties (workspace conditions) 
measured by the task-level MIMs would affect the quali-
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ties of the sub-associated activities, such as file editing 
and browsing. Therefore, file instances with the same task 
session ID would share the same properties as task-level 
MIMs. Conclusively, in the Task 4 example of Figure 2, 
the two file instances, ‘f1.java’ and ‘f2.java,’ would have 
the same metric value of NumInterruptions.  

4 EXPERIMENTAL SETUP 

In this section, we describe our experimental setup for 
comparing the performance of MIMs with CMs and HMs 
for defect prediction. In addition, we present our research 
questions, overall experimental process, and a baseline 
dummy classifier for the performance comparison. 

4.1 Research Questions 

To evaluate MIMs, we define four research questions as 
shown in Table 3. RQ1 and RQ2 were studied with 
Eclipse project data. Then, case studies on three industrial 
projects were conducted to address RQ3. For RQ1, we 
tested whether MIMs are useful as cost-effective indica-
tors of software quality. Then, for RQ2, we identify posi-
tive and negative developer behavioral interactions for 
software quality assurance. Lastly, for RQ3 and RQ4, we 
investigated how MIMs function in commercial projects 
and MIM ranks vary in 7 different project domains (i.e., 
open source plus commercial projects). The evaluation of 
each of the above questions is respectively presented in 
Sections 5.1 (RQ1), 5.3 (RQ2), 6.2 (RQ3), and 6.3 (RQ4).  
 

TABLE 3 
RESEARCH QUESTIONS 

RQ1  Can MIM improve defect prediction performance when 

used with existing code metrics (i.e., CM and HM)? 

RQ2  What MIMs are particularly effective contributors to defect 

prediction improvement? 

RQ3 Are MIMs effective as defect predictors in commercial 

projects compared to a random predictor? 

RQ4  How do MIM ranks vary in different project domains (e.g., 

open source plus commercial projects)? 

 

4.2 Experimental Process 

In defect prediction experiments, we used the common 
bug classification process [7], [8], [15], as shown in Figure 
3, which helps predict whether a given unknown file in-
stance is buggy. 

 

Fig. 3. Steps involved in defect prediction process 

First, we collect all valid files from Mylyn task session 
logs as instances (in the machine learning sense) and 
count the number of post-defects in each file. Here, post-
defects refer to the number of defects reported after a 
software release (e.g., time P in Figure 2). We label a file 
as ‘buggy’ if it contains at least one post-defect. Other-
wise, we label the file as ‘clean.’ The post-defect counting 
process is detailed in Section 4.2.2. Then, we extract the 
MIMs, CMs, and HMs for each instance, as explained in 
Section 4.2.3. Finally, we train the prediction models us-
ing the machine-learning algorithms implemented in We-
ka [45]. The trained prediction models classify instances 
as ‘buggy’ or ‘clean.’ 

4.2.1 Data Integrity Checking 

Before data collection, we checked the data integrity of 
the Mylyn task session log by investigating an actual task 
scenario of a developer of one of the commercial projects 
of Table 11 and the recorded Mylyn log. We asked for 
permission to record video while the developer was 
working on the task. The video4 could correctly explain 
what he did over time and when he was interrupted dur-
ing the task session. Therefore, we could check if interac-
tion events recorded in the Mylyn task session log in fact 
captured the developer’s actual behaviors inside the vid-
eo. Table 4 is the Myln task session log recorded for the 
video. By comparing the Mylyn log with the video, we 
obtained a clear understanding of the general structure of 
the Mylyn task session logs and recognized what was 
required to preprocess over the raw log data. Following is 
what we determined: 
 
 The Mylyn log correctly depicted four files that were 

actually browsed or edited in the video. The length 
of the recorded Mylyn log and length of the actual 
work scenario of the video were consistent. The total 
editing and browsing times in the Mylyn log also 
corresponded to the ones observed in the video. 

 
 Some events in the log had zero time duration; their 

StartDate and EndDate attributes were the same (e.g., 
ID 17 or 22 in Table 4). This type of event occurred 
when a file was initially opened by double-clicking 
or when it was skimmed without meaningful actions. 
Thus, these events did not actually capture a valid 
time duration of developer interactions. Therefore, 
we filtered out the events with zero time duration 
when extracting MIMs that quantify developer activ-
ities of actual file browsing and editing interactions 
in Figure 3. 

 
 The attribute StartDate of an event was initially 

marked when a file (or a method) of StructureHan-
dle gets a developer’s focus on the Package Explorer 
window tab or on the Editing window tab in the 
Eclipse IDE. The attribute EndDate of an event was 
updated when the focus was lost from the Editing 
window tab by moving onto other entities of Struc-
tureHandle. 

 

4 http://youtu.be/gfZ0T3AjCaM 
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 There was a certain span of an empty time zone in 

which no update of StartDate or EndDate was ob-
served. During the period of empty time, we could 
confirm that the developer was doing nothing in the 
Eclipse IDE. For example, there was no update of 
StartDate or EndDate in an event between 17:01:46 
and 17:05:06 in Table 4; we confirmed that the devel-
oper engaged in activities of web surfing to obtain 
some information and was working on a database 
during that very time period in the video (16m:59s–
20m:19s). 

 
TABLE 4 

LOG EXAMPLE OF A MYLYN TASK SESSION USED IN DEVELOP-

ER’S VIDEO INVESTIGATION 

 

4.2.2 Data Collection and Defect Counting (Step 1) 

In our experiments, we used a total of 5,973 Mylyn task 
sessions from Eclipse Bugzilla between December 2005 
and June 2010.5  

We set the release time P of Eclipse 3.5 (Galileo at June 
24, 2009) to explicitly separate the metric extraction peri-
od and post-defect counting period, as shown in Figure 2. 
All metrics (MIMs, CMs, and HMs) for instances were 
computed before P; post-defects were counted after P. 

The instances had to be present in both time periods 
(i.e., before and after time P) for the collecting of metrics 
and counting of defects. If a file was not present during 
the metric collection period, no metrics were available to 
build prediction models. On the other hand, if a file was 
not present in the post-defect counting period, the defect 
number for the file was always zero, which was mislead-
ing. To ensure that we only used files that existed in both 
periods, we confirmed their existence in the Eclipse CVS 
 

5 Mylyn was released in December 2005 and has been widely used since then. 

repository. 
We used edited file information in Mylyn tasks to 

count post-defects. Each task session log is directly at-
tached to a bug report; therefore, we checked whether the 
resolution of the corresponding bug report indicated a 
fixed bug or not. If it was not fixed or not a bug (e.g., it 
was a feature enhancement or trivial issue), we did not 
count the edited files in the task as post-defects. For ex-
ample, suppose that Tasks 5 and 6 were registered in the 
fixed bug reports, while Task 7 was registered as a feature 
enhancement bug report, as shown in Figure 2. In this 
case, the post-defect number of ‘f3.java’ would be two, 
because Task 7 was for feature enhancement. 

In our experiments, we did not use conventional post-
defect counting heuristics [46], [47] because they are lim-
ited in obtaining defect information. The links between 
bugs and committed changes (e.g., CVS) are typically au-
tomatically mined from change logs and bug reports us-
ing heuristics, such as searching for specific keywords 
(e.g., ‘bug’ or ‘fix’) and bug IDs in the change logs. How-
ever, the accuracy of these heuristics depends on the qual-
ity of the change logs. Bird et al. [51] found that there are 
many missing links because of the absence of bug refer-
ences in change logs. Developers possibly do not leave 
change logs even if they actually fixed bugs in the code 
change, or they provide a wrong bug reference in the 
logs. The absence of bug references in change logs results 
in biased defect information and affects defect prediction 
performance. 

CVS logs are manually recorded by developers, 
whereas Mylyn task logs are automatically recorded by 
the Eclipse IDE tool and linked (attached) to the corre-
sponding bug report in the Bugzilla. Therefore, Mylyn 
logs are more beneficial than CVS logs. 

4.2.3 Metric Extraction (Step 2) 

The extraction of MIMs is straightforward. First, file-level 
MIMs are computed for file instances. For task sessions, 
only the specific interaction events that target a file in-
stance are aggregated from the metric extraction period 
(Figure 2). Then, file-level MIMs for the file instance are 
computed with the specific event data. Second, task-level 
MIMs are computed and propagated to sub-activities of 
associated files, as explained in Section 3.2.2. 

If a file has been edited many times during several 
tasks, the file will have multiple MIM values that have 
been computed from each task. Thus, the average of these 
values is adopted for the file instance. As shown in Figure 
2, for example, ‘f1.java’ takes two different values com-
puted from Tasks 2 and 4 so that the two values are aver-
aged and handled as the final MIM value of the file. 
However, in the case of MaxTimeInverval* metrics, the 
maximum of the multiple values is handled as a final 
MIM value. 

