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ABSTRACT

We consider the problem of extracting a river network and a wa
tershed hierarchy from a terrain given as a set of irregylsphced
points. We describe ERRASTREAM, a “pipelined” solution that
consists of four main stages: construction of a digital a&tiewn
model (DEM), hydrological conditioning, extraction of @k net-
works, and construction of a watershed hierarchy. Our apgro
has several advantages over existing methods. First, vigndasd
implement the pipeline so that each stage is scalable taveatsta
sets; a single non-scalable stage would create a bottlemetkmit
overall scalability. Second, we develop the algorithms geaeral
framework so that they work for both TIN and grid DEMs. Fur-
thermore, ERRASTREAM is flexible and allows users to choose
from various models and parameters, yet our pipeline isgtesi
to reduce (or eliminate) the need for manual interventiovben
stages.

We have implemented BRRASTREAM and we present exper-
imental results on real elevation point sets, which showt that
approach handles massive multi-gigabyte terrain data sets
example, we can process a data set containing over 300 millio
points—over 20GB of raw data—in under 26 hours, where most of
the time (76%) is spent in the initial CPU-intensive DEM dous-
tion stage.
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1

Recent revolutionary improvements in mapping technokgise
rapidly expanding the impact of Geographic Information tSgss
(GIS). In particular, laser altimetry (lidar) gathers gef@renceckl-
evationdata as a set of points iR® at unprecedented resolutions
and rates. While lidar enables critically important apglions,
such as environmental and disaster management, many ¢athni
challenges make the development of these applicationg.itffi
One of the main challenges is to develop robust and efficient a
gorithms for terrain modeling and analysis that can handissive
data sets.

In this paper we consider the problem of extracting a river ne
work and a watershed hierarchy from a set of point®frsampled
from a terrain. Intuitively, a river network is a collectiaf paths
that indicate where water flow accumulates and creates weell d
fined channels. A watershed hierarchy is a hierarchicaltjmartof
the terrain into connected regions, watershedswhere all water
within a region flows toward a single common outlet. We dédxri
TERRASTREAM, a scalable solution that consists of a sequence of
algorithms that form a pipeline. Each algorithm in the pipel
scales to massive data sets. Our pipeline is flexible andalisers
to choose from various models and parameters, with no omnaihi
manual intervention between stages. We also present exgetdl
results on real lidar data usingeRRASTREAM that demonstrate its
scalability.

Introduction

1.1 Background and previous results

Terrain modeling and analysisTypically, a terrain in a GIS
is not stored as a set of points, but rather as a digital eé@@vat
model (DEM), either in the form of &riangulated Irregular Net-
work (TIN) or agrid. In a TIN DEM, the terrain is represented by
a planar triangulation, where each vertex has an assoodeed-
tion; in a grid DEM, it is represented as a two dimensionahaof
points, where each grid point represents an elevation. Béthl
formats are common in many GIS applications.

Terrain modeling and analysis has been studied extensinely
many different communities, and algorithms have been dpesl
for many fundamental problems. Refer to [32] and the refegen
therein for a survey. Many GIS applications useipeline (or
work-flow) approach for combining many smaller, simpler algo-
rithms into a larger, more complex application. Often, thdid
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Figure 1. Overview of pipeline stages showing inputs, outputs, and optional modeling parameters for each stage.

vidual stages in a pipeline are developed independentlyrand

quire manual intervention to pre-process or post-processdata

between stages. Furthermore, while a typical GIS can magiage

gabytes of data consisting of hundreds or thousands of sma}

dividual data sets, most systems are not designed to hammdle s

gle multi-gigabyte data sets. Moreover, previous GIS aigors

designed to handle massive data sets have focused on umalivid

stages of the pipeline, and have been designed for onlyrejtide
or TIN DEMs.

I/O-efficient algorithms.The massive terrain data sets we con-
sider can be much larger than the main memory of typical nmeashi

tervention, and to allow for easy addition of new modelinattees.
Our approach provides several parameters to control thaviiah
of each pipeline stage, and users can choose between gavpual
lar models in each stage.

