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ABSTRACT

Testing object-oriented (OO) software is critical because OO lan-
guages are commonly used in developing modern software sys-
tems. In testing OO software, one important and yet challenging
problem is to generate desirable object instances for receivers and
arguments to achieve high code coverage, such as branch cover-
age, or find bugs. Our initial empirical findings show that cover-
age of nearly half of the difficult-to-cover branches that a state-of-
the-art test-generation tool cannot cover requires desirable object
instances that the tool fails to generate. Generating desirable ob-
ject instances has been a significant challenge for automated test-
generation tools, partly because the search space for such desirable
object instances is huge, no matter whether these tools compose
method sequences to produce object instances or directly construct
object instances. To address this significant challenge, we propose
a novel approach called Object Capture based Automated Test-
ing (OCAT). OCAT captures object instances dynamically from
program executions (e.g., ones from system testing or real use).
These captured object instances assist an existing automated test-
generation tool, such as a random testing tool, to achieve higher
code coverage. Afterwards, OCAT mutates collected instances,
based on observed not-covered branches. We evaluated OCAT on
three open source projects, and our empirical results show that
OCAT helps a state-of-the-art random testing tool, Randoop, to
achieve high branch coverage: on average 68.5%, with 25.5% im-
proved from only 43.0% achieved by Randoop alone.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—Testing
tools (e.g., data generators, coverage testing), Monitors
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1. INTRODUCTION

Object-oriented (OO) languages are frequently used, and con-
ducting effective testing of OO software is critical to discover ex-
isting bugs in the software. Among different types of testing, unit
testing has been widely adopted in practice as an important means
of assuring software correctness. To reduce manual effort in OO
unit testing, automated test-generation tools [26, 28, 33, 37] gen-
erate test inputs for a unit (e.g., a class). These test inputs are in
the form of method invocations where (1) primitive values, such
as integer values, for primitive-type method arguments are auto-
matically generated, and (2) object instances for receivers and non-
primitive-type method arguments are automatically generated by
composing method-invocation sequences, in short as method se-
quences.

In unit testing of OO software, one important and yet challenging
problem is to generate desirable object instances for receivers and
arguments to achieve high code coverage (such as branch coverage)
or find bugs. Automatic generation of object instances becomes
more difficult and complicated than testing software in procedural
languages such as C. For example, the fields of object instances of-
ten cannot be directly constructed, but are indirectly constructed via
method sequences due to information hiding. Two main types of
techniques used by existing automated test-generation tools attempt
to address this challenge: direct object construction and method-
sequence generation.

Techniques that perform direct object construction, such as Ko-
rat [8], directly assign values to object fields of the object instance
under construction. If an object field of the object instance is also
a non-primitive type (i.e., requiring an object instance), the tech-
niques further construct an object instance for this object field and
assign values to object fields of this second-level object instance.
Such a procedure is conducted until object-field values of the ob-
ject instance are assigned to a small pre-defined bound of levels.
To avoid generating invalid object instances (e.g., tree object in-



80 /xx

81 %

82 = Q@param doc

83 x @param algorithmURI is the URI
of the algorithm as String

84  x/

85 public Algorithm(Document doc,
String algorithmURI) {

86

87 super(doc);

88

89 this.setAlgorithmURI(algorithmURI);
90

Figure 1: Motivating Example - doc is insufficient and
and the execution of Line 87 throws exceptions. Line
89 cannot be reached unless a desirable doc object
instance is passed in. The code fragment is from
org.apache.xml.security.algorithms.Algorithm.

stances with cycles among tree nodes), these techniques require the
specification of class invariants for checking and filtering invalid
object instances; however, in practice, class invariants are rarely
documented. In addition, these techniques require the value do-
main (i.e., the set of selected values) for each primitive-type object
field be manually specified. These factors cause these techniques to
be ineffective for testing real-world classes. For example, Korat [8]
was evaluated on primarily data structures and applying it requires
much manual effort for preparing class invariants and value do-
mains.

The techniques of method-sequence generation [11, 18, 26, 35]
produce method sequences that can produce an object instance. For
example, random techniques [11, 26] generate random method se-
quences, sometimes by pruning, based on feedback from previ-
ously generated sequences. The evolutionary techniques [18, 35]
use genetic algorithms to evolve initial method sequences to ones
more likely to cover target branches (e.g., not-yet-covered bran-
ches). Because the search space for method sequences is huge,
the random technique or the evolutionary technique (whose seq-
uence construction is largely random) is often ineffective in finding
method sequences that produce desirable object instances to cover
target branches.

The main cause of low code coverage achieved by these tools is
the incapability to generate desirable object instances by the pre-
ceding types of techniques. For example, Figure 1 shows a not-
covered area of an open source project called Apache XML Se-
curity' after running a state-of-the-art random testing tool, Ran-

doop [26], for 80 minutes. We observe the target constructor Algorithm

takes a Document argument. The first statement super (doc) in
the constructor body checks the validity of the Document argu-

ment. Since Randoop fails to generate a desirable (i.e., valid) Document

object instance, the super (doc) throws an exception, and thus the
lines after Line 87 in the constructor body remain not-covered.

To address the limitations of previous techniques on generating
desirable object instances, we propose a novel approach called Ob-
ject Capture based Automatic Testing (OCAT). OCAT has three
main phases: (1) object capturing, (2) object generation, and (3)
object mutation.

In the object-capturing phase, OCAT captures object instances
from normal program executions (e.g., ones from system testing or
real use). Suppose that we want to test the Eclipse program. It is
generally hard to automatically generate desirable object instances;

"http://santuario.apache.org/

however, if we run and use Eclipse, during execution, there are
many object instances being created in the memory heap. Since
these object instances reflect real usage, capturing and exploiting
them in automated testing could provide potential for being desir-
able in achieving new branch coverage.

