
Improving Bug Triage with Bug Tossing Graphs

Gaeul Jeong ∗

Seoul National University
gejeong@ropas.snu.ac.kr

Sunghun Kim †

Hong Kong University of
Science and Technology
hunkim@cse.ust.hk

Thomas Zimmermann
Microsoft Research

tz@acm.org

ABSTRACT
A bug report is typically assigned to a single developer who is then
responsible for fixing the bug. In Mozilla and Eclipse, between
37%-44% of bug reports are “tossed” (reassigned) to other devel-
opers, for example because the bug has been assigned by accident
or another developer with additional expertise is needed. In any
case, tossing increases the time-to-correction for a bug.

In this paper, we introduce a graph model based on Markov
chains, which captures bug tossing history. This model has sev-
eral desirable qualities. First, it reveals developer networks which
can be used to discover team structures and to find suitable experts
for a new task. Second, it helps to better assign developers to bug
reports. In our experiments with 445,000 bug reports, our model
reduced tossing events, by up to 72%. In addition, the model in-
creased the prediction accuracy by up to 23 percentage points com-
pared to traditional bug triaging approaches.

Categories and Subject Descriptors
D2.7 [Software Engineering]: Distribution, Maintenance, and En-
hancement; K6.3 [Management of Computing and Information
Systems]: Software Management – Software maintenance

General Terms
Measurement, Reliability, Experimentation, Human Factors.

Keywords
Bug report assignment, Bug triage, Bug tossing, Issue tracking,
Machine learning, Problem tracking

∗She is supported by the Brain Korea 21 Project, School of Electrical Engi-
neering and Computer Science, Seoul National University in 2009 and the
Engineering Research Center of Excellence Program of Korea Ministry of
Education, Science and Technology (MEST) /Korea Science and Engineer-
ing Foundation (KOSEF), grant number R11-2008-007-01002-0.
†This project was initiated when he was at Seoul National University as a
postdoc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC-FSE’09, August 23–28, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-001-2/09/08 ...$10.00.

1. INTRODUCTION
The timely identification and correction of bugs are very impor-

tant software engineering practices. To handle a large number of
bugs, bug tracking systems such as Bugzilla [9] are widely used.
However, most bugs are assigned manually to developers, which is
a labor-intensive task, especially for large software projects. For
example, the Eclipse and Mozilla projects receive several hundred
bug reports per day and assign each of them to one of the several
thousand developers. This is not an easy task and is often error-
prone.

Once a bug report has been assigned, developers can reassign the
bug to other developers; we call this process bug tossing. For this
paper, we studied the assignment and tossing activities for 450,000
bug reports from Eclipse and Mozilla (Section 2). We found that
37%-44% of bugs have been tossed at least once to another devel-
oper. One of the common reasons for bug tossing is that bugs are
sometimes assigned to developers by mistake. For example, a de-
veloper might not own the defective code (“not mine”) or might not
have the expertise to fix the bug. When tossing a bug report, it is
often unclear who is the correct person to fix the bug (“who should
the bug go to next?”). Another common reason for bug tossing is
to include developers with additional expertise in the discussion of
the bug report. In any case, many tossing events generally slow
down progress when fixing bugs because, as we found in our study,
a bug tossing event takes an average of 50 days.

This paper introduces a tossing graph model which is based on
the Markov property (Section 3). The proposed model captures
tossing probabilities between developers from the tossing history
available in bug tracking systems. This graph model has two desir-
able qualities:

1. Discovers developer networks and team structures.

We showed the tossing graphs to the Mozilla and Eclipse de-
velopers and received positive feedback. They confirmed the
graphs are useful for bug processing tasks.

2. Helps to better assign developers to bug reports.

In our experiments with the 450,000 bug reports from Mozilla
and Eclipse, our model could reduce the amount of bug toss-
ing substantially. In addition, our graphs increased automatic
bug assignment accuracy by up to 23 percentage points.

We believe the proposed tossing graph model provides useful
and actionable information to improve bug report processes.

This paper makes the following contributions:

Empirical study of bug report assignment and tossing. We ana-
lyzed detailed activities of bug reports. Based on the analy-
sis, this paper provides detailed statistics about bug assign-
ment and tossing.

UNCONFIRMED NEW ASSIGNED RESOLVED VERIFIED CLOSED
FIXED

DUPLICATE

INVALLD

WONTFIX

WORKSFORME

*TOSSED

REOPENED

DUPLICATED

INVALID

if resolution is FIXED

Figure 1: The life cycle of a bug report [30]. The *TOSSED
cycle is added and the main focus of this paper.

Novel graph model for bug tossing. To our knowledge, this is the
first time that bug tossing is used to reveal team structures
and to improve bug report processes.

Evaluation of the bug tossing graphs. We present results from the
analysis of 450,000 bug reports, which show that our model
is useful for discovering team structures, reducing the num-
ber of tossing events, and bug assignment tasks.

The remainder of this paper is organized as follows. Section 2
shows statistics related to bug assignment and tossing. Section 3
presents our tossing graph model and Section 4 shows the useful-
ness of our model by presenting the results from the experiments.
Section 5 discusses the results and the limitations of our study. Sec-
tion 6 surveys related work and Section 7 concludes this paper.

2. BUG REPORT ANALYSIS
This section presents the bug assignment and tossing analysis

results to provide understanding of bug report processes and prop-
erties.

2.1 Subject Systems and Bug Reports
We analyzed the first 145,000 bug reports from Eclipse (starting

with bug id 5,001 and ending with id 150,000) and the first 300,000
bug reports from Mozilla. At the time of this writing, there are
about 267,000 bugs in Eclipse and 482,000 bugs in Mozilla. Since
our analysis is observing bug assignment and tossing processes, we
only use bugs which are old enough to be assigned and processed.

We excluded Eclipse bug reports from bug id 1 to 5,000. Their
creation dates are all the same. These bug reports have been mi-
grated from an OTI legacy system and their creation dates are per-
haps not properly set. As a result, the developer assignment date of
some reports is earlier than the bug creation date. In our research,
the time spent between bug report creation and assignment is a crit-
ical factor, so we excluded these suspicious bug reports.

