Efficient Maintenance of
Materialized Top-£ Views

Ke Y1, Hat Yu, Jun Yang

Dept. of Computer Science, Duke University

Ganggqiang Xia, Yuguo Chen

Inst. of Statistics and Decision Sciences, Duke University

Materialized top-£ views

<% Base table: T(:d, val)

< A top-£ query:
SELECT id, val/ FROM T
ORDER BY wz/ FETCH FIRST £ ROWS ONLY;

" Special cases: MIN and MAX

" Need at least one scan of T (assuming there is no ordered
index on T.val)

< Want better query response time?

e Standard trick—make it a materialized view

Maintaining a top-£ view

< Self-maintainable (i.e., no need to query base table)
in many cases

" Insertion
" Deletion of a tuple outside the top £

" Update of a tuple that does not cause it to drop out of
the top £

< Not self-maintainable in other cases
" Deletion of a tuple from the top 4
* Update of a tuple causing it to drop out of the top £

% Need an expensive refill query over the base table to find
the new £-th ranked tuple

Traditional warehousing solution

< Make views completely self-maintainable by storing
additional auxiliary views

" Example: to make 0,) R><, 0,, § self-maintainable, store
0, Rand o, §

< To make a top-£ view completely self-maintainable,
we need to store a copy of the entire base table!

& Cost is too high: not just storage, but also the overhead
of maintaining the copy

< Why pay such a high cost to catch some rare cases?

Two observations

< Instead of complete compile-time self-maintenance,
aim at achieving runtime self-maintenance with
high probability
at much lower cost
& “Optimize for the common case”
< Instead of static auxiliary view definitions

determined at compile-time, allow dynamic
auxiliary view definitions

which change according to the update workload

® Like a “semantic cache” of auxiliary data

A simple algorithm

% Idea: maintain a top-£’ view, where £’ changes at run-time
but stays between £ and some £___

" The extra tuples serve as a “buffer” to deter refill queries
12 ... & b=

/- a top-£’ view
v,: value of the lowest ranked tuple currently in I

Update: tuple ¢ has its value updated to va/
= Ignorable: # notin V, val < v, Do nothing

* Neutral: zin V, val > v, Update V; no change to £’
" Good: ¢t not in V, val > v, Insert ¢ into V/; increment £’
° If £ exceeds £__, discard the lowest ranked tuple in I/

Bad: tin V, val < v, Delete ¢ from V; decrement £’

* If £’ drops below £, issue a refill query to restore &' to £&__

Remaining questions

% How do we choose a right value for &__ 2

% What factors affect the optimal £___ value?

" Trade-off: increasing £ ___ reduces refill frequency, but

max

* |/ takes more space
* Updating I/ takes longer
® More updates need to be applied to I/

< How effective is the algorithm with small &£__ ?

« How do we choose £___ without accurate prior
knowledge about the update workload?

A closer look at the maintenance cost

Amortized cost of processing one update =

Cupdate X (1 _fignore) + Creﬁll Xf;efill
= C . cost of updating I; O(log £

update’ max)

" fignore: fraction of updates that are ignorable (decreases as

k___increases)

" C g cost of a refill operation; O(N), where N is the size
of the base table

= f o frequency of refill operations

= Since C a2 Cgaces
foee to 1/N, so the second product becomes O(1)

a reasonable goal is to reduce

Random walk model

<+ Between two refills, the value of £” follows a random walk
onpoints { £— 1,4, ..., k__ }
" Begins with £___(right after a refill)
" Moves left on a bad update
" Moves right on a good update

" Stays put on an ignorable or neutral update

= Ends with £ — 1 (when another refill is needed)

= Refill interval Z = hitting time from £___to (6 — 1)

< Assume probabilities of bad and good updates are fixed at p
and g for now; will drop this assumption later

10

First try: expected hitting time

h.: expected time to hit (& — 1) starting from 7
"h, =1+pXh, |+ A=p)Xh
"h.=14+pXh_ +qgXh . +A—-p—q) Xbh,

"he_1 =0

% Can solve for », (= E{Z}) directly

"Eg.,ifp =gthenh, = (k ,+1) ¢k ,1+2)/(2p)

max max

* That is, we can choose £___ = (k—1) + NY> so that E[Z}1 =~ N

'émax

% But we want Eff_.,} = E[1/Z], which is not equal
to 1 / E{Z} in general!