To evaluate performance, CMs and HMs were addi-
tionally extracted during the metric extraction period 
(Figure 2). Because CMs are snapshot metrics, they are 
extracted at time P. The Understand tool6 was used to 

 

6 Understand 2.0, http://www.scitools.com/products/understand/ 

ID  Kind  StartDate  EndDate StructureHandle

1 selection 16:44:47 17:10:14 BuildArchApproach.java

2 selection 16:48:44 16:52:37 BuildArchApproach.java

3 edit 16:48:45 16:49:28 BuildArchApproach.java

4 selection 16:45:50 16:48:38 BuildArchApproach.java

5 edit 16:45:53 16:47:34 BuildArchApproach.java

6 selection 16:57:55 17:09:21 BuildArchApproachModel.java

7 selection 16:49:36 17:10:14 BuildArchApproach.java

8 edit 16:49:39 17:10:17 BuildArchApproach.java

9 selection 16:57:53 17:09:21 BuildArchApproachModel.java

10 selection 16:47:38 16:47:38 BuildArchApproach.java

11 edit 16:47:55 16:47:55 BuildArchApproach.java

12 selection 16:49:34 16:49:34 BuildArchApproach.java

13 selection 16:45:19 17:09:47 AKToolMain.java

14 selection 16:45:24 16:45:24 BuildArchApproach.java

15 selection 17:09:47 17:09:47 AKToolMain.java

16 selection 17:16:32 17:18:02 BuildArchApproachDB.java

17 edit 17:18:05 17:18:05 BuildArchApproachDB.java

18 selection 16:45:08 16:45:21 BuildArchApproach.java

19 edit 16:45:21 16:45:22 BuildArchApproach.java

20 selection 16:57:54 16:57:54 BuildArchApproachModel.java

21 selection 16:58:14 17:10:21 BuildArchApproachDB.java

22 selection 16:53:10 16:53:10 BuildArchApproach.java

23 selection 16:58:14 17:18:07 BuildArchApproachDB.java

24 edit 16:58:23 17:18:01 BuildArchApproachDB.java
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extract the CMs. The tool extracts 24 file-level and 18 
class-level metrics, such as CK [13] and object-oriented 
metrics. If a file has more than one class, the file-level 
metrics are derived from multiple class-level metrics. The 
Understand tool provides two types of metrics: ‘Avg*’ 
and ‘Count*.’ ‘Avg*’ class-level metrics are averaged to 
generate file-level metrics from multiple classes in a file. 
However, the values are summed together when the file-
level metrics are extracted from ‘Count*’ class-level met-
rics. All 42 of the CMs used in our experiments are listed 
in Table 5.  

 
TABLE 5 

LIST OF SOURCE CODE METRICS (CMS) 

Metrics Description 

AvgCyclomatic Average cyclomatic complexity 

MaxCyclomaticStrict Maximum strict cyclomatic complexity 

CountLine Number of all lines 

CountLineBlank Number of blank lines 

RatioCommentToCode Ratio of comment lines to code lines 

MaxCyclomaticModified Maximum modified cyclomatic complexity 

AvgCyclomaticModified Average modified cyclomatic complexity 

AvgEssential Average Essential complexity 

CountDeclFunction Number of functions 

CountStmtExe Number of executable statements 

CountStmt Number of statements 

CountLineCodeDecl Number of lines containing declarative code 

CountSemicolon Number of semicolons 

CountLineCode Lines of code 

AvgCyclomaticStrict Average strict cyclomatic complexity 

CountLineCodeExe Number of lines containing executable code 

MaxCyclomatic Maximum cyclomatic complexity 

CountLineComment Number of lines containing comment 

CountDeclClass Number of classes 

CountStmtDecl Number of declarative statements 

SumCyclomaticStrict Sum of strict cyclomatic complexity 

SumCyclomatic Sum of cyclomatic complexity (WMC) 

SumCyclomaticModified Sum of modified cyclomatic complexity 

SumEssential Sum of essential complexity of methods 

AvgLine Average number of lines 

AvgLineBlank Average number of blank 

AvgLineCode Average number of code lines 

AvgLineComment Average number of comment lines 

PercentLackOfCohesion Lack of cohesion in methods (LCOM) 

CountClassBase Number of immediate base classes 

CountClassCoupled Coupling between object classes (CBO) 

CountClassDerived Number of child classes (NOC) 

CountDeclClassVariable Number of class variables (NIV) 

CountDeclInstanceMethod Number of instance methods (NIM) 

CountDeclInstanceVariable Number of instance variables 

CountDeclMethod Number of local methods (NOM) 

CountDeclMethodAll Number of local methods (RFC) 

CountDeclMethodDefault Number of local default methods 

CountDeclMethodPrivate Number of local private methods (NPM) 

CountDeclMethodProtected Number of local protected methods 

CountDeclMethodPublic Number of local public methods (NOPM) 

MaxInheritanceTree Maximum depth of Inheritance Tree (DIT) 

 

In addition, 15 HMs were collected by using the ap-
proach of Moser et al. [15]. All HMs were collected from 
the change history stored in the Eclipse CVS repository 
(http://archive.eclipse.org/arch/). They are listed in Ta-
ble 6. 

The Refactorings metric, which is an indicator of wheth-
er a file change involved refactoring [15], was obtained by 
mining CVS commit logs. We counted the number of re-
factored revisions of a file by searching the keyword ‘re-
factor’ in commit logs [15]. The Age metric indicates the 
period when a file existed [15]. The BugFixes metric repre-
sents the number of fixed bugs. To count BugFixes, we 
used a search for explicit Bugzilla bug IDs in the commit 
logs. 

Fixed bugs (and not feature enhancements) were 
marked as bug-fix changes [15]. Specific keywords, such 
as ‘bug’ or ‘fix,’ were searched (‘postfix’ and ‘prefix’ were 
excluded [15]). 

 
TABLE 6 

LIST OF HISTORY METRICS (HMS) 

Metrics Description 

Revisions # of file revisions  

Refactorings # of times a file was refactored 

BugFixes # of times a file was involved in bug fixes 

Authors # of distinct authors committing a file 

LOC_Added Sum of the lines of code added to a file 

Max_LOC_Added Maximum number of lines of code added 

Avg_LOC_Added Average number of lines of code added 

LOC_Deleted Sum of the lines of code deleted in a file 

Max_LOC_Deleted Maximum number of lines of code deleted 

Avg_LOC_Deleted Average number of lines of code deleted 

CodeChurn Sum of (added LOC - deleted LOC) 

Max_CodeChurn Maximum CodeChurn for all revisions 

Avg_CodeChurn Average CodeChurn per revision 

Age Age of a file in weeks 

Weighted_Age Age considering LOC_Added 

4.2.4 Creating a Training Corpus (Step 3) 

To evaluate MIMs under the different subjects listed in 
Table 7, a training corpus of Eclipse subproject groups 
was constructed for the Metrics extraction period in Figure 
2. Actually, the selected projects (subjects) consist of a 
larger volume of source code files than the number of 
instances listed in Table 7. Nevertheless, for experimental 
purposes, we used only the file instances that simultane-
ously existed in both Mylyn task session logs and CVS 
change logs.  

We divided the subjects as follows: Mylyn, Team, 
JDT/Core, Etc., and All. The Mylyn subject comprised the 
collected files belonging to the package names 
org.eclipse.mylyn or org.eclipse.mylar7; i.e., the Eclipse sub-
project Mylyn. The Team subject included files that be-
longed to the package name org.eclipse.team; i.e., the 
Eclipse platform subproject Team. Likewise, the instance 
files belonging to the package names org.eclipse.jdt and 
org.eclipse.core were grouped to the JDT/Core subject. All 
remaining package names were grouped as the Etc. sub-
 

7 Mylar is the former name of Mylyn. 
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ject, which consisted of the Eclipse plug-in development 
environment (26%), Eclipse platform user interface 
(13.5%), JFace (10.3%), Eclipse platform compare (7.4%), 
Equinox (6.8%), and others (36%). Lastly, the All subject 
included all files of Mylyn, Team, JDT/Core, and Etc.  
 

TABLE 7 
FILE INSTANCES AND POST-DEFECTS COLLECTED BEFORE AND 

AFTER P, RESPECTIVELY, IN FIGURE 2 

Subjects 
# of 

instances 
(files) 

% of  
defects 

# of  
involved  

developers 

% of change  
history  

coverage 
Mylyn 1084 16.9% 37 73% 

Team 364 40.1% 3 1% 

JDT/Core 244 12.7% 12 9% 

Etc. 1385 11.2% 39 19% 

All 3077 16.7% 91 20% 

 
The term “coverage” in Table 7 represents the percent-

age that the instances cover the change history in the CVS 
logs. For example, 20% coverage of the All subjects indi-
cates that the 3,077 file instances covered 20% of all the 
change files observed in the CVS logs during the data 
collection period. 

