
Efficient Maintenance of
Materialized Top-k Views

Ke Yi, Hai Yu, Jun Yang
Dept. of Computer Science, Duke University

Gangqiang Xia, Yuguo Chen
Inst. of Statistics and Decision Sciences, Duke University

2

Materialized top-k views

�Base table: T(id, val)

�A top-k query:
SELECT id, val FROM T
ORDER BY val FETCH FIRST k ROWS ONLY;
� Special cases: MIN and MAX
� Need at least one scan of T (assuming there is no ordered

index on T.val)

�Want better query response time?

) Standard trick—make it a materialized view

3

Maintaining a top-k view

� Self-maintainable (i.e., no need to query base table)
in many cases
� Insertion
� Deletion of a tuple outside the top k
� Update of a tuple that does not cause it to drop out of

the top k

�Not self-maintainable in other cases
� Deletion of a tuple from the top k
� Update of a tuple causing it to drop out of the top k
)Need an expensive refill query over the base table to find

the new k-th ranked tuple

4

Traditional warehousing solution

�Make views completely self-maintainable by storing
additional auxiliary views
� Example: to make σp1 R p σp2 S self-maintainable, store
σp1 R and σp2 S

�To make a top-k view completely self-maintainable,
we need to store a copy of the entire base table!
)Cost is too high: not just storage, but also the overhead

of maintaining the copy

�Why pay such a high cost to catch some rare cases?

5

Two observations

� Instead of complete compile-time self-maintenance,
aim at achieving runtime self-maintenance with
high probability
at much lower cost

)“Optimize for the common case”

� Instead of static auxiliary view definitions
determined at compile-time, allow dynamic
auxiliary view definitions
which change according to the update workload

)Like a “semantic cache” of auxiliary data

6

1 2 k…
… …

A simple algorithm
� Idea: maintain a top-k’ view, where k’ changes at run-time

but stays between k and some kmax
� The extra tuples serve as a “buffer” to deter refill queries

V: a top-k’ view
vk’: value of the lowest ranked tuple currently in V
Update: tuple t has its value updated to val
� Ignorable: t not in V, val < vk’ Do nothing
� Neutral: t in V, val > vk’ Update V; no change to k’
� Good: t not in V, val > vk’ Insert t into V; increment k’

• If k’ exceeds kmax, discard the lowest ranked tuple in V

� Bad: t in V, val < vk’ Delete t from V; decrement k’
• If k’ drops below k, issue a refill query to restore k’ to kmax

kmaxk’
… …

k’k’k’ = k’

7

Remaining questions

�How do we choose a right value for kmax?

�What factors affect the optimal kmax value?
� Trade-off: increasing kmax reduces refill frequency, but

• V takes more space

• Updating V takes longer

• More updates need to be applied to V

�How effective is the algorithm with small kmax?

�How do we choose kmax without accurate prior
knowledge about the update workload?

8

A closer look at the maintenance cost

Amortized cost of processing one update =
Cupdate × (1 – fignore) + Crefill × frefill

� Cupdate: cost of updating V; O(log kmax)

� fignore: fraction of updates that are ignorable (decreases as
kmax increases)

� Crefill: cost of a refill operation; O(N), where N is the size
of the base table

� frefill: frequency of refill operations

) Since Crefill À Cupdate, a reasonable goal is to reduce
frefill to 1/N, so the second product becomes O(1)

9

Random walk model

� Between two refills, the value of k’ follows a random walk
on points { k – 1, k, …, kmax }
� Begins with kmax (right after a refill)

� Moves left on a bad update

� Moves right on a good update

� Stays put on an ignorable or neutral update

� Ends with k – 1 (when another refill is needed)

) Refill interval Z = hitting time from kmax to (k – 1)

� Assume probabilities of bad and good updates are fixed at p
and q for now; will drop this assumption later

10

First try: expected hitting time

hi: expected time to hit (k – 1) starting from i
� hkmax = 1 + p × hkmax – 1 + (1 – p) × hkmax

� hi = 1 + p × hi–1 + q × hi+1 + (1 – p – q) × hi

� hk – 1 = 0

�Can solve for hkmax (= E[Z]) directly
� E.g., if p = q then hkmax = (kmax–k+1) (kmax–k+2) / (2p)

• That is, we can choose kmax = (k–1) + N0.5 so that E[Z] ≈ N

�But we want E[frefill] = E[1/Z], which is not equal
to 1 / E[Z] in general!

