Efficient Maintenance of Materialized Top-k Views

KeYi, HaiYu, JunYang Ganggiang Xia, Yuguo Chen
Department of Computer Science Institute of Statistics and Decision Sciences
Duke University Duke University
{yike,fishhai,junyang@cs.duke.edu {xia,yugug @stat.duke.edu
Abstract view itself does not contain enough information required for

maintenance.

We tackle the problem of maintaining materialized top- For example, consider a materialized view contairiifig
k views in this paper. Top-queries, includingVIN and stocks with the highest price/earning ratios currently on the
MAXas important special cases, occur frequently in com- market. Suppose one of these stocks plummets, and its
mon database workloads. A tdpview can be materialized price/earning ratio drops below the current top After
to improve query performance, but in general it is not self- this update, the view still contains the tépstocks, but in
maintainable unless it contains all tuples in the base table. order to find the stock with th&0-th ranked price/earning
Deletions and updates on the base table may cause tuplesatio, we need to query the base table of all stocks. This
to leave the topk view, resulting in expensive queries over query, which we call aefill query, can be expensive in gen-
the base table to “refill” the view. In this paper, we pro- eral for a number of reasons,g, the base table may be
pose an algorithm that reduces the frequency of refills by |arge, it may reside in a remote database, and the ranking
maintaining a topk’ view instead of a top- view, where criterion may involve expensive user-defined functions.
k" changes at runtime betweénand sometm.. > k. We To avoid expensive refill queries over the base table, we
show that in most practical cases, our algorithm can reduce ¢an make a toj- view self-maintainable by augmenting it
the expected amortized cost of refill queriest0l) while ith auxiliary data, a technique well studied in data ware-
still keeping the view small. The optimal valuekgf, de- housing [22, 1]. For example, we may keep tfet 1)-th
pends on the update pattern and the costs of querying thegnked tuple as auxiliary data to help maintain a kogiew,
base table and updating the view. Compared with the sim-j, the event that a tuple drops out of the tbp However,
ple approach of maintaining either the tdpview itself ora sjnce auxiliary data must be maintained as well, we need the
copy of the base table, our algorithm can provide orders-of- (k + 2)-th ranked tuple in order to maintain tiie + 1)-th,
magnitude improvements in performance with appropriate the (k + 3)-th to maintain theék + 2)-th, etc. In general, to
kmax values. We show how to chodsg.. dynamically to make a topk view completely self-maintainable, we must
adapt to the actual system workload and performance at gssentially keep a copy of the entire base table, or at least
runtime, without requiring accurate prior knowledge. an ordered index on the base table column used for ranking.

Now we are faced with a dilemma. One option is to
maintain the original togs view, which may require fre-
1. Introduction guent costly refill queries. The other option is to maintain
an ordered index on the entire base table, which has high
Top-k queries have received much attention from the Storage and maintenance overhead but avoids refill queries
database community in recent years [5, 9, 10, 3, 6]. An altogether. Neither option seems completely satisfactory.
effective way of improving the performance of expen- Previous work on making views self-maintainable has of-
sive queries is to maintain their results as materialized ten side-stepped the problem by not considering deletions
views [13]. However, incremental maintenance of materi- and updates for SQL aggregatdéN and MAX which are
alized topk views has been a relatively unexplored prob- special cases of topviews withk = 1.
lem in the view maintenance literature. The main dif- Fortunately, we have a middle-ground to explore be-
ficulty of this problem is that a top-view is not self- tween the two extremes, without ruling out deletions and
maintainable[12] with respect to deletions and updates updates. This approach is based on two key observa-
on the base table. That is, sometimes we must query theions. First, instead of requiring complete self-maintenance,
base table in order to maintain the thpdew properly; the we try to achieveuntime self-maintenandé&6] with high

probability. That is, rather than devoting lots of additional queries. They assume that ranked views are materialized in
resources to ensure that we never query the base table fotheir entirety. Nevertheless, it is possible to reduce storage
view maintenance, we can devote much fewer additionaland maintenance costs by keeping fopiews instead of
resources and ensure that we only query the base table exwhole ranked views. Therefore, their work is complemen-
tremely rarely. The second observation is that a material-tary to ours, and provides a good motivation for studying
ized view can have a dynamic definition. Instead of main- efficient maintenance of topviews.
taining a topk view, we maintain a tog view, wherek’ Materialized view maintenance is a well-known and
can change dynamically betweleand somé:,,.. > k. We well-studied problem, surveyedin [13]. The concept of self-
start withk’ = kp.x, i.€., a topkn,a, View with more than ~ maintenance is introducedin [2, 12], and the concept of run-
the required number of tuples. We increa$bdy one when time self-maintenance is introduced in [16]. The technique
an insertion or an update causes a tuple to enter the currendf using auxiliary data to make views self-maintainable is
top k&’ (unlessk’ already equalé,,.x), and we decreade pioneered by [22], and has been successfully applied in
by one when a deletion or an update causes a tuple to leavenany settings [1, 23, 17]. To the best of our knowledge,
the current topt’. We only query the base table whéh all prior work uses auxiliary data to achieve complete self-
drops belowk. By starting withk,,.. instead oft, we hope maintenance; none has considered using auxiliary data to
to lower the refill frequency and hence the amortized costincrease the probability of runtime self-maintenance, which
of view maintenance. is the one of the key observations in this paper.
Beyond this conceptually simple idea, several interest- Until recently, most papers that deal with S@UN and
ing and non-trivial questions remain to be answered. In- MAXviews (which are special cases of tépsiews), e.g,
tuitively, as we increasé,, ., refill frequency decreases; [11,21, 1, 17, 24], cannot efficiently handle deletions or up-
on the other hand, the view takes more space, updating thelates to the base table. Recent work by Palpahak[18]
view becomes more expensive, and more updates need tproposes usingiork areago maintainMIN andMAXviews.
be applied to the view. Given these trade-offs, how do we Their approach has the same underlying idea as our algo-
choose right values df,.,..? What are the factors affecting rithm in Section 3, which we have developed independently.
the optimalk,,. value? Under what conditions can we ex- Besides this basic idea, they do not consider how to choose
pect to achieve low amortized view maintenance cost with the size of the work area, while we make the following ad-
reasonably small values &f,..? How do we cho0Ssg,,.x ditional contributions: (1) we develop a probabilistic model
without accurate prior knowledge of the workload? for rigorous analysis of the algorithm; (2) we prove high-
This paper explores in detail the issues mentioned above probability results that establish the effectiveness of the al-
Section 2 surveys related work. Section 3 describes our al-gorithm; and (3) we provide a procedure for choosifg,
gorithm and cost model. Section 4 explores the relation- (or size of the work area in their terminology) which adapts
ship betweerk,,., and the refill frequency using the ran- to the actual system workload and performance at runtime,
dom walk model as a tool. Most importantly, we show that without requiring accurate prior knowledge.
in most practical cases, we can reduce the expected amor-
tized cost of refill queries t«D_(l) with reasonal:_:ly_ small 3 The Algorithm
kmax values. Section 5 considers several statistical mod-
els of base table updates and shows how to apply our an- . .
alytical results in Section 4 to these cases. Section 6 ex- Supposg we are interested n the iopiples from a base
perimentally obtains the parameters of our cost model, andtableR of _S'ZeN' We assume is a constant much_ smaller
demonstrates the effectiveness of our algorithm in realis—than N, since typ|ca| u“s_ers are interested only in a small
tic scenarios. Section 7 proposes a procedure for choosin ubset off? that is most “important,.g, the ten most pop-

