
1-1

Indexing Uncertain Data

Ke Yi

HKUST

Siu-Wing Cheng

HKUST

Pankaj K. Agarwal

Duke University

Yufei Tao

CUHK

PODS ’09

2-1

Motivation

Two sessions devoted to uncertain/probabilistic data manage-
ment in each of SIGMOD’08, VLDB’08, and SIGMOD’09

2-2

Motivation

Two sessions devoted to uncertain/probabilistic data manage-
ment in each of SIGMOD’08, VLDB’08, and SIGMOD’09

So, let’s skip the cliché and just get to the problem

3-1

The Problem: Range Searching

One of the very first and fundamental problems studied in query-
ing uncertain data

The certain case:

The uncertain case:

Report all points that fall inside the range with probability ≥ τ
SELECT * FROM sensorreadings
WHERE Prob[20 <= temp <= 25] >= 0.5

3-2

The Problem: Range Searching

One of the very first and fundamental problems studied in query-
ing uncertain data

The certain case:

The uncertain case:

Report all points that fall inside the range with probability ≥ τ

What index structure?

Binary tree (B-tree)

SELECT * FROM sensorreadings
WHERE Prob[20 <= temp <= 25] >= 0.5

3-3

The Problem: Range Searching

One of the very first and fundamental problems studied in query-
ing uncertain data

The certain case:

The uncertain case:

Report all points that fall inside the range with probability ≥ τ

What index structure?

Binary tree (B-tree)

Assume each pdf is piecewise constant (histogram)

Will also talk about Gaussian and piecewise algebraic

4-1

Queries with a Fixed τ

Previous results: [Cheng, Xia, Prabhakar, Shah, Vitter ’04]

When each pdf is uniform (i.e., histogram with one piece)

An index with size O(nτ−1) and query time O(τ−1 logn+ k)
k: output size

4-2

Queries with a Fixed τ

Previous results: [Cheng, Xia, Prabhakar, Shah, Vitter ’04]

When each pdf is uniform (i.e., histogram with one piece)

An index with size O(nτ−1) and query time O(τ−1 logn+ k)
k: output size

On the complexity side:

uncertain range querieshalfplane queries simplex queries

≤ ≤

4-3

Queries with a Fixed τ

Previous results: [Cheng, Xia, Prabhakar, Shah, Vitter ’04]

When each pdf is uniform (i.e., histogram with one piece)

An index with size O(nτ−1) and query time O(τ−1 logn+ k)
k: output size

On the complexity side:

uncertain range querieshalfplane queries simplex queries

≤ ≤

Θ(log n+ k) Θ(
√
n+ k)

with O(n) size

?
with O(n) sizewith O(n) size

4-4

Queries with a Fixed τ

Previous results: [Cheng, Xia, Prabhakar, Shah, Vitter ’04]

When each pdf is uniform (i.e., histogram with one piece)

An index with size O(nτ−1) and query time O(τ−1 logn+ k)
k: output size

On the complexity side:

uncertain range querieshalfplane queries simplex queries

≤ ≤

Θ(log n+ k) Θ(
√
n+ k)

with O(n) size

?
with O(n) sizewith O(n) size

= <Our result

5-1

Queries with a Variable τ (given at query time)

Previous results: [Cheng, Xia, Prabhakar, Shah, Vitter ’04]

Only heuristics are given, with worst-case query time Θ(n)

Other follow-up works are also heuristic

[Tao, Cheng, Xiao, Ngai, Kao, Prabhakar ’05]

[Ljosa, Singh ’07]

5-2

Queries with a Variable τ (given at query time)

Previous results: [Cheng, Xia, Prabhakar, Shah, Vitter ’04]

Only heuristics are given, with worst-case query time Θ(n)

Other follow-up works are also heuristic

[Tao, Cheng, Xiao, Ngai, Kao, Prabhakar ’05]

[Ljosa, Singh ’07]

