
An Empirical Investigation into the Role of API-Level
Refactorings during Software Evolution

Miryung Kim
The University of Texas at Austin

Austin TX
miryung@ece.utexas.edu

Dongxiang Cai,
∗

Sunghun Kim
Hong Kong University of Science and

Technology, Hong Kong, China
{caidx, hunkim}@cse.ust.hk

ABSTRACT
It is widely believed that refactoring improves software qual-
ity and programmer productivity by making it easier to
maintain and understand software systems. However, the
role of refactorings has not been systematically investigated
using fine-grained evolution history. We quantitatively and
qualitatively studied API-level refactorings and bug fixes in
three large open source projects, totaling 26523 revisions of
evolution.

The study found several surprising results: One, there is
an increase in the number of bug fixes after API-level refac-
torings. Two, the time taken to fix bugs is shorter after
API-level refactorings than before. Three, a large number
of refactoring revisions include bug fixes at the same time
or are related to later bug fix revisions. Four, API-level
refactorings occur more frequently before than after major
software releases. These results call for re-thinking refactor-
ing’s true benefits. Furthermore, frequent floss refactoring
mistakes observed in this study call for new software engi-
neering tools to support safe application of refactoring and
behavior modifying edits together.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—restructuring

General Terms
Measurement, Experimentation

Keywords
Software evolution, empirical study, refactoring, defects, re-
lease cycle

∗A part of the research was conducted while Dongxiang Cai
was an intern at the University of Texas at Austin.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’11 May 21-28, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

1. INTRODUCTION
Refactoring is the process of changing a program’s design

structure without modifying its external functional behav-
ior in order to improve program readability, maintainability,
and extensibility [19].

It has been widely believed that refactoring improves soft-
ware quality and developer productivity by making it easier
to maintain and understand software systems [11] and that a
lack of refactorings incurs technical debt to be repaid in the
future to reduce increasing system complexity [18]. There
has been a conventional wisdom that software engineers of-
ten avoid refactorings when they are constrained by a lack
of resources (e.g., right before major software releases), as
refactorings do not provide immediate benefit unlike new
features or bug fixes. Some questioned the benefit of refac-
torings, since refactorings often introduce a large amount
of structural changes to the system, creating code churns
shown to be correlated with defect density [22]. Weißgerber
and Diehl found that a high ratio of refactorings is some-
times followed by an increasing ratio of bug reports [30].
They found that bugs are introduced by incomplete or in-
correctly done refactorings [12], even though the original in-
tent of refactoring was to improve software maintainability.
Ratzinger et al. [25] found contradicting evidence that the
number of defects decreases, if the number of refactorings
increases in the preceding time period.

The goal of this paper is to systematically investigate the
role of refactorings during software evolution by examining
the relationships between refactorings, bug fixes, the time
to resolve bugs, and release cycles using fine-grained version
histories. First, we applied M. Kim et al.’s refactoring recon-
struction technique to version histories to find revisions that
underwent rename, move, and signature changes at or above
the level of method headers [16]. We used this technique
because the documentation about past refactorings is often
unavailable in most version histories. Second, we applied S.
Kim et al.’s bug history extraction technique to identify bug
fix revisions [17]. To mitigate construct validity concerns, we
sampled a total of one hundred revisions and manually in-
vestigated their commit messages, associated bug reports,
and corresponding code changes to measure the accuracy of
the tools.

We then investigated the number of bug fixes and the time
taken to fix bugs within a sliding window of K revisions be-
fore and after each refactoring revision and measured refac-
toring density and fix density within a sliding window of K
revisions before and after each major release.

The following paragraphs summarizes our findings for each

hypothesis about API-level refactorings—move, rename, and
signature changes at the method declaration level.

• H1: Are there more bug fixes after API-level
refactorings? We found that a bug fix rate is higher
after API-level refactorings than the preceding period,
e.g., from 26.1% to 30.3% when examining 5 revisions
before and after API-level refactorings in Eclipse JDT.
We manually investigated bug fixes that follow after
refactorings and found that a fix rate increase is of-
ten caused by mistakes in applying refactorings and
behavior modifying edits together.

• H2: Do API-level refactorings improve devel-
oper productivity? We compared the time taken to
fix bugs for those that were closed within 100 revisions
before and after refactorings. The time taken to fix
those bugs decreases by about 35.0% to 63.1% after
refactorings.

• H3: Do API-level refactorings facilitate bug
fixes? We found that 29.1% to 44.4% of refactor-
ing revisions also include bug fixes in the same revi-
sion. Furthermore, 32% of refactoring revisions were
related to fix revisions that follow within 20 revisions,
as opposed to 14% of non-refactoring revisions being
related to later bug fixes within 20 revisions. This im-
plies that, in many cases, either refactorings created
new bugs or refactorings may have been applied to fa-
cilitate bug fixes that were hard to implement without
them.

• H4: Are there relatively fewer API-level refac-
torings before major releases? There are 39.1%
more refactoring revisions within 30 revisions before
major releases than 30 revisions after the releases.

This result is surprising because developers do not
avoid refactorings even when they have a pressure to
meet deadlines. In conjunction with the fact that many
revisions include both refactorings and bug fixes, we
speculate that refactorings were done to facilitate bug
fixes that needed to be implemented before major re-
leases.

These results call for an in-depth investigation of refactor-
ing’s true benefits and the economic implications of refac-
toring investment. Furthermore, frequent floss refactoring
mistakes observed in the study call for new software engi-
neering tools to help developers apply systematic, coordi-
nated refactorings safely.1

The rest of the paper is organized as follows. Section
2 discusses related work and Section 3 describes our data
collection and analysis method. Section 4 presents our re-
sults, Section 5 describes threats to validity, and Section 6
presents future directions and summarizes the implication
of our results.

2. RELATED WORK
Empirical studies on refactoring. Xing and Stroulia
studied Eclipse’s evolution history and found that 70% of

1Floss refactoring is a term coined by Murphy-Hill et al.
to describe refactorings interleaved with behavior modifying
edits [21].

structural changes are due to refactorings and existing IDEs
lack support for complex refactorings [33]. Dig et al. studied
the role of refactorings in API evolution and found that 80%
of the changes that break client applications are API-level
refactorings [7]. While these studies focus on the frequency
and types of refactorings, our study focuses on the relation-
ship between API-level refactorings, bug fixes, and release
cycles.