TERRASTREAM consists of four main stages: DEM construc-
tion, hydrological conditioning (sink removal), flow modej in-
cluding extraction of river networks, and extraction of eshed
hierarchies. Figures 1 and 2 illustrate the overall stmgctf the
pipeline and the outputs of its stage£RRASTREAM builds upon
and extends a number of previously developed I/O-efficiemain
algorithms, and includes several new algorithms desigoexbmn-
plete awhole pipeline. A considerable amount of engingegifort

and must reside on large but slow disks. In such cases the-tran has been devoted to makingsRRASTREAM efficient and practi-
fer of data between disk and main memory, not CPU computation cal. Our main technical contributions in this paper incltice fol-

time, often becomes the primary bottleneck. Therefore vedrar
terested in designing efficient algorithms in the 1/O-mo@dé! In
this model, the machine consists of a main memory of 8izand

an infinite-size disk. A block of3 consecutive elements can be

transferred between main memory and disk in B®soperation(or

lowing:

e We take a unified approach for handling both TIN and grid
DEMs. We represent TIN and grid DEMs as a graph, which
we refer to as aeight graph We then design algorithms
in the subsequent pipeline stages to use height graphs. Our

simply 1/0). Computation only occurs on elements in main mem-
ory, and the complexity of an algorithm is measured in teris o
the number of I/Os it performs. Many fundamental problemgha
been solved in the I/0 model. For example, sortiNigelements
requiressorT(N) = O(% log,,, 5 %) I/0s. Refer to surveys by
Vitter [31] and Arge [5] for other results.

Only recently have terrain problems been considered in/tBe |
model. 1/0O-efficient algorithms have been developed forstre-
tion of either TIN or grid DEMs from a set of input points [1, 2,
18, 19], as well as for certain water flow problems, includiivgr
network extraction, on grid DEMs [8]. The 1/O-efficient flow a
gorithms for grid DEMs have been distributed in theRRAFLOW
software package [8]. Very recently, an I/O-efficient altion for
extracting watershed hierarchies from a grid DEM river rakv
has also been developed and implemented [9]. These algxrith
typically useO(SORT(NV)) I/Os.

1.2 Our results

In contrast to earlier approachese ARASTREAM is a pipeline of
1/0-efficient algorithms and their implementation that autti-
cally computes a watershed hierarchy from a poinsgatR®. Our
pipeline is highly efficient, scalable, modular, and flegihlt scales
to single multi-gigabyte sized data sets, works for botld gnd
TIN DEMs, and is faster than other scalable algorithms culye
implemented, e.g., BRRAFLOW [8] in GRASS [24]. The highly
modular and configurable pipeline is designed to reduce alanu

methods therefore work on both grid and TIN DEMs. Such
a unified approach makes it easier to maintain software and
to add new features. Moreover, the unified approach does
not come at a cost of decreased performance. Our pipeline
works on a given DEM type as efficiently as if the code were
written solely for that particular type.

We implement al® (SORT(V) log(N/M))-I/O algorithm for
assigning a numerical score significanceto each sink, or
local minimum, in a height graph. We then use a sink’s
significance fohydrologically conditioning—we remove in-
significant sinks from a terrain while preserving signifitan
sinks such as large closed depressions with no outlet. This
step of removing unimportant sinks is crucial to standard
flow models.

In addition to extending earlier grid based flow modeling al-
gorithms [8] to height graphs, we develop a simple and prac-
tical algorithm for detecting flat areas in a terrain. We also
implement an improved algorithm for flow routing on flat ar-
eas. Flat areas commonly cause problems in flow modeling
algorithms. Flat areas may exist in either the original data
due to insufficient vertical resolution or be introducedoint
the terrain as a side-effect of hydrological conditioning.

The rest of the paper is organized as follows. We briefly de-
scribe the main stages of our pipeline in Sections 2-5. Ini@ec



o
WJ;\'.~ N
(b)

@
Figure 2. (a) DEM of Neuse river basin derived from lidar points (b) Rivers with drainage greater than 5000 acres (2023 hectares) extracted
from DEM. (c) First level of Pfafstetter watershed labels for largest basin in Neuse. (d) Recursive decomposition of the shaded basin.