4.2.5 Building a Prediction Model (Step 4) 

A process of feature selection [49] is required to select 
effective features (i.e., metrics) for use in model construc-
tion. The metrics extracted in Section 4.2.3 were used as 
features to build a prediction model. We used the correla-
tion-based feature subset (CFS) [59] for feature selection. 
Using CFS is to resolve the multicollinearity problem be-
tween correlated features [49]. CFS is an algorithm that is 
used to search for a more greatly reduced size of a subset 
of features without irrelevancy and redundancy between 
features in the classification problems [60]. For our pur-
pose, CFS can be used to select an appropriate size of an 
effective subset of metrics, thereby avoiding the model 
construction overfitting problem. CFS evaluates the 
worth of a subset of metrics by considering the individual 
predictive ability of each metric along with the degree of 
redundancy between them. Subsets of metrics that are 
highly correlated with the buggy class while having a low 
inter-correlation are preferred. 

In CFS-based feature selection, the ten-fold cross vali-
dation process was used. The training corpus data was 
split into ten folds; CFS selected the best features (metrics) 
in a fold. This selection process was iterated for each of 
the ten folds. Finally, only the metrics that were nominat-
ed at least more than twice (in two different folds) were 
finally adopted in the model construction. 

Next, a classification algorithm was required to build 
the prediction model for the created corpus. The random 
forest algorithm implementation in Weka [47] was pri-
marily used in our experiments because its performance 
was good, as noted in Section 5.1.3. Random forest [42] is 
a meta-algorithm consisting of many decision trees that 
outputs the class that is the mode of the classes output by 
individual trees. There have been several other studies 
using this algorithm for bug prediction on account of its 
good performance [12], [56]. 

In addition, for the performance comparison experi-

ment outlined in Section 5.1.3, prediction models using 
other machine learning algorithms were built, such as 
naive Bayes, logistic regression, decision tree, and ran-
dom forest. 

4.2.6 Prediction and Evaluation (Step 5) 

To evaluate the accuracy of our prediction models, F-
measure was used. A composite measure of precision and 
recall, F-measure is widely used in data mining [49], [50]. 
We used the following outcomes to define precision, re-
call, and F-measure: predicting a buggy instance as buggy 
(b→b); predicting a buggy instance as clean (b→c); and 
predicting a clean instance as buggy (c→b). 
 

 Precision: The number of instances correctly classi-
fied as buggy (Nb→b) divided by the total number of 
all instances classified as buggy. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑃(𝑏) =  
𝑁𝑏→𝑏

𝑁𝑏→𝑏 + 𝑁𝑐→𝑏

            (1) 

 Recall: The number of instances correctly classified 

as buggy (Nb→b) divided by the total number of real 

buggy instances. 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑅(𝑏) =  
𝑁𝑏→𝑏

𝑁𝑏→𝑏 + 𝑁𝑏→𝑐

                (2) 

 F-measure: A harmonic mean of precision P(b) and 
recall R(b) for buggy instances. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝐹(𝑏) =  
2 × 𝑃(𝑏) × 𝑅(𝑏)

𝑃(𝑏) + 𝑅(𝑏)
      (3) 

As a model validation technique, we used ten-fold 
cross validation, which has been widely used in previous 
studies [3], [15], [32], [49] to avoid overfitting. An F-
measure value obtained from ten-fold cross validation 
varies because ten folds are randomly partitioned. There-
fore, ten-fold cross validation was repeated 10 times for 
each model to avoid any sampling bias [60], [65], [66] by 
randomizing order of the dataset before each cross valida-
tion. 

For a hypothesis test, particularly concerning RQ1 (Ta-
ble 3), we used the Wilcoxon rank-sum test (also known 
as the Mann–Whitney U test) [44] instead of t-test because 
F-measure outcomes from cross validation did not follow 
a Normal distribution as shown Figure 4. The Wilcoxon 
rank-sum test is a non-parametric statistical hypothesis 
test that assesses whether one of two samples in inde-
pendent observations has higher values. If the p-value is 
smaller than 0.05 (at a 95% confidence level), the null hy-
pothesis H0 is rejected and the alternative hypothesis Ha is 
accepted. For RQ1, the null hypothesis H0 is “F-measure 
has no statistical difference between MIM+CM+HM and 
CM+HM for the experiment conditions.” The alternative 
hypothesis Ha is “F-measure of MIM+CM+HM is higher 
than that of CM+HM in the experiment conditions.” 

In addition, the prediction models were evaluated in 
terms of cost effectiveness (effort). Different defect predic-
tion models may have variable quality assurance costs 
when they are adopted. Defect prediction models were 
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used to prioritize files from the highest likelihood to the 
lowest likelihood in terms of defect proneness; then, the 
prioritized files were inspected in turn. Therefore, the cost 
of code inspection to find defects was reduced by as 
much as the prediction model was accurate. The details 
are presented in Section 5.2. 

4.3 Dummy Classifier 

To simplify the performance comparison, a baseline was 
introduced: the so-called dummy classifier, in which a 
change file is randomly guessed as buggy or clean. Be-
cause there are only two labels of changes, buggy and 
clean, the dummy predictor can also achieve a certain 
prediction accuracy. For example, if 16.7% of changes in a 
project are buggy, by predicting all changes as buggy, the 
buggy recall would be 1, and the precision would be 
0.167. In addition, the dummy predictor can randomly 
predict that a change is buggy or clean with a 0.5 proba-
bility. In this case, the buggy recall would be 0.5; howev-
er, the precision would still be 0.167. In our experiment, 
the F-measure of the dummy predictor was used as a 
baseline when showing the classification results; i.e., as-
suming that the dummy predictor randomly predicts 50% 
as buggy and 50% as clean. For example, for a project 
with 16.7% buggy changes, as shown in Table 7, the 

dummy buggy F-measure would be 0.25 (= 2 ×
0.5×0.167

0.5+0.167
). 

5 PERFORMANCE EVALUATION RESULTS 

In this section, we present evaluation results primarily for 
the research questions RQ1 and RQ2 shown in Table 3. 

5.1 Performance Improvement with MIM 

This section evaluates the contribution of MIMs in terms 
of performance improvement under several experimental 
conditions such as different subjects, different model 
training periods, and different machine learners.  

5.1.1 Different Subjects 

To evaluate MIM prediction performance, we compared 
metric sets, as shown in Figure 4. Defect prediction mod-
els were built for the five different subjects, as shown in 
Table 7. Only the metrics selected by CFS (Section 4.2.5) 
were used in the model building. 
 

TABLE 8 
METRICS SELECTED BY CFS IN EACH METRICS SUITE FOR ALL 

SUBJECT 

Metrics Suite Selected Metrics 

MIM+CM+HM 
MIM-HourPerBrowsing, MIM-NumEditEvent, MIM-
NumEditingDevelopers, MIM-NumRareEdit, CM-
CountLineComment, CM-AvgLineCode 

CM+HM 
CM-CountStmtExe, CM-CountDeclMethodAll, HM-
#ofBugFixing, HM-#OfRevision, HM-Age, HM-
WeightedAge 

MIM 
HourPerBrowsing, NumEditEvent, NumEditingDevel-
opers, NumRareEdit 

HM #ofBugFixing, #OfRevision, Age, WeightedAge 

CM 

MaxCyclomaticStrict, CountLine, RatioCommentTo-
Code, AvgCyclomaticModified, CountDeclFunction, 
CountStmtExe, CountLineComment, SumCyclomat-
icStrict, SumEssential, AvgLine, AvgLineCode, 
CountDeclInstanceMethod, CountDeclMethodAll 

 
Table 8 shows the selected metrics for each metrics 

suite in the All subject. The model training period covered 
December 2005 to June 2009. The trained models predict-
ed post-defects reported during the future period of one 
year after the Eclipse release time P (June 2009 in Figure 
2). 

 
Fig. 4. Performance comparison of prediction models by different 
subjects. Vertical lines are each median of F-measure distributions. 