Most bugs have a common lifecycle identified by Zeller [30] as
depicted in Figure 1. A user or developer finds a problem and then
reports it using a bug tracking system. Then a manager or devel-
oper of the corresponding project reads the report description and
assigns the bug to the proper developer. Then the bug will be fixed
by the developer and verified by other developers or managers. Fi-
nally, the bug report will be closed.

Bug tracking systems record these detailed activities. Table 1
shows the activities of an Eclipse bug. The activity information
includes time of bug assignment, assigned bug developer, the time
of bug status changes, and actors of each activity. By analyzing
these activities, we identify interesting properties about bug report
processes. For example, Eclipse has more than 1,200 developers

Table 1: Example of activities of an Eclipse bug report.
Who When Action

akiezun@mit.edu 2001-10-12 Assigned to Mike_Wilson@oti.com
Mike_Wilson@ca.ibm.com 2002-05-23 Status to RESOLVED

Resolution to LATER (deprecated)
veronika_irvine@ca.ibm.com 2002-09-11 Assigned to Steve_Northover@oti.com

Status to NEW
steve_northover@ca.ibm.com 2004-04-09 Status to RESOLVED

https://bugs.eclipse.org/bugs/show_activity.cgi?id=4425

and Mozilla has more than 2,400 developers, who are assigned to
more than one bug report.

Bug tossing events are also recorded in the activity information.
As shown in Table 1, after the bug is assigned to Mike_Wilson, the
developer reassigns the bug to another developer (Steve_Northover).
We found this is a common practice in Eclipse and Mozilla. This
practice is not described in the Zeller’s lifecycle [30], and we revise
it by adding the TOSSED cycle in Figure 1.

Most bug tracking systems including Mozilla use an email ad-
dress as developer identification. However, it is possible that a de-
veloper use more than one email address for bug tracking systems.
For example, a bug report is tossed to Mike_Wilson@oti.com, then
Mike_Wilson@ca.ibm.com works on the bug as shown in Table 1.
In fact, Mike_Wilson@oti.com and Mike_Wilson@ca.ibm.com are
email addresses of the same developer. We use only the name part
of email to avoid considering the same developer as two or more
different developers. For example, we use Mike_Wilson as devel-
oper identification. This technique is commonly used for bug report
and email mining [6, 7].

2.2 Bug Assignment
We noticed 426 Eclipse bugs are reported in one day. Similarly,

Mozilla received 390 bug reports on Nov 22, 1999. Assuming that
all bug processes are manual, how long would it take managers to
perform an action on a new bug or to assign the bug to developers?

As shown in Figure 2(a) and Figure 3(a), the bug report process
takes a long time. We observed the time spent between bug cre-
ation and the first action which is any action taken by a manager
such as changing the status from UNCONFIRMED to NEW. Then
we measured the time spent between bug creation and assignment.
The first action on an Eclipse bug took 16.7 days on average. For
Mozilla, it took 26.1 days on average. The bug assignment also
takes a long time. After the first action, it takes 23.6 more days for
Eclipse and 161.1 more days for Mozilla.

Next, we examine the time spent for the first action and assign-
ment of only verified bugs as showin in Figure 1. Some bug reports
do not have enough information to be fixed, and they remain unas-
signed [4] for a long time. Figure 2(b) and Figure 3(b) shows the
time spent on verified bugs. It takes 5.2 days in Eclipse and 7.1
days in Mozilla for the first action on verified bugs. The bug as-
signment task then takes 19.3 days for Eclipse and 38.1 days for
Mozilla. Overall, the time is reduced, but still it takes a long time
to assign verified bugs.

One of the main reasons for these slow actions and assignments
is that bug reports are manually processed. Managers have to check
bug reports one by one, understand the causes of the bugs, and
match them to the proper developer. It would be desirable to get
some assistance from automated bug assignment algorithms.

2.3 Bug Tossing Paths
In this section, we present statistics related to bug tossing. We

first formally define the bug tossing concepts. We describe bug

Reported First
Action

First
Assignment

144,102 bugs

16.7 days

88,706 bugs

23.6 days

(a) All Bugs

(b) Verified Bugs

Reported First
Action

First
Assignment

18,498 bugs

5.2 days

15,045 bugs

19.3 days

Figure 2: Among the 145,000 bug reports from Eclipse, 144,102
bugs have at least one action and 88,706 bugs are assigned. On
average, a bug takes 16.7 days to have the first action and 23.6
days to be assigned after the first action.

Reported First
Action

First
Assignment

297,999 bugs

26.1 days

116,890 bugs

161.1 days

Reported First
Action

First
Assignment

131,958 bugs

7.1 days

49,431 bugs

38.1 days

(a) All Bugs

(b) Verified Bugs

Figure 3: Among the 300,000 bug reports from Mozilla, 297,999
bugs have at least one action and 116,890 bugs are assigned. On
average, a bug takes 26.1 days to have the first action and 161.1
more days to be assigned.

tossing as follows. A tossing process starts with one developer,
say d1, and moves from one developer to another until it reaches
the fixer, d f , the developer who fixed the bug. Each move is called
a tossing step and a set of finite tossing steps T = {d1, d2, ..., d f } of
a bug is called a tossing path.

A tossing interval denotes the time spent between two consecu-
tive elements in a tossing path. A tossing path must have one fixer.
The number of elements in a tossing path, |T | − 1 is called tossing
length. If a tossing path, T = { d1 | d1 = d f } has only one element,
it has no or zero tossing. The bug was assigned to a developer, and
she fixed the bug, i.e., no tossing event occurred.

We observed the tossing length of each bug. Figure 4 shows the
Eclipse bug distribution based on their tossing length. For example,
about 8,400 bugs (56%) have only one assigned developer, and no
tossing event. However, 4,200 bugs (28%) have a single tossing
event. Overall, about 44% of bugs have at least one tossing event.

Similarly, Figure 5 presents the Mozilla bug distribution, which
is similar to that of Eclipse. About 37% of bugs have at least one
tossing event. These results indicate that a large number of bug
reports have tossing events and thus tossing is a common practice
in the bug fixing process.