6 we present a number of experimental results on real lide da
that demonstrate the power of our pipeline. For example, ave c
process a data set containing over 300 million points—o0&R

of raw data—in under 26 hours; most of the time (76%) is spent
in the initial CPU-intensive DEM construction stage and bare-
duced using simpler interpolation schemes [18, 19]. We sitsov
that the relevant portions ofERRASTREAM are significantly faster
than the correspondingERRAFLOW [8] algorithms.

2 DEM Construction

The first stage of our pipeline constructs a grid or TIN DEMnfro
a set$ of N input points inR*. Below we briefly review the al-
gorithms we utilize; the reader is referred to [1, 2] for a qete

overview of, and comparison with, previous work. We alsadnt
duce the the notion of a height graph, which we use in latgresta

Grid DEM construction.The common approach for construct-
ing a grid DEM given a user-specified grid resolution frénis to
use one of many interpolation or approximation methods ta-co
pute a height value for each grid point (refer to e.g., [22] tre ref-
erences therein). For inputs with more than a few thousaimtgo
applying an interpolation method directly on all points ri$eiasi-
ble because of the computational complexity of solvingdasys-
tems of linear equations. Instead we chose f&@RRASTREAM

a recently developed I/O-efficient algorithm [1] that useguad-
tree segmentation in combination with a regularized splirth
tension interpolation method [23]. It constructs a grid DEM
O(F 2 + SORTT)) I/Os, where is the height of a quad
tree ond %ndT is the number of points in the desired grid DEM.
Note that the algorithm us&3(SoRT(IV) + SORT(T")) /Os if h =
O(log N), that is, if the points ir8 are distributed such that the
quad tree is roughly balanced. Our implementation is madand
allows users to implement a variety of interpolation megh¢id-
stead of the regularized spline method). The spline methedse
allows smooth approximation of data, and can thereforerately
compute properties such as slope, profile curvature, argbtdial
curvature (which are important for landform analysis antlicape
process modeling). We store the output grid in a simple rcayem
format to allow efficient grid row access in later stages.

TIN DEM construction.The most popular method for construct-
ing TINs from elevation points is to project the points orfte ty-
plane, compute their Delaunay triangulation, and thertH#ttrian-
gulation back to 3D. In many GIS terrain processing applces,
however, elevation data sets are often supplemented witskg-
ments orbreaklinesthat provide additional elevation information
along linear features such as roads or rivers. Breaklinestcain

() (d)

Delaunay triangulatior{11] of a setS of NV points and a sef of
K line segments, where ali’ line segments appear as edges of the
final triangulation. The algorithm usesORT(V) expected 1/Os if
the number of constraining segmetitsis smaller than then mem-
ory size M. In most applicationsK is considerably smaller than
both N and M. We store the output TIN in an “indexed triangle”
format, which is a common, simple, and compact represemtai
TINs. In this format, the coordinates of the TIN vertices si@red
consecutively on disk along with a unique vertex 1D, foll@ntzy

a list of triangles each identified by three vertex IDs in &lose
order.

Height graph. To avoid designing separate grid and TIN algo-
rithms for each of our successive pipeline stages, we definaph,
which is typically referred to as height graph that unifies both
DEM formats. A height grapli = (V, E) is an undirected graph
derived from a DEM, with deighth(v) and and id(v) associated
with eachv € V. The id’s are assumed to be unique. For any pair
of verticesu andv, we say that is higherthanv if h(u) > h(v),
orif h(u) = h(v) andid(u) > id(v). The concept ofowerthan is
defined similarly. The vertices and edges of a TIN DEM natyral
form a height graph. To construct a height graph from a gridVDE
we include all the grid points as the vertices of the graph.daeh
grid pointu, we add edges from to some of its eight immediate
neighbors.

In both the TIN and the grid case, we add an additional “oetsid
vertexé with h(£) = —oo, which is connected to all the vertices
on the boundary of the DEM. A height graph can be constructed
from a grid or TIN DEM of sizeN in O(SORT(N)) I/Os.