In the object-generation phase, OCAT generates new object in-
stances using a method-sequence generation technique [11, 18, 26,
35] and captured object instances.

Finally, OCAT mutates object instances to satisfy the conditions
of not-covered branches. Although a state-of-the-art of test-generation
technique is assisted by captured object instances to cover more
branches, it is possible there are still not-yet-covered branches.
OCAT analyzes the conditions related to not-yet-covered branches
and mutates the captured object instances to satisfy the conditions.

OCAT can be viewed as a novel integration of the two preced-
ing types of techniques for generating desirable object instances.
The capturing and mutating of object instances in OCAT can be
viewed as a type of direct object construction but it does not suf-
fer from the limitations of previous techniques such as Korat [8].
For example, OCAT does not require class invariants but constructs
valid object instances by capturing them from normal program ex-
ecutions. OCAT can construct object instances of very large size
beyond object instances of size within a small bound. In addition,
OCAT mutates captured object instances towards target branches,
whereas Korat does not exploit guidance towards the target branch.

OCAT’s integration with existing test-generation tools can be
viewed as a technique of method-sequence generation since the
used test-generation tools explore and generate new method se-
quences invoked upon the captured object instances. The captured
object instances often reflect desirable object instances. Even when
the captured instances are not immediately desirable, these are close
to desirable object instances and, therefore, invoking method se-
quences can help derive desirable instances from the object in-
stances.

This paper makes the following main contributions:

e A novel approach, OCAT, captures, generates, and mutates
object instances from normal program executions and feeds
them to existing test-generation tools for method-sequence
generation. OCAT can be viewed as a novel integration of
two existing types of techniques for generating desirable ob-
jectinstances: direct object construction and method-sequence
generation.

e An implementation of OCAT (for testing Java programs) that
is integrated with Randoop [26], a state-of-the-art random
testing tool.

e An empirical evaluation of OCAT on three open source projects
such as Apache Commons Collections, Apache XML Secu-
rity, and JSAP (with 114,000 LOC in total). The results show
that using captured object instances improves the branch cov-
erage 21.6% on average in comparison to Randoop. Addi-
tionally, mutated object instances improve 3.9% of branch
coverage on average. All together, OCAT improves 25.5%
of branch coverage over Randoop alone.

The paper is organized as follows. Section 2 illustrates chal-
lenges in OO testing for motivating our OCAT approach. Section
3 presents our approach. Section 4 describes our empirical evalu-
ation. Section 5 discusses issues of our approach. Section 6 dis-
cusses related works and Section 7 concludes.



Table 1: Categories of main causes for not-covered branches
from 10 source files in three open source projects
| Cause of not-covered branches | # of branches (%) |

135 (46.3%)

Insufficient object
String comparison 61 (20.9%)
Container object access 39 (13.4%)
Array comparison® 25 (8.6%)

Exception branches 18 (6.1%)
Environmental setting 9 (3.1%)
Non-deterministic branch 4 (1.3%)

2. CHALLENGES IN STRUCTURAL TEST-
ING

In this section, we discuss the main challenges that we empiri-
cally observe for a state-of-the-art random testing tool, called Ran-
doop [26], to achieve structural coverage such as branch cover-
age. The analysis of these challenges helps motivate our OCAT
approach. We select Randoop in this preliminary empirical study,
for two main reasons: (1) Randoop can be applied on any real-
world code base in a totally automatic fashion without any manual
effort; (2) Randoop has been shown to outperform systematic and
pure random test-generation tools in terms of achieved branch cov-
erage [26].

We run the extended version of Randoop [20] > on Apache Com-
mons Collections’, Apache XML Security4, and JSAP’ (details in
Section 4.1), until either achieved branch coverage levels off with-
out much further increase, or Randoop runs out of memory and
cannot continue to run. Then, we randomly select 10 source code
files from each subject, and manually investigate the causes of not-
covered branches.

Table 1 shows categories of main causes of not-covered bran-
ches by Randoop. The main cause of not-covered branches is that
Randoop is unable to generate desirable object instances required
to cover certain branches. Nearly 50% of the not-covered branches
in this study are due to this cause. As shown in Figure 1, the gener-
ated object instance ‘doc’ does not satisfy the desirable condition
for covering the branches in Algorithm.

The second main cause is string comparison. Most string com-

parisons consist of simple constraints such as equality (e.g., equals ()

and equalsIgnoreCase ()), size (e.g., length () ), and substring
(e.g., contains (), substring(), and charAt ()). However, it
is difficult for Randoop to randomly find a desirable string to sat-
isfy such constraints, since the input space of string type values is
huge. Recent approaches on string generation with symbolic exe-
cution [7, 16, 22] can alleviate this issue.

The third main cause is container object access. It is not easy to
create a certain size of a container with necessary elements. Simi-
larly, the fourth main cause, array comparisons, includes accessing
array elements and checking their size; randomly creating an array
with desirable elements or size is difficult. Indeed, recent symbolic
execution approaches such as Pex [33] can effectively handle met-
hod arguments as array elements in symbolic execution.

This extended Randoop generally achieves higher code coverage
than the original Randoop by generating array inputs and applying
adaptive random selection of object instances and methods.
*http://commons.apache.org/
*http://santuario.apache.org/
Shttp://martiansoftware.com/jsap

®We put access of a reference array type into the “container object
access' category.
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Figure 2: Overview of our OCAT approach

Exception branches are related to a try. . catch statement, or a
branch that checks exception types. These branches are relatively
hard to cover automatically , since these branches have a particu-
larity of exception handling code that handles run-time errors. To
determine a desirable condition, a tool needs to know how excep-
tions are defined and where exceptions have been thrown (e.g., an
exception propagation path).