Hindle et al. found that large commits are more perfective
(refactorings) while small commits are more corrective (bug
fixes) [14]. Purushothaman and Perry found that nearly 10%
of changes involved only a single line of code, which has less
than a 4% chance to result in error, while a change of 500
lines or more has nearly a 50% chance of causing at least one
defect. Though the focus of these studies is different from
our study, the results are somewhat aligned with ours: large
commits, which tend to include refactorings, have a higher
chance of inducing bugs.

Weißgerber and Diehl found that refactorings often occur
together with other types of changes and that refactorings
are followed by an increasing number of bugs [30]. Carriere
et al.’s case study found that the productivity measure man-
ifested by the average time taken to resolve tickets decreases
after re-architecting the system [3]. Ratzinger et al. devel-
oped defect prediction models based on software evolution
attributes and found that refactoring related features and
defects have an inverse correlation [25]—if the number of
refactorings increases in the preceding time period, the num-
ber of defects decreases. Our results are aligned with some
of these findings, yet improve upon these studies. Our study
method not only relates refactorings and bug fixes based on
their temporal proximity using a K-revision sliding window
but also considers method-level location of refactorings and
bug fixes to examine whether bug fixes are related to a pre-
ceding refactoring.

Though the intent of refactoring is to improve software
maintainability, refactoring could be potentially error-prone
as it often requires coordinated edits across different parts
of a system. Several researchers found such evidence from
open source project histories—M. Kim et.al.’s program dif-
ferencing technique [15, 16] identifies exceptions to system-
atic change patterns, which often arise from the failure to
complete coordinated refactorings. Görg and Weißgerber
detect errors caused by incomplete refactorings by relat-
ing API-level refactorings to the corresponding class hier-
archy [30].

Because manual refactoring is often tedious and error-
prone, modern IDEs provide features that automate the ap-
plication of refactorings [13, 27]. However, recent research
found several limitations of tool-assisted refactorings. Daniel
et al. found dozens of bugs in the refactoring tools in popu-
lar IDEs [6]. Murphy-Hill et al. found that many refactoring
tools do a poor job of communicating errors and program-
mers do not leverage them as effectively as they could [20].
They also found that programmers frequently intersperse
refactorings with other program changes—floss refactorings
and these are not well supported by existing refactoring
tools [21]. This need for safe floss refactoring application
is also confirmed by our study—refactoring often overlap
with bug fixes, behavior correcting transformations. Pro-
gram metamorphosis relaxes behavior-preservation checks to
safely support floss refactorings [26].
Refactoring reconstruction. A number of existing tech-

Table 1: Study subjects
Eclipse JDT core jEdit Columba

type IDE text editor email client
period June 5, 2001 - May 16, 2007 Sep 2, 2001 - Apr 2, 2009 Jul 9, 2006 - Jan 31, 2010
revisions 15000 11102 421
of API-level refactorings 6755 3557 424
of bug fix revisions 3752 1073 150
of refactoring revisions 1089 423 36

niques address the problem of automatically inferring refac-
torings from two program versions. These techniques com-
pare code elements in terms of their name [23,32] and struc-
ture similarity [8,23,31] to identify move and rename refac-
torings. M. Kim’s technique used in the study is broadly in
the same category [16]; its median precision and recall are
in the ranges 93% to 98% and 93% to 99%, and the com-
parison with five other approaches shows that its recall is
higher while its precision is comparable to others. A survey
of existing refactoring reconstruction techniques is described
elsewhere [24].
Bug history extraction and analysis. There are two
well-known techniques to extract bug fix data from version
control systems. Fischer et al. search for specific keywords
such as bug or fix in revision logs to identify bug fix revi-
sions [9]. Another well-known technique is to use the links
between commits and bug reports [28,29], because develop-
ers often leave a corresponding bug report id when resolving
a bug. Since leaving special keywords or bug ids in change
logs is optional for developers, fix revision data could include
noise. For example, Aranda and Venolia et al. manually
inspected ten bug reports and interviewed developers who
resolved them [1]. They found important information about
bug fix process is often missing in software repositories. Bird
et al. studied the quality of change logs and bug reports and
found that it is difficult to reliably link all commits and bug
reports [2].

However, the quality of automatically collected fix revision
data depends on projects and their change log quality. In
this paper, we selected projects with high quality change
logs based on our experience of mining bug repository data.

3. STUDY APPROACH
We selected Eclipse JDT, jEdit, and Columba as study

subjects because we studied these subjects in the past and
found that they have high quality change logs [16,17]. This
enabled us to extract fix revision data reliably.
Identification of refactoring revisions. We used M.
Kim et al.’s refactoring reconstruction technique (MK) to
identify systematic changes to API names and signatures
at or above the level of method-headers [16]. MK takes two
program versions as input, first identifies seed matches based
on the method-header name similarity and generalizes the
transformation witnessed in a seed match to a high-level sys-
tematic change pattern. MK identifies rename refactoring at
the level of packages/classes/methods, add/delete parameter
refactoring, move refactoring at the level of packages/class-
es/methods and changes to the return type of a method. It
does not analyze the internal content of method bodies, and
thus is limited to API-level refactorings. The details of the
algorithm and evaluation are described elsewhere [16].