3 Hydrological Conditioning

Most flow modeling algorithms assume water will flow downhill
until it reaches a local minimum aink In practice, local min-
ima in DEMs fall into two primary categoriesignificantandin-
significant(or spurious) sinks. Significant sinks correspond to large
real geographic features such as quarries, sinkholesg® tatural
closeddepressions with no drainage outlet. The insignificantsink
correspond to noise in the input data or to small naturalufest
that flood easily. When modeling water flow, these insignifica
sinks impede flow and result in artificially disconnected tojog-
ical networks. The second stage of our pipeline “hydrolaliyc
conditions” a DEM for the flow modeling stage by removing in-
significant sinks, while preserving significant sinks.

A widely used hydrological conditioning algorithm removas
sinks using a so-calleflooding approach [20], which simulates
uniformly pouring water on the terrain until a steady-stateached.

A weakness of this approach is that it removes even significan

the edges of the TIN to match breakline segments and preservesinks. See Figures 3(a) and (b). Furthermore, the previtis |

important topological features. INERRASTREAM, we use a ran-
domized I/O-efficient algorithm [2] for constructingcanstrained

efficient algorithm [8] for hydrological conditioning waskonly for
grids and assumes that all sinks fit in memory. This assumptio
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Figure 3. (a) Original terrain. (b) Terrain flooded with = = cco. (c) Terrain partially flooded with persistence threshold = = 30.

does not hold for large high-resolution terrains. We indtase a
partial flooding algorithm, based omopological persistencgl6,
15], that detects and removes only insignificant sinks, dated
in Figure 3(c). We briefly describe topological persisteand then
present our algorithm.

Topological persistencein the context of a terraif” represented
by a planar height graph, topological persistence [16, hBlches
each local minimum (sink) vertexof T to a higher “saddle” vertex
w (see [14] for the precise definition of a saddle) and assiges-a
sistencevalue, denoted by (v), tow. In [15], w(v) is defined to be
the difference in the heights ofandw, i.e.,7(v) = h(w) — h(v).
The persistencer(v) denotes thesignificanceof the sinkv. In-
tuitively, the saddlew is a vertex at which two distinct connected
components of the portion @f lying strictly beloww merge. Sup-
pose each connected component is represented by the lcevest v
in the component, and thatis the higher representative of two con-
nected components mergedylet v denote the representative of
the other component. Then topological persistence indanerge
treeon the sinks off", in whichw is the parent of. The merge tree
has the property that the heights of vertices on any rod¢abpath
increase, while the persistence values decrease alongaquat.

Agarwal et al. [3] developed af(SORT(V))-I/O algorithm for
computing the persistence of all sinks in a triangular pldrgaght
graph, as well as the merge tree. They also developed ané-impl
mented a simpler and practic@(SoRT(V) log(N/M))-1/O algo-
rithm. We extend the latter to form our partial flooding alitiom
given below.

Partial flooding. We use topological persistence as a measure of

the significance of a sink. Given a user-specified thresholde
declare all sinks with persistence less thato be the insignificant
sinks and remove all such sinks using a partial flooding nmtho
described below. The user can change the threshold to ¢dhéro
smallest feature size to be preserved.

We define partial flooding of a height graph by generalizing th
flooding definition for grid DEMSs [20, 8]. Lefs be a height graph
with significant sinks(y,...,{x. Let theheight of a pathin G
be the height of the highest vertex on the path, and letraise
elevationof a vertexv of G' be the minimum height of all paths
fromwv to (; foranyl < ¢ < k. In partial flooding we change
the height of each vertex i¥ to its raise elevation. Partial flooding
produces a modified height graph containing only signifisamis
whose persistence value is greater thafNote that ifr = oo, our
definition of partial flooding is the same as the original débn
of flooding. Thus, partial flooding is a tunable way to coratitthe
terrain for the purpose of flow modeling.