)Change strategy: make sure that P[Z > N] is high

11

High-probability result when p = q

�Theorem: When p = q, if kmax = (k–1) + N0.5+ε

then P[Z > N] ≥ 1 – 4 · exp(– N2ε / 2)

) In English
When bad and good updates are equally likely,
we can pick kmax to be a just a bit more than sqrt(N)
in order to ensure that, with high probability,
refill only occurs after at N updates

�We think p = q is a common case
� If the value distribution is stationary, the rate at which

tuples enter top k should be the same as the rate at
which they leave top k

12

High-probability result when p < q

�Theorem: When p < q, if kmax = (k–1) + c ln N,
then P[Z > N] ≥ 1 – o(1)
� For a large enough constant c depending only p and q

) In English
When bad updates are less likely than good updates,

we can pick kmax to be O(ln N)

in order to ensure that, with high probability,

refill only occurs after at N updates

� Intuitively, this case is better because the view is
more likely to grow than to shrink

13

What if p > q?

�The view is more likely to shrink than to grow
�Need kmax = O(N) to bring E[Z] up to N
� Might as well keep a copy of the base table!

� We conjecture no good solution exists

�We also hope p > q is a rare case
� Typically, people enjoy watching tuples “compete” with

each other to enter top k

� It is less interesting to watch tuples trying to “escape”
from top k

14

Generalization

� No need to assume that p and q are fixed

� No need to assume that random walk is memoryless

� Theorem for p = q still holds if “p = q” is replaced by
“random walk W is origin-tending”
� That is, regardless of the previous steps taken, the probability of

W moving towards kmax is always no less than that of moving
towards k

� Theorem for p < q still holds if “p < q” is replaced by
“random walk W is strictly origin-tending”
� That is, regardless of the previous steps taken, the probability of

W moving towards kmax is always no less than δ times that of
moving towards k, where δ >1

15

Case study: random up-and-downs

� Initial values: symmetric unimodal distribution with
mean µ

� In each time step, choose an item at random and
modify it by a value drawn from a symmetric
unimodal distribution with mean 0

�What are the odds of this update being good/bad?

�Can show: p < q as long as top-k values > µ
)Random walk is origin-tending

)kmax = N0.5+ε is enough

16

Case study: total sales in a moving window

� Sales for a book b over time: Xb
1, Xb

2, …, Xb
t, …

(assume all independently & identically distributed)

� Interested in total sales of b in a moving window:
∑t–w+1 · t’ · t Xb

t’

�As t moves forward, what are the odds that b moves
in/out of top-k?

�Can show: p = q
)Random walk is origin-tending

)kmax = N0.5+ε is enough

17

Experiments

� Scenarios
� Base table in DBMS

� Top-k view can be maintained by application (in-memory heap) or
by DBMS (B+-tree)

• Different update cost

� Top-k view can be maintained locally or remotely
• Different refill cost

)4 possible combinations

� Costs are real ☺ (measured for different view/query sizes)

� Data/updates are synthetic /, but not over-simplistic
� Simulation of total sales in a moving window, with daily sales

following a Poisson distribution

18

Maintenance cost vs. kmax

Local app view

Remote app view

Local db view
Remote db view

Update dominates →← Refill dominates

19

Choosing kmax in practice

� Theoretical bounds may not be tight/accurate enough

� p and q are difficult to measure

� p, q, and costs may vary at runtime

� Idea: dynamically adjust kmax so that
amortized cost of refill ≈ that of view update
� Start with some guess for kmax (N0.6 is reasonable)

� Target refill interval: Crefill / Cupdate (observed at runtime)

� If actual refill interval < target / α, increase kmax by a factor

� If actual refill interval > target · α, decrease kmax by a factor

)Allow some leeway (α) from the target interval

20

Experiments with adaptive algorithm

N = 10,000; k = 10

kmax can be
lower than what
the theory predicts

21

Conclusion and future work

�Top-k view maintenance: a little trick goes a
(provably) long way!

�Main idea: auxiliary data for high-probability
runtime self-maintenance

�Currently working on generalizing the idea to other
types of views (e.g., joins)

)For detailed proofs and experiment results, see
http://www.cs.duke.edu/~junyang/papers/yyyxc-topk.ps

22

Related work
� Lots of work on view self-maintenance

� Blakeley et al., TODS 1989; Gupta et al., EDBT 1996
� Huyn, VLDB 1997: runtime self-maintenance
� Quass et al., PDIS 1996, etc.: auxiliary data for compile-time self-maintenance

)We propose auxiliary data for runtime self-maintenance with higher probability

� Lots of work on top-k queries
� Most focuses on efficient query processing
� Hristidis et al., SIGMOD 2001: select ordered/top-k views to materialize

)We support efficient maintenance algorithm

� Top-k view maintenance
� Traditionally: deletes/updates to MIN and MAX are not handled
� Palpanas et al., VLDB 2002: “work areas” for MIN and MAX

)We provide rigorous analysis and guidelines for choosing sizes of “work areas”

� Babcock & Olston, upcoming SIGMOD 2003: approximate distributed top-k
maintenance, focus on reducing communication