Using this technique, we found 6755, 3557, and 424 refac-

torings in Eclipse, jEdit, and Columba respectively (see Ta-
ble 1). We considered that a revision is a refactoring revision
if the revision contains at least one API-level refactoring.
Identification of bug fix revisions. We identified fix re-
visions by mining check-in comments (change logs), which
is a widely used heuristic in mining software repository re-
search. We first searched for keywords such as fixed or
bug [17] and identified a reference to a bug report num-
ber such as ‘id #42233’ [28, 29]. This heuristic woks well
with projects which have high quality change logs such as
Columba, Eclipse, and JEdit. For example, Columba devel-
opers usually write at least one predefined tag, e.g., [bug],
[feature], and [ui] in change logs. Eclipse and jEdit have
strict guidelines for writing check-in messages. If a commit
message contains such fix revision indicators, we considered
it as a fix revision.
Identification of bug-introducing changes. When a
revision is determined to contain bug fixes, it is possible to
trace backward in the revision history to determine the cor-
responding bug-introducing change [28]. We first use diff to
determine what changed in each fix revision. Diff returns
a list of consecutive deleted or added lines, called hunks.
Using a built-in annotation functionality of a version con-
trol system such as SVN blame, we track down the origin of
deleted or modified source lines in each hunk, which we call
as bug-introducing changes.
Change distilling. For each revision, we used Change Dis-
tiller to compute syntactic program differences [10]. This has
two benefits: (1) This distilling process filters out meaning-
less changes in a revision because the revision may contain
changes to comments, license information, white spaces, etc.
(2) Change Distiller maps the line-level location of a bug
fix to its container method to allow easy comparison with
an API-level refactoring location, e.g., method foo was re-
named to method bar.
Manual inspection of automatically collected data.
Since our study approach relies on automatic refactoring and
fix identification techniques, it is important to ensure the au-
tomatic techniques are accurate enough for our study. To
evaluate the techniques, we randomly sampled 100 revisions
from Eclipse JDT core’s revision 1000 to 15000. For each
sampled revision, one of the authors manually investigated
the revision and determined whether it is a refactoring revi-
sion and/or a fix revision based on three sources: (1) check-
in comment, (2) an associated bug report linked by a bug
id, and (3) code modification, i.e., diff associated with the
revision. Based on this investigation, we manually identified
14 API-level refactoring revisions and 62 fix revisions out of
100 revisions (see column ∆ in Table 2). We then compared
this set with the automated tools’ results. The evalua-
tion shows that the MK has 0.93 precision and 0.93 recall
(row MK [16]) in identifying refactoring revisions. The bug

Table 2: Accuracy comparison: automated tech-
niques vs. manual inspection

∆ source # prec. recall

MK [16] 14 0.93 0.93
refactoring 14 manual-C 2 0.50 0.07
revisions manual-B 5 0.75 0.21

SK [17] 49 0.96 0.76
fix 62 manual-C 55 0.92 0.81

revisions manual-B 49 0.94 0.74

fix revision identification technique has 0.96 precision and
0.76 recall (row SK [17]) in identifying bug fix revisions. We
also compared the tools’ results with the data set labeled
using an associated check-in comment alone (row manual-
C) or using a bug report alone (row manual-B). Though the
automated techniques’ accuracy (0.93 and 0.96) is not as
good as manually inspecting all three information sources
including code modification, their accuracy are much higher
than manually inspecting check-in comments or bug-report
description alone. Overall, we conclude that our fix revi-
sion data is accurate enough to base our investigation on,
and our refactoring revision data has a high precision and a
recall about API-level refactorings.

4. RESULTS
Section 4.1 investigates changes to the number of bug fixes

after refactorings, and Section 4.2 investigates changes to the
time taken to resolve bugs after refactorings. Section 4.3
investigates the probability of refactorings and bug fixes to
appear in the same revision and the probability of a refactor-
ing revision to be related to later bug fixes, and Section 4.4
investigates fix density and refactoring density with respect
to software release cycles.

!"#

$%"#

$!"#

&%"#

&!"#

'%"#

'!"#

(%"#

(!"#

)'%#)&!#)&%#)$!#)$%#)!# %# !# $%# $!# &%# &!# '%#

*+,#

-./01#

2345678#

9
:#
;8
1<
#

=0>/3=#?0@<#ABC#

8D<;8E<#9:#;81<A#####CF##

*+,F#&GH("#

-./01FGHI'"#

2345678F'IH$("#

;<J8K13;0>E#L60>E#

Figure 1: Fix rate before and after refactorings
(varying K from 1 to 30)

4.1 Are there more bug fixes after API-level
refactorings?

To understand the relationship between refactorings and
the number of bug fixes, we find all fix revisions within K

revisions before and after for each refactoring revision. Then

we compute a fix rate, |fix revisions|
K

. Figure 1 shows av-
erage fix rates of K-revisions before and after refactorings
by varying K from 1 to 30. Horizontal dotted lines show
the average bug fix rate for each subject over its entire life
time we observed. In all three subjects, the fix rate increases
after refactorings. For example, the fix rate of 5 revisions be-
fore refactoring (noted as −5 revision in Figure 1) is around
26.1%, while the fix rate of 5 revisions after refactorings is
30.3% for Eclipse JDT. For Columba, the fix rate of the
−5 revision is around 31.4%, and the +5 revision is around
37.8%.

!"#$%&'()*+,-"&.'/,0//, -"&.'/,!"1'2",

-3#''45,67,-38$(45,

-38''45,67,-38$(4)*&5,

-38$945,67,-:38$945,

;<+,=)#",>)1",
(?@, (?A, (BC, (BD,

Figure 2: An example method evolution history

We also investigated a fix rate at the method granular-
ity. This technique computes fix rates more accurately by
considering refactorings and bug fixes per method. For each
method, we reconstructed its revision level history which
includes information about when method-level rename and
move refactorings occurred and in which revision bug fixes
were applied to the method. Figure 2 shows an example
change history: method M.foo() was created in revision 50,
it was renamed to method M.bar() in the revision 59, and
a bug fix was applied to it at revision 62 and 67. Using
the same sliding window method, we computed the fix rate
for each method, by varying the window size K from 1 to
30. Figure 3 describes the results at the method granularity.
The fix rate at the method level is much lower than the one
at the revision level, since most fixes did not happen in the
same method location of a refactoring. Its trend is almost
the same as Figure 1.

The method-level fix rate increases from 0.101% to 0.162%
in Eclipse JDT, from 0.367% to 0.675% in jEdit, and from
0% to 1.454% in Columba within 5 revisions after API-level
refactorings compared to the preceding period. To show
the statistical significance of these rate differences, the t-
test is used [5]. Our null hypothesis is the bug fix rates
before and after API-level refactorings are the same at the
method level. We reject the null hypothesis and accept the
alternative hypothesis if the p-value is smaller than 0.05.
The changes in fix rates are statistically significant with a
p-value of 8.70e-09 in Eclipse JDT, 0.011 in jEdit, and 1.12e-
05 in Columba.

Both at the revision and method level, we observe that
the fix rate after refactoring is higher than the fix rate before
refactoring. There are several possible explanations. Refac-
torings may introduce bugs, and developers fix those new
bugs after the refactorings. Or refactorings help developers
identify and fix previously introduced latent bugs.