To efficiently condition a terrain using partial flooding, welize
the following property of the merge tree whose proof can heéb
in [13]: Letwu be a vertex in the merge tree that does not correspond
to a significant sink, but whose parent does. Ldie any vertex
in the sub-tree rooted at. Then the raise elevation(v) of v is
r(v) = r(u) = h(u) + w(u). This allows us to compute the raise
elevations for each sink in the merge tree (or more precishéy
sinks of G corresponding to vertices in the merge tree) in a simple
way: For each insignificant sink in the merge tree whose parent
corresponds to a significant sink, we propagéte) to all vertices
beloww. To do so efficiently we simply direct tree edges from a
vertex to its children and traverse the vertices in heigbeorvhile
forwarding the relevant raise elevation along outgoingesddr his
traversal can be performed i@(SORT(V)) I/Os using standard
techniques [12, 6].

What remains is to compute the raise elevations for all riok-s
vertices in the height grapfy. To do so we assign a sink label to
each vertex inG. A vertexu is assigned sink label if there is a
path of monotonically decreasing height franto a sinkv; if sev-
eral such paths exists, we choose the one to the lowestsifike
raise elevation of; is then simplyr(u) = max{h(u),r(v)} [13].

To assign the labels efficiently to all vertices, we congtaulDAG

by directing edges id from lower height vertices to higher height
vertices. The vertices in this DAG are naturally sorted jpdiogi-
cal order by increasing height. We traverse the DAG in togicial
order and forward sink labels along outgoing edges; the Isib&l
for a vertexu is simply the label corresponding to the lowest sink
among the labels received from the preceding vertices. fféner-
sal is similar to the merge tree-traversal and can be peddrin
O(SORT(N)) I/0s [12, 6].

In summary, for a given threshold we can partially flood the
terrain represented as a height grapldifsorRT(V)) I/Os.

4 Flow Modeling
4.1 Flow routing and accumulation

The third stage of our pipeline models the flow of water on a hy-
drologically conditioned DEM, represented as a height lyrajt
consists of two phases. In the fifkiw-routingphase, we compute
aflow directionfor each vertex in the height graph that intuitively
indicates the direction water will flow from. In the secondlow-
accumulatiorphase, we intuitively compute the area of the terrain
represented by vertices upstream of each vertex

Flow routing. Given a height grapt¥ = (V, E), the flow-routing
phase computes a directed subgréliz) = (V, E,) of G called



the flow graph An edge(v,«) in F(G) indicates that water can
flow from v to u. We say that. is downstream neighboof v and

v is upstream neighboof «. In general, we say is upstreamof a
vertexw if there is a path from to w in F(G). E- is constructed
from G by looking at each vertexand its neighbors and applying a
flow-directionmodel. We implemented two popular flow-direction
models:

e Single-flow-direction(SFD) model: for each vertex, the
edge fromw to the neighbor with lowest height lower than
the height ofv is selected.

e Multi-flow-directions(MFD) model: for each vertex, all
edges fromv to neighbors of lower height are selected.

Several other flow-direction models have also been propsgd
[28, 21]), and most of them can be incorporated in our pigelive
refer the reader to [8] for more information on SFD and MFDtrou
ing. If the height of every vertex idr is distinct, we can easily
construct¥(G) in O(SoRT(N)) I/Os using standard techniques,
by simply examining the neighbors of every vertex in the heig
graph and assign a flow directions to all but the sinks. In thB S
and MFD models, the resulting flow graph is a forest or a DAG,
respectively. Terrain models, however, can have |flafeareasof
vertices with no neighbors of lower height. Flat areas candie-
ral plateaus in the terrain model, or they can appear as bgygots
of the flooding. Detecting these flat areas and routing floatgh
them in a realistic way is challenging, and we discuss thesggss
further in Section 4.2. We have implemented extensions & SF
and MFD models that incorporate routing on flat areas.

Flow accumulation.Given a flow grapt# (G) with flow direc-
tions, the flow accumulation [26] phase intuitively computbe
area of the terrain represented by vertices upstream of \esroéx

v. More precisely, each vertex in the flow graphF(G) is as-
signed some initial flow. Each vertex then receives inconfliog
from upstream neighbors and distributes all incoming aritiiain
flow to one or more downstream neighbors. The flow accumula-
tion of a vertexv is the sum of its initial flow and incoming flow
from upstream neighbors.