We observed the tossing intervals of bug reports. Figure 6 shows
the average tossing interval at each tossing length. For example,
in Eclipse it takes about 40 days on average to assign a bug to the
first developer, and then it takes more than 100 days on average to
reassign the bug to the second developer. Mozilla is worse. Surpris-
ingly, it takes almost 180 days, a half year, on average for the first
assignment and takes more than 250 days for the first tossing. Bug
reports which do not have enough information take a long time to
be assigned [4]. To eliminate these bugs from the time spent mea-

two
10957
22%

3 to 5
6128
12%

one
8415
56%

two
4200
28%

3 to 5
2023
13%

5 to 9
392
3%

10 or more
15
0%

Figure 4: Eclipse bug report distributions based on the num-
ber of assigned developers. Only assigned and verified bugs are
considered. About 56% of bugs are assigned to a single devel-
oper; 44% of bugs are assigned to more than one developer and
have tossing events.

one
31045
63%

two
10957
22%

3 to 5
6128
12%

5 to 9
1256
3%

10 or more
45
0%

Figure 5: Mozilla bug report distributions based on the number
of assigned developers. Only assigned and verified bugs are
considered. About 37% of bugs have tossing events.

surement, we observed tossing intervals for only verified bugs as
shown in Figure 7. The average tossing intervals are reduced, but
still it takes a long time, 10 to 60 days, to assign a bug.

The results in this section indicate that these long tossing inter-
vals could delay bug fixing processes. We believe that tool support
can to remove unnecessary tossing steps and/or reduce the tossing
intervals. Our proposed tossing graph model can reduce tossing
steps and tossing intervals.

3. TOSSING GRAPH MODEL
In this section, we describe our tossing graph model.

3.1 Tossing Model
Recall that we defined a tossing path as a set of developers, T =

{d1, d2, ..., d f } in Section 2.3. There are various ways to get tossing
properties from tossing paths.

Suppose we have a tossing path, A → B → C → D. The bug
is fixed by D, the fixer. A simple way to obtain tossing properties
is to consider every single step in the path, A → B, B → C, and
C → D. This model is called the actual path model. Formally, for
a given tossing path T , we define the actual path model as a set of
steps, P = { di → di+1 | di ∈ T & di , d f }.

However, to quickly find or predict the bug fixer D from a given
developer, we can use a model that decomposes the given paths to
goal oriented steps, A → D, B → D, and C → D. For a given
tossing path T , we define the goal oriented model as a set of single

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 D
ay

s
to

 T
ak

e

Tossing Steps

Mozilla

Eclipse

Figure 6: Average time spent per tossing step for all bugs.

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 D
ay

s
to

 T
ak

e

Tossing Steps

Mozilla

Eclipse

Figure 7: Average time spent per tossing step for verified bugs.

Table 2: Simple tossing paths.
A→ B→ C → D
A→ C → D→ E
C → E → A→ F → D

steps, G = { di → d f | di ∈ T & di , d f }. This model encodes the
relationship between intermediate developers and the fixer.

Table 2 lists sample tossing paths, and Table 3 shows the decom-
posed steps from the sample paths. Two different models yield dif-
ferent sets of individual steps. All steps in the goal oriented model
end with D or E, since they are the fixers. The actual path model en-
codes all intermediate steps. The numbers in Table 3 represent the
occurrences of the steps. For example, in the goal oriented model,
there are two steps A → D and one step F → D. We assume that
more frequent steps are the more significant ones.

Which model is better? It depends on the purpose of using toss-
ing graphs. In our experimental study, the goal oriented model out-
performs for reducing paths, presented in Section 4.2, and for bug
assignment prediction, shown in Section 4.3.

3.2 Markov Model
A Markov chain is a set of states, transactions, and transaction

probabilities [15, 16]. It has a set of states, S = {s1, s2, ..., sn}. A
Markov process moves from one state to another with a certain
probability, called a transaction probability. The Markov chain is
valid if the next transaction probabilities of all states in the chains
only depend on the current state (Markov property). It is also
known as the memory-less transaction probability property, since

Table 3: Decomposed single steps from the sample tossing paths
in Table 2 using two models. The numbers in parenthesis indi-
cate the occurrences of each path.

actual paths goal oriented paths

A→ B (1), B→ C (1), A→ D (2), B→ D (1),
C → D (2), A→ C (1), C → D (2), A→ E (1),
D→ E (1), C → E (1), C → E (1), D→ E (1),
E → A (1), A→ F (1), E → D (1), F → D (1)
F → D (1)

previous states do not influence the transaction probabilities of the
current state.

Suppose the current state is sn. In a Markov model, the prob-
ability to get to the next state s from the current state sn is not
affected by prior states. Formally, Pr{S n+1 = s j | S n = sn, S n−1 =

sn−1, ..., S 1 = s1} = Pr{S n+1 = s j | S n = sn} [15, 16].
It is not guaranteed that the Markov property always holds for

bug tossing. For example, the tossing probability from X to Y in
two paths, A → X → Y and B → X → Y might be different, since
the prior states A and B of the paths are not the same. However,
we believe that in the majority of cases, previous states do not in-
fluence the tossing probability from X to Y , i.e., it does not matter
for tossing decisions whether someone received a bug from Alice
or Bob. In this paper, to simplify our model, we use the Markov
model to generate tossing graphs. In future work we will look at
hidden Markov models, which also can account for previous states.

Assuming the Markov property holds, we decompose a given
tossing path to several single steps described in Table 3. Then we
determine transaction probabilities of each step. For example, con-
sider single steps, C → D, C → D, and C → E which start with
C in Table 3 (for the goal oriented model). From these steps, we
determine the tossing transaction probabilities as C → D to 67%,
and C → E to 33%.

Figure 8 and Figure 9 show two tossing graphs generated from
steps in Table 3. These graphs provide immediate picture of tossing
relationship. For example, the tossing graph in Figure 9 indicates D
is a good candidate to toss a bug from A, since in history they have
stronger tossing relationship than those of others. As a developer
reassigns bugs, this graph provides hints to identify appropriate de-
velopers.