In order to investigate the fix rate increase after refactor-
ings both at the revision and at the method level, we con-
ducted an in-depth case study of the refactoring revisions
in Eclipse JDT followed by at least one bug fix to the same
method location within 20 revisions after the initial refactor-
ings. This process found 208 revisions in Eclipse JDT, out

!"#

$"#

%"#

&"#

'"#

("#

)"#

*"#

+"#

,&!#,%(#,%!#,$(#,$!# ,(# !# (# $!# $(# %!# %(# &!#

!-!!"#

!-!("#

!-$!"#

!-$("#

!-%!"#

!-%("#

!-&!"#

!-&("#

!-'!"#

,&!#,%(#,%!#,$(#,$!# ,(# !# (# $!# $(# %!# %(# &!#

!-!!"#
!-$!"#
!-%!"#
!-&!"#
!-'!"#
!-(!"#
!-)!"#
!-*!"#
!-+!"#
!-.!"#
$-!!"#

,&!#,%(#,%!#,$(#,$!# ,(# !# (# $!# $(# %!# %(# &!#

/0#1234#23##
2#543678#
94:49#

2:412;4#/0#1234<#####=>##
?@A>#!-!$"#
BC8D3>#!-!%"#
E79F5G2>!-$%"#

HDI87H#JDK4#<L=#
14M2N371DI;#O5DI;#

HDI87H#JDK4#<L=# HDI87H#JDK4#<L=#
14M2N371DI;#O5DI;# 14M2N371DI;#O5DI;#

?@A# BC8D3# E79F5G2#

Figure 3: Fix rate before and after refactorings at the method level (varying K from 1 to 30)

of which we randomly selected 50 revisions for manual in-
vestigation. We inspected the refactoring and associated fix
revisions’ check-in comments, associated bug reports, and
code modifications. The following five categories emerged
from the investigation results.

I. Floss refactoring—refactoring combined with a
bug fix—is incomplete, thus inducing a supple-
mentary fix later. For example, Olivier Thomann
tried to fix the bug id 111494 at revision 12200. Later
he fixed the same bug again at revision 12201 because
the original bug fix was incorrect.

II. In order to fix several related bugs that are very
hard to fix, a developer first refactors code to
enable bug fixes. For example, Jerome Lanneluc
decided to fix bug ids 73669 and 73675, which are all
related to the AST functionality. He first refactored
code at revision 9445, and then bug 73669 and bug
73675 are fixed at revision 9454.

III. Incorrect refactorings cause a bug, which in-
duces a later fix. For example, Olivier Thomann
renamed method unnecessaryNONNLSTags() to unne-

cessaryNLSTags() but forgot to rename the related
XML tag at revision # 11849. He later renamed the
related tag at revision 11859.

IV. After a developer performs refactorings, she
discovers a new bug or a design problem, which
induces a later fix. For example, Jerome Lanneluc
tried to speed up a path look-up feature by hashing
on container paths at revision 11004. As he realized a
design problem in the code, he reported this issue as a
bug report id 90431 and fixed it at revision 11019.

V. A bug fix happened after a refactoring in the
same location but they are not related. For ex-
ample, David Audel fixed bug id 106450 with a refac-
toring at revision 13428, and then at revision 13440
Philippe Mulet fixed another bug (id 104293), which
was introduced before revision 13428.

Table 3 shows the categorization of inspected 50 samples,
and lists (refactoring revision number, fix revision number)
pairs per category. A pair followed by * means that the
two revisions are completed by the same author. In 32 cases
out of 50, the refactorings are indeed related to bug fixes.

In 25 cases (50% of inspected samples), later bug fixes are
caused by floss refactoring mistakes during a bug fix. This
implies that though developers apply refactorings to facil-
itate bug fixes, such refactorings often cause bugs as well.
This result calls for new software engineering tools that re-
pair refactoring mistakes and support developers in applying
coordinated refactorings consistently.

Table 3: Categorization of 50 inspected sample pairs
of (refactoring revision, fix revision). The * mark
indicates that the two revisions are completed by
the same author.

(refactoring revision, fix revision)
I 25 (12200,12201)*, (4316,4333)*, (4650,4657)*,

(10391,10397)*, (14082,14097)*, (9970,9972)*,
(9967,9968)*, (4333,4342)*, (1728,1734)*,
(14872,14877)*, (14680,14684)*, (14388,14392)*,
(10853,10858)*, (14196,14201)*, (10512,10516)*,
(12170,12171)*, (11964,11966)*, (10180,10198)*,
(11232,11238)*, (10613,10614)*, (11041,11046)*,
(12519,12527)*, (10816,10820)*, (12469,12473)*,
(13199,13207)*.

II 3 (9445,9454)*, (1100,1101)*, (12331,12338)*
III 3 (6115,6116), (2383,2402)*, (11849,11859)*.
IV 1 (11004,11019)*.
V 18 (13428,13440), (3931,3947)*, (3678,3689)*,

(8955,8965), (7828,7831), (9605,9613), (9898,9913),
(6404,6415), (13492,13499)*, (10240,10244)*,
(12170,12187)*, (12394,12409)*, (12316,12331)*,
(12003,12009)*, (11178,11191)*, (10442,10453)*,
(10819,10826)*, (12805,12815).

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*&!# *%(# *%!# *$(# *$!# *(# !# (# $!# $(# %!# %(# &!#

+,-#

./012#

3456789#

9:;<9=;#592;>2#
86=#?5;#0;>@12AB#####CD##
+,-D#'!EF"#
./012D%&E'G"#
3456789D)EH"#

I1>04I#@1J;#BKC#

592;>2#86=#
?5;#0;>@12A#

<;L9M24<1>=#N71>=#

Figure 4: Latent bug density before and after refac-
torings (K from 1 to 30)

Furthermore, to investigate whether refactorings increase
the number of latent bugs, we calculated the number of files

with bug-introducing changes [28]. This technique traces
the line-level locations of bug fixes to previous revisions per
file to identify which revision created the buggy code that
was later modified by the fix. We then computed latent bug
density, the number of files with bug-introducing changes
out of the total number of files at that revision. Figure 4
shows the latent bug density computed by the same sliding
window method, varying K from 1 to 30. For all three sub-
jects, the bug density remains stable without much change
after refactorings. This implies that while some refactorings
help developers identify and fix bugs, some also introduce
new bugs.�

�
�
�

There is a short-term increase in the number of
bug fixes after refactorings.