Following the above definition, our flow accumulation algjom
simply visits the vertices df (G) in topological order and for each
vertexwv, computes the total incoming flow and distributes flow to
each downstream neighberwith an edge(v, w) in F(G) using a
given function. In our implementation we distribute flow irop
portion to the height difference betweerandw, but our pipeline
allows other distribution functions. Our algorithm is agéli gen-
eralization of aD(SORT(IV)) 1/O algorithm by [10] developed for
grid DEMs. In terms of initial flow, one typically assigns arfitl
of initial flow to each vertex if5 represents a grid DEM, since each
grid vertex represents an area of the same siz&; tepresents a
TIN DEM, one typically distributes they-projection of the area of
each triangle i equally among its three vertices. We have imple-
mented these choices, buERRASTREAM also allows for the user
to specify an initial flow for each vertex.

Given the flow accumulations for all vertices, we can extract
river networks[26] in O(SORT(V)) I/Os, simply by extracting
edges incident to vertices whose flow accumulation excegilen
threshold.

4.2 Handling flat areas

A robust flow model must handle extended flat areas in a teriin
vertexv in a height grapl@ isflat if h(v) < h(u) for all neighbors

u of v in G, or if v has a neighbor of the same height that has no
lower neighbors. Aflat areais a maximal connected component
of flat vertices of the same height. #pill point of a flat area is a
flat vertex with a downstream neighbor. Routing flow on flatare
is composed of two steps; detecting all flat areas and rodiing
across each individual flat area.

Detecting flat areasDetecting flat areas is equivalent to find-
ing connected components of same-height vertic&s.iAlthough

a previous theoreticald (N/B)-I/O algorithm for computing con-
nected components on grid DEMs [10] exists, it is too complex
to be of practical interest. Furthermore, it can not be edéehto
work on height graphs. We developed and implemented a simple
algorithm for height graphs that scans the vertices and teijh-
bors and uses a batched union-find structure to merge viitice
the same flat area into a single connected component. We used a
simple and practical union-find implementation [3] sucht tthe
algorithm use®)(SORT(V) log(N/M)) I/Os.

Detecting flat areas on a grid DEMSince TERRASTREAM is
modular and allows us to plug in customized modules easity, w
have also implemented a simplified algorithm for detectiag dk-
eas on grid DEMs that us€3( N/ B) 1/0Os assuming that a constant
number of rows (or columns) of the grid fit in memory. In thisea
we can, in practice, handle grid DEMs containing severaligtes

of space using only 256 MB of main memory.

Intuitively, our algorithm performs two row-by-row sweep$
the grid DEM, while only keeping two grid rows and a small urio
find structure in main memory, and assigns every vertex isémnee
connected flat area the same uniqumnected component label
The union-find structure maintains connected componeetddbr
the two grid rows currently in memory. The first sweep idavn-
sweegrom the topmost to bottommost row in the grid that assigns
provisional connected component labels to each flat verfsix.
ter the down-sweep all flat vertices with the same label atéén
same connected component. However, a single flat area may hav
multiple labels. We therefore perform a secarm@sweegrom the
bottommost to topmost row in the grid that assigns a singigue
connected component label to all vertices in the same flat ditee
sweeps are described in detail below.

In the down-sweep, we keep the current row and the row im-
mediately above it in memory. In the top row, each flat vertag h
already been assigned a connected component label. Tepribee
current row we first visit the vertices in the row from left tigint
and assign a new unique laldél) to each flat vertex.. Then we
visit each vertex: in the current row again and performuaiiON
onl(u) andl(v) for any pair of neighboring flat verticgs:, v) cur-
rently in memory. We implement the union-find structure sticit
the unique representative for a set of labels is the labélwlazs
assigned earliest. Finally, we update the label of each édexu
in the current row to be the labelND(u). We can prove that after
processing the current row, two vertices in the same flatiardse
current row have the same label if and only if they are coreweby
a path completely contained in the current row and the rowes@b
it [13]. We can also show that all vertices on the bottom-nmost
of a flat area have the same label as the first label assignée in t
highest row [13]. At the end of the up-sweep this will be theue
label assigned to the flat area.