3.3 Model Options
In Section 3.1, we proposed two options, actual and goal ori-

ented path models to decompose tossing paths. The actual path
model captures individual tossing relationships while the goal ori-
ented model records the fixer from every developer in a tossing
path.

Another option to shape tossing graphs to limit the minimum
probability of transactions. Based on the frequency of previous
tossing paths, some transactions have a high probability, and some
have a low probability. We assume the high probability transactions
are likely to happen in the future. It is possible to set a threshold
on the transaction probability and exclude all transactions whose
probability is lower than the threshold.

The value of minimum support is another option. Suppose we
found one tossing step, X → Y in the entire tossing history. Since
the tossing happened only once, the transaction probability from X
to Y is 100%. However, we do not have enough steps to support
this case. On the other hand, if the tossing from X to Y happened
more than 30 times, we may have enough evidence to believe that
X will toss a bug to Y in the future. We use a minimum support

0.33

6.67

0.33

1.0

1.0

A B

E F

C D

0.1

0.33

0.33
1.0

Figure 8: A tossing graph using the actual path model and de-
composed steps in Table 3.

0.67
1.0

6.67

0.33

1.0

1.0

A B

E F

C D

1.0

0.33

Figure 9: A tossing graph using the goal oriented path model
and decomposed steps in Table 3.

value as an option to eliminate tossing paths which are not frequent
enough and might be incidental.

To illustrate the options, we show a tossing graph of Eclipse with
the goal oriented model, 0 minimum support, and 0 transaction
probability options in Figure 10. This graph includes all tossing
transactions in the history. Since some of them happened only a few
times and have low transaction probability, this graph can be less
useful to predict future tossing steps or discover developer groups.
Predictions based on this graph may include noise as well.

Now, we changed the options to 25 minimum support and 15%
transaction probability. The resulting tossing graph is shown in
Figure 11. It only includes transactions which happened more than
25 times and where probabilities are greater than 15%. This graph
is more useful to discover developer clusters which are clear in the
graph. All transactions depicted in the graph are more likely to
happen in the future than the transactions in Figure 10.

We tried various options to provide the best tossing graphs for
the purpose of our experiments. The utilized options are listed with
experiment results.

Figure 10: A tossing graph of Eclipse using bug report id
100,000 to 150,000. Goal oriented with 0 minimum support and
0% transaction probability options are used.

Figure 11: A tossing graph of Eclipse using bug report id
100,000 to 150,000. Goal oriented with 25 minimum support
and 15% transaction probability options are used.

4. LEVERAGING TOSSING GRAPHS
This section demonstrates the usefulness of the tossing graphs.

4.1 Identifying Developer Structure
Recently, research focused on extracting developer structure within

a project has received much attention. Goals for this research in-
clude understanding the developer structure, improving the devel-
opment process, and locating faults [6–8,22]. Previous approaches
discover developer structures by mining co-change logs, email threads,
or comment threads in bug reports.

Our bug tossing graphs reveal yet another kind of developer struc-
ture based on bug tossing. This structure is useful, since it repre-
sents the direct working relationship among developers. For exam-
ple, if a manager wants to assign a new bug to a developer, she can
consult the tossing graphs to identify the most likely developers.
Similarly, if a developer finds that an assigned bug is not for her,
and wants to reassign the bug to another developer, she can consult
the graphs to find developers.

Figure 12: A partial tossing graph of Eclipse. Goal oriented
with 25 minimum support and 15 transaction probability op-
tions are used. Nodes indicate developers and connecting lines
(edges) represent tossing relationship. The numbers on edges
show the tossing probability. The thick edges mean the corre-
sponding edge has high tossing probability and the big nodes
indicate they receive many bugs from others. For example,
paules receives many bugs from other developers.

Figure 12 shows a partial tossing graph. Suppose you want to
assign a bug to lizdancy. Then perhaps you want to consider as-
signing the bug directly to dmorris or palues, since many of liz-
dancy’s bugs are fixed by dmorris or palues. Or suppose you want
to reassign a bug to paules, but he is on vacation and not available
to fix the bug. Then you might want to consider reassigning the
bug to cindyjin, since she fixed lots of bugs from paules. Tossing
graphs and the revealed developer structure are very useful in such
situations.

Perhaps an expert, who has lots of management and development
experience, does not need help from the tossing graphs. She would
know all developers and managers, and will be able to identify good
developers for a new bug. However, usually this developer struc-
ture knowledge remains in the minds of experts and is rarely docu-
mented. Tossing graphs automatically capture this knowledge from
history. Therefore, tossing graphs help new managers and develop-
ers, who do not yet have deep knowledge of the developer structure
in a project.

To evaluate their usefulness, tossing graphs were generated for
the Eclipse and Mozilla projects. These graphs were sent to the cor-
responding developers in these projects, with a request for feedback
on the usefulness of the graphs. While the number of responses was
not large enough to draw any substantive conclusions, the generally
positive tone was a good initial reality check on the extracted toss-
ing graphs.

Developer 1: “Very neat stuff! The clustering was correct for the
... team.”

Developer 2: “Probably it can be used to tell who the major as-
signees of development are.”

Developer 3: “Another interesting use for these types of graphs
might be to gauge triage effectiveness."

Developer 4: “This would be useful for both integrators and
managers wanting to understand the life cycle of bugs."

The information in the tossing graphs is useful, but it is chal-
lenging to utilize the static graphs. Perhaps providing tool support
to search, zoom-in/out, and find suitable next developers would in-
crease the usability of the graphs. This remains as our future work.

4.2 Reducing Tossing Paths
In Section 2, we showed that some bugs have a long tossing

length, for example because some bug tossing steps were unneces-
sary due to mistakes or confusion during bug assignment process.
It is desirable to avoid unnecessary tossing for timely bug fixing.

Could we reduce these long tossing paths by predicting proper
developers? This problem, called ticket routing is a well-known
problem in the machine learning literature [1, 24–26]. Various sta-
tistical models are used to improve ticket routing processes.