The last two main causes are branches related to an environmen-
tal setting (e.g., environment variables and file-system structure)
and non-deterministic execution (e.g., multi-threading and user in-
teractions), which are difficult for automatic testing approaches to
address. Indeed, the former cause can be alleviated through recent
approaches on mock objects [25, 34] and the latter cause can be
alleviated through recent approaches on concurrent testing appro-
aches [27].

The top three main causes are all related to a lack of desirable
object instances, and few existing approaches can effectively ad-
dress these causes, especially when testing real-world code bases.
Similarly, Thummalapenta et al. [32] identified that creating desir-
able object instances is a main challenge in other automated testing
techniques, such as symbolic execution [23, 28].

The OCAT approach proposed in this paper tackles the challenge
of generating desirable object instances in automated test genera-
tion.

3. OCAT APPROACH

In this section, we describe the OCAT approach in detail. Fig-
ure 2 shows the overview of OCAT’s three phases: object captur-
ing (CAP), object generation (GEN), and object mutation (MTT).
In the CAP phase, OCAT conducts bytecode instrumentation of
the program under monitoring and then executes the instrumented
system instead of the original one with the given program execu-
tions. During these executions, the instrumented system captures
encountered object instances and serializes them into a file. In the
GEN phase, OCAT generates object instances by feeding the cap-
tured object instances into an existing automated test-generation
tool that generates method sequences; these generated method se-
quences derive object instances from the captured object instances.



public Algorithm(Document doc,
String algorithmURI) ({

//instrumented
ObjCapture.capture(new Object[] {this,
doc, algorithmURT});

super(doc);

this.setAlgorithmURI(algorithmURI);

Figure 3: Instrumented code - this code is instrumented from
the code shown in Figure 1

In the MTT phase, to cover those branches not yet covered by the
GEN phase, OCAT mutates captured object instances to cover not-
yet-covered branches.

We next describe each OCAT phase in detail.

3.1 Object Capturing (CAP)

The key idea of OCAT is that capturing object instances from
normal program executions can be used directly or indirectly for
generating unit tests of the classes under test to achieve high struc-
tural coverage, such as branch coverage. Some example types of
objects are (1) classes under test (e.g., receiver classes), (2) argu-
ments of a method under test, and (3) objects needed to directly or
indirectly construct the first two types of objects. To capture these
types of objects, OCAT requires normal program executions such
as those from system tests or user interactions with systems.

Our CAP phase consists of two parts: instrumentation and ob-
Jject serialization. In the first part, instrumentation, OCAT inserts
object-capturing code at each method’s entry point of the program
under monitoring. The inserted code invokes a capture proce-
dure shown in Algorithm 1 and passes arguments to OCAT’s seri-
alization module. Figure 3 shows an instrumented code example.
The capture procedure captures object instances along with their
types.

The next part is object serialization, described in Algorithm 1.
First, we run the instrumented program to serialize object instances
through normal program executions. If the instrumented capture
procedure is called, OCAT receives a type and a concrete state of
the object instance to be serialized. Then, OCAT keeps types and
states of all serialized object instances to maintain an object repos-
itory without redundant object instances with the same state [39].
OCAT serializes object instances in memory first and serializes the
object instances into files whenever the number of object instances
reaches a preset limit or the program under monitoring finishes its
execution.

One challenge here is there are many types of objects in pro-
gram executions and the same type of objects can also have many
instances. We observed that most of these object instances have
isomorphic states, and these instances do not contribute to increas-
ing code coverage. Therefore, it is desirable to capture only object
instances with non-isomorphic states for each class type. To check
state isomorphism of object instances, OCAT uses a concrete state
representation. Xie et al. [39] defined a state representation of a
program heap. We adopt a part of their definition to define a state
of an object instance, being a subset of a program heap state.

Let P be the set consisting of all primitive values, including
null. Let O be a set of objects whose fields form a set F'.

Algorithm 1 Pseudo-code for object capturing

Map container keeps object states to avoid having redundant
objects

Set container keeps object instances to be serialized

o1 Map<type, state> mapStates

02 Set<object> setObjs

03

04 procedure capture(objs[])

05 begin

o6 for each obj € objs]]

o7 /lget a type and linearized state of the object instance obj
0s  type < getType(obj);

09 state < representState(oby);

10

11 //check whether the obj has been serialized

12 if (lisSerialized(type, state)) then

13 mapStates.add(type, state);

14 setObjs.add(obj);

15 end
16 end
17

18 //check whether enough number of 0bj has been serialized
19 if (hasEnoughlnstances(setObjs)) then

20 // serialize object instances and clear the setObjs set

21 serializeToFileandClearSet_Thread(setObj s);

22 end

23end

DEFINITION 1. A state is an edge-labeled graph (O, E), where
E={{o,f,0)o€O,f€F,od €OuUP}.

State isomorphism is defined as graph isomorphism based on
node bijection [8].

DEFINITION 2. Two states (O1, E1) and (O3, E2) are isomor-
phic iff there is a bijection p : O1 — Oz such that:

By = {<P(O),f, p(ol)>|<07 /s 0/> S El,Ol € 01} U
{{p(0), f,0") (0, f,0) € 1,0’ € P}.

These preceding definitions of state representation and isomor-
phic states help prune redundant object instances: if two object
instances have isomorphic states, then these two instances are con-
sidered as redundant. Other than using object-state isomorphism
to detect redundant object instances, two alternative ways could be
used. One way is to use an abstract state representation [37]. How-
ever, an abstract state representation is too coarse-grained, since
it ignores the field values in an object instance and checks only
the structural shape of the object instance. Another way is to use
equals () ; however, the outcomes of executing equals () depend
on its implementation, and equals () can be implemented in var-
ious ways by different developers. For example, equals () may
be implemented, based upon an object instance’s reference value.
Although reference values of two instances are different, these two
instances could have the same states. In this case, using equals ()
identifies that these two instances have different states.