4.2 Do API-level refactorings reduce the time
taken to fix bugs?

!"#$%&'&()'" !"#$%&'&()'"

#$*+,-(#&)."#$%&'&()"
//"

00"

/0"

/1."2)-#(31,4()" /1."5&6"

7/"

!"#$%&'&()'"

Figure 5: Four categories of bug fixes that were in-
troduced and resolved near the timing of a refactor-
ing

To examine whether refactorings improve developer pro-
ductivity, we first identified bugs that were both introduced
and resolved near the timing of refactorings and estimated
the time taken to fix those bugs by measuring the timing of a
bug fix minus the timing of a corresponding bug-introducing
change. To compare the difference in productivity before
and after refactorings, for each refactoring revision, r, we
further categorized nearby bug fixes (closed within [-K, K])
into four categories based on their introduction and resolu-
tion time in relation to the timing of refactorings (see Fig-
ure 5):

• BB: bugs that were introduced before r and fixed be-
fore r. (i.e., open ∈ [-K, 0) and closed ∈ [-K, 0))

• AA: bugs that were introduced after r and fixed after
r. (i.e., open ∈ (0, K] and closed ∈ (0, K])

• BA: bugs that were introduced before r and fixed after
r. (i.e., open ∈ [-K, 0) and close ∈ (0, K])

• XB: bugs that were introduced at least K revisions
before r and fixed before r. (i.e., open ∈ [-2K, -K)
and closed ∈ (-K, 0]). Category XB was added for
comparison with category BA because the maximum
bug life time in category BA is 2K while BB is only K.

Figure 6 shows an average time taken to fix bugs in each
category when using K=100. When comparing XB with BA,

there is 63.1% decrease in JDT, 56.7% decrease in jEdit and
35.0% decrease in Columba in the time taken to fix bugs
after refactorings. When comparing BB and AA, there is
20.2% and 43.1% decrease in JDT and jEdit respectively,
but a 26.1% increase (from 38.45 to 48.47) in Columba.

Overall, we observed the bug fix time decrease after refac-
torings. Based on the results in Section 4.1, we specu-
late that developers discover bugs during refactorings and
quickly fix them as they are already making changes to the
involved code or they quickly fix incomplete refactorings as
they recognize them. Another explanation is that refac-
torings combined with bug fixes often incur supplementary
fixes, which are usually smaller and easier to implement than
main bug fixes.�

�
�
�

When it comes to fixing bugs introduced near
the time of refactorings, the average fix time

tends to decrease after refactorings.

4.3 Do API-level refactorings facilitate bug fixes?
The results in Sections 4.1 and 4.2 motivated us to further

investigate whether refactorings were done to facilitate bug
fixes.

To examine how many refactorings were done as a part
of a bug fix, we first measured the extent of revisions that
include both refactorings and bug fixes. In Table 4, P (F) is
the probability of a revision to include a bug fix, P (R) is the
probability of a revision to include an API-level refactoring,
P (R|F) is the conditional probability of including a refac-
toring given a bug fix revision. P (R|¬F) is the conditional
probability of including a refactoring given that it is a not a
fix revision. We used the entire population of our refactoring
revision and fix revision data to measure the proportions.

In Eclipse JDT, we found that more than 41.5% refactor-
ing revisions were associated with bug fixes (29.1% in jEdit
and 44.4% in Columba). Furthermore, the probability to in-
clude a refactoring given a fix revision is much higher than
the probability to include a refactoring given a non-fix revi-
sion (12.0% vs. 5.7% in Eclipse, 11.5% vs. 3.0% in jEdit,
and 10.7% vs. 7.4% in Columba). The probability to in-
clude a fix given a refactoring revision is 62.8% while the
probability to include a fix given a non-refactoring revision
51.7% in Eclipse. Interestingly, jEdit and Columba show the
opposite trends: 33.0% vs. 46.9% in jEdit, and 24.3% vs.
36.3% in Columba.

We also conducted a similar experiment at the method
level because a fix revision may include more than one delta
where refactorings were applied to only a subset of the deltas.
The results at the method-level are slightly different from
the revision level analysis, because refactoring tends to in-
volve decentralized, crosscutting changes to more than one
methods, making the probability of a method to include a
refactoring much higher than the probability of a revision
to include a refactoring. To examine whether bug fixes re-
solved after refactorings indeed are related to the preceding
refactorings, we measured the percentage of refactoring re-
visions that have at least one bug fix applied to the same
method-level refactoring location within 20 revisions.

As a control group, we measured the percentage of non-
refactoring revisions that have at least one bug fix applied to
the same change location within 20 revisions of the change.

!"#$!%#&'(&&
)*#&+,!-./&

012& 34,56& 789:*;!&

<=>?& @=@A&

BC=AC&

A=DB&

?&

<&

B?&

B<&

E?&

E<&

FF& GG& HF& FG&

EB=<?&
BE=E@&

CI=>D&

@E=>>&

?&

E?&

@?&

>?&

I?&

B??&

BE?&

FF& GG& HF& FG&

DI=@<& @I=@A&

ED?=ED&

B@C=>>&

?&

<?&

B??&

B<?&

E??&

E<?&

FF& GG& HF& FG&

FF&

GG&

HF&

FG&

Figure 6: An average time taken to fix bugs in each category

Table 4: Probability of fixes and refactorings at the revision level and at the method level
At the revision level

Project # revisions |F | |R| |F ∩ R| P (F) P (R) P (R|F) P (R|¬F) P (F |R) P (F |¬R)
Eclipse JDT 15,000 3752 1089 452 0.250 0.073 0.120 0.057 0.415 0.237
JEdit 11,102 1073 423 123 0.097 0.038 0.115 0.030 0.291 0.089
Columba 421 150 36 16 0.357 0.086 0.107 0.074 0.444 0.348
Total 26,523 4975 1548 591 0.188 0.058 0.119 0.044 0.382 0.176

At the method level
Project # methods |F | |R| |F ∩ R| P (F) P (R) P (R|F) P (R|¬F) P (F |R) P (F |¬R)
Eclipse JDT 21,938 12049 6278 3945 0.549 0.286 0.327 0.236 0.628 0.517
JEdit 8,938 3704 3529 1166 0.414 0.395 0.315 0.451 0.330 0.469
Columba 2,191 745 424 103 0.340 0.194 0.138 0.222 0.243 0.363
Total 33,067 16498 10231 5214 0.499 0.309 0.316 0.303 0.510 0.494

In Figure 7, the left hand side is for a treatment group, and
the right hand side for a control group.