= Change strategy: make sure that P[Z > N} is high

High-probability result when p = ¢

% Theorem: When p = ¢, if &___ = (k—1) + N°>7¢
then P[Z > N} > 1 -4 - exp(— N*¢/ 2)
= In English
When bad and good updates are equally likely,
we can pick £___to be a just a bit more than sqrt(IN)
in order to ensure that, with high probability,
refill only occurs after at N updates

<+ We think p = g is a common case

" If the value distribution is stationary, the rate at which
tuples enter top 4 should be the same as the rate at
which they leave top 4

11

High-probability result when p < ¢

% Theorem: Whenp < ¢, ifk__ = (b~1) + cIn N,
then P[Z > N1 > 1 —0(1)

" For a large enough constant ¢ depending only p and ¢
= In English

When bad updates are less likely than good updates,

we can pick £__ to be O(ln N)

in order to ensure that, with high probability,

refill only occurs after at N updates

 Intuitively, this case is better because the view is
more likely to grow than to shrink

12

13
What if p > g?
< The view is more likely to shrink than to grow
% Need £___ = O(N) to bring E[Z}up to N

" Might as well keep a copy of the base table!

" We conjecture no good solution exists

< We also hope p > ¢ is a rare case

" Typically, people enjoy watching tuples “compete” with
each other to enter top £

" [t is less interesting to watch tuples trying to “escape”
from top £

Generalization

< No need to assume that p and g are fixed
< No need to assume that random walk is memoryless

< Theorem for p = ¢ still holds if “p = 4” is replaced by
“random walk W is origin-tending”

" That is, regardless of the previous steps taken, the probability of
W moving towards £___is always no less than that of moving
towards £

< Theorem for p < g still holds if “p < g” is replaced by
“random walk W is strictly origin-tending”

" That is, regardless of the previous steps taken, the probability of

W moving towards £__ is always no less than O times that of

max

moving towards £, where 0 >1

14

15

Case study: random up-and-downs

< Initial values: symmetric unimodal distribution with
mean {1l

< In each time step, choose an item at random and
modify it by a value drawn from a symmetric
unimodal distribution with mean O

< What are the odds of this update being good/bad?
< Can show: p < g as long as top-£ values > u

® Random walk is origin-tending

Tk = NO>T¢is enough

max

16

Case study: total sales in a moving window

< Sales for a book 4 over time: X*,, X°,, ..., X, ...

(assume all independently & identically distributed)

< Interested in total sales of 4 in a moving window:
Zz‘—w-l-l <<t th’
< As ¢t moves forward, what are the odds that 4 moves
in/out of top-£?
< Can show: p = ¢
® Random walk is origin-tending

Tk = NO>T¢is enough

max

17

Experiments

% Scenarios
= Base table in DBMS

" Top-£ view can be maintained by application (in-memory heap) or
by DBMS (B ™ -tree)
* Different update cost

" Top-£ view can be maintained locally or remotely

® Different refill cost

® 4 possible combinations
< Costs are real © (measured for different view/query sizes)

< Data/updates are synthetic ®, but not over-simplistic

" Simulation of total sales in a moving window, with daily sales
following a Poisson distribution

Maintenance cost vs. &___

i moonario 1 local db view
-k scenano 2 remcia db vies
wnp= scanano J: local app view
-k moenanio 8 remcts BDO ViEw

Remote app view

Local app view

L -
] *r\‘“ _
[b W 1 i -:r':"'/
| < Refill dominates * Update dominates —

10 10

Choosing £ in practice

max

< Theoretical bounds may not be tight/accurate enough
< p and ¢ are difficult to measure

< D, g, and costs may vary at runtime

< Idea: dynamically adjust £ ___so that

max

amortized cost of refill &~ that of view update
(N9 is reasonable)

(observed at runtime)

" Start with some guess for £

max

" Target refill interval: C .,/ C

update
" [f actual refill interval < target / ¢, increase £___by a factor
" [f actual refill interval > target - &, decrease £___ by a factor

& Allow some leeway (&) from the target interval

19

20

Experiments with adaptive algorithm

N = 10,000; £ = 10

k. can be
lower than what
the theory predicts

21

Conclusion and future work

< Top-£ view maintenance: a little trick goes a
(provably) long way!

< Main idea: auxiliary data for high-probability
runtime self-maintenance

< Currently working on generalizing the idea to other
types of views (e.g., joins)

= For detailed proofs and experiment results, see
http://www.cs.duke.edu/~junyang/papers/yyyxc-topk.ps

22

Related work

< Lots of work on view self-maintenance
" Blakeley et al., TODS 1989; Gupta et al., EDBT 1996
* Huyn, VLDB 1997: runtime self-maintenance
" Quass et al., PDIS 1996, etc.: auxiliary data for compile-time self-maintenance
® We propose auxiliary data for runtime self-maintenance with higher probability
< Lots of work on top-£ queries

= Most focuses on efficient query processing
= Hristidis et al., SIGMOD 2001: select ordered/top-£ views to materialize

% We support efficient maintenance algorithm
< Top-£ view maintenance

" Traditionally: deletes/updates to MIN and MAX are not handled
" Palpanas et al., VLDB 2002: “work areas” for MIN and MAX

% We provide rigorous analysis and guidelines for choosing sizes of “work areas”

= Babcock & Olston, upcoming SIGMOD 2003: approximate distributed top-£
maintenance, focus on reducing communication