kmax Which adapts to the actual system workload and per- Slar song::ho: tthelloo gost f.r;qutintg/; ccessled i\geb scljtes.
formance at runtime. uppose that tuples iR are identified by a columid an

ranked according to the value of a columal . Tuples
with larger values are ranked higher. For simplicity, we as-
2. Related Work sume all values are distinct; in practice, ties can be broken
arbitrarily usingid values. Theval column can be ei-
There is a large body of work on tdp-queries [4, 5, ther stored explicitly inR or computed on the fly by some
9, 10, 3, 7, 6], most of which focuses on how to evaluate user-defined function. We assume that there is no index on
these queries efficiently in various contexts. Most related R.val .
to this paper is the work by Hristidist al. [15], wherein Our algorithm is conceptually very simple. We keep the
they propose materializing ranked views to speed up moretop &’ tuples (withid andval columns) in a materialized
complex preference queries. Their work focuses on select-view V, wherek’ can vary betweek and somek,,., >
ing ranked views to materialize and using them to answerk. Sincek < k’, we can answer top-queries using the

contents ofl/. The cost of updating the view in an update operation,
We need to maintaif” given the changes to the base ta- C\pqate. 1S O(log|V]), or O(log kmax), Since we can im-
ble R. To keep our analysis clean, we only consider updatesplementV using any data structure that functions as a pri-
to R; that is, we assume that the identities of thiguples ority queue, say, a heap or a balanced search tree, which
in R remain fixed while their values change over time. Itis has anO(log|V|) lookup/insert/delete time. However, not
straightforward to generalize our algorithm and analysis to every base table update causes a view update. Suppose
handle insertions and deletions &mas well. fignore 1s the fraction of base table updates that are ig-
Let vy be the value of the lowest ranked tuple currently norable. The amortized cost of an update operation is
in V. We assume that an updateRdas the form(id, val), Cupdate X (1 = fignore)-
wherewal is the new value of the tuple identified . For The cost of a refill operatior;,.f;;, includes the follow-
each update t@2, we perform arupdate operatioron V. ing three components:
There are four cases to consider:
e The tuple identified byid is not inV, andwval < vy .
This update has no effect dn. We call this update an
ignorable update

e The cost of processing the refill query ov&r If
kmax — k + 1 is small enough, we can evaluate the
refill query by making one pass ov& while keeping
in memory the top tuples (among those whose values

e The tuple identified byd is in V, andval > vj,. We are less tham,_) seen so far. In the worst case where
update the value of this tuple ¥ to val. We call this kmax — k + 1 is too large for memory, we can perform
update aneutral update(*neutral” in the sense that it an external-memory sort of alk tuples with values
does not change the value/d). less thanuy,_1, and return the tofimax — k + 1 tu-

e The tuple identified byid is not inV, andval > vy . ples. In either case, we expect this cost ta&{éV) for
We insert(id, val) into V. We call this update good practical memory sizes.

update(“good” in the sense that it increas­ one).
If ¥ exceedd:,.., we delete the lowest ranked tuple
inV.

e The tuple identified byid is in V, andwval < v. We

e The cost of retrieving thé,... — k& + 1 result tuples
of the refill query. Depending on the actual database
and application setup, this cost may involve the cost of
) binding result tuples out from the database to the ap-
delete the updated tuple frob. We call this update a plication, or the cost of transmitting them to a remote

bad update(“bad” in the sense that it decreageishy application over the network. We expect this cost to be
one). Ifk’ drops below:, we perform aefill operation O (kmax)-

as described below.

The refill operationqueries the base table and restores
the size of the view t&,,.x. This operation consists of the
following two steps:

e Evaluate theefill queryover R, which returns all tu-

ples ranked betwednandk,,... Note that at the time

e The cost of inserting thé,,.. — & + 1 result tuples
into V. These tuples are already sorted and will be ap-
pended td’/. For the data structures used to implement
V (as discussed for the case®@f,q..c), the total cost
of appendingimax — k + 1 tuples iSO (kmax)-

of refill, if £ > 1, V still contains thek — 1)-th ranked Itis reasonable to assume tit&f, g < Crefi- There-
tuple. We can use the value of this tuplg,-;, to re- fore, to minimizeC', we focus on reducing.z;, the fre-
fine the refill query as: “return the to,.x — k + 1 guency of refill operations. Since the cost of a refill query
tuples among those whose values are less thap.” is O(N), if we can reducef,su to 1/N, we will have re-

e Insert the result of the refill query infg. duced the amortized cost of refill queries2¢1), an attrac-

Further optimization is possible. For example, instead of tive goal. Intuitively, we can decreagg. s by increasing
waiting untilk’ drops belowt, we could refill the view more ~ Fmax. HOWeVer, a largeki,. also increase€’,yqq. and
“eagerly,’i.e., whenk’ is close to but still larger thai This ~ Crefin @nd decreasefiynor., so the trade-off must be con-
approach would allow us to keep serving topueries from sidered carefully. In Section 4, we develop a _theoretlcal
the view while waiting for the refill query on the base table Model to study the effect ofinax ON freu, and in Sec-
to complete. Our analysis, however, will be based on thetions 5 and 6, we conduct simulations and experiments to

basic version of the algorithm. see howknax affectsCupdate, fignores Crefitt, @Nd frefin In
practical scenarios.
3.1. Cost Model This simple cost model of ours does not capture the inter-

action between concurrent queries and updates, nor the po-
The amortized cost of our algorithm per base table up- tential §avings of overlapping local execution yvith remote
date is given by e_xecutlon and_data transfe_r. Nevertheless, this model pro-
vides a good first-order estimate of the total cost of the al-
C= Cupdate X (]- - fignore) + Creﬁll X freﬁll- (1) gorlthm