While 32.0% of refactoring revisions have at least one fix
revision ∈ (0,20] applied to the same method locations, only
14.0% of non-refactoring revisions have at least one fix revi-
sion ∈ (0,20] overlap with the same change locations. When
K is 30, the results are 36.5% vs. 15.6% and when K is 100,
the results are 49.5% vs. 22.1%.

This result implies that it is more likely for refactoring
revisions to be followed by related bug fixes than non-re-
factoring revisions to be followed by related bug fixes. In
conjunction with the manual investigation results in Sec-
tion 4.1, we find that after a refactoring, usually the same
developer applies related bug fixes. We speculate that it
is because developers apply refactorings first to fix several
hard-to-fix bugs on purpose or apply supplementary-fixes
later to correct accidental refactoring mistakes.�

�

�

�
Fixes and refactorings often appear in the same
revision. Furthermore, it is more likely for a
refactoring revision to be followed by related
bug fixes than for a non-refactoring revision.

4.4 Are there relatively fewer API-level refac-
torings before release dates?

Some practitioners believe that refactorings do not have
immediate benefits and thus developers often postpone refac-
torings when they are constrained by time [4]. We compared
the number of refactorings before and after major release
dates to see whether feature freeze before major software re-
leases discourages developers from introducing refactorings

!"#$

%&#'$
(')*&+,$

(-.*&+,$

))!#$

%'.!/$

(%!*&+,$

(.-*&+,$

0$12$3145672$6789:914:$
;<=;$>767$67?=;7@$;1$
AB$>9;<94$(&CDE$

0$12$3145672$6789:914:$
;<=;$>767$3FG$67?=;7@$
;1AB>9;<94$(&CDE$

0$12$H7256789:914:$;<=;$
>767$67?=;7@$;1AB
>9;<94$(&CDE$

0$12$H7256789:914:$;<=;$
>767$3FG$67?=;7@$;1$
AB$>9;<94$(&CDE$

Figure 7: % of refactoring revisions that have at
least one fix revision in a 20 revision window applied
to the same method location

to the system.
In our study, we analyzed 19 major releases: 15 in Eclipse

JDT and 4 in jEdit whose release dates are identified based
on their websites.2 We excluded Columba in this analysis
as it had only one release during the period.

We compute a refactoring rate and a fix rate before and
after each release using the same K sliding window method in
Section 4.1. Figures 8 and 9 show the box plot (1st quartile,
median, and 3rd quartile) for each subject for K=+/- 20,
30, and 40.

The results show that there are more refactorings before
releases than right after, and there are more bug fixes before
releases than after. Combined with Section 4.3’s results that
refactorings and bug fixes often occur in the same revision,
we speculate that developers apply refactorings to imple-
ment bug fixes that must be shipped with a new software
release.

2http://archive.eclipse.org/eclipse/downloads/ and
http://sourceforge.net/projects/jedit/files

!"#$ %&'()$

0%

5%

10%

15%

20%

25%

30%

K=-20 K=20 K=-30 K=30 K=-40 K=40
*+
,-
.)
/*
(0
1$
*-
)+

2(0'/2$3(4+$567

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

K=-20 K=20 K=-30 K=30 K=-40 K=40

*+
,-
.)
/*
(0
1$
*-
)+

2(0'/2$3(4+$567

Figure 8: Refactoring rate in relation to release timing

!"#$ %&'()$

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

K=-20 K=20 K=-30 K=30 K=-40 K=40

*+
$,-

).

/(0'1/$2(3.$456

0%

10%

20%

30%

40%

50%

60%

70%

80%

K=-20 K=20 K=-30 K=30 K=-40 K=40

*+
$,-

).
/(0'1/$2(3.$456

Figure 9: Fix rate in relation to release timing

�
�

�
�

There are more refactorings and bug fixes prior
to major version releases.

5. DISCUSSION
This section discusses the limitation of our study method

and the implication of our results.
Refactoring reconstruction’s coverage and accuracy.
As we discussed in Section 3, the refactoring revision data
we used may not accurately represent the population of
refactoring revisions as API-level refactoring reconstruction
only captures a subset of refactorings—rename, move, and
changes to API signatures at or above the level of method
headers. Thus, our study results may not generalizable to
intra-method refactorings or complex refactorings that do
not involve any changes to method-headers. Furthermore,
some may disagree with our definition of refactoring in this
paper, since a refactoring technically cannot overlap with a
bug fix, behavior-correcting transformations. Nevertheless,
we believe that our results shed light on the relationship be-
tween API-level refactorings and bug fixes during software
evolution. A recent work by Prete et al. encodes 63 out of 72
refactoring types in Fowler’s catalog as template logic rules
and uses a logic-query approach to infer concrete refactoring
instances [24]. We plan to use this technique to collect refac-
toring revision data more accurately and comprehensively in
the future. In addition, it is possible to collect refactoring
revision data from different sources: mining commit logs,
observing programmers, logging refactoring tool use, etc.

In our study, we considered a revision is a refactoring re-
vision if it includes at least one API-level refactoring. Thus,

a large commit, mostly feature addition with a single API-
level refactoring, is still categorized as a refactoring revision
according to our definition. A further study that accounts
for the size of edits as well as the number of refactorings
remains as future work. In our study, due to a large num-
ber of detected refactorings, we did not check with open
source developers regarding whether they were performed
manually or automatically using refactoring engines. It is
possible that automatically applied refactorings do not have
much correlation with bug fixes.
Phases and activity levels during a software life cy-
cle. We did not investigate other confounding factors such
as activity levels, task types, or the phases of a software
life cycle (e.g., requirements analysis, design, testing, etc.)
For example, a refactoring rate increase before major re-
leases can be interpreted by organization shifting its focus to
beautifying code before releases. Figure 10 shows the num-
ber of revisions within the same time frame during Eclipse
JDT’s life time. It shows that there are specific periods of
very high-level of activities, indicating that developers may
perform different types of tasks during such high activity
period. Furthermore, the K-sliding window method in the
study does not always map to the same length of absolute
time, as 5 revisions during a high activity period could be
equivalent to 1 day while it could be equivalent to 10 days
during a low activity period. A revision may not be a mean-
ingful time unit as developers could accumulate several log-
ical changes in a single revision.
Development practices. Our study results may be strongly
influenced by a few developers’ practices. For example,
the results on refactorings and bug fixes may be symptoms
of micro-commits where developers commit a single logical