Inspired by one of the proposed algorithms in the machine learn-
ing literature [24], we applied their idea to Eclipse and Mozilla
tossing events using our tossing graphs and a modified graph search
algorithm. Similar to Shao et al. [24], we conducted experiments to
evaluate whether our tossing graphs help reduce the tossing length.

First, we separated bug history into two folds, training and test-
ing. A tossing graph is built using bugs in the training fold. Then
we try to reduce tossing steps in the testing fold.

Suppose an original tossing path is A → B → C → D → E →
F → G and G is the fixer. Our goal is predicting a path to get to
G with fewer steps. For example, if we can find a path A→ D→
G using the tossing graph, this path is reduced to three steps from
seven steps. The reduced steps allow bugs to be assigned to the
optimal developers sooner, thus reducing the bug fixing time.

Beginning with the first assigner, we predict the best next de-
veloper by consulting the bug tossing graph. The search continues
until we reach the fixer, or there are no more developers to recom-
mend. If there are no developers to recommend, our search fails.
In this case, usually the predicted path is long, since we traversed
the graph to the end. This long predicted path would be undesir-
able. Our goal is to avoid dead ends and reduce the original paths.

Using a given tossing graph, we can imagine various algorithms
to traverse and predict the next developer. We used tossing graphs
built by the goal oriented path model. To utilize the graphs and
maximize the path reduction, we use an algorithm based on weighted
breath first search (WBFS).

The WBFS algorithm is introduced by Wang et al. [28] based on
the breadth-first search algorithm (BFS) [12]. WBFS is similar to
BFS except for the weight consideration. WBFS begins at a given
node and explores heavy (or light) neighboring nodes first. In our
case, we visit the node with the highest transaction probability first.
We found WBFS works well with the goal oriented model. For a
given node, since all neighboring nodes are fixers, WBFS reaches
to most probable fixers first.

Using WBFS and tossing graphs we predict next developers.
Suppose a bug is assigned to lizdancy in Figure 12. Our predic-
tion for the next developer will be dmorries. The next after that
will be paules based on the graph. In the same way, we predict
future ones.

Then we compare the tossing length of the original paths and
predicted paths. Figure 13 shows the predicted tossing length and
the original tossing length of Eclipse and Mozilla. Overall our pre-
diction reduced tossing length significantly, especially for the bugs
with long tossing length. For example, 12 steps of Eclipse toss-
ing length are reduced to less than 4 steps on average. Similarly, 9
steps of Mozilla tossing length are reduced to 2.5 steps, with a 72%
reduction on average.

1

2

3

4

2 3 4 5 6 7 8 9 10 11 12

P
re

d
ic

te
d

 t
o

ss
in

g
 le

n
gt

h

Original tossing length

Mozilla

Eclipse

Figure 13: The reduced tossing length by predicting next
proper developers using the tossing graph model.

For bugs with short tossing length, the improvement of our re-
duction algorithm is marginal or the predicted length is only slightly
higher than that of the original. To avoid this situation, it is possi-
ble to apply our reduction algorithm only for bugs with long tossing
length. For example, if a new bug is reported, managers or devel-
opers assign bugs manually. If the tossing length of the bug grows,
then we apply this technique and consider predicted developers as
the next assigner. The other approach is to use this reduction algo-
rithm with a classifier. It is possible to build a binary classifier to
predict whether a given bug would have long tossing length. Then
we apply our reduction algorithm only for the bugs which are likely
to have long tossing length. Building a binary classifier for our re-
duction algorithm is future work.

The tossing length reduction results depend on tossing graph
options. Through experimentation, we found that using the goal
oriented model with 10 minimum supports and 10% of transac-
tion probability yields the best result. Search failure rates also de-
pend on the graph options. Under the same option, about 10% of
search failures are due to the missing start node. Since our search
starts with a given developer, if the developer is new, or he does
not have enough tossing history, the developer will not be on the
graph. About 30% to 40% searches fail because the fixer is not in
the neighboring nodes of the given node. We were not able to com-
pare our failure rates with Shao et al. [24], since they do not report
any search failure rates.

There is a tradeoff between the reduction rates and search failure
rates, similar to the tradeoff between recall and precision [2]. If
we put all developers into the tossing graphs by lowering the min-
imum support and transaction probability, the search failure rates
will be lower. However, the path reduction rates will not be good,
since, from a given node, there are many neighboring nodes to tra-
verse. On the other hand, we can use tossing graphs with high
minimum support and transaction probability. These graphs in-
crease the search failure rates, since many developers are not in
the graph. However, they only predict the next developer when
there are enough supporting cases with high probability. We rec-
ommend using the tossing graphs with high values of minimum
support and transaction probability so that graphs will predict next
developers with high confidence. For uncertain cases, the graphs
will quickly yield predictions rather than predicting long and wrong
tossing steps.

4.3 Improving Bug Triage
Bug triage is a widely known problem in the software engineer-

ing literature, and many automatic bug assignment algorithms are

proposed [3, 13]. They extract features from bug reports such as
keywords and metadata. These features are used to train a machine
learning model, and the trained learner predicts proper developers
for new bugs.

If the prediction accuracy is high enough, these techniques are
very useful in practice, since the resources to read bug reports and
find appropriate developers are limited. The prediction accuracy of
previous techniques is promising, but not yet satisfactory. Usually
prediction accuracies are around 30% [5]. To increase the accuracy,
previous algorithms select the first 3 or the first 5 candidates. For
the first 5, prediction accuracy is around 60 to 70% [5].

Is the information in tossing graphs useful to improve the bug
assignment accuracy? Consider this situation: developers d1 and
d2 have a close tossing relationship. Developer d1 usually tosses
bugs to d2 and d2 fixes the bug. Similarly, d1 fixes d2’s bugs. Sup-
pose in the training set, a bug was fixed by d1. Previous approaches
would extract features and learn from the bug and its assignment.
They assumed that similar bugs would be fixed by d1 in the future.
Now we have a new bug which is very similar to the previous bug.
However, this new bug was fixed by d2. This is a possible situation
in real software development. Unfortunately, previous approaches
that learned from previous bug reports would predict d1 as devel-
oper to be assigned for the new bug, which is a wrong prediction.
Since previous approaches do not utilize tossing information, they
will miss this type of bug assignment.