4. Analysis

1—po PO
4.1. The Random Walk Model a1 l—-p1—q1 p1
From the description of the algorithm in the last section, qn—2 1—pn-2—qn-2 Pn—2

we notice that the values &f between two refill operations qn—1 L=pn—1—=an-1

can be modeled as a random walk on the one-dimensional
points{k—1,k, ..., kmax }, Wherek,,.x is the starting point
andk — 1is an absorblng point at which the random walk
ends and a refill is needed. In order to use the standard no'[.apO
tion of Markov chains, we map the one-dimensional pomts
to {0,1,...,n}, making O as the starting point amdthe
absorbing point, where = k... — k + 1. We need to an-
alyze the probabilistic properties of thefill interval Z, or

the number of steps it takes for the random walk to go from
0 ton. The expected refill frequency used in (1) is given by
freﬁll - E[l/Z]

For the purpose of our analysis, we are mostly interested
in good and bad updates since they are the only updates tha
change the size of the view. Suppose that the random walk_emma 1 (Expected refill interval) The expected hitting
is currently at position. With a bad update, the random time of the random walk frorto » is given by
walk moves ta + 1; we assume that this move happens with
probabilityp;. With a good update, the random walk moves
toi — 1; we assume that this move happens with probability
g;. Otherwise, the update is either ignorable or neutral, and
the random walk stays atwith probabilityl — p; — ¢;. for i

In our random walk model, we assume that the choice at
each step is independent of all previous choices. This as-Please note thak[Z] = ho. This lemma confirms our
sumption may not hold for arbitrary update workloads. In intuition that the hitting time increases with bigger views.
Section 4.6, we show how to generalize our analytical re- In particular, whenp = ¢, it seems sufficient to choose
sults when this assumption is dropped, and in Section 5, wen, = ©(v/N) so thatE[Z] = N, which means that we
show how to apply our generalized results to update work-perform a refill operation everiy updates on average. In

where all unspecified entries are zeros.
To 5|mpI|fy calculation, we consider the special case of
“=pp—1 =pandg = q C= o1 =

, e, the probabllltles of bad and good updatesafdg
respectlvely) remain constant 88| changes. In general,
this assumption does not hold. However, as we will discuss
in Section 4.6, the results we derive for the case of constant
p andg can be generalized to the case of varyingndg.
Therefore, we shall assume constarindq in subsequent
analysis until Section 4.6.

Applying Gaussian Elimination to (2), we obtain the fol-
Pwmg lemma (see [25] for detailed derivation).

(n+z+1)(n 1)7
hi: (n— 1)(1 t)— i pgn

p(1-t)? ’

P=q;
p# qandt = q/p,

=0,...,n—1.

loads where the independence assumption does not hold.
4.2. Expected Refill Interval

The first step is to find the expectationf E[Z], which
is called thehitting timefrom 0 to n in the terminology of
Markov chains. Denote the hitting time frointo n ash;.
By the properties of Markov chains, we have

n—1

hi =14 pijhy,
i=0

wherep;; is thetransition probabilityfromi to j. The equa-
tion also can be written in a matrix forrh: = b 4+ Ph, or

(2)

wherel is then x n identity matrix, P = (p;;), h =
(hoy .- hn—1)T, andb = (1,...,1)T. Using the proba-

(I-P)h =b,

general, however, we cannot guarantee Ejay 7], the ex-
pected refill frequency, id/N. It is conceivable that the
actual distribution ofZ is not centered at its mean value;
there may be a significant probability féf to be much
smaller than its mean, causii[1/Z] to be much bigger
thanl/E[Z].

Unfortunately,E[1/Z] has no close formula. On the
other hand, given the transition matrix in (2), we can com-
pute E[1/Z] numerically. We present a numerical solver
for E[1/Z] in [25] and show that the computation con-
verges with exponential speed. However, the numerical
solver alone cannot provide any bound Bfi/Z] in gen-
eral. Next, we develop a series of high-probability results
which enable us to bouri[1/Z].

4.3. High-Probability Results Whenp = ¢

We first concentrate on the most interesting case where
p = q, i.e, the view shrinks and grows with equal probabil-

bilities of good and bad updates defined in Section 4.1, weity. We expect this case to be common: If the distribution

can writeP as follows:

of the tuple values used for ranking is stationary, the rate

N n n/N lower bound | upper bound
onPr[Z > N] | onE[N/Z]
100 30 30% 0.9556 1.1037
1000 | 100 | 10% 0.9730 1.2426
107 400 4% 0.9987 1.0322
10° | 1300 | 1.3% 0.9991 1.0650
10° | 4500 | 0.45% 0.9998 1.0355
Table 1. Theoreticalboundson Pr[Z > N]and
E[N/Z] for practical values of N and n.

at which tuples enter the tolg-view must be the same as
that at which tuples leave the tdgpview. We would like to
provide a high-probability guarantdes., Z = () holds
with high probability. If so, the expected amortized cost of
refill queriesO(N)/Z, willbe O(1). Our main result is the
following theorem (see Appendix A for the proof).

Theorem 1 Whenp = ¢, if n = Nz+¢, the refill interval
Z is greater thanNV with high probability; specifically,

Pr[Z > N|]>1—4e N2
With this theorem, the following corollary comes naturally.
Corollary 1 Whenp = ¢, the expected amortized cost of
refill queries,O(N) x E[1/Z],is O(1), if n = Nz+<, for
any positive constarat

Although the requirement of = Nz+€is not as good
as our first impression that = ©(v/N), it is still good

Theorem 2 Whenp < ¢, if n = ¢In N, the refill interval
Z is greater thanV with high probability, i.e.,

Pr(Z > N] >1—-o(1),
for constantc big enough, depending only grandg.

Please refer to the proof in Appendix B for the choice of
constant. The next corollary follows naturally.

Corollary 2 Whenp < g, the expected amortized cost of
refill queries isO(1), if n = ¢ln N, for some constantbig
enough.

4.5. Whenp > ¢

Whenp > ¢, a base tuple update is more likely to shrink
the view than to grow it. According to LemmaE[Z] is
on the order ofz, meaning that we would need= N to
bring the expected refill interval up to the order’éf Here,
increasing the size of the view still decreases the expected
refill frequency, but at a much slower rate than the cases of
p=gqandp < q.