change in multiple revisions just as a habit. It is also possi-
ble that some organizations assign refactorings and bug fix
tasks together to a few developers who drive a majority of
refactoring and bug fix commits.
Bug-introducing change identification method. When
measuring the extent of latent bugs, we used a bug-introducing
change detection method which only tracks deleted or mod-
ified code lines. Thus, our method of tracking the origin of
a bug is very limited especially when the bug fix involves
code addition. This issue in the study’s construct validity
may have affected our results on bug fix time and the extent
of latent bugs. In addition, we calculated the time to fix
a bug based using the difference between bug introduction
and resolution time, which is not always a reliable measure.
Software maintainability and developer productiv-
ity. Though our study reveals interesting relationships be-
tween refactorings and bug fixes, further investigation into
the impact of refactoring on software maintainability and
productivity is needed. The study found that refactoring
often serves the role of both facilitating bug fixes and induc-
ing bugs. This result calls for re-thinking the true benefits of
refactorings and quantitatively assessing the cost and bene-
fit of refactoring investment. Further research on economics-
based quantitative assessment of refactorings remains as an
open problem.
New software engineering tools. Empirical evidence
from this study resonates with the limitations of refactoring
features in modern IDEs reported by previous research [15,
20, 21]—refactorings occur as a part of other behavior en-
hancing or correcting transformations, and manual appli-
cation of coordinated systematic refactoring is often error-
prone. This result calls for new software engineering anal-
yses such as a tool that detects refactoring mistakes and
repairs them.

0	

2	

4	

6	

8	

10	

12	

14	

16	

12
-­‐Ju

n-­‐
01

	

12

-­‐A
ug
-­‐0
1	

12
-­‐O
ct
-­‐0
1	

12
-­‐D
ec
-­‐0
1	

12
-­‐F
eb

-­‐0
2	

12
-­‐A
pr
-­‐0
2	

12
-­‐Ju

n-­‐
02

	

12

-­‐A
ug
-­‐0
2	

12
-­‐O
ct
-­‐0
2	

12
-­‐D
ec
-­‐0
2	

12
-­‐F
eb

-­‐0
3	

12
-­‐A
pr
-­‐0
3	

12
-­‐Ju

n-­‐
03

	

12

-­‐A
ug
-­‐0
3	

12
-­‐O
ct
-­‐0
3	

12
-­‐D
ec
-­‐0
3	

12
-­‐F
eb

-­‐0
4	

12
-­‐A
pr
-­‐0
4	

12
-­‐Ju

n-­‐
04

	

12

-­‐A
ug
-­‐0
4	

12
-­‐O
ct
-­‐0
4	

12
-­‐D
ec
-­‐0
4	

12
-­‐F
eb

-­‐0
5	

12
-­‐A
pr
-­‐0
5	

12
-­‐Ju

n-­‐
05

	

12

-­‐A
ug
-­‐0
5	

12
-­‐O
ct
-­‐0
5	

12
-­‐D
ec
-­‐0
5	

12
-­‐F
eb

-­‐0
6	

12
-­‐A
pr
-­‐0
6	

12
-­‐Ju

n-­‐
06

	

12

-­‐A
ug
-­‐0
6	

12
-­‐O
ct
-­‐0
6	

12
-­‐D
ec
-­‐0
6	

12
-­‐F
eb

-­‐0
7	

12
-­‐A
pr
-­‐0
7	

12
-­‐Ju

n-­‐
07

	

12

-­‐A
ug
-­‐0
7	

12
-­‐O
ct
-­‐0
7	

12
-­‐D
ec
-­‐0
7	

12
-­‐F
eb

-­‐0
8	

12
-­‐A
pr
-­‐0
8	

12
-­‐Ju

n-­‐
08

	

12

-­‐A
ug
-­‐0
8	

12
-­‐O
ct
-­‐0
8	

12
-­‐D
ec
-­‐0
8	

Releases

of
revisions/
week

Figure 10: Activity density during Eclipse JDT evo-
lution

6. CONCLUSIONS
It is believed that refactoring improves software maintain-

ability and a lack of refactorings incurs technical debt in the
form of increased maintenance cost. This paper presents an
empirical investigation into the role of API-level refactor-
ings during software evolution. The study found that the
number of bug fixes increases after refactorings while the
time taken to fix bugs decreases after refactorings. Refac-
torings often serve the role of both facilitating bug fixes and

inducing bugs.
The study results calls for an in-depth quantitative inves-

tigation into the cost-benefit analysis of refactoring invest-
ment. The results also suggest the need of new software en-
gineering tools that detect and correct inconsistent program
updates when developers apply refactorings.

Acknowledgments
The authors thank anonymous reviewers, Danny Dig, and
the participants of software engineering seminar at UIUC
for their helpful comments on our draft. This work was sup-
ported in part by National Science Foundation under grant
CCF-1043810.

7. REFERENCES
[1] J. Aranda and G. Venolia. The secret life of bugs:

Going past the errors and omissions in software
repositories. In ICSE ’09: Proceedings of the 31st
International Conference on Software Engineering,
pages 298–308, Washington, DC, USA, 2009. IEEE
Computer Society.

[2] C. Bird, A. Bachmann, E. Aune, J. Duffy,
A. Bernstein, V. Filkov, and P. Devanbu. Fair and
balanced?: bias in bug-fix datasets. In ESEC/FSE
’09: Proceedings of the the 7th joint meeting of the
European software engineering conference and the
ACM SIGSOFT symposium on The foundations of
software engineering, pages 121–130, New York, NY,
USA, 2009. ACM.

[3] J. Carriere, R. Kazman, and I. Ozkaya. A cost-benefit
framework for making architectural decisions in a
business context. In ICSE ’10: Proceedings of the 32nd
ACM/IEEE International Conference on Software
Engineering, pages 149–157, New York, NY, USA,
2010. ACM.

[4] W. Cunningham. The wycash portfolio management
system. In OOPSLA ’92: Addendum to the
proceedings on Object-oriented programming systems,
languages, and applications (Addendum), pages 29–30,
New York, NY, USA, 1992. ACM.

[5] P. Dalgaard. Introductory statistics with R. Springer,
New York, 2. ed. edition, 2008.