According to our empirical study in Section 4, using an abstract
state representation incurs storage of few object instances and us-
ing equals () incurs storage of too many isomorphic object in-
stances. Consequently, both aforementioned alternative ways are



FastTreeMap varO = (FastTreeMap) Serializer.
loadObject ("capobij/FastTreeMap/hash_32");

String varl = (String) Serializer.
loadObject ("capobij/String/hash_98");

BeanMap var2 = (BeanMap) Serializer.
loadObject ("capobj/BeanMap/hash_32");

Integer var3 = (Integer) Serializer.

loadObject ("capobj/Integer/hash_808");

var0.add(var3,varl);
var0O.putAll ((java.util.Map)var2);

Figure 4: A generated method sequence with captured object
instances by FRT

inadequate to identify different object states for OCAT. Therefore,
we use the concrete state representation.

3.2 Object Generation (GEN)

This section describes the GEN phase, which generates object
instances by invoking method sequences with captured object in-
stances.

After object instances are captured and serialized from a program
under monitoring, we de-serialize and use them as test inputs. Par-
ticularly, we leverage a method-sequence generation technique by
using the captured object instances in two ways. First, the cap-
tured object instances can be directly used. Second, the captured
object instances contribute to the creation of other necessary object
instances for testing. Let C' be a set of captured object instances
by OCAT. Consider two target methods m; of class ¢ and m; of
class 5. Consider two sets of desirable object instances D,,, and
D,y that cover code in method m; and my;, respectively. Let Ry, ;
be a set of object instances returned by invoking m; on Dy, ;. If
D,,; € C, code in method m; can be directly covered by using
the captured object instances. If Dy,; € C, but Dp,; € R y and
D.,; C C, then code in m; can be indirectly covered by feeding
the object instances returned by invoking m ; on the captured object
instances.

Any method-sequence generation technique can derive object
instances from captured object instances. In this paper, we use
a feedback-directed random test generation (FRT) technique [26]
that randomly generates method sequences and verifies their valid-
ity by execution. FRT generates method sequences starting from
a set of primitive-type declarations with predefined values. In our
case, FRT starts with a set of method calls that de-serialize captured
object instances and declarations of other primitive-type input val-
ues. The de-serialized captured object instances provide a good ba-
sis to lead the method-sequence generation technique to generate
desirable object instances.

In particular, first, FRT selects one of the methods under test.
To determine input arguments and a receiver for this selected met-
hod, FRT searches sequences from a sequence pool, which contains
previously constructed sequences. If FRT finds sequences that con-
struct the same type of objects as the type of one of the arguments
and the receiver of the selected method, FRT merges these se-
quences, and appends the selected method to the end of the merged
sequence to make a new sequence. In this way, FRT incrementally
extends sequences. To verify the newly created sequence (the one
just extended) and obtain feedback (return values/generated object
instances), FRT executes the sequence. From this execution, FRT
checks whether the sequence is illegal by observing whether excep-
tions are thrown. From the feedback, FRT performs state match-

Source
(1. Read source code and branch Codes
| coverage data
; Coverage
2. Conduct backward static Data
|_analysis to collect constraints
(3. Convert constraints to SMT
L input format
( SMT Solver
4. Parse SMT solver output J/
|
(‘5. Mutate captured objects Captured
| based on SMT solver’s output Objects

Mutated
Objects
Figure 5: Overview of object mutation

ing of object instances to discard sequences that create redundant
object instances. By repeating this sequence-construction process
(method selection, sequence selection, merging, extension, and ex-
ecution), FRT incrementally generates new object instances.

Figure 4 presents an example of a generated sequence with object
instances captured by FRT. A captured instance of FastTreeMap
is modified by invoking add () and putall () methods with other
captured object instances. First, the example loads a Fast TreeMap
instance from captured object instances as a receiver var0. Then,
varl, var2, and var3 are loaded as input arguments for the last
two subsequent method calls in Figure 4. In particular, the met-
hod call var0.add () adds the loaded instance to FastTreeMap
and var0.putAll () adds all elements of a captured instance of
BeanMap.

Using captured object instances as initial inputs reduces the huge
search space of desirable object instances in the method-sequence
generation process, since the captured object instances are likely
close to desirable object instances. Therefore, captured object in-
stances make the method-sequence generation approach effective
to produce desirable object instances, and construct and execute
method sequences with the captured object instances to achieve
high code coverage. Our empirical results (Section 4) show that
using captured object instances with FRT significantly increases
the code coverage achieved by FRT alone.

3.3 Object Mutation (MTT)

Generating object instances by invoking method sequences with
captured object instances may not cover all branches. The MTT
phase statically analyzes conditions of not-covered branches after
GEN phase. Then, the MTT phase generates method sequences
for not-covered branches by purposely mutating captured object in-
stances.

Figure 5 shows an overview of our MTT phase. (1) OCAT identi-
fies not-yet-covered branches by analyzing source code and branch
coverage information. (2) OCAT conducts static analysis to collect
constraints starting from the not-yet-covered branches in a back-
ward traversal manner of code analysis. (3) OCAT solves the col-
lected constraints by using a Satisfiability Modulo Theories (SMT)
solver [12]. (4) OCAT uses the solved solution from the SMT



public static final int HARD = 0;
protected int keyType;

public Object getKey() {
return (parent.keyType > HARD)
? ((Reference) key).get()
key;

Figure 6: Object Mutation Example

solver as a concrete input value of the method that has the target
not-covered-branch. (5) If the solution is related to a member field
of an object input, OCAT loads and mutates a captured object in-

stance. OCAT uses the Java reflection API [31] to modify a value

of the corresponding member field of a captured object, based on
the solution of the SMT solver.