Our approach is integrating bug tossing information into previ-
ous approaches. We obtain developer prediction lists from a previ-
ous machine learning technique. Suppose, for a given Eclipse bug,
a previous approach predicts the first 5 developers, {robert.elves,
mik.kersten, wuamy, susan_franklin, nitind}. Based on this predic-
tion set, we try to identify more appropriate developers using the
tossing relationship. Suppose that robert.elves and steffen.pingel
have a strong tossing relationship. And mik.kersten and relves also
have a strong relationship. Then we bring them into our new pre-
diction list, and our first 5 prediction list would be {robert.elves,
steffen.pingel, mik.kersten, relves, wuamy}.

In fact, this Eclipse bug was fixed by steffen.pingel. Our pre-
diction is correct while the previous approach fails to predict the
fixer. The tossing graph information is useful to identify proper
developers in this case.

Formally, we define our prediction algorithm as follows. For a
given prediction set P = { p1, p2, ..., pn } from existing approaches,
our approach creates a new prediction set, RP = { p1, t1, p2, t2, ..., pn, tn }

with ti is the developer who has the strongest tossing relationship
with pi. From the new prediction set, we select first n developers.
For example, for the first 5, our list would be a set, { p1, t1, p2, t2, p3}.

To evaluate our approach, we use the bug triage benchmark (fold
10 of the master set) used by Bettenburg et al. [5] and two machine
learning algorithms, Naïve Bayes and Bayesian Networks [2]. Bet-
tenburg et al. used the first 165,385 Eclipse bugs as a training
set [5]. They extracted string vectors in the bug report title and long
description. The string vectors are used to train machine learners.
The machine learners predict developers for bugs in a testing set,
Eclipse bugs from number 165,397 to 211,822. Similarly, the first
345,343 Mozilla bugs are used as a training set, and bugs numbers
345,345 to 429,903 are used as a testing set. (The interested reader
is encouraged to pursue Bettenburg et al. [5] for the detailed exper-
iment description.)

We generated tossing graphs using bug reports in the training
set. Then we obtained predictions from the machine learning ap-
proach [5]. From these prediction lists, we generate new prediction
lists utilizing the tossing graphs. We select the best first 2, first
3, first 4, and first 5 from each prediction set and determine the

Table 4: Bug assignment prediction accuracy in percentages using Naïve Bayes and Bayesian Network with/without tossing graph
information. Since the accuracy of first 1 is the same with and without tossing graphs, it is omitted.

Program ML algorithm Selection Accuracy (%) Improvement
ML only ML + tossing graph

Eclipse

Naïve Bayes

first 2 43.70 44.71 1.01
first 3 49.87 53.15 3.27
first 4 56.42 59.95 3.53
first 5 60.71 63.48 2.77

Bayesian Network

first 2 57.91 58.29 0.38
first 3 66.71 68.47 1.76
first 4 69.47 71.48 2.01
first 5 75.88 77.14 1.26

Mozilla

Naïve Bayes

first 2 33.41 56.39 22.98
first 3 45.39 63.82 18.43
first 4 52.94 69.51 16.57
first 5 59.35 72.92 13.58

Bayesian Network

first 2 40.02 55.85 15.84
first 3 50.25 63.05 12.81
first 4 55.40 67.45 12.05
first 5 59.53 70.82 11.29

accuracy for each. (The accuracy of first 1 is omitted, since the
prediction sets for first 1 are the same thus their accuracy is the
same.)

Table 4 summarizes the results. As we expected, the predication
accuracy using first 3 is around 50 to 60%. The accuracy increased
up to 76% with first 5. The prediction results are slightly different
from the original results in Bettenburg et al. [5]. The reason is
that we use only the name part of emails to identify developers as
described in Section 2.1, while Bettenburg et al. use the entire email
to identify developers.

Overall our approach increases the original prediction accuracy.
It shines with Naïve Bayes by increasing the prediction accuracy up
to 23 percentage points. With Bayesian Network, it increases the
accuracy by 0.4 to 16 percentage points. The improvement rates
vary, since our prediction partially depends on the prediction sets
provided by machine learning approaches. If the prediction sets
from previous approaches do not give us room to find good toss-
ing relationships (e.g., they are good enough), it is difficult for our
approach to increase the accuracy significantly.

The accuracy of our approach depends on the tossing graph op-
tions. From our experiments, we found the best tossing graph op-
tions are to use the goal oriented model with between 0 and 10
minimum support and 25% transaction probability.

Our approach, leveraging tossing graphs for bug assignments is
orthogonal to previous approaches. Since we utilize tossing rela-
tionship based on existing prediction results, our approach poten-
tially improves accuracies of existing approaches.

5. DISCUSSION

5.1 Is tossing bad?
We found some bugs have long tossing length and each tossing

step usually takes 30 to 60 days on average.
Questions arose: “Why does tossing happen?" “Is tossing bad?"

Some bugs are related to many modules, and it is hard to fix these
bugs with a single developer. In this case, managers or developers
make plans to fix bugs. According to their plans, they toss bugs
to relevant developers. Such bug tossing is inevitable. Tossing
graphs can help this situation when they make plans. If fixing a
bug involves many developers, managers and developers can find

the effective developer order using the developer relationship infor-
mation in the tossing graphs.

As shown in Figure 1, when a bug is reopened, it is necessary to
reassign the bug to a developer. If the previous fixer is available,
usually it would be reassigned to the fixer. However, if the previous
fixer is not available, we have to find another developer to fix the
bug. As a result, a tossing event occurs. In this case, a manager can
get help from tossing graphs to find candidates who have strong
tossing relationship with the previous fixer.

Bug tossing also happens when developers retire from a project.
For example, if someone retires from a project, all his bugs will
be reassigned to others. This tossing process is also inevitable.
Our tossing graphs capture these events, since there are many toss-
ing events from the retired developer to others. For a company, it
is easy to remove retired developers from their database and dis-
able assigned bugs from the retired developers. However, for open
source projects, retirement information is often not documented,
and it is hard to delete accounts of inactive developers. In this case,
the automatically captured tossing information would be useful to
identify retired developers.