Nevertheless, we feel that the caseof ¢ is unusual in
practice, because whex> ¢, tuples are trying to “escape”
from the topk list. Typically, people are more interested in
scenarios where tuples are “competing” with each other to
enter the topk list. In such scenarios, we would haye= g
or p < ¢q, where our algorithm is most effective.

4.6. Generalizations

enough to generate satisfying performance of our algorithm SO far, we have assumed that allandg; values in the

in practice. Table 1 lists some practical valuesNdofand
n. For each pair ofV andn, we show the lower bound on

transition matrix are identical in order to keep our analysis
clean. In generalp and ¢ can vary with the size of the

on E[N/Z] according to Corollary 1. We see that our al-
gorithm performs exponentially better @ goes up. For

example, for a base table with a million tuples, a view con-

taining only the tof.45% of all tuples is enough to provide
a refill interval longer than one million updates with prob-
ability 99.98%. Please note that the valuesPf[Z > N|

because it is less likely for base table updates to affect the
view. In this subsection, we show how to generalize our
earlier results to a model with differepf’'s andg;’s.

We first study how changes in individug) and ¢; af-
fect the overall hitting time of the random walk. Consider
a random wallk//;. Suppose that at a particular positign

andE[N/Z] shown in Table 1 are theoretical bounds; actual W1 moves toi + 1 with probabilityp; and moves ta — 1

performance should be even better.
4.4, High-Probability Result Whenp < ¢

Whenp < ¢, a base table update is more likely to grow
the view than to shrink it. Intuitively, we should expect a
long refill interval even for small views. Indeed, according
to Lemma 1h, is large because of thé term in the numer-
ator, where = ¢/p > 1. As the following theorem shows,

with probability ¢;. Next, consider a second random walk
W>, whose transition probabilities are identical to those of
W, except at position: W, moves toi + 1 with probabil-

ity p; and moves ta — 1 with probability¢;. Furthermore,
P+ ¢; > pi + qi, andp’/q, > pi/q;. We introduce the
following lemma, whose proof is given in [25].

Lemma 2 The hitting time of random wall/; stochasti-
cally dominates that difl’.

we can use a logarithmic-size view to reduce the amortized Using Lemma 2, we can generalize Theorem 1 and

cost of refill queries t@(1) with high probability.

Corollary 1 to a random walk model with differept’s

andg;'s. The condition ofp = ¢ becomeg; < ¢;, for Case 2: Random Up-and-Downs Next, we consider a

i =1,...,n— 1. Notice that we do not need this condition case where the values in the base table increase and de-
for position0. In fact, this condition can be dropped for any crease equally likely. Suppose each item starts with some
constant number of positions; we only need to change theinitial value drawn from a symmetric unimodal distribution
value ofn to N2+¢+ ¢/, whered’ is the number of positions (e.g, normal distribution) with meap. In each time step
where this condition does not hold. A similar generalization ¢, an item is chosen uniformly at random to be modified by
can be made to Theorem 2 and Corollary 2. In this case, theX;, whereX; follows some symmetric unimodal distribu-
condition under which Theorem 2 and Corollary 2 are ap- tion with mean0. We assume the choice &f; is indepen-

plicableisé -p; < ¢;,fori =1,...,n—1,whered > lisa dent of the choices made in earlier time steps.d.die the
constant. Again, we can drop this condition f6positions value of the chosen item at the end of time stgmd.S;_;
and change the value afaccordingly tocln N + ¢'. be the value of this item at the end of the previous time step;

Throughout our analysis, we have also assumed a memosS; = S;_1 + X;. Itis easy to see th#;,_; andsS; also have
ryless random walk model in which the choice at each stepsymmetric unimodal distributions with mean This model
is independent of all previous choices. Dropping this as- can be used reasonably to describe many up-and-down pro-
sumption requires replacing the conditions pand ¢ in cessese.g, stock prices, fortunes of gambleetc
Theorems 1 and 2 and Corollary 1 and 2 with more gen- Like in Case 1, the random walk that models héiv
eral ones. Consider a random walk with memory on changes is not memoryless, because the probabilities for an
{0,1,...,n}. We say that¥ is origin-tendingif, regard- item to enter and leave the tdpdist in time stept depend
less of the previous steps taken, the probabilityiofmov- on the actual values of the items befarewhich in turn
ing from: to 4 — 1 is always no less than that of moving depend on the history of previous updates. Fortunately, as
from i to i 4+ 1, wherei is the current position ofV” and discussed in Section 4.6, we still know that our algorithm
0 < i < n. Theorem 1 and Corollary 1 are applicable un- is effective as long as we can show that the random walk is
der the new condition “the random walk is origin-tending.” origin-tending.

We say thatV is strictly origin-tendingf, regardless of the Supposey is the value of the lowest ranked item in the
previous steps taken, the probabilityléf moving fromi to top-+’ view at the beginning of time step Let ¢; denote
1 — 1 is always no less thafitimes that of moving fromi the probability of a good update at timeandp; denote the

toi + 1, whered > 1 is a constant. Theorem 2 and Corol- probability of a bad update at tinte Suppose the probabil-
lary 2 are applicable under the new condition “the random ity density functions ofS;_; and X, are fs(s) and fx (x),
walk is strictly origin-tending.” We provide proofs of these respectively. We have

generalized theorems and corollaries in [25]. In Section 5,
we will see some examples that require the application of 7
these generalized theorems and corollaries.

= PI‘St 1 < Vgr, Si— 1-|—Xt>l)k/]

Vi
/ / () dsdx,
Vs —T

5. Case Studies of Update Workloads pe = Pr[Si1>uvp, Sio1+ Xy < opr]
Uyt —T
In Section 4, we have concluded that our algorithm is = / / fx(x)ds dz
most effective when the random walk is origin-tending. In vt
this section, we study several statistical models of update - / / ' fs(s) fx(z)ds dx
workloads. For most of the workloads we consider, the ran-
dom walk is origin-tending. We also perform simulations (sinceX; is symmetrically distributed arourty.

to measure the transition probabilities of the random walk o .)
model as well as the fraction of ignorable updates, which ~ Because the distribution &, is symmetric aboug,
v > e whenky., is small. Furthermore, the distribu-

will be used in Section 6.4 in evaluating the effectiveness of *,) - .
our algorithm. tion must be decreasing aftey because it is also unimodal.