After mutating object instances, OCAT generates method se-

quences to test the target method with the mutated object inputs.
To generate a method sequence, OCAT searches captured object in-

stances for other necessary object instances for a receiver and argu-

ments to invoke the method under test. If there is no proper object
instance in the pool of captured object instances, OCAT directly
creates the corresponding object instances by invoking one of the
constructors of the class for the objects. If the constructor needs ob-
ject instances as arguments again, OCAT recursively searches the
pool or directly creates argument object instances within a preset
depth of recursion.

After all, to verify whether a mutated object instance satisfies the

condition of a target branch, OCAT concretely executes the gener-

ated sequence.
The following steps illustrate the example of mutating
an AbstractRefereceMap object in Apache Commons Collec-

tion (see Figure 6):

1. The coverage report indicates that the true branch of
“parent .keyType > HARD” has not been covered. OCAT
parses the report and source code to determine the predicate
of the not-covered branch.

2. OCAT checks variables in the predicate to determine whether
they are input arguments including arguments, a receiver, or
object fields of a receiver and arguments. Here, HARD is a
constant field, whose value is 0 and
parent.keyType is a protected member field of the receiver.

3. OCAT converts the predicate to the input format of Yices [12],
a SMT solver:
(define var::int) (assert+ (> var 0)) (check)
4. Yices outputs (= var 1) from the input and OCAT parses
the output.
5. OCAT randomly selects an instance of Abst ractReferenceMap
and modifies its parent . keyType to 1.
To compute input argument values from solved constraints, we

do not consider predicates that involve local variables or method
invocations in the target method body. However, applying sophis-
ticated analysis and heuristics such as inter-procedural alias analy-
sis [17] and directed call analysis [9] may help increase code cov-
erage. Applying these techniques for OCAT remains as our future
work.

When modifying member-field values of an object instance, OCAT

does not change a private field value as a default setting since mod-
ifying a private field value might break class invariants and make

<org.apache.commons.collections.FastTreeMap
serialization="custom">
<unserializable—parents/>
<tree—map>
<default/>
<int>0</int>
<string>first</string>
<string>First Item</string>
<string>second</string>
<string>Second Item</string>
</tree—map>
<org.apache.commons.collections.FastTreeMap>
<default>
<fast>true</fast>
<map>
<no—comparator/>
<entry>
<string>first</string>
<string>First Item</string>
</entry>
<entry>
<string>second</string>
<string>Second Item</string>
</entry>
</map>
</default>
</org.apache.commons.collections.FastTreeMap>
</org.apache.commons.collections.FastTreeMap>

Figure 7: An example of a serialized object instance

the object instance invalid. Indeed, our empirical results in Section
4 show that only a few cases that a variable in a target predicate is
related to a private field. However, it is good to have an optional
functionality to handle this kind of occasional situations. To avoid
invalid object instances caused by modifying private field values,
OCAT provides an option of allowing developers to provide a pred-
icate method (also called repok () [8]) that checks class invariants
of a class. Programming best practices suggest that a program-
mer provides such a method when writing a class. After mutating
an object instance, OCAT checks whether repOk () returns true
to ensure state validity of the object instance [24]. For example,
OCAT executes repOk () to check state validity and getKey () to
verify it after Step 5. If it is still not a desirable receiver, throws
an exception when executing getKey (), or when repOk () returns
false, OCAT repeats Step 5 for up to a preset number of times. If
the mutated object instance is valid, OCAT serializes the object in-
stance as a new instance and uses it as a test input for the method
under test. Otherwise, OCAT tries to mutate other object instances.

Our mutation technique is related to the technique of dynamic
symbolic execution [23, 28]. Both use constraint solvers to change
object instances and cover more branches using the changed ob-
ject instances. However, as shown in Figure 1, without desirable
object instances at the first phase, sometimes it is difficult to for-
mulate all conditions and determine the constraints. There must
exist unrevealed conditions, and thus a constraint solver becomes
ineffective in such cases. For example, without a desirable doc ob-
ject instance, a program execution throws an exception at Line 87
in Figure 1. Moreover, although conditions are perfectly formu-
lated and constraints are well determined, it is difficult to construct
a desirable object instance that satisfies these constraints. Captured
desirable object instances help cover unrevealed conditions without
perfect formulation of conditions. Our OCAT approach uses desir-
able object instances first by object capturing and object generation,
and then applies object mutation.



Table 2: Open source project under test
| Projects Name | Classes | Methods | KLOC |

Apache Commons 273 2522 63
Collections 3.2 (ACC)
Apache XML 179 1185 40
Security 1.0 (AXS)
JSAP 2.1 (JSAP) 77 462 11

3.4 Implementation

We have implemented our approach to generate JUnit [6] tests
using Randoop [26], Java reflection APIs [31], Java bytecode ma-
nipulation and analysis framework (ASM [10]), a test coverage
measurement tool (Cobertura [3]), an object serializing and de-
serializing library (XStream [38]), and an SMT Solver (Yices [12]).
Next, we briefly describe the implementation of each phase in our
approach.

CAP. Instrumentation techniques are widely used to capture ob-
ject instances and infer their associated invariants [5, 14]. Similarly,
OCAT uses an instrumentation framework called ASM [10] to in-
sert object-capturing code. For storing object instances, OCAT uses
the XStream framework [38], which serializes object instances into
XML files. XStream can serialize object instances that do not im-
plement the java.io.Serializable interface whereas the Java
serialization technique cannot serialize objects that do not imple-
ment that interface. Figure 7 shows an example of serialized object
instances in a form of XML.

GEN. The captured object instances are de-serialized for Ran-
doop [26], a tool that implements FRT. The de-serialized object
instances are used as seeds for Randoop to generate more object
instances. To measure branch coverage of tests generated by Ran-
doop with seeded captured object instances, we use Cobertura [3].
Cobertura instruments the target Java Bytecode and generates a
coverage report after executing tests.