Our results

An index structure with size O(n log2 n) and query O(log3 n+ k)

5-3

Queries with a Variable τ (given at query time)

Previous results: [Cheng, Xia, Prabhakar, Shah, Vitter ’04]

Only heuristics are given, with worst-case query time Θ(n)

Other follow-up works are also heuristic

[Tao, Cheng, Xiao, Ngai, Kao, Prabhakar ’05]

[Ljosa, Singh ’07]

Our results

An index structure with size O(n log2 n) and query O(log3 n+ k)

Can be made dynamic

Can be made I/O-efficient

6-1

Queries with a Fixed τ : A Geometric Reduction

x

x

x

f(x)

F (x)

g(x)

a b c d e

a b c d e

a b c d e

b

c

d

e

xl xr

(xl, xr)

pdf

cdf

the threshold function

For any a, g(a) := the minimum b s.t.
F (b)− F (a) ≥ τ ;
If no such b exists, g(a) :=∞.

6-2

Queries with a Fixed τ : A Geometric Reduction

x

x

x

f(x)

F (x)

g(x)

a b c d e

a b c d e

a b c d e

b

c

d

e

xl xr

(xl, xr)

pdf

cdf

the threshold function

For any a, g(a) := the minimum b s.t.
F (b)− F (a) ≥ τ ;
If no such b exists, g(a) :=∞.

Properties of g(x):

• g(x) has complexity linear
in the size of pdf

• Pr[p ∈ (xl, xr)] ≥ τ ⇔
xr ≥ g(xl)

7-1

Queries with a Fixed τ : The Problem

7-2

Queries with a Fixed τ : The Problem

The segment-below-point problem

7-3

Queries with a Fixed τ : The Problem

The segment-below-point problem

If all segments are infinite lines, then the problem becomes the
halfplane query problem

=

8-1

Queries with a Fixed τ : A First Attempt

8-2

Queries with a Fixed τ : A First Attempt

8-3

Queries with a Fixed τ : A First Attempt

Segment tree approach:
O(n) canonical slabs;
Each segment decomposed into O(log n) slabs;
Build a halfplance structure for each slab

8-4

Queries with a Fixed τ : A First Attempt

Segment tree approach:
O(n) canonical slabs;
Each segment decomposed into O(log n) slabs;
Build a halfplance structure for each slab

Obtain a structure:
size O(n log n),
query O(log2 n+ k).

Query can be improved
to O(log n + k) using
fractional cascading

But hard to reduce size
to linear

9-1

Queries with a Fixed τ : Achieving Optimal

Clever ideas and complicated techniques

Segment tree

Interval tree

Sampling

Compression

Fractional cascading

Boostrapping

9-2

Queries with a Fixed τ : Achieving Optimal

Clever ideas and complicated techniques

Segment tree

Interval tree

Sampling

Compression

Fractional cascading

Boostrapping

Nice theoretical result, but too complicated to implement

10-1

A Simpler and More General Structure
(although not optimal)

10-2

A Simpler and More General Structure
(although not optimal)

x

x

x

f(x)

F (x)

g(x)

a b c d e

a b c d e

a b c d e

b

c

d

e

xl xr

(xl, xr)
Report all polygonal chains below
a query point

11-1

A Simpler and More General Structure

sample of size n/2i

11-2

A Simpler and More General Structure

sample of size n/2i

Compute the trapezoidal decomposition of the area bounded by
the lower envelope of the sampled chains

11-3

A Simpler and More General Structure

sample of size n/2i

Compute the trapezoidal decomposition of the area bounded by
the lower envelope of the sampled chains

Each trapezoid stores all the conflicting chains; can show that
the expected size of each conflict list is O(2i)

11-4

A Simpler and More General Structure

sample of size n/2i

Compute the trapezoidal decomposition of the area bounded by
the lower envelope of the sampled chains

Each trapezoid stores all the conflicting chains; can show that
the expected size of each conflict list is O(2i)