TABLE 9 
F-MEASURE MEDIANS AND EFFECT SIZES FOR EACH METRIC SET 

IN DIFFERENT SUBJECTS. FIGURES WITHOUT PARENTHESES ARE 

MEDIANS, AND THOSE WITH PARENTHESES ARE EFFECT SIZES 

COMPARATIVE TO MIM+CM+HM 

Subject 
MIM+CM 

+HM 
CM+HM MIM HM CM Dummy 

All 0.494 
0.313 

(-0.941) 
0.53 

(+0.356) 
0.315 

(-0.927) 
0.154 
(-1) 

0.25 

Mylyn 0.4 
0.321 

(-0.376) 
0.385 

(-0.073) 
0.338 

(-0.353) 
0.25 

(-0.629) 
0.25 

Team 0.666 
0.52 

(-0.646) 
0.642 

(-0.103) 
0.52 

(-0.646) 
0 

(-1) 
0.44 

JDT-Core 0.333 
0 

(-0.454) 
0.366 

(+0.099) 
0.076 

(-0.321) 
0 

(-0.267) 
0.20 

Etc 0.6 
0.285 

(-0.952) 
0.62 

(+0.072) 
0.263 

(-0.982) 
0.086 

(-0.999) 
0.18 

 
Figure 4 shows the performance of each set of metrics 

in different subjects in terms of F-measure distributions 
from 10 times ten-fold cross validations. We gained 100 F-
measures from the repeated cross validation process and 
drew density plots (histograms) with the 100 F-measures.  

Although the F-measure values varied, there was a 
clear trend in which MIM+CM+HM outperformed 
CM+HM for every subject. In other words, adding MIM 
to CM+HM improved the prediction performance of the 
existing CM and HM. In addition, there was an overall 
trend in which the MIM performed better than the CM 
and HM for all the subjects, as shown in Figure 4. 

Table 9 lists the median of the F-measure distributions 
for each metric set and the effect size compared to the 
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case of MIM+CM+HM. The effect size is Cliff’s delta [17], 
which is computed using the formula delta = (2W/mn)-1, 
where W is the W statistic of the Wilcoxon rank-sum test, 
and m and n are the sizes of two compared distributions. 
The magnitude of effect size is usually assessed using the 
thresholds provided in the study by Romano et al. [63]. 
That is, |delta|<0.147 “negligible”, |delta|<0.33 “small”, 
|delta|<0.474 ”medium”, and otherwise “large”. For ex-
ample, at the first row (All subject) in Table 9, the effect 
size between MIM+CM+HM and CM+HM is -0.941 
whose sign is minus because median of MIM+CM+HM is 
greater than median of CM+HM and magnitude of the 
effect size is regarded as “large”. In Table 9, the gray 
shaded cells indicate that the Wilcoxon rank-sum test 
rejected the null hypothesis of RQ1 (p-value < 0.05). Con-
clusively, it was statistically confirmed that combining 
MIMs with CMs and HMs can improve the overall defect 
prediction performance. 

5.1.2 Different Model Training Periods 

Because MIMs are a type of process metrics like HMs, 
their performance can be influenced by different periods 
of model training. In this section, we therefore describe 
prediction models built by using MIM, CM, and HM met-
rics extracted from three time periods: one year (June 
2008 – June 2009), two years (June 2007 – June 2009), and 
over three years (December 2005 – June 2009). The aim of 
this experiment was to consider the performance sensitiv-
ity of MIMs and HMs for incremental periods of metric 
collection and model training. In contrast, CM was inde-
pendent of these model training periods because it is a 
snapshot metric of code structure at the time P (Figure 2). 

A new version of Eclipse is annually released in June. 
Thus, the ‘one year’ scenario assumes that the prediction 
model is trained with historical data of one period of the 
Eclipse release (the past year for training and the next 
year for prediction). The ‘two years’ scenario assumes 
that the prediction model is trained with historical data of 
two Eclipse releases (the past two years for training and 
the next year for prediction). Likewise, the ‘over three 
years’ scenario is for the case of model training with his-
torical data of more than three Eclipse releases (more than 
the past three years for training and the next year for pre-
diction). 

In this experiment, the percentage of defects was a stat-
ic 16.7% for the three experiments as the All subject in 
Table 7 was used. Metrics selected by CFS (Table 8) were 
used for model construction in each period of model 
training. 

Figure 5 shows the performance of each set of metrics 
in different training periods in terms of the F-measure 
distributions from 10 times ten-fold cross validations. We 
obtained 100 F-measures from the repeated cross valida-
tion process and drew density plots (histograms) with the 
100 F-measures.  

As shown in Figure 5 and Table 10, MIM could consist-
ently improve the performance of CM+HM no matter 
what period of model training was applied. The im-
provements were still statistically significant; the gray 
shaded cells in Table 10 indicate cases with p-values low-

er than 0.05. The MIM and HM performances were sensi-
tive to differences in the model training periods, while 
CM was not. Incremental periods of model training tend-
ed to improve the overall performance of the MIM and 
HM process metrics. 

 
Fig. 5. Performance comparison of prediction models by different 
training periods. Horizontal lines are each median of F-measure 
distributions. 

TABLE 10 
F-MEASURE MEDIAN VALUES FOR EACH METRIC SET IN DIFFER-

ENT PERIODS OF MODEL TRAINING. FIGURES WITHOUT PAREN-

THESES ARE MEDIANS, AND THOSE WITH PARENTHESES ARE 

EFFECT SIZES COMPARATIVE TO MIM+CM+HM 

Period 
MIM+CM 

+HM 

CM 

+HM 
MIM HM CM Dummy 

One Year 0.368 
0.236 
(-0.83) 

0.305 
(-0.398) 

0.291 
(-0.556) 

0.154 
(-0.978) 

0.25 

Two Years 0.445 
0.263 

(-0.955) 
0.357 

(-0.736) 
0.319 

(-0.834) 
0.154 
(-1) 

0.25 

Over Three 
Years 

0.494 
0.313 

(-0.941) 
0.53 

(0.356) 
0.315 

(-0.927) 
0.154 
(-1) 

0.25 

  
MIM performance was quite sensitive because a short 

period has a relatively smaller number of developer in-
teraction events in Mylyn task sessions than a longer pe-
riod. The informative power from MIMs is not sufficient 
if MIMs are drawn from small amounts of developer in-
teraction logs. However, HM was relatively less sensitive 
than MIM. In our analysis, the representative HMs select-
ed by CFS (Table 8) showed few changed portions in both 
buggy and clean instances as the time period was extend-
ed. 

5.1.3 Different Machine Learners 

Choosing a different machine learner can produce differ-
ent performance results. In this section, we therefore 
compare the results of prediction models using four dif-
ferent classification algorithms widely adopted in defect 
prediction studies [45], including Decision Tree, Logistic 
Regression, Naïve Bayesian, and Random Forest. The All 
instances (Table 7) for the metric extraction period (Figure 
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2) and metrics selected by CFS (Table 8) were used in this 
model construction experiment.  

Figure 6 shows the performance of each set of metrics 
in different machine learners in terms of the F-measure 
distributions from 10 times ten-fold cross validations. We 
obtained 100 F-measures from the repeated cross valida-
tion process and drew density plots (histograms) with the 
100 F-measures. 

 
Fig. 6. Performance comparison of prediction models by different 
machine learners. Horizontal blue line is performance baseline of the 
Dummy classifier. 

TABLE 11 
F-MEASURE MEDIAN VALUES FOR EACH METRIC SET IN DIFFER-

ENT MACHINE LEARNERS. FIGURES WITHOUT PARENTHESES 

ARE MEDIANS, AND THOSE WITH PARENTHESES ARE EFFECT 

SIZES COMPARATIVE TO MIM+CM+HM 

Learner 

MIM 

+CM 

+HM 

CM 

+HM 
MIM HM CM Dummy 

DecisionTree 0.511 
0.073 
(-1) 

0.52 
(0.069) 

0.065 
(-1) 

0 
(-1) 

0.25 

Logistic 0.036 
0.037 

(-0.022) 
0.036 

(-0.0007) 
0.036 

(-0.033) 
0 

(-0.4) 
0.25 

NaiveBayesian 0.179 
0.176 

(-0.116) 
0.171 

(-0.081) 
0.156 

(-0.236) 
0.185 

(0.129) 
0.25 

RandomForest 0.494 
0.313 

(-0.941) 
0.53 

(0.356) 
0.315 

(-0.927) 
0.154 
(-1) 

0.25 

 
As shown in Figure 6, the F-measure distributions from 

different machine learners varied; however, they showed 
the trend of MIM’s better performance over the others, 
which could improve the combination of CM+HM (ex-
cept Logistic Regression). The median values between 
MIM+CM+HM and CM+HM in Decision Tree and Ran-
dom Forest were statistically different by the Wilcoxon 
rank-sum test (the gray shaded cells in Table 11). 