Some bug tossing processes are due to confusion or mistakes
during assignment processes. As discussed in Section 1, a devel-
oper claims that the assigned bug is not his. Another developer
is not sure who should be assigned a given bug. These mistakes
and confusion contribute to unnecessary tossing steps. In this case,
tossing graphs would be very useful. By predicting the next match
for the best developers, it will put the tossing path on the right track
and prevent unnecessary tossing steps.

5.2 Threats to Validity
We identify the following threats to validity.

Systems examined might not be representative. Bug reports of two
systems were examined in this paper. Since we intentionally
chose systems for which we could extract high quality bug
reports, we might have a project selection bias.

Systems are all open source projects. All systems examined in this
paper are developed as open source projects. Hence they
might not be representative of closed-source development.

Usually commercial software developers have quality assur-
ance (QA) team support. The QA team classifies bug reports,
identifies problems, locates the faults, and assigns the bugs
to corresponding module owners. They might assign bugs
quickly. However, the developer structure discovery and bug
triage systems based on bug tossing are useful for both, open
source and commercial software development.

Developer retirement information is hidden. It is possible that some
of the developers are retired and do not fix bugs any more.
However, our tossing graphs may include activities of retired
developers. This could affect bug assignment prediction ac-
curacy.

6. RELATED WORK
Triaging bug reports typically involves two activities in open

source projects. First developers check whether the bug has been
already filed, i.e., is it a duplicate of another bug report? If it is not,
then it is assigned to a developer who is then responsible to correct
the bug. Many approaches have been proposed to automate these
steps. To detect duplicates, several approaches use natural language
processing techniques on the bug description [18, 23], sometimes
combined with runtime traces [27]. To assign developers to bug
reports, again several approaches used natural language process-
ing [3, 5, 10, 13], however only with moderate success, about 50-
60% accuracy. In this paper, we contribute to this body of knowl-
edge by showing that bug tossing graphs can improve the accuracy
substantially, as much as 70%.

Bug tossing is the same as ticket routing (“transferring [a] prob-
lem ticket among various expert groups in search of the right re-
solver to the ticket.” [24]), which is a well-known problem in the
machine learning literature. Most approaches use various statistical
models to mine workflow from activity logs [1, 24–26].

Shao et al. proposed a ticket routing algorithm that works with-
out accessing the ticket content by using Markov models [24]. In
this paper, we transferred that idea to Eclipse and Mozilla tossing
events using a modified graph search algorithm. Like their work,
our approach also reduced the length of tossing paths. Furthermore,
we combined their content-less approach with a content-based ap-
proach to locate an initial developer using a traditional bug as-
signment algorithm. Another important difference to Shao et al. is
that we used our graphs reveal the structure of development teams,
while they did not.

Several studies investigated which factors predict the lifetime of
bug reports, that is from submission to being closed [4, 19, 21].
For example, bug reports that are easy to read or bug reports with
several attachments, stack traces, or code samples are fixed sooner.
Only few studies have focused on the actual effort that it takes to
fix a bug report, mainly because of limited data [29].

Only a few studies investigated the reassignment of bug reports.
D’Ambros et al. [14] visualized the life cycle of bugs, including
the assignment of developers. Halverson et al. [17] defined (anti)-
patterns in bug reports, one of them was the reassignment of de-
velopers. In this paper, we quantify the assignment and reassign-
ment of developers empirically. In addition, we contribute a model
of bug tossing, which helps to reduce the number of reassignment
events in bug reports.

7. CONCLUSIONS
The assignment of bug reports is still primarily a manual pro-

cess. Often bugs are assigned incorrectly to a developer or need
to be discussed among several developers before the developer re-
sponsible for the fix is identified. These situations typically lead to

bug tossing, i.e., a bug report being reassigned from one developer
to another.

In this paper, we analyzed 445,000 bug reports and their detailed
activities from the Eclipse and Mozilla projects. We found that it
takes a long time to assign and toss bugs. In addition, some bugs
have a long tossing length, which means they are passed among
many developers before the bug is actually fixed. To improve the
bug assignment process and reduce unnecessary tossing steps, we
proposed a tossing graph model, which captures past tossing his-
tory. In our experiments, the model reduces tossing steps by up to
72% and improved the accuracy of automatic bug assignment by
up to 23 percentage points.

The proposed tossing graph model can be easily integrated into
existing bug tracking systems. For example, when bugs are as-
signed to a developer, the integration can recommend additional
developers based on previous tossing history. This is helpful, espe-
cially when the first choice person to fix a bug is not available (e.g.,
because of vacation or other commitments). Another scenario is to
assign bugs not to single developers but rather to a group of devel-
opers. Here an initial developer would be identified first and our
integration would add the remaining related developers.

Our future work consists of the following.

• Developing tossing models based on hidden Markov models.
One limitation of our current models is that they are based
on regular Markov chains and thus only use the current state
for prediction (see also discussion in Section 3.1). In con-
trast, hidden Markov models use all previous states [11]. We
expect that they will further improve our results.

• Integration with bug tracking tools and user studies. We also
plan to integrate our tossing models into existing bug track-
ing systems such as Bugzilla. For example, one can use the
team structure to realize dynamic teams (similar to emergent
teams [20]), who can be assigned to bugs just like regular
developers. Once we have integrated our techniques, we will
seek to further demonstrate their usefulness with user stud-
ies.

• Modeling files and developers together. Currently our toss-
ing graph model only captures developer activities. We are
planning to model fixed files and developers together. This
model would provide information to predict developers from
bug reports and files from bug reports or developers.

To our knowledge, this paper is the first to analyze tossing history
and capture it in graphs to support bug triage tasks. We expect
that future approaches will further leverage bug tossing history to
improve bug reporting and tracking processes. Our approach is a
first step in this direction.

8. ACKNOWLEDGMENTS
Our thanks to Prof. Kwangkeun Yi for his guidance and in-

sightful comments on this project. We also thank ROPAS group
members for their brainstorming and feedback. We thank Nicolas
Bettenburg for providing bug assignment prediction data. We also
thank the Eclipse and Mozilla Developers for their feedback on the
tossing graphs. Thanks to Rebecca Aiken, Raymond Wong, Yung-
bum Jung, Hakjoo Oh, Soonho Kong and the anonymous reviewers
of ESEC/FSE for valuable and helpful suggestions on earlier ver-
sions of this paper.