MTT. We apply a SMT solver called Yices [12] with a static
analysis technique to mutate captured object instances. OCAT col-
lects constraints of target branches and generates corresponding
Yices inputs. Then, OCAT parses the output from Yices to obtain
a concrete input value to mutate existing object instances. By us-
ing Java reflection APIs [31], OCAT mutates object instances and
generates method sequences in a form of JUnit tests.

4. EMPIRICAL EVALUATION

We evaluate our approach by comparing code coverage of OCAT
and a state-of-the-art tool, Randoop. We design our evaluation to
address the following research questions:

Q1 How much can OCAT improve code coverage through cap-
tured object instances?

Q2 How much can mutated object instances further improve code
coverage?

4.1 Evaluation Setup

We conduct our evaluation on a machine with Linux, Intel Xeon
3.00GHz, and 16GB memory. We adopt a widely used Java code
coverage analysis tool, Cobertura [3], to measure branch coverage.

We use three open source projects, Apache Commons Collec-
tions (ACC), Apache XML Security (AXS), and JSAP as test sub-
jects. Table 2 shows the information of the subjects. ACC [1] is
an extended collection library that provides new utilities, such as

Table 3: Statistics of captured object instances: showing time
to capture, number, serialized file size of captured object in-

stances, and branch coverage of captured executions.
| Projects | Time (sec) | #Objects | Size [ Cov. |
ACC 311 14999 | 7.6MB | 52.7%
AXS 366 11390 | 410MB | 36.0%
JSAP 1 292 15KB | 32.9%

buffer, queue, and map. AXS [2] is a library implementing the
XML Digital Signature Specification and XML Encryption Speci-
fication. JSAP [4] is a command-line argument parser.

We apply OCAT to instrument each subject system to enable ob-
ject capturing. Then, we execute system tests included in each sub-
ject system to capture object instances. Table 3 shows the statis-
tics of the object capturing phase, including time spent in capturing
object instances, the number of captured object instances, and the
size of the serialized file. For ACC, OCAT captures and serializes
14,999 object instances in 311 seconds, and the serialized file is
7.6MB. For AXS, OCAT takes 366 seconds to capture 11,390 se-
rialized object instances in 410MB. For JSAP, OCAT captures and
serializes 292 object instances in 1 second. The serialized file is
15KB. The branch coverage of captured executions for each sub-
jectis 52.7% (ACC), 36.0% (AXS), and 32.9% (JSAP).

The captured object instances and the serialized file size depend
on the subject system and the executed tests. For example, the
AXS’s serialized file is relatively big, since AXS loads and main-
tains XML file contents and the contents are stored in object in-
stances. However, we find that the serialized files are manageable,
even if we execute the entire suite of tests for a relatively large
software system (i.e., a system that has over 1,000 methods) such
as ACC and AXS. In addition, it is possible to limit the number of
captured object instances and size of the serialized files.

4.2 Captured Objects

Q1 How much can OCAT improve code coverage through cap-
tured object instances?

In this section, we show coverage improvement by leveraging
captured object instances through OCAT to assist Randoop (de-
noted as CAP + GEN). First, as described in Section 4.1, we cap-
ture object instances by executing tests provided with each subject
system. The number of captured object instances is shown in Ta-
ble 3. Then, we feed the captured object instances as test inputs
for Randoop and measured the branch coverage. Similarly, we run
Randoop alone on subject systems and measure the branch cover-
age. We run each tool until the tool’s coverage is saturated, which
means either one of the the tools’ coverage levels off without much
further increase, or one of tools runs out of memory and cannot
continue to run. Since the number and quality of captured object
instances depend upon the tests initially provided with the subject
system, we also measure the coverage of such tests (denoted as a
captured executions).

Figure 8 shows the branch coverage of three subjects with two
approaches, Randoop and OCAT (CAP + GEN), based on the num-
ber of generated tests. As a baseline, the coverage of the captured
executions is shown. The x-axis indicates the number of tests gen-
erated by each approach. As the number of tests grows, generally
the branch coverage also increases.

As Figure 8 indicates, there is a substantial coverage difference
between OCAT and Randoop. For ACC, after 46,000 tests are gen-
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Figure 8: Branch coverage achieved by OCAT, Randoop, and Captured Executions

erated, OCAT achieves 64.2% branch coverage, 19.0% improve-
ment from Randoop’s achieved coverage, 45.2%. Similarly, for
AXS, OCAT improves 28.5% branch coverage in comparison to
Randoop. For JSAP, the coverage improvement is 17.3% over Ran-
doop.

These encouraging results suggest that captured object instances
plays an important role to improve code coverage by assisting an
existing testing technique. We observe that the captured object in-
stances are influenced by the original set of tests provided with the
subject system. However, the OCAT’s achieved coverage is much
higher than the coverage achieve by simply executing these origi-
nal tests shown in the last column of Table 3 and captured object
instances can lead a random generation technique to cover more
branches.

4.3 Mutated Objects

Q2 How much can mutated object instances further improve code
coverage?

Next, we evaluate the MTT phase by using static analysis and
a SMT solver. Although the CAP and GEN phases increase the
code coverage substantially, still there are not-covered branches.
For example, for JSAP, 28.6% of the branches are not covered after
the CAP and GEN phases.

We further apply the MTT phase described in Section 3.3 and
evaluate whether MTT improves the coverage further, although our
current mechanism of mutating object instances can handle only
limited set of situations. Note that we do not modify private fields
of object instances in our evaluation.