Among the median values, Random Forest was the best 
choice in model construction over all the metric sets; 
therefore, we adopted it in the other experiments men-
tioned in Section 4.2.5. In contrast, Logistic Regression 
was the worst choice for model construction in our exper-

iment. F-measure performance of distributions from Lo-
gistic Regression skewed a lot to zero. Interestingly, Na-
ïve Bayesian was not the best choice in model construc-
tion but the best one for CM. 

5.2 Cost Effectiveness of MIM Application 

In this section, we describe our test for determining if 
adopting MIM is practical and cost-effective in terms of a 
code inspection process by simulating and comparing 
costs and benefits of different defect prediction models. 

The cost of using a defect prediction model is critical. In 
practice, a defect prediction model is intended to reduce 
the cost of efforts spent inspecting the code space to find 
defects. A high performance prediction model should 
guarantee the detection of most defects with a low cost. 
Thus, a cost-benefit analysis for using a prediction model 
is an emerging concern in recent defect prediction studies 
[30], [52], [53], [54], [55], [56]. 

To quantify cost, we simply used lines of code (LOC) 
for files because Arisholm et al. [55] found that the cost of 
quality assurance activities in a software module tended 
to be proportional to the size of the module. 

To quantify benefits, we counted the number of total 
defects found by code inspection utilizing a defect predic-
tion model. Accordingly, with the lower cost but higher 
benefit, improved performance is expected in the cost 
effectiveness evaluation. 

5.2.1 File Prioritization in Defect Proneness 

To detect defects as early as possible, the inspection can-
didates of 3,077 files (the All subject in Table 7) had to be 
prioritized in order of their defect proneness. The file in-
stances were prioritized from the highest to lowest prob-
ability in terms of defect proneness using defect predic-
tion models. The prediction models were built for the All 
subject (Table 7); the CFS and random forest algorithms 
were used for feature selection and model construction, 
respectively, as explained in Section 4.2.5. To predict the 
defect proneness probability of an instance, the models 
were trained with the remaining 3,076 instances, except 
the instance to predict. Thus, model training and predic-
tion were iterated for obtaining the defect proneness 
probabilities of all file instances. Then, the instances were 
sorted by the probabilities. After the prioritization pro-
cess, a simulation was performed of the top ranked file 
(the highest probability of defect proneness) being in-
spected first through its code space. The next ranked files 
continued to be inspected in turn until all given files were 
exhaustively inspected and all hidden defects were finally 
found. 

5.2.2 Cost Benefit Analysis 

Figure 7 shows the defects found during the code inspec-
tion process with prediction models. The horizontal axis 
represents the percentage of cumulative LOCs inspected 
through all 3,077 files; the vertical axis represents the per-
centage of defects cumulatively found by the code inspec-
tion process supported with defect prediction models. 
The optimal model [22] is the other baseline introduced in 
this section, which orders files according to their defect 
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density (i.e., the number of defects). Defect prediction 
models should be as close as possible to this optimal 
model.  

As shown in the cost-benefit simulation results of Fig-
ure 7, MIM significantly reduced code inspection efforts 
in identifying hidden defects. For example, the dummy 
could be regarded as a typical strategy attempted by a 
code inspector who did not consider using any effective 
defect prediction model in the inspection process. As 
shown by the results, the code inspector could identify 
only approximately 25% of defects using 25% of inspec-
tion effort by employing the dummy strategy. However, 
in contrast, the inspector could find approximately 63% of 
defects with the same 25% of effort in the case in which 
MIM was used. Therefore, using a prediction model ena-
bles a code inspector to reduce the cost of inspection ef-
fort and find hidden defects as early as possible. Using 
HM or CM was still beneficial; however, it was not as 
advantageous as using MIM. In comparison, Optimal 
could find 100% defects with just 21% inspection effort. 
MIM, HM, and CM could find 59%, 35%, and 21% defects 
respectively with the same inspection effort. 

 
Fig. 7. Cost-benefit simulation result of applying defect prediction 
models in the code inspection process 

5.3 Predictive Power of Individual Metrics 

Each metric contributes to defect prediction performance 
to its own extent. In this section, we present a comparison 
of the entire suite of 81 metrics, which includes 24 MIMs, 
42 CMs, and 15 HMs, as mentioned in Section 4.2.3. 

To evaluate the predictive power of each metric, we 
measured the gain ratio [49] of MIMs, CMs, and HMs by 
applying ten-fold cross validation in Weka, and ranked 
them according to the normalized gain ratio values (i.e., 
by scaling the maximum ratio value to one). The gain ra-
tio indicates how well a metric discriminates instance as 
buggy or clean. Usually, the effectiveness of the metrics 
can be variously evaluated depending on the machine 
learning algorithm used; however, metrics with a high 

gain ratio are generally considered important [57], [58]. 
The All subject in Table 7 was used in this analysis. 

Figure 8 presents the top (most effective) 30 out of the 81 
metrics in order of the gain ratio values. Many MIMs 
were ranked higher than HMs and CMs.  
 

 
Fig. 8. Predictive power of top ranked metrics. The metrics were 
prioritized by the normalized gain ratio values. 

The best predictor in the MIM category was NumEd-
itingDevelopers (the number of developers working on a 
single file). For code quality prediction, this metric was as 
a good indicator for determining if files were assigned to 
and changed by many developers in the history. 

In addition, the NumEditEvent, NumRareEdit, HourP-
erBrowsing, and HourPerEditing metrics were other good 
indicators for predicting code quality. It is likely that the 
quality of code declines according to how long and fre-
quently the developers change the code. Moreover, it is 
possible that developers can make mistakes (propagate 
bugs) when working on rarely accessed files (NumRareEd-
it). 

Of the HM category, the most effective metrics were 
WeightedAge followed by #ofBugFixes. Certainly, temporal 
information and bug fixing records were good indicators 
for forecasting post-defects, as confirmed in [4][15]. 
NumOfAuthor (HM) was another good defect predictor; 
its rationale is similar to that of NumEditingDevelopers 
(MIM). NumEditingDevelopers measures the number of file 
editors observed in a task session, while NumOfAuthor 
measures the number of file editors observed during the 
whole file lifespan. A task session corresponds to the time 
gap between opening a bug report and resolving the bug 
report. In our opinion, it is a good clue for defect predic-
tion to see how many code editors involved in resolving 

0 0.2 0.4 0.6 0.8 1

CM-CountLine (++)

CM-AvgLine (0)

HM-#OfRevision (++)

MIM-NumInterruptions (0)

CM-AvgLineCode (0)

HM-NumOfAuthors (0)

MIM-AvgTimeIntervalBrwsEdit (0)

MIM-TimeSpentBeforeEdit (0)

MIM-NumParallelBrws (0)

MIM-NumRepeatedBrws (0)

MIM-TimeSpentAfterEdit (0)

MIM-TimeSinceLastTask (0)

MIM-AvgTimeIntervalEditEdit (0)

MIM-NumParallelEdit (0)

MIM-NumRepeatedEdit (0)

MIM-RatioCodeUnderstandingEffort (0)

HM-#ofBugFixing (+++)

MIM-NumMultiTasks (0)

MIM-AvgTimeIntervalBrwsBrws (0)

MIM-MaxTimeIntervalEditEdit (0)

MIM-MaxTimeIntervalBrwsBrws (0)

MIM-MaxTimeIntervalBrwsEdit (0)

HM-WeightedAge (0)

MIM-NumRareBrws (0)

MIM-NumSelectionEvent (++)

MIM-HourPerEditing (0)

MIM-HourPerBrowsing (0)

MIM-NumRareEdit (0)

MIM-NumEditEvent (+)

MIM-NumEditingDevelopers (++)



0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2550458,
IEEE Transactions on Software Engineering

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 

 

an issued bug. 
The CM category contained the remaining top-ranked 

metrics after the above-mentioned top MIM and HM pre-
dictors outlined in Figure 8. 

In Figure 8, the signs in parentheses next to the metric 
names show the direction of the metric’s impact on the 
number of post-defects. For defective sample files (i.e., >= 
# of post-defects), we computed the Pearson correlation 
coefficient between the metric value and the number of 
post-defects. We denoted the signs with the following 
rules: +++: coefficient >= 0.4; ++: 0.3 <= coefficient < 0.4; +: 
0.2 <= coefficient < 0.3; and 0: -0.2 < coefficient < 0.2. 
There was a negative impact (e.g., TimeSinceLastTask = -
0.13), but it was too small to determine the direction of 
the impact. Note that a high gain ratio does not always 
guarantee a high correlation because of some non-linear 
relationships between the metrics and defects.  