[6] B. Daniel, D. Dig, K. Garcia, and D. Marinov.
Automated testing of refactoring engines. In
ESEC-FSE ’07: Proceedings of the the 6th joint
meeting of the European software engineering
conference and the ACM SIGSOFT symposium on
The foundations of software engineering, pages
185–194, New York, NY, USA, 2007. ACM.

[7] D. Dig and R. Johnson. The role of refactorings in api
evolution. In ICSM ’05: Proceedings of the 21st IEEE
International Conference on Software Maintenance,
pages 389–398, Washington, DC, USA, 2005. IEEE
Computer Society.

[8] D. Dig and R. Johnson. Automated detection of
refactorings in evolving components. In ECOOP ’06:
Proceedings of European Conference on
Object-Oriented Programming, pages 404–428.
Springer, 2006.

[9] M. Fischer, M. Pinzger, and H. Gall. Populating a
release history database from version control and bug

tracking systems. In ICSM ’03: Proceedings of the
International Conference on Software Maintenance,
page 23, Washington, DC, USA, 2003. IEEE
Computer Society.

[10] B. Fluri, M. Würsch, M. Pinzger, and H. C. Gall.
Change distilling: Tree differencing for fine-grained
source code change extraction. IEEE Transactions on
Software Engineering, 33(11):725–743, August 2007.

[11] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley Professional, 2000.

[12] C. Görg and P. Weißgerber. Error detection by
refactoring reconstruction. In MSR ’05: Proceedings of
the 2005 international workshop on Mining software
repositories, pages 1–5, New York, NY, USA, 2005.
ACM.

[13] W. G. Griswold. Program Restructuring as an Aid to
Software Maintenance. PhD thesis, University of
Washington, WA, USA, 1991.

[14] A. Hindle, D. M. German, and R. Holt. What do large
commits tell us?: a taxonomical study of large
commits. In MSR ’08: Proceedings of the 2008
international working conference on Mining software
repositories, pages 99–108, New York, NY, USA, 2008.
ACM.

[15] M. Kim and D. Notkin. Discovering and representing
systematic code changes. In ICSE ’09: Proceedings of
the 2009 IEEE 31st International Conference on
Software Engineering, pages 309–319, Washington,
DC, USA, 2009. IEEE Computer Society.

[16] M. Kim, D. Notkin, and D. Grossman. Automatic
inference of structural changes for matching across
program versions. In ICSE ’07: Proceedings of the
29th International Conference on Software
Engineering, pages 333–343, Washington, DC, USA,
2007. IEEE Computer Society.

[17] S. Kim, T. Zimmermann, E. J. Whitehead, Jr., and
A. Zeller. Predicting faults from cached history. In
ICSE ’07: Proceedings of the 29th international
conference on Software Engineering, pages 489–498,
Washington, DC, USA, 2007. IEEE Computer Society.

[18] M. M. Lehman. On understanding laws, evolution,
and conservation in the large-program life cycle.
Journal of Systems and Software, 1:213–221, 1980.

[19] T. Mens and T. Tourwe. A survey of software
refactoring. IEEE Transactions on Software
Engineering, 30(2):126–139, February 2004.

[20] E. Murphy-hill and A. P. Black. Why don’t people use
refactoring tools. In ECOOP ’07: Proceedings of the
1st Workshop on Refactoring Tools, TU Berlin,
Germany, 2007.

[21] E. Murphy-Hill, C. Parnin, and A. P. Black. How we
refactor, and how we know it. In ICSE ’09:
Proceedings of the 31st International Conference on
Software Engineering, pages 287–297, Washington,
DC, USA, 2009. IEEE Computer Society.

[22] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. In ICSE
’05: Proceedings of the 27th International Conference
on Software Engineering, pages 284–292, New York,
NY, USA, 2005. ACM.

[23] H. A. Nguyen, T. T. Nguyen, G. Wilson, Jr., A. T.
Nguyen, M. Kim, and T. N. Nguyen. A graph-based

approach to api usage adaptation. In Proceedings of
the ACM international conference on Object oriented
programming systems languages and applications,
OOPSLA ’10, pages 302–321, New York, NY, USA,
2010. ACM.

[24] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim.
Template-based reconstruction of complex
refactorings. In Software Maintenance (ICSM), 2010
IEEE International Conference on, pages 1 –10, 2010.

[25] J. Ratzinger, T. Sigmund, and H. C. Gall. On the
relation of refactorings and software defect prediction.
In MSR ’08: Proceedings of the 2008 international
working conference on Mining software repositories,
pages 35–38, New York, NY, USA, 2008. ACM.

[26] C. Reichenbach, D. Coughlin, and A. Diwan. Program
metamorphosis. In Genoa: Proceedings of the 23rd
European Conference on ECOOP 2009 —
Object-Oriented Programming, pages 394–418, Berlin,
Heidelberg, 2009. Springer-Verlag.

[27] D. Roberts, J. Brant, and R. Johnson. A refactoring
tool for smalltalk. Theory and Practice of Object
Systems, 3(4):253–263, 1997.

[28] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? In MSR ’05: Proceedings of the
2005 international workshop on Mining software
repositories, pages 1–5, New York, NY, USA, 2005.
ACM.

[29] D. Čubranić and G. C. Murphy. Hipikat:
recommending pertinent software development
artifacts. In ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering,
pages 408–418, Washington, DC, USA, 2003. IEEE
Computer Society.

[30] P. Weißgerber and S. Diehl. Are refactorings less
error-prone than other changes? In MSR ’06:
Proceedings of the 2006 international workshop on
Mining software repositories, pages 112–118, New
York, NY, USA, 2006. ACM.

[31] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim.
Aura: a hybrid approach to identify framework
evolution. In ICSE ’10: Proceedings of the 32nd
ACM/IEEE International Conference on Software
Engineering, pages 325–334, New York, NY, USA,
2010. ACM.

[32] Z. Xing and E. Stroulia. Umldiff: an algorithm for
object-oriented design differencing. In ASE ’05:
Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, pages
54–65, New York, NY, USA, 2005. ACM.

[33] Z. Xing and E. Stroulia. Refactoring practice: How it
is and how it should be supported - an eclipse case
study. In ICSM ’06: Proceedings of the 22nd IEEE
International Conference on Software Maintenance,
pages 458–468, Washington, DC, USA, 2006. IEEE
Computer Society.