9. REFERENCES
[1] R. Agrawal, D. Gunopulos, and F. Leymann. Mining process

models from workflow logs. In EDBT ’98: Proceedings of
the 6th International Conference on Extending Database
Technology, pages 469–483, London, UK, 1998.
Springer-Verlag.

[2] E. Alpaydin. Introduction to Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press, 2004.

[3] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? In ICSE ’06: Proceedings of the 28th international
conference on Software engineering, pages 361–370, New
York, NY, USA, 2006. ACM.

[4] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj,
and T. Zimmermann. What makes a good bug report? In
Proceedings of the 16th International Symposium on
Foundations of Software Engineering, November 2008.

[5] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim.
Duplicate bug reports considered harmful... really? In
Proceedings of the 24th IEEE International Conference on
Software Maintenance, September 2008.

[6] C. Bird, A. Gourley, and P. Devanbu. Detecting patch
submission and acceptance in oss projects. In MSR ’07:
Proceedings of the Fourth International Workshop on Mining
Software Repositories, page 26, Washington, DC, USA,
2007. IEEE Computer Society.

[7] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and
A. Swaminathan. Mining email social networks. In MSR ’06:
Proceedings of the 2006 international workshop on Mining
software repositories, pages 137–143, New York, NY, USA,
2006. ACM.

[8] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu.
Latent social structure in open source projects. In SIGSOFT
’08/FSE-16: Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software
engineering, pages 24–35, New York, NY, USA, 2008.
ACM.

[9] Bugzilla bug tracking system.
http://www.bugzilla.org/. Last accessed 2009-03-10.

[10] G. Canfora and L. Cerulo. Supporting change request
assignment in open source development. In SAC ’06:
Proceedings of the 2006 ACM Symposium on Applied
Computing, pages 1767–1772, 2006.

[11] O. Cappé, E. Moulines, and T. Ryden. Inference in Hidden
Markov Models (Springer Series in Statistics). Springer,
August 2005.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, Second Edition. The MIT Press,
September 2001.

[13] D. Cubranic and G. C. Murphy. Automatic bug triage using
text categorization. In SEKE 2004: Proceedings of the
Sixteenth International Conference on Software Engineering
& Knowledge Engineering, pages 92–97, 2004.

[14] M. D’Ambros, M. Lanza, and M. Pinzger. "A Bug’s Life"
Visualizing a Bug Database. In Proceedings of IEEE
International Workshop on Visualizing Software for
Understanding and Analysis (VisSoft 2007), pages 113–120,
Banff, Alberta, Canada, 2007. IEEE Computer Society.

[15] R. Durrett. Probability : Theory and Examples, chapter 5.
Markov Chains. Wadsworth, Pacific Grove, California, 1991.

[16] C. M. Grinstead and J. L. Snell. Introduction to Probability,
chapter 11. Markov Chains. American Mathematical Society,
Pacific Grove, California, 1997.

[17] C. A. Halverson, J. B. Ellis, C. Danis, and W. A. Kellogg.
Designing task visualizations to support the coordination of
work in software development. In CSCW ’06: Proceedings
of the 2006 20th Anniversary Conference on Computer
Supported Cooperative Work, pages 39–48, 2006.

[18] L. Hiew. Assisted detection of duplicate bug reports.
Master’s thesis, The University of British Columbia,
Vancouver, Canada, May 2006.

[19] P. Hooimeijer and W. Weimer. Modeling bug report quality.
In ASE ’07: Proceedings of the twenty-second IEEE/ACM
International Conference on Automated Software
Engineering, pages 34–43, 2007.

[20] S. Minto and G. C. Murphy. Recommending emergent
teams. In MSR ’07: Proceedings of the Fourth International
Workshop on Mining Software Repositories, page 5,
Washington, DC, USA, 2007. IEEE Computer Society.

[21] L. D. Panjer. Predicting eclipse bug lifetimes. In MSR ’07:
Proceedings of the Fourth International Workshop on Mining
Software Repositories, page 29, Washington, DC, USA,
2007. IEEE Computer Society.

[22] M. Pinzger, N. Nagappan, and B. Murphy. Can
developer-module networks predict failures? In SIGSOFT
’08/FSE-16: Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software
engineering, pages 2–12, New York, NY, USA, 2008. ACM.

[23] P. Runeson, M. Alexandersson, and O. Nyholm. Detection of
duplicate defect reports using natural language processing. In
ICSE ’07: Proceedings of the 29th International Conference
on Software Engineering, pages 499–510. IEEE Computer
Society, 2007.

[24] Q. Shao, Y. Chen, S. Tao, X. Yan, and N. Anerousis. Efficient
ticket routing by resolution sequence mining. In KDD ’08:
Proceeding of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages
605–613, New York, NY, USA, 2008. ACM.

[25] R. Silva, J. Zhang, and J. G. Shanahan. Probabilistic
workflow mining. In KDD ’05: Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge
discovery in data mining, pages 275–284, New York, NY,
USA, 2005. ACM.

[26] W. van der Aalst, T. Weijters, and L. Maruster. Workflow
mining: Discovering process models from event logs. IEEE
Trans. on Knowl. and Data Eng., 16(9):1128–1142, 2004.

[27] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An
approach to detecting duplicate bug reports using natural
language and execution information. In ICSE ’08:
Proceedings of the 30th International Conference on
Software Engineering. ACM, 2008.

[28] Y. Wang, L. Li, and D. Xu. Pervasive QoS routing in next
generation networks. Comput. Commun., 31(14):3485–3491,
2008.

[29] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How
long will it take to fix this bug? In MSR ’07: Proceedings of
the Fourth International Workshop on Mining Software
Repositories, page 1, Washington, DC, USA, 2007. IEEE
Computer Society.

[30] A. Zeller. Why Programs Fail: A Guide to Systematic
Debugging. Morgan Kaufmann, October 2005.