The coverage distribution bars in Figure 9 present branch cover-
age improvement contributed by Randoop, OCAT (CAP + GEN),
and OCAT (CAP + GEN + MTT). For ACC, 45.2% are covered
by Randoop, and OCAT (CAP + GEN) further improves this cov-
erage percentage by 19.0%. Finally, OCAT (CAP + GEN + MTT)

increases an additional 3.9%. Similarly, after OCAT (CAP + GEN)
improves the coverage by 28.5% for AXS and 17.3% for JSAP,
OCAT (CAP + GEN + MTT) further improves the coverage by
4.2% more for AXS and 3.6% for JSAP.

Such an improvement may seem marginal. However, since code
coverage becomes saturated after more than 46,000 tests, further
improvement would be difficult to obtain in general. The MTT
phase can still improve 3.9% of branch coverage on average, which
is not trivial.

Overall, by combining random and systematic approaches, OCAT
(CAP + GEN + MTT) improves branch coverage on average by
25.5% (with a maximum increase of 32.7% for AXS) in compari-
son to the coverage by Randoop alone.

Since we rely on a constraint solver to determine solutions for
branch conditions, our object-mutation phase is limited by the abil-
ity to solve constraints. Currently, we can address only simple
constraints such as Boolean, linear arithmetic, and integer expres-
sions. By exploiting better constraint solvers, we may cover more

branches. For example, we can solve string constraints using Hampi [22].

S. DISCUSSIONS

In this section, we discuss limitations of OCAT and threats to
validity of our results.

5.1 Object-Capturing Process

OCAT’s achieved coverage depends upon both quality and quan-
tity of captured object instances. However, capturing object in-
stances is a relatively easier process than writing unit test cases.
For example, object instances can be captured from:

e cxecutions of system tests
e typical system executions by individual developers or users

These executions can be completed independently and captured
object instances are reused for test generation. Even captured ob-
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ject instances from a system can be reused for different system test-
ing tasks as long as they share some object instances. For example,
object instances in the JDK package (i.e., java.util) are com-
monly used for many Java applications. Note that a system under
monitoring (a system with executions used by OCAT for capturing
object instances) is not necessarily the system where the classes un-
der test are integrated. A system under monitoring can be another
system that uses (either consumes or produces) object instances
falling into the same type of object instances shared between a sys-
tem under test and a system under monitoring. That is to say, OCAT
can be applied even before classes under test are integrated. Note
that existing manually written unit tests or automatically generated
unit tests for the classes under test can also be used to produce nor-
mal program executions. In this case, a system under monitoring is
just the classes under test.

5.2 Software Evolution

Captured object instances may be obsolete and not be valid any-
more during software evolution since an object instance from run-
ning a new system version may have different fields and methods
from a same-type object from running a previous version. Nonethe-
less, if we can capture both the (dynamically collected) method se-
quences and the states of object instances of concern, it is possible
to locally reproduce the object instances by executing the dynami-
cally collected method sequences and update the obsolete object in-
stances based on the captured state information. Such an extended
capability for OCAT remains as our future work.

5.3 Branches Still Not Covered

Our evaluation result shows that OCAT increases 25.5% of branch
coverage on average by using both generated and mutated object
instances. However, there are still more than 20% of branches not
covered. As shown in Table 1, some not-covered branches (due to
string manipulation, container object access, and exception bran-

ches) are difficult to cover. We plan to further improve branch cov-
erage via the following directions.

e Cross-system object capturing. We do not have to limit the
sources for capturing object instances to be only subject sys-
tems. Suppose that we are testing ACC and it requires an
object instance, FOO. It is possible to use other systems that
use FOO, and capture the object instances from these systems.
Capturing object instances from one system and use them for
testing other systems may help further improve branch cov-
erage.

e Static analysis. Currently we use a simple static analysis
technique to mutate object instances. More complex analysis
techniques such as inter-procedural alias analysis [17] can be
applied to mutate object instances to cover more branches.

e [terative generation and mutation phases. Two phases, ob-
ject generation and object mutation, can be iteratively ap-
plied to generate a larger number of object instances over
iteration. The quality of the generated object instances may
decrease when the number of iterations increases. However,
the iterations could likely improve branch coverage gradually
over time since the two phases have complementary strengths
to achieve structural coverage, and the new object instances
generated from the object mutation phase could be exploited
by the object generation phase.

5.4 Validity of Generated Object Instances

In the object generation phase, we assume that generated met-
hod sequences indirectly create valid object instances, if invoca-
tions of the method sequences do not throw exceptions. Indeed,
the chance of creating invalid object instances may be low in this
case. However, this assumption may not be true in general. In
the object mutation phase, OCAT does not change private fields
of object instances as a default option. Even if OCAT does not
change private fields and change only public fields, it may still be
able to create invalid object instances, which violate class invariants
(either explicitly specified by developers or not specified at all).
To avoid invalid object instances, developer could write the im-
plementation of a special class-invariant-checking method, called
repOk (), which checks the validity of mutated object instances.
However, this method can be difficult or time-consuming to imple-
ment. To explore this issue, in future work, we plan to empirically
investigate how high percentage of invalid object instances could
be generated by our object generation and object mutation phases,
respectively, when a repOk () method is not provided.

5.5 Threats to Validity

We identify the following threats to validity of our evaluation.

Qur subject systems might not be representative. We use three
open source projects, ACC, AXS, and JSAP, for our eval-
uation. It is possible that these three subject systems yield
better or worse OCAT effectiveness than other systems. This
threat could be reduced by more experiments on wider types
of subjects in future work.

OCAT results rely on the captured object instances. The quality
of our captured object relies on existing system tests or other
program executions used for object capturing or existing sys-
tem tests. Thus, OCAT’s achieved coverage improvement
depends on the quality and quantity of the system tests ini-
tially provided with the subject systems. In the future work,
we plan to empirically investigate the impact of either quality
or quantity of existing system tests or other program execu-
tions on the effectiveness of OCAT.