Therefore, for any: > 0,

Case 1: Cumulative Total Sales Suppose we are inter- UK/
ested in the tog all-time best-selling books in a bookstore. /v
The vast majority of the transactions are purchases that in-
crease the cumulative total sales figures of the books pur-which leads top; < ¢;. Therefore, the random walk is
chased. Transactions that decrease the sales figurgs, Origin-tending and we may choosg.x = N3+te,

returns or cancelled orders, are very rare. Under this work-

load, the probability of a bad update is almost nil and is Case 3: Total Sales in a Moving Window Finally, we
certainly smaller than the probability of a good update. consider a more complicated model involving a moving

Vs +T
fs(s)ds > / fs(s)ds,

k! —T (g

time window. Suppose we are interested in ranking books SER
by their total sales during the last time steps. For each
book b, let X} be the number of copies éfsold during
time stept. At the end of the time step we update the | 5| B
total sales to béX,_, ., +---+ X}, + X/). Suppose - vl ",
that for eachp, all X?’s are independently and identically o T,
distributed {.i.d.). Letwvy be the total sales of the lowest ?
ranked book in the to! view at the beginning of time step comememmom oo TEEmsm e
t. We have

@ =Pr[X)_, +- o+ X <wvpr, X{ g + oo XD 2 0],
p? = Pr[Xf—w 4+ +X$—1 > Vg’ Xf—w+1 4+ +X$ < Uk’]7

whereg; (pf) denotes the probability that the update on
b at the end of time step is good (bad). LetS = gﬁ
4

t—1 b i b1 A
Y it—wi1 Xi- SinceX;’s arei.i.d, we have

@ = PrlXP,+S<vp, S+X)>uvp]
PI'[th'f'S<’l)k/, S+Xb ka/]

t—w

= Pr[X{ ,+S>v, S+ X! <up]=7pl.

Figure 2. Results from the second simulation.

Therefore, the random walk is origin-tending, and we may .)
chooSek, . = N2Fe, may not be memoryless. Admittedly, the real world situa-

ttions are far more complicated to model accurately. How-
two simulations of this update workload in order to mea- €Ver: from these simple case studies, we have reasonable

sure the transition probabilities of the random walk model confidence that an origin-tending random walk approxi-
and the fraction of ignorable updates. The actual values of Mat€S many practical update workloads well, for which our
these parameters will be used in Section 6.4 to evaluate thé!90rithm provides good performance.
effectiveness of our algorithm.

In the first simulation, the number of copies sold for each 6. Experiments
book in each time step follows the same Poisson distribution
with mean50. In the second simulation, for each book, we
use a Poisson distribution with a different mean; further-
more, these mean values form a Zipf distribution. In both

In addition to the theoretical analysis above, we conduc

We have conducted three sets of experiments in order to
validate our discussion on the cost model in Section 3 and to
simulations, we use a base tablel660 books and vary the obtain re_ahstlc values of the model parameters. The first _set

of experiments measures the performance of refill queries

size of the view from to 1000. in a commercial database system; the second set of exper-
Results from the two simulations are shown in Figures 1 . y ' P

and 2 respectively. Both figures plot the probabilities of iments measures the performance of updatingdofews

good, bad, and ignorable updates observed under diﬁeren{nana.ged by a commercial database system; the I_ast set of

view sizes. We make the following observations from the experiments measures the perform_anc_e of updating: top-

simulation results: (1) the probabilities of good and bad up- VIEWS mgnaged directly by an app_hcatmn. At the enq of

dates are equal and typically small; (2) they increase with thl§ sectlo_n,.we evaluate the effectiveness of our algorithm

the size of the view initially, but once the view becomes using realistic values of the model parameters.

large enough, they begin to decrease; (3) the probability of

ignorable updates decreases from abbta 0 as the size ~ 6.1. Refill Queries

of the view increases from to the size of the base table.

The first observation confirms the fact that the randomwalk We conduct our experiments on a Windows 2000 server

is origin-tending. The last observation implies that increas- with a1.4GHz Pentium 4 processor an@GB of RAM, run-

ing the view size has the negative effect of increasing thening the latest version of a commercial database system

number of base table updates to be processed. from a major vendor. We set the size of database buffer
pool at500MB, and the size of the sort heap2X0MB.

Summary For the cases considered in this section, the We create a base tabl® with integerid and val

random walk is always origin-tending, although it may or columns, together with other columns of mixed data types,

for a total size of roughlyi60 bytes per tuple. To popu- o ‘ ‘ ‘ ; ‘
late R, we generaté values sequentially in increment of of th

1, andval values randomly from the intervél, 23°]. Our of
experiments do not cover situations whea¢ is computed o

on the fly; we expect the costs of refill queries to be higher {
in such cases. There is a primary #ree index onR.id
and no index orR.val .

The refill query is evaluated ovét and returns théd
andval values fortuples ranked betwekm@andk,,.,. Sup-
pose that thék — 1)-th (lowest) ranked tuple in the view at I
the time of refill has value,_;. The refill query is shown == ‘ ‘ ‘ ‘
below in extended SQL syntax: 7]

I
st II
i i*

running time (msec)

3 II
II
i
it

SELECT id, val FROM R WHERE val < vj_; Figure 3. Refill queries.

ORDER BY val DESC

FETCH FIRST kpax —k+1 ROWS ONLY top-« view with & = N managed by the same database.
OPTIMIZED FOR kpyax —k +1 ROWS; Hence, the update performance results for akepew with

k = N (Section 6.2) still provide us with some information
to evaluate the trade-offs of using a secondary index; we
shall come back to this discussion in Section 6.4.

For simplicity, the above query does not consider ties, al-
though we do handle them in our experiments using a
slightly more complicatetiVHEREondition.
We vary the following parameters in our experiments: .
(1) N, or | R|, the size of the base table, frar®® to 3 x 105; 6.2. Database View Updates
(2) k, which indirectly determines;,_;, from 10 to 103
and (3) kmax, from 10 to 10*. The choice of parameter For the following experiments, we assume that the mate-
values are constrained y< k..., < N. We measure the rialized viewV is managed by a commercial database sys-
total elapsed time of running the refill query, including the tem (possibly remote and not necessarily the same as the
time to write thek,,.. — k + 1 output rows to a log file. one managing the base table). We use the same setup as
A total of 600 result data points are shown in Figure 3. in Section 6.1. We varyV’|, the size of the view, fron2
For each value ofR|, we plot all running times collected to 10°. There are a primary B-tree index onV/.id and a
for differentk andky,.x vValues, as well as the average, min- secondary B-tree index ori/.val . The second index does
imum, and maximum running times. We find that the cost increase the update cost, but we feel that it is more realistic
of refill query is roughly linear in the size of the base ta- to have this index for allowing fast accesses to the sorted
ble, confirming theD(NN) bound in Section 3.1. For this top- list.
particular setup, this cost is rougtg.5 x |R| usec. For eachV, we generatel0 random update streams.
The cost of refill queries may depend bp..—k+1, the Each update stream includes a mix1600 deletions and
size of the output. Indeed, from the output of the databasel000 insertions. Each deletion removes a random tuple
optimizer, we find that the optimized execution plan in- from V' by id ; each insertion adds a tuple 1 with ran-
cludes a special sort operator that produces only the topdomly generateil andval values. Deletions and inser-
kmax — k + 1 tuples. However, from Figure 3, we see that tions alternate in the update stream, keegivig constant
the effects ok andk,,., are negligible compared with that during an experiment. For each update stream, we measure

of N. the average running time of a pair of deletion and insertion
We also have considered the case of a secondary B and take it to be the view update cost. The results are shown
tree index onR.val , which is applicable so long asal in Figure 4. For each value ¢V |, we plot all view update

is not computed on the fly. The downside of this index is costs measured fros random update streams, as well as
the additional overhead in processing base table updateghe average, minimum, and maximum costs.