5.4 Predictive Power of Question Categories 

Table 2 presents the goal-driven questions (GQs) that we 
organized. To determine how relevant each question cat-
egory is for identifying post-defects, we evaluated the 
defect prediction models built with each MIM question 
category. The more relevant the question, the higher the 
relative performance of the prediction model built with 
the MIM question category. A performance comparison 
of defect prediction models built with different MIM 
question categories should help users understand the 
effectiveness of each MIM category and properly select an 
interesting category for the specific implementation and 
application.  

 
Fig. 9. Performance comparison of the question categories in Table 2 

Figure 9 is the performance comparison result. Each 
boxplot is drawn with 100 F-measures from 10 times ten-
fold cross validation. The vertical dashed blue line is the 
baseline performance of the Dummy classifier (i.e., F-
measure 0.25, the All subject in Table 7).  

Figure 9 includes eight question categories, GQ1 to 
GQ8, from Table 2. It additionally includes eight question 
categories denoted with the prefix “~“, which means that 

only the designated MIM question category is excluded 
from the prediction model construction. For example, 
~GQ1 means that the category does not include the MIMs 
relating to GQ1. These eight additional categories with 
the “~” prefix are intended to help identify by how much 
performance is reduced if a particular MIM question cat-
egory is omitted from the model construction. Lastly, we 
included the ALL reference category, which is comprised 
of all 24 MIMs listed in Table 1. Note that the CFS feature 
selection algorithm was applied to ~GQ1 through ~GQ8 
and to ALL in order to relieve the multicollinearity prob-
lem. 

As shown in Figure 9, most MIM question categories 
clearly demonstrated effective predictive power as defect 
indicators, except for GQ6 and GQ7, whose F-measure 
medians were lower than the 0.25 F-measure of the 
dummy classifier. 

The highest performance categories were GQ1 (fre-
quent editing activities) and GQ2 (frequent browsing ac-
tivities), followed by GQ3 (time elapsed since the last 
task). The performances of GQ1 and GQ2 were almost 
similar to the performance of ALL, which means GQ1 and 
GQ2 are predominant from the contribution point of view. 
In most of the omission cases, the model performances 
were not degraded but for GQ4 (time spent in working on 
files). The omission of GQ4 made the performance slight-
ly decreased. Lastly, we could determine that the overall 
model performance did not depend on some superstars of 
MIMs, but the different question categories of MIMs were 
complementary in terms of their performance contribu-
tions. 

Medians of the GQ1 and GQ2 F-measure distributions 
were 0.51 and 0.46 respectively, which thereby showed an 
approximately 200% higher performance than the F-
measure (0.25) of the dummy classifier. 

6 COMMERCIAL DOMAIN CASE STUDY 

Developers may show different behavioral interactions 
depending on the project domain; e.g., open source or 
commercial. These differing circumstances can yield dif-
fering work motivations, time, physical space, and so on 
for developers. Consequently, these differences can alter 
developers’ working habits or patterns. In this section, we 
describe a case study of three commercial projects for ex-
ploring RQ3 and RQ4 listed in Table 3. 

6.1 Data Collection and MIM Extraction 

To collect Mylyn data and extract MIMs from it, we stud-
ied three more Java projects. Table 12 briefly summarizes 
the three projects relating to development domains, cod-
ing periods, number of involved developers, and the 
number of file instances that we studied. Actually, the 
projects consist of a larger volume of source code files 
than the number of instances listed in Table 12. Neverthe-
less, for experimental purposes, we used only the files 
that are available and permitted. We obtained permission 
from the project directors and thereby acquired Mylyn 
log data of involved developers (however, we could not 
access source code on account of intellectual property 
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constraints).  
In Table 12, the numbers in parentheses show the de-

velopers that were actually involved; the numbers with-
out parentheses show the developers analyzed in our 
study. We only examined the developers who were coop-
erative in providing Mylyn data. 

 
TABLE 12 

SUMMARY OF STUDIED COMMERCIAL PROJECTS 

Project Domain Period 
# of 

involved 
developers 

# of 
instances 

(files) 

P1 

Web and internal infor-

mation systems for a 
newspaper publishing 

company 

8 months 9 (15) 553 

P2 
Software architecture 
decision making tool 2 months 1 (1) 62 

P3 
Smart TV and Android 

phone applications 3 months 1 (2) 308 

 
We collected Mylyn data and extracted MIMs from the 

developers during the project periods as explained in Sec-
tion 4. However, we could not count the number of post-
defects, as was done in the study in Section 4.2.2, because 
the analyzed versions of projects (Table 12) were at a pre-
market release stage; therefore, no information of post-
delivered field defects existed. Instead, we used infor-
mation from internal reports of bugs that developers 
found and reported from their quality assurance activities 
(e.g., code inspection and peer review processes).  

For MIM performance evaluation, we split the project 
development period into three parts. Two early parts 
(two-thirds) of the period were used for prediction model 
training. Then, the trained model predicted the number of 
defects reported in the remainder (one-third) of the future 
period. 

6.2 Developer Interview for MIM Validation 

For the MIM validation, we interviewed 11 developers of 
Table 12 when the projects were completed and asked 
them to answer some questions about their programming 
habits. Then, we compared their responses with actual 
measurements of their relevant MIMs. This section aimed 
to verify if programming habits captured by MIMs con-
sistently corresponded to the interview results. Details 
about all interview questions and answer cases are pre-
sented in Table 14. The MaxTimeInterval notation includes 
MaxTimeIntervalEditEdit, MaxTimeIntervalBrwsBrws, and 
MaxTimeIntervalBrwsEdit; that is, MaxTimeInterval com-
putes the maximum time interval between file-accessing 
interaction events in a task session.  

For example, in the interview, we questioned the de-
velopers on “How many files do you intensively edit while 
working on a task?” They answered the question with mul-
tiple choices: “A – On average, just one or two” or “B - Usu-
ally several files here and there due to a project property.” Lat-
er, we extracted NumMultiTasks and NumParallelEdit re-
spectively from task sessions of one group of developers 
who responded with A, and the other group of develop-
ers who responded with B. We then compared MIM dis-
tributions from each of the two groups. In the example, 

we expected that NumMultiTasks and NumParallelEdit of 
group B might be higher than those of group A in terms 
of the boxplot comparison.  

In the interview, some MIMs could not be questioned 
with any interview form, whereas the others could be. In 
interview design, for example, an MIM, such as NumEdi-
tEvent, is difficult to question because developers do not 
count and remember their actions. Therefore, we only 
focused on the topics on which we could do interview. 

Conclusively, we confirmed that MIMs predominantly 
corresponded to the interview results. Some of MIM 
measurements for each of the response groups (e.g., A or 
B) were discriminative in terms of median and skewed 
distribution of boxplots, as shown in Figure 10. We con-
ducted statistical tests to determine whether the medians 
of the response groups in Figure 10 showed statistically 
significant differences. We used the Wilcoxon rank sum 
test for two samples (i.e., groups A and B). Otherwise, we 
used the Kruskal-Wallis test (i.e., in a case with more than 
two samples). Table 13 lists the test results. The under-
lined pairs of questions and metrics are the statistically 
significant ones (95% confidence level). We could not see 
a statistical significance in all the cases. 

 
TABLE 13 

RESULTS OF STATISTICAL TESTS TO CHECK IF RESPONSE 

GROUPS OF BOXPLOTS IN FIGURE 10 SIGNIFICANTLY DIFFER 

 
 
The interview results showed interesting exceptions to 

our expectations, as listed in Table 14. For example, two 
groups of developers with different opinions on “IQ1 - 
How many files do you intensively edit while working on a 
task?” showed almost similar distributions for NumParal-
lelEdit. However, they showed totally different distribu-
tions for NumMultiTasks when answering the same ques-
tion. It is possible that many of them misunderstood the 
concepts of multitasking task sessions and editing several 
files at the same time. Actually, NumMultiTasks could 
better classify the opinions of the two response groups 
than NumParallelEdit in response to the same question. 

In terms of balancing time resource allocations between 
developer’s actual coding and code understanding activi-
ties, RatioCodeUnderstandingEffort could not capture a sta-
tistically significant difference between the three response 
groups. As shown in the results for the IQ3 and IQ5 re-
sponse groups, it was not easy to capture opinions on the 
developer’s effort. This could have been because develop-
ers tend to exaggerate the degree of effort that they exert 
on their job or have trouble quantifying it. 