6. RELATED WORK

As discussed in Section 1, there are two main types of techniques
for generating desirable object instances: direct object construction
and method-sequence generation.

Two representative techniques for direct object construction are
Korat [8] and TestEra [21]. Korat requires users to provide a repOk ()
predicate method, which checks the validity of a given object in-
stance against the required class invariant for the class of the object.
TestEra [21] requires users to provide class invariants specified in
the Alloy specification language [19]. Both Korat and TestEra use
class invariants to efficiently prune both invalid object instances
(those violating class invariants) and redundant object instances
(those with isomorphic states) when generating a bounded-exhaustive
set of object instances (whose size’ is within a relatively small
bound). These techniques also require users to provide a finite
domain of values for primitive-type fields in the generated object
instances. The object-capturing phase of our OCAT approach can
be seen as a type of direct object construction. However, OCAT
constructs object instances from normal program executions (from
system tests or real use) and these captured object instances are
valid by construction, without requiring class invariants or a finite
domain of values for primitive-type fields of objects.

Various techniques on method-sequence generation have been
proposed for generating object instances used in test generation.
Random-testing techniques (such as JCrasher [11] and Randoop [26])
generate random method sequences, sometimes with pruning based
on feedback from previously generated sequences [26]. Evolu-
tionary testing techniques (e.g., eToc [35] and Evacon [18]) use
genetic algorithms to evolve initial method sequences to ones more
likely to cover target branches. Our OCAT approach integrates
Randoop, a random-testing technique, for evolving captured ob-
ject instances, and in principle can integrate an evolutionary tech-
nique to evolve captured object instances. The object-capturing and
object-mutation phases of OCAT provide added value and benefit
beyond the integrated random testing technique in achieving branch
coverage, as shown in our empirical evaluation in Section 4.

Bounded-exhaustive testing techniques (such as JPF [36], Ros-
tra [39], and Symstra [40]) for method-sequence generation pro-
duce exhaustive method sequences up to a certain length, some-
times with pruning of equivalent concrete object states [36, 39] or
subsumed symbolic object states [40]. However, the coverage of
various branches requires long method sequences, whose lengths
are beyond the small bound that can be handled by these tech-
niques. In contrast, our OCAT approach is able to capture object
instances produced with long method sequences (from real system
executions) and further evolve these object instances with more
method sequences or directly mutate these object instances.

Recent sequence-mining techniques, such as MSeqGen [32], stat-
ically collect method sequences (that can produce object instances
of a specific) from various applications, and then apply dynamic
symbolic execution [33] or random testing [26] on these collected
sequences. MSeqGen shares the same spirit with OCAT in ex-
ploiting code elsewhere beyond the code implementation under test
to improve automated test generation. Our OCAT approach has
unique benefits over MSeqGen in the following two main aspects.
First, OCAT dynamically captures real program execution envi-
ronments such as user inputs, global states, and file I/O, whereas
MSeqGen statically collects partial method sequences (from code
bases), whose later execution often does not reproduce desirable
program execution environments. Second, OCAT can capture ob-

"The size of an object is the total number of object instances used
to construct direct or indirect non-primitive fields of the object.

ject instances produced or affected by multi-threading, whereas
MSeqGen does not support the collection of method sequences
involving multi-threading. On the other hand, MSeqGen has its
advantages, complementing OCAT in addressing the issue of gen-
erating desirable object instances. For example, since OCAT dy-
namically captures object instances from program executions, the
ability to capture object instances relies on the quality of not only
the programs under monitoring but also the system tests or real use
that produces the program executions, whereas MSeqGen relies on
the quality of only the programs under mining.

Capture-and-replay techniques have been primarily used for de-
bugging, such as jRapture [30] and ReCrash [5] in reproducing a
given program failure. These techniques have recently been used
to generate unit tests for regression testing [13]. Based on the cap-
tured interactions, these techniques then generate unit tests for the
class under test; in contrast to the system tests, these unit tests are
less expensive to run when the class undergoes some changes. The
execution of the generated unit tests would replay exactly the same
unit behavior exercised in the capturing phase; the code coverage of
the unit achieved in the capturing phase is the same as the code cov-
erage of the unit achieved by the generated unit tests. In contrast,
OCAT evolves and mutates the captured object instances, achiev-
ing higher branch coverage than the capturing phase. In addition, a
captured object instance is used as inputs for many other methods
(whose argument or receiver type is the same as the type of the cap-
tured object instance) well beyond the method whose input point of
the object was originally captured.

7. CONCLUSIONS AND FUTURE WORK

In automated unit testing of object-oriented software, one im-
portant and yet challenging problem is to generate desirable object
instances for receivers or arguments to achieve high code coverage
(such as branch coverage) or find bugs. To address this significant
problem, we proposed the OCAT approach, which captures ob-
ject instances from program executions, generates more object in-
stances using captured object instances and method sequences (ex-
ploiting a state-of-the-art random-testing tool called Randoop [26]),
and mutates the object instances to cover those not-yet-covered
branches. We evaluate OCAT on three open source projects, and
our empirical results show that OCAT helps Randoop achieve high
branch coverage: 68.5%, on average, improved from only 43.0%
achieved by Randoop alone.

Besides the future work discussed in Section 5, we plan to ex-
plore other types of techniques in evolving captured object instances
beyond random testing. Some other techniques under considera-
tion include evolutionary-testing techniques [18, 35] and sequence-
mining techniques [32]. Our current implementation for object mu-
tation still has quite limited capabilities. We also plan to explore
other types of techniques in mutating object instances. For exam-
ple, we plan to apply dynamic symbolic execution [15, 29, 33] to
derive constraints for mutating captured object instances to attempt
to cover more not-covered branches.
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