However, since this index effectively orders Rltuples, we Because of the B-tree indexes of', we expect the up-
would expect the refill queries to run significantly faster, at date cost to be logarithmic ifiV|. Interestingly, the update
least for small values df,,.x—k+1 (large values may result cost turns out to be a step function according to Figure 4.
in excessive random disk 1/O’s ifl values are not stored Several factors may have contributed to this phenomenon,
directly in the index). Unfortunately, we are unsuccessful including poor locality in the randomly generated update
at “hinting” our database optimizer to pick the index plan streams and a large branching factor of databasérges.
(even whenk = ku.). On the other hand, a secondary Because of poor locality, lower-level pages of thé-Bee
B*-tree index onR.val is in essence a self-maintainable tend not to stay in the database buffer pool; thus, the up-

]

fpifinl

+++++

Figure 4. Database Figure 5. Applica-
view updates. tion view updates.

10° 10° 10" 10° 10°
k

date cost roughly corresponds to the number of levels in the
BT-tree. Because of the large branching factor, the num- Figure 6. Expected maintenance cost.
ber of levels in the B-tree increases extremely slowly with
|V| and stays constant over wide range$iof. Given that ~ heap update to a constant [8, 20]. WHef is small, most
the range of V| is small in practice, we observe only two accesses result in cache hits. Oficegrows beyond a cer-
“steps” in Figure 4. tain point, most accesses result in cache misses, because of
the lack of locality in randomly generated update streams.
6.3. Application View Updates
6.4. Effectiveness of the Algorithm

For the following set of experiments, we assume that
is maintained in memory by an application program that In this subsection, we evaluate the effectiveness of our
specializes in serving requests for thpuples. We believe algorithm in several scenarios, using the values of model
this scenario is common in practice because:W1i§ typ- parameters measured in previous subsections. We assume
ically small enough to fit in application memory; (2) the that|R| = 10° andk = 100, i.e, we are interested in
operations onl/ are simple and frequent, so the applica- maintaining a topt00 view from a base table of one mil-
tion can implement them without the overhead of using a lion tuples. In Figure 6, we show the expected amortized
database system; and (3) we are not worried about losingmaintenance cost as a functionkgf., the size of the view
the data inl” in case of failures, sinc& always can be re- that our algorithm starts with. Four curves are shown for
computed fromR. the four scenarios we consider: (1) the view is maintained

We conduct our experiments on a Sun Blade 100 work- by the same database as the base table; (2) the view is main-
station with a500MHz UltraSPARC-Ille processo256KB tained by a remote database; (3) the view is maintained by a
of level-2 cache, and12MB of RAM. The application is local application on the database server with the base table;
written in C and compiled witlgcc using-O3 option. We (4) the view is maintained by a remote application. For sce-
implementV using two memory-resident data structures. narios (2) and (4), we assume that the network bandwidth
An implicit binary heap (implemented as an array) stores is 500K bits/sec and the latency is masked. Costs of refill
the (d ,val) pairsinV, withval being the search key. A queries and view updates are taken from Figures 3, 4, and 5.
hash table supports efficient lookup of a binary heap nodeThe update workload is the one used by the first simulation
by id . Both the binary heap and the hash table have sizeof Case 3 in Section 5; probabilities of good, bad, and ig-
on the order ofV|. Alternatives to the binary heap would norable updates are extrapolated from Figure 1.
be balanced search trees such as the red-black tree, but they From Figure 6, we see that all four curves exhibit similar
may be less efficient than the binary heap because there isrends. Wherk,,.x = k, the expected maintenance cost is
no need to maintain a complete ordering of{&l| tuples. very high. Intuitively, since we simply maintain the origi-

For each/, we generaté0 random update streams, each nal top-100 view, every bad update results in an expensive
consisting of107 deletions andl0” insertions mixing to- refill query. Initially, ask.,., increases, the expected main-
gether. In Figure 5, we plot, for each valug¢ &1, allupdate ~ tenance cost drops rapidly, because a bigggr dramati-
costs measured frofr) random update streams, as well as cally reduces the expected refill frequency. However, once
the average, minimum, and maximum costs. Again, the up-the refill frequency is low enough, the cost of updating the
date cost turns out to be step function. We attribute this view begins to dominate; increasitg,., at this point not
phenomenon to the uniform random distribution of gener- only drives up the cost of an update operation, but also re-
ated updates and the effect of caching. Because updates amguires more updates to be propagated and applied because
generated uniformly, a large portion of them access rela-fewer updates are ignorable. In the extreme case where
tively few heap nodes, bringing down the expected cost of ak.x = |R|, the view becomes a copy of the base table

with id andval columns. In this case, the refill frequency
is 0 because the copy is self-maintainable, but the overhead
of maintaining the copy and the high memory requirement
make this approach unattractive. Since a secondary index
onR.val is essentially a view with allR| tuples, Figure 6
also shows that it might not be a good idea to create this
index for the sole purpose of computing tbpgueries or
maintaining topk views if k£ is small. In summary, Fig-

e Tunable parameters:
o «a = 2 specifies the acceptable distance from the “op-
timal” hitting time.
o (B = 0.5 limits how muchkmnax can increase at a time.
o 7 = 0.5 limits how muchknax can decrease at a time.
e Atinitialization time:
0 kmax — N%6, an initial guess based on Theorem 1.

ure 6 clearly illustrates the importance of choosing appro- © kmin — Kmax; Kmin tracks the smallesfV/| value

priatekm ... Proper choice of,,.yx (in this case, on the or- since the last refill operation.