A B C D E

Q1-NumMultiTasks Wilcoxon 8.80E-12 1 3

Q1-NumParallelEdit Wilcoxon 0.9075 3 3

Q2-NumRareBrws Wilcoxon 0.00034 6.5 3

Q2-NumRareEdit Wilcoxon 0.0018 2 1

Q3-RatioCodeUnderstandingEffort Wilcoxon 0.41 0.69 0.72

Q3-TimeSpentBeforeEdit Wilcoxon 0.001 0.019 0.098

Q4-TimeSpentAfterEdit Wilcoxon 0.003 0.48 0.116

Q5-RatioCodeUnderstandingEffort Kruskal-Wallis 0.58 0.709 0.702 0.731

Q6-AvgTimeIntervalEditEdit Wilcoxon 0.54 0.16 0.2

Q7-MaxTimeInterval Kruskal-Wallis 8.43E-05 0.34 0.13 2.24 1.12 2.5

Q8-NumInterruptions Wilcoxon 0.1965 3 2

Questions and Metrics Test method p-value
Medians
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TABLE 14 
INTERVIEW QUESTIONS AND ANSWERS, AND EXPECTED OBSERVATIONS FOR RELEVANT MIMS. THE ANSWERS COLUMN CATEGORIZ-

ES CASES IN WHICH DEVELOPERS ANSWERED THE GIVEN QUESTIONS. GROUP SIZE MEANS PORTIONS OF EACH RESPONSE GROUP 

Interview Questions Answers Relevant MIMs 
Expected Observations 

(Group size in percentage) 

IQ1 - How many files do 

you intensively edit 

while working on a task? 

A – On average, just one or two. NumParallelEdit 

NumMultiTasks 

Group B might have a higher box-

plot than group A. 

(A:B=44%:56%) 
B – Usually several files here and 

there due to a project property. 

IQ2 – If you find a bug 

during code review, 

where is the bug usually 

located? 

A – Bugs tend to be found occasional-

ly at unexpected code files. 
NumRareEdit 

NumRareBrws 

Group A might have a higher box-

plot than group B. 

(A:B=78%:22%) 
B – Bugs tend to be found mainly at 

code entities (e.g., files or functions) 

that have been frequently edited so 

far. 

IQ3 – Do you spend 

enough time in under-

standing the code con-

text before beginning 

necessary code change 

for an assigned task? 

A - I usually spend enough long time 

in understanding context of code or 

in finding a necessary solution before 

beginning code modification in ear-

nest for an assigned task. 

TimeSpentBeforeEdit 

RatioCodeUnderstandingEffort 

Group A might have a higher box-

plot than group B. 

(A:B=50%:50%) 

B - I quickly plunge into assigned 

tasks because I am usually accus-

tomed to them. 

IQ4 – Do you scrupu-

lously review code 

changes to check if any 

possible bug exists or to 

test something further, 

even after you have 

finished a task? 

A – Yes, I tend to carefully review my 

edited code for any error possibility. 
TimeSpentAfterEdit Group A might have a higher box-

plot than group B. 

(A:B=67%:33%) 

B – No, I tend to finish a task right 

away after the last code editing be-

cause typically no problem occurs. 

IQ5 – How do you allo-

cate portions of your 

effort between actual 

coding and code under-

standing in terms of time 

when working on a giv-

en task? 

A – Actual coding time < code under-

standing time. 
RatioCodeUnderstandingEffort Group A might have a higher box-

plot than group C, and group B 

might have a position between 

group A and C. 

(A:B:C=11%:56%:33%) 

B – Actual coding time ≈ code under-

standing time. 

C – Actual coding time > code under-

standing time 

IQ6 – What is your cod-

ing style for a given 

task? 

A – Once I finish understanding a 

given task, I tend to quickly and flu-

ently continue editing code. 

AvgTimeIntervalEditEdit Group B might have a higher box-

plot than group A, because devel-

opers of group B can need occa-

sionally additional time in under-

standing task context between code 

change activities.  

(A:B=67%:33%) 

B – I simply start a given task and 

then edit and understand code, on 

and off, on the fly. 

IQ7 – How often do you 

rest while coding? 

A – Every 10 minutes. MaxTimeIntervalEditEdit 

MaxTimeIntervalBrwsBrws 

MaxTimeIntervalBrwsEdit 

 

Group D and E might have higher 

boxplots than groups A and B, and 

group C might have a position in 

the middle of them. 

(A:B:C:D:E=10%:10%:20%:40%:20%) 

B – Every 40 minutes. 

C – Every hour. 

D – Every two hours. 

E – Every three hours. 

IQ8 – How often do 

interruptions occur dur-

ing a task? 

A – Every hour (or more often). NumInterruptions Group A might have a higher box-

plot than group B. 

(A:B=40%:60%) 
B – Every two hours / one or two 

times a day (for 10~30 minutes). 
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Fig. 10. Consistency comparison between interview results about programming habits of 11 industrial developers and 
their actual measurements of relevant MIMs. Explanation about the interview questions and answers are presented in 
Table 12.  

 
As shown in the boxplots for IQ3 of Figure 10, the 

group of developers who answered, “A - I usually spend a 
long time in understanding the context of code or in finding a 
necessary solution before beginning code modification in ear-
nest for an assigned task,” did not actually spend a relative-
ly longer time than the other group of developers who 
answered, “B - I quickly plunge into assigned tasks because I 
am usually accustomed to them.” The MIM measurements of 
response group B were somewhat higher than those of 
group A. One possible reason for this phenomenon is that 
developers actually spend more time in understanding 
code than they perceive or believe, even though they do 
not consciously recognize it. 

6.3 Performance Evaluation Result 

To address RQ3 of Table 3, we built a defect prediction 
model using the random forest machine learner with a 
subset of MIMs selected by the CFS algorithm. Table 15 

shows the selected MIMs in each project. The number of 
file instances used in performance evaluation for projects 
P1, P2, and P3 was 553, 62, and 269 respectively. For the 
evaluation, we used 10 times ten-fold cross validation. 

Figure 11 presents F-measure distributions from the 10 
times ten-fold cross validation process for the three pro-
jects, P1, P2, and P3. In the experiment, the ratio of buggy 
samples in P1, P2, and P3 were 81.4%, 19.4%, and 16.4%, 
respectively. Therefore, the F-measures of the dummy 
classifier in P1, P2, and P3 were 0.62, 0.28, and 0.25, re-
spectively (Section 4.3). 

The F-measure of the MIM-based defect prediction 
model significantly outperformed that of the dummy 
classifier in all the P1, P2, and P3 subjects. In Figure 11, F-
measure medians of P1, P2, and P3 were 0.88, 1, and 0.8 
respectively. Interestingly, the prediction model of P2 
could perfectly predict defects in more than 50% of cases. 
Actually, the project P2 had a quite good condition for a 
prediction model to predict defects; the project P2 had 
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relatively small size of files under development, and most 
of developer activities were concentrated especially on 
some limited files among the development files. 

 
Fig. 11. Performance evaluation result of MIM-based defect predic-
tion models for the three commercial projects (Table 12). Vertical 
dashed lines are performance baselines of the dummy classifier 

TABLE 15 
MIMS SELECTED BY CFS IN EACH COMMERCIAL PROJECT 

Project Selected MIMs 

P1 
TimeSpentAfterEdit, MaxTimeIntervalBrwsBrws, NumSelection-
Event, TimeSinceLastTask 

P2 
NumEditEvent, NumEditingDevelopers, MaxTimeInter-
valBrwsEdit, NumParallelBrws, NumSelectionEvent, Rati-
oCodeUnderstandingEffort 

P3 
NumEditEvent, NumRareBrws, TimeSpentAfterEdit, NumRe-
peatedEdit, TimeSpentBeforeEdit, NumParallelBrws, MaxTimeIn-
tervalEditEdit, NumMultiTasks 

 
In our case study, P1 had many defects because they 

were not defects reported after product release (post-
delivery); rather, they were internally reported during 
intensive testing and QA activities within a certain time. 
However, P2 and P3 were relatively small-sized projects 
compared to P1; therefore, testing and debugging could 
be performed on them on the fly instead of a certain time 
having to be allocated for some intensive QA activities. 

6.4 MIM Ranks in Different Project Domains 

In Section 5.3, we investigated MIM ranks based on gain 
ratio. However, the ranks can be changed if project do-
main is changed. In this section, we addressed RQ4 of 
Table 3, investigating how MIM ranks change in different 
project domains including commercial and Eclipse pro-
jects.  

Depending on projects, characteristics of developer in-
teractions are inevitably variable. Therefore, it is natural 
that the MIM ranks can change depending on the project 
domains. Actually, there are no universally acceptable 
MIM ranks in terms of contribution to improving predic-
tion performance. Nevertheless, to introduce a reference 
guide, we attempted to find MIM ranks that considered 
variation from our seven studied projects (i.e., the three 
projects in Table 12 and four projects in Table 7). 

Figure 12 shows the results that we found from the 
seven projects. For each of the seven projects, we comput-
ed MIM ranks based on the gain ratio, as done in Section 
5.3. Consequently, each MIM has seven rank values. The 
distributions of the seven values of each MIM are pre-
sented in boxplots in Figure 12, which are sorted by the 
median of the seven rank values.  