Do the above for i = 1, 2, . . . , log n

12-1

Querying the Structure

sample of size n/2i

`

t
Try successive structures for i = 1, 2, . . . :

locate the trapezoid t that ` intersects;
If q ∈ t

scan t’s conflict list and report all chains below q;
stop;

q

Expected time: O(log n+ k)

13-1

Size of the Structure

sample of size n/2i

size of each conflict list = O(2i)
trapezoids = complexity of the lower envelope = O(n

2iα(n
2i))

size of structure for each i: O(nα(n))
total size: O(nα(n) log n)

α(n): inverse Ackermann function — extremely slow-growing

14-1

Supporting Other pdf’s

Suppose each pdf is piecewise algebraic

The structure and analysis remain the same, only the complexity
of the lower envelope could change

One can write out the piecewise form of g(x), and determine
the maximum number of intersections between any two different
pieces, say c

The threshold function g(n) is also piecewise algebraic

Query remains optimal O(log n+ k)

Size becomes O(λc+2(n) log n) [Davenport, Schinzel ’65]

14-2

Supporting Other pdf’s

Suppose each pdf is piecewise algebraic

The structure and analysis remain the same, only the complexity
of the lower envelope could change

One can write out the piecewise form of g(x), and determine
the maximum number of intersections between any two different
pieces, say c

The threshold function g(n) is also piecewise algebraic

Query remains optimal O(log n+ k)

Size becomes O(λc+2(n) log n) [Davenport, Schinzel ’65]

λc(n): the maximum length of (n, c) Davenport-Schinzel sequences

λ2(n) = Θ(n), λ3(n) = Θ(nα(n)), λ4(n) = Θ(n2α(n)),

λ2t+2(n) = n2(1/t!)αt(n)+Θ(αt−1(n)) [Agarwal, Sharir ’00]

15-1

Queries with Variable τ

xl xr

15-2

Queries with Variable τ

xl xr

xl

xr

Pr[p ∈ [xl, xr]] is linear inside
each rectangle

16-1

Queries with Variable τ

xl

xr

0

1

Pr[p ∈ [xl, xr]]

16-2

Queries with Variable τ

xl

xr

0

1

Pr[p ∈ [xl, xr]]

Problem: Indexing a collection of bivariate piecewise-linear func-
tions where each piece spans an orthogonal rectangle, such that for
a given query point q in 3D, we can report all functions below q

17-1

Queries with Variable τ

xl

xr

17-2

Queries with Variable τ

xl

xr

xl

xr

17-3

Queries with Variable τ

xl

xr

xl

xr

Each piece is decomposed into O(log2 n) canonical rectangles

18-1

Queries with Variable τ

For each canonical rectangle, build a 3D halfspace structure

Total size of the index: O(n log2 n)

Linear size, O(logn+ k) query [Afshani, Chan ’09]

18-2

Queries with Variable τ

For each canonical rectangle, build a 3D halfspace structure

Total size of the index: O(n log2 n)

Linear size, O(logn+ k) query [Afshani, Chan ’09]

Answering a query

The query point is covered by O(logn) canonical vertical slabs

Inside each canonical horizontal slabs, there are O(logn) canonical
vertical slabs (rectangles) covering q

Need to query O(log2 n) 3D halfspace structures

Total query time: O(log3 n+ k)

19-1

Conclusions

Queries with a fixed threshold

Queries with variable threshold

Can solve in linear space and optimal query time

A simpler and more general structure, might be of practical interests

Can solve in n logO(1) n size and logO(1) n query

19-2

Conclusions

Queries with a fixed threshold

Queries with variable threshold

Can solve in linear space and optimal query time

A simpler and more general structure, might be of practical interests

Can solve in n logO(1) n size and logO(1) n query

Problems to consider

Higher dimensions?

Nearest neighbors in uncertain db?

Range counting in uncertain db?