der of v/N) can bring orders of magnitude of performance o Initialize V' with the top#max tuples; use the running

improvement over the simple approaches of chooking time as an initial estimate &g

to bek or N. o T « 0; T records the number of base table updates
Comparing the four curves in Figure 6, we see that man- since the last refill operation.

aging the topk’ view in the application is faster than man- ® Atruntime, for each base table update:

aging it in a database. Also, managing the view locally o Process the update; use the running time to update

is faster than managing it remotely across the network (al- update:

[e]

T —T+1; kmin — min{k/‘mi!u |V|}
ZO — C:eﬁll/CZpdate'
If refill is needed for this update, then:

though the difference is minuscule on the logarithmic scale
for a database view). In general, other conditions being
equal, we should choose a bigdgr.y if the costs of trans-

[¢]

[¢]

mitting and applying updates are lower. —If T < Zo/a, increas€kmax: kmax
min{ 222 X Emax, (1 +) X kmax}-

7. Choosingkmax Adaptively — REefill V' 1o kmax tuples; use the running time to
updateC'. .

— T «— 0, Ifmin — Ifmax-

So far, much of our analysis requires knowing the rela-
o If T > aZy, then:

tionship between the probabilities of good and bad updates.

In many practical situations, however, the update pattern is — Decreaséimax: kmax < kmax — 7(kmin — k).
not known in advance and may change at runtime; exact val- — ReduceV t0 kmax tuples, i.e, delete tuples
ues of the transition probabilities for different view sizes are ranked(kmax + 1)-th or lower.

difficult to measure. In this section, we propose an adaptive = kmin — Emin — 7(kmin — k).

algorithm that does not require any prior knowledge of the — T — (1 -7) xaZ.

transition probabilities; instead,, .. is chosen at runtime
and adjusted dynamically for changing workloads.
The basic idea behind this algorithm is to try to con- Figure 7. Choosing k., adaptively.

trol the refill intervalZ around some target value 4§ = _)))
O/ C whereC* .. is the observed cost of a refill the adaptive algorithm choosks., over time for two sim-

update? . refill
query, and’"%, ... is the observed cost of processing a base Ulations. For the first simulation, the random walk is origin-

table update. Intuitively, with an expect refill frequency of t€nding = ¢ = 0.4); for the second simulation, the ran-
1/Z,, neither the refill operation nor the update operation is 40m walk is strictly origin-tendingy(= 0.3 andg = 0.4).
a bottleneck. TypicallyZ, is on the order o® (), which T_he ad_aptlve algorlthrr_] starts with the sah_;@ax for both
means that the amortized cost of refill queries is down to Simulations, but over ime.. takes on different values
O(1). The algorithm maintains statistics of the observed that are appropriate for respective workloads. From Fig-
COStSC?, 4y andC?, 4, and counts the number of base ta- Ure 8, e see thak,., quickly converges to a fairly small
ble updates since the last refill operation. If this number is Fange of values for each simulation. However, there are still
less thanZy /o, kmax iS increased; if it is greater thanZ,, small fluctuations irk,, ., over time. We attribute this phe-
kmax is decreased. Herey is a constant parameter used Nnomenon to the variance in hitting time. Occasionally, a
to fine-tune the algorithm; we have chosen= 2, which ~ Very short(or long) run may causg, . to go down (or up).
works well in practice. The details are shown in Figure 7. Thus, in addition ta, our algorithm provides two tunable
We have conducted some simulations fér= 10000 parameterg and~, which guard against large increases and
andk = 10, using the cost parameters measured in Sec-d€Creases iy, respectively. In effecky.. stays within.
tion 6. In order to keep the running time of our simulations @ small range in which the expected performance of view
manageable, we use relatively high valuesf@ndg, the maintenance is equal'ly good, so small fluctuation&, i,
probabilities of bad and good updates. Figure 8 shows howd0 not matter in practice.

10

— p=04,9=04
p=03,g=04

L L L [L L L L L
0 1 2 3 a 5 6 7 8 9 10
number of base table upates

Figure 8. Behavior of the adaptive algorithm.

8. Conclusion and Future Work

In this paper, we propose a probabilistic approach to

tackle the problem of maintaining materialized topiews.

Rather than trying to achieve complete self-maintenance, [10]
we try to achieve runtime self-maintenance with high prob-

ability by maintaining a dynamic top* view wherek’ > k.

For cases wherg = ¢ or p < ¢, we show that even a little
extra investment irk’ can dramatically reduce the amor-

tized maintenance cost per update with high probability.

(4]

(5]

(6]

(7]

(8]
(9]

[11]

M. J. Carey and D. Kossmann. On saying “enough already!”
in SQL. InProc. of the 1997 ACM SIGMOD Intl. Conf. on
Management of Datalucson, Arizona, 1997.

M. J. Carey and D. Kossmann. Reducing the braking dis-
tance of an SQL query engine. Proc. of the 1998 Intl.
Conf. on Very Large Data Basgsages 158-169, New York
City, New York, Aug. 1998.

K. C.-C. Chang and S.-W. Hwang. Minimal probing: Sup-
porting expensive predicates for top-k queries.Phoc. of
the 2002 ACM SIGMOD Intl. Conf. on Management of Data
2002.

C.-M. Chen and Y. Ling. A sampling-based estimator for
top-k query. InProc. of the 2002 Intl. Conf. on Data Engi-
neering 2002.

E.-E. Doberkat. Inserting a new element into a heBpT,
21(3):255-269, 1981.

D. Donjerkovic and R. Ramakrishnan. Probabilistic opti-
mization of top n queries. IRroc. of the 1999 Intl. Conf. on
Very Large Data Basepages 411-422, Edinburgh, Scot-
land, Sept. 1999.

R. Fagin, A. Lotem, and M. Naor. Optimal aggregation al-
gorithms for middleware. IProc. of the 2001 ACM Symp.
on Principles of Database Syster2901.

A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query
processing in data warehousing environmentsPiioc. of
the 1995 Intl. Conf. on Very Large Data Bas&895.

One of the remaining open prob|ems is whether there [12] A. Gupta, H. V. Jagadish, and |. S. Mumick. Data integra-

exists a “good” algorithm for maintaining the tdpview

whenp > ¢. Here, we define a “good” algorithm to be one
that requires only sub-linear space in order to provide an [13]
expected refill frequency df/N or better. We suspect that

no such algorithm exists ff > q.

In this paper, we have only experimented with simulated
update workloads; we plan to conduct more experiments

[14]

with real data in the near future. Another direction that [15)

we are currently pursuing is generalizing the technique of

achieving high-probability runtime self-maintenance w
auxiliary data to other types of views such as joins.

ith

Finally, we would like to thank Jeff Vitter, John Reif, and
Zhihui Wang for their careful readings of our earlier drafts

and helpful discussions.