 
Fig. 12 Variation of MIM ranks observed over the seven projects 

As shown in Figure 12, those of NumSelectionEvent, 
NumEditEvent, NumEditingDevelopers, and NumRareEdit 
were MIMs that generally ranked at high over the seven 
projects. In addition, those of MIMs seemed to have rela-
tively smaller variations (i.e., shorter boxplot in length) 
than any others, meaning that they had relatively low 
project dependency. In other words, those of five MIMs 
looked reliable in many projects even if the applied pro-
ject domains were changed.  

In contrast, for example, those of RatioCodeUnder-
standingEffort, TimeSinceLastTask, and HourPerBrowsing 
had comparatively larger variations (i.e., longer boxplot 
in length) than any others, meaning that they had rela-
tively high project dependency. In other words, the influ-
ential power of the three MIMs could be quite variable 
depending on the applied projects. 

7 SUMMARIZATION AND DISCUSSION 

In this section, we summarize the key findings from our 
experiments in Sections 5 and 6, and discuss a possible 
application with the proposded MIMs. 

7.1 Summary of Findings 

The following findings basically cover our research ques-
tions (Table 3) and include additional insights of interest. 

 
 MIMs were promising defect predictors and could 

improve performance up to 157% (effect size: 0.941; 
CM+HM: 0.313 → MIM+CM+HM: 0.494; Table 9). 

 MIMs could further cost-effectively facilitate the 
code inspection process; e.g., up to 168% by using 
only 21% of a full effort (HM: 35% → MIM: 59%; Fig-
ure 7). 

 MIMs still worked well in the commercial projects 
with good performance as defect predictors com-
pared to the dummy classifier (Section 6.3). 

 NumSelectionEvents, NumEditEvents, NumEditingDe-
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velopers, and NumRareEdit MIMs were relatively 
good predictors in file-level defect prediction (Figure 
13). Similarly, MIMs relating to the category GQ1 
(How frequently do developers edit files?) were 
good predictors (Section 5.4). MIM ranks were varia-
ble depending on different experiment conditions 
and project domains so that MIM ranks reported in 
this paper can be different from the ones reported in 
our previous study [23]. Therefore, by extending case 
studies, we explored possible variation of the influ-
ential MIMs.  

 Any long time intervals between developer’s file-
accessing activities were detrimental. Time interval-
related MIMs are indirect indicators associated with 
develoepr’s concentration informing of how to be of-
ten disturbed or keep working with attention in 
work (e.g., Table 15 and Figure 12). 

 

7.2 Discussion on Possible Application 

As a future application, the effective MIMs can be used to 
implement a feature for an IDE tool such as an Eclipse 
plug-in to detect and warn behavioral anomalies (or any 
inefficient behaviors) of developers. The logs of Mylyn 
task sessions are recorded in real-time at a local site while 
developers edit or navigate codes, so MIMs can be com-
puted and visualized in real-time with a form of metrics 
dashboard. All observations of particular MIM values of 
developers who rarely make defects can be collected and 
modeled during development. Using the information, an 
IDE tool can provide developers with a warning of on-
line feedback to make them cautious and to reduce a po-
tential risk introducing defects. This type of mechanism 
might help novice developers to learn the good working 
habits of expert developers. As a result, the overall behav-
iors of developers can be improved. Even if this applica-
tion is not feasible as a real-time tool, it can still help de-
velopers by providing any regular feedback (e.g., off-line 
reports) based on the MIMs come from talented develop-
ers who produce good quality of codes. 

8 THREATS TO VALIDITY 

Threats to the validity of this study were identified as 
follows. 

 
 Developers do not always submit their task context. A 

lack of Mylyn data is a major threat to validity. Shar-
ing Mylyn data is not mandatory. Therefore, devel-
opers do not always submit their task context; more-
over, they can even choose which parts of their task 
contexts to submit. Developers are typically not will-
ing to share their personal task context with the pub-
lic on account of privacy concerns. Therefore, data-
sharing security must be agreed upon by a sourcer 
and analyzer in advance. In this study, we used the 
publicly available data of Mylyn task sessions at-
tached to Eclipse projects and data permitted in our 
additional case studies of commercial projects. 

 

 The systems and developers referenced in this study may 
not be representative. We selected projects as subjects 
that have available Mylyn data, which could lead to 
a project selection bias. In this study, 101 developers 
were analyzed (91 from the Eclipse projects and 11 
from the commercial projects). However, given the 
number of developers referenced, we may not have 
sufficiently addressed a wide spectrum of developer 
types (e.g., different experience level, working condi-
tions, programming habits, etc.) for our research 
questions. Therefore, additional studies are required 
in the future. 

 
 The Mylyn data that we used could be biased. As men-

tioned in the first bullet point, developers may not 
have submitted their task context, or they could have 
only submitted a portion of it. The lack of task con-
text information or the inclusion of biased Mylyn da-
ta could have affected the reliability of our conclu-
sions. The sample size used in our experiments (e.g., 
20% coverage of All subjects, Table 7) seemed to be 
sufficient to study the statistical characteristics of a 
population. Nevertheless, it was necessary for the 
sample files to be independently collected from the 
population to be good representatives. Therefore, to 
address that issue, we designed and conducted an 
additional statistical test, a Run test (also called a 
Wald–Wolfowitz test), to confirm that our sample 
files from the Mylyn logs were not biased, but were 
evenly covered distributions of the entire population 
(i.e., all of the file changes in the CVS logs). We used 
the following process for the Run test. First, we col-
lected change files for the CVS logs and made a list X 
of the collected file names without redundancy. We 
then split list X in half, calling one half Xa and the 
other half Xb (Xa and Xb had the same size). Second, 
we collected change files from the Mylyn logs and 
made a list Y of the collected file names without re-
dundancy. Third, we arbitrarily drew a file y from 
list Y and checked whether file y was found in either 
Xa or Xb. If file y was in Xa, we labeled it as “A” and 
otherwise as “B.” However, if file y was in neither Xa 
nor Xb, we skipped it. We continued to draw the next 
file y from list Y until Y became empty. Finally, we 
obtained a sequence outcome like ABBAAABAB…. 
AB (the size of the label sequence equals the number 
of matched files between lists X and Y). We believe 
that if no bias existed in our sample collection (i.e., 
our studied files from the Mylyn log), the sequence 
outcome had to have randomness in its label enu-
meration. Conclusively, we applied the Run test to 
that sequence outcome and finally confirmed that the 
null hypothesis (H0) could not be statistically rejected 
(the p-value was 0.922 > 0.05, 95% confidence inter-
val). In the Run test, H0 was “each element in the se-
quence is independently drawn from the same dis-
tribution.” 
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9 CONCLUSION 

In this paper, we proposed and evaluated MIMs for im-
proving defect classification performance. The results of 
our evaluation demonstrated that MIMs significantly con-
tributed to improving defect classification performance 
when used together with the existing metrics suite 
(CM+HM); i.e., an approximate 157% improvement was 
shown from 0.313 to 0.494 on average in terms of the F-
measure (MIM+CM+HM vs. CM+HM; Table 9). In addi-
tion, MIMs were shown to cost-effectively facilitate code 
inspection; i.e., 59% of total defects could be detected by 
inspecting only 21% of limited source code designated by 
the MIM-based defect prediction model (Figure 7). 

Our study extended existing knowledge in the field of 
software quality metrics by proposing novel metrics 
based on the information of micro-level developer inter-
actions. Our findings concur with previous studies [18], 
[19], [20] that suggest that developer interaction patterns 
affect software quality. 

In terms of future applications, MIMs show significant 
promise for a variety of IDE-centric tools, such as pre-
commit warnings of dangerous changes (interaction logs 
are available in the IDE without major privacy concerns). 
Even if developers are not willing to submit their private 
task logs to a remote repository server, MIMs can be lo-
cally implemented. 

In this paper, MIMs were designed based on Mylyn. 
However, the principle of MIMs can be implemented 
with data from other Mylyn-like alternative tools. We 
believe studying methods for capturing and understand-
ing developer interactions are an emerging irreversible 
trend that has been already realized not only by academic 
studies [35][41] but also by industry products8. Therefore, 
we plan to extend MIMs by leveraging these sources of 
developer interaction data. In addition, we will apply 
MIMs to other problems, such as measuring programmer 
productivity and software quality.  

Overall, we expect that future defect prediction models 
will use more information from developers’ direct and 
micro-level interactions to improve defect prediction. 
MIMs are a first step in this direction. 

All data used in this study is publicly available at 
https://sites.google.com/site/mimetrics/. 
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