References

[1] M. O. Akinde, O. G. Jensen, and M. HoBlen. Minimizing
detail data in data warehouses. Rnoc. of the 1998 Intl.
Conf. on Extending Database Technolp#)998.

[2] J. A. Blakeley, N. Coburn, and - Larson. Updating

derived relations: Detecting irrelevant and autonomously

computable updates.ACM Trans. on Database Systems

14(3):369-400, Sept. 1989.
N. Bruno, L. Gravano, and S. Chaudhuri. Top-k selecti

(3]

on

[16]

[17]

[18]

[19]

[20]

queries over relational databases: Mapping strategies and[21]
performance evaluatiorACM Trans. on Database Systems

2002.

11

tion using self-maintainable views. Rroc. of the 1996 Intl.
Conf. on Extending Database Technolpiar. 1996.

A. Gupta and I. S. Mumick, editorsMaterialized Views:
Techniques, Implementations and ApplicatioN8T Press,
June 1999.

W. Hoeffding. Probability inequalities for sums of bounded
random variablesJournal of the American Statistical Asso-
ciation, 58(301):13-30, Mar. 1963.

V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER:
A system for the efficient execution of multi-parametric
ranked queries. IfProc. of the 2001 ACM SIGMOD Intl.
Conf. on Management of Data001.

N. Huyn. Multiple-view self-maintenance in data warehous-
ing environments. IProc. of the 1997 Intl. Conf. on Very
Large Data Basegages 26—-35, Athens, Greece, 1997.

M. K. Mohania and Y. Kambayashi. Making aggregate
views self-maintainable. Data Knowledge Engineering
32(1):87-109, 2000.

T. Palpanas, R. Sidle, R. Cochrane, and H. Pirahesh. In-
cremental maintenance for non-distributive aggregate func-
tions. InProc. of the 2002 Intl. Conf. on Very Large Data
BasesAug. 2002.

V. V. Petrov. Sums of Independent Random Variables
Springer-Verlag, 1975.

T. Porter and I. Simon. Random insertion into a priority
queue structurelEEE Trans. on Software Engineerin§E-

1, 3:292-298, 1975.

D. Quass. Maintenance expressions for views with aggrega-
tion. In Proc. of the 1996 ACM Workshop on Materialized
Views: Techniques and Applicatigniine 1996.

[22] D. Quass, A. Gupta, I. S. Mumick, and J. Widom. Making B. Proof of Theorem 2

views self-maintainable for data warehousing. FAroc. of

the 1996 Intl. Conf. on Parallel and Distributed Information

Systemgpages 158-169, Dec. 1996.
(23]
warehousing environment. Rroc. of the 2000 Intl. Conf. on

J. Yang and J. Widom. Temporal view self-maintenance in a

Extending Database Technologages 395-412, Konstanz,

Germany, Mar. 2000.
[24]
tenance of temporal aggregates. Aroc. of the 2001 Intl.
Conf. on Data EngineerindHeidelberg, Germany, 2001.
[25]
tenance of materialized topviews. Technical report, De-

partment of Computer Science, Duke University, June 2002.

http://www.cs.duke.edu/"junyang/papers/
yyyxc-topk.ps

A. Proof of Theorem 1

Lemma 3 (Hoeffding, 1963 [14]) If X, X2,... are indepen-
dent and bounded ag < X; < b;, then for anyt > 0, the partial
sumsS,, = > , X; have the following probability inequality:

).

are symmetrically

2n?¢?
o (bi — a;)?

i=1

Pr[S, — nu > nt] <exp (f

whereu = E[X;].

Lemma 4 (Petrov, 1975 [19])) If X1, Xo, ...
distributed and independent, then

Pr { max |Sk| > x] < 2Pr[|Sn| > .

1<k<n

At position 0, the random walk moves tb with probability p
and stays ab with probability1 — p. We first modify the random
walk by changing these two probabilities at positidto 2p and
1 — 2p respectively. We call this modified random walk’. Ac-
cording to Lemma 2, the hitting time &’ is stochastically dom-
inated byZ. We can further extent”’ to a random walkV"’ on
{..,=—n,...,=1,0,1,...,n,...}, where0 is the starting point,
and all transition probabilities age It is easy to see that’”” sim-
ply “mirrors” W’, so the hitting times of#’’ and W" should be
identically distributed. We will bound the probability th&t’, the
hitting time from 0 to eithern or n of W”, is greater thaiV.

Let X1, Xo,... be the steps taken bBy/”’, which can be-1,
0 or 1. These random variables are independent. Then

Pr[Z" < N] Pr[max |Sk| > n]

1<k<N
2Pr[|Sn| > n]

4Pr[Sy > n]
2

< (Lemma 4)

4exp(— 2n) (Lemma 3)

N - 22
4e_N25/2.

IN

SincePr[Z"” < N] > Pr[Z < NJ, the theorem follows.

J. Yang and J. Widom. Incremental computation and main-

K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen. Efficient main-

12

We will only consider the case wher-q = 1. If p+q < 1, we
can normalizey andgq so thatp + ¢ = 1; by Lemma 2, the hitting
time of the normalized random walk is stochastically dominated
by that of the original.

We now bound the probability of < N. For any instance
of this random walk, the last phase of the walk must be one that
moves from0 to » with no stays (a0). Let X be the length of this
phase. ClearlyX > n. We havePr[Z < N] < Pr[X < N] =
SN Pr(X =i

If the last phase of the random walk takesteps to move from
0 to n with no stays, there must k¢ + n)/2 steps moving right
(“+1") and (i — n)/2 steps moving left (~1"). (If (i +n)/2is
not an integerPr[X = ¢] = 0.) This condition is necessary for
X = 1. By Chernoff’s bound,

Pr[X =i < Pr[number of 1" steps= - _2)
« qn t—n
< Pr[number of “-1" steps< 5]
. . i—n 2
< exp (—ﬂ (7(11 2))
2 qt
. 2
qt 1 n
= _— 1—— b
exp(2 (2 2qi>)
2
< exp (g (17%) z)

Leter = £(1—5-)”. Sinceg > 3, ¢1 is a positive constant. Then
PrlX =i <e @™ = ¢ a1¢lmN = N~e1¢gnd 3N Pr(X =
] < N-N-“°¢ = N'=c1¢, Thus, as long as we chooseuch
thate > 1/c1 =1/(£(1 - ﬁ)Q), the refill interval is greater than

N with probability1 — o(1).