In the up-sweep, we also keep two rows in memory; the current
row and the row immediately below it. To process the current r
we first visit the vertices in the row from left to right and detine
for each flat vertex. if it has a flat neighbop in the row below the



Figure 4. Comparison of routing methods on a flat area with a single
spill point on the right. Rivers indicated in white were extracted by us-
ing the smallest Euclidean distance. Black river lines were computed
using the Soille et al. approach.

current row; if so we perform anioN onl(u) andl(v). As in the
down-sweep, we then update the label of each flat vertexthe
current row to be the labelinD(u). We can prove that after the
up-sweep, vertices in the same connected flat area havertie sa
connected component label [13].

Since the union-find structure used during the two sweepsrnev
contains more labels than there are vertices in two rows, ave ¢
implement it such that it uses space proportional to theespacu-
pied by a row. Thus it fits in main memory at all times and does
not require any I/Os. Therefore our algorithm uggsV/B) 1/Os,
because it only scans the grid DEM twice.

Improved routing on flat areaswhen routing flow on flat areas
we distinguish between flat areas that have at least onepsilt
and those with no spill point. In the first case water shouldthe
to flow out of the flat area through the spill points, while ireth
second case water is simply absorbed into the extended sink.

computes a watershed hierarchy &r As mentioned earlier, a wa-
tershed hierarchy is a hierarchical decomposition of aterinto
a set of disjoint regions, or watersheds, where all waterltov
wards a single outlet. Such a decomposition is the basisvefalke
GIS algorithms for hydrological and pollutant transportdating.

Verdin and Verdin [30] described a method that divides aafarr
into nine disjoint watersheds and thereafter recursivelydivide
each of these watersheds. The terrain is thus hierachaligledi
into arbitrarily small regions. In the process each vergeassigned
a uniquePfafstetter labethat encodes the watershed it belongs to
on each level of the hierarchy, as well as topological pridggsuch
as upstream and downstream ordering.

Arge et al. [9] developed an algorithm usit@(SORT(N) +
T/B) 1/0s for computing the Pfafstetter labels of a grid DEM;
hereT is the total size of the labels. The algorithm uses a data
structure equivalent to a flow graph(G) computed using a sin-
gle flow direction model and augmented with flow accumulation
for each vertex. We modified the algorithm to use the flow graph
F(Q), that is, to work for flow graphs derived from a height graph.

6 Experiments

We have implemented BRRASTREAM in C++ using TPIE [7],

a library that provides support for implementing 1/0O-eféint al-
gorithms and data structures. Figure 1 gives an overvievhef t
pipeline inputs, options, and outputs; note that each Stagiee
pipeline can also be used independently on a grid or TIN DEM. A
mentioned in the Introduction, BRRASTREAM is highly modular
and designed to reduce manual intervention while providieg
eral parameters to control the behavior of each pipelingestand
allowing new models and features to be added with minimaleff
We highlight only a few key features in this extended abstiddi-

Many earlier approaches to flat area routing (see e.g. [8] and tional details can be foundht t p: / / t errai n. cs. duke. edu

references therein) assign flow in a simple way such that each

orin[13]. We have experimented extensively withBRRASTREAM

tex v are assigned a flow direction to the neighbor on the shortest on multiple data sets but, for lack of space, present onlynieid

(Euclidean) path edge from to the closest spill point. However,
these approaches are not hydrologically realistic and teicdeate
many parallel flow lines [29]. Recently, a new more realifiéd
area routing approach was proposed by Soille et al. [27]irHpe
proach, based on geodesic time and distance, improves ker,ear
popular approach by Garbrecht and Martz [17]. Given a flah,are

defineH to be the set of flat vertices having an upstream neighbor.

The algorithm of Soille et al. [27] computes the minimum diste

d, from each of the other flat verticesto a vertex inH. Let dmax

be the maximum distaneg, computed in the flat area. Each vertex
v is assigned a flow direction to the first vertex on the minimum-
cost path fromv to a spill vertex, where the cost of a path is defined
as the sum ofimax — d., for all verticesu along the path. If no
spill vertex exists, the minimum cost paths from a vertexhvdis-
tancedmax is used. Sincelma.x — d. is large near the upstream
boundaries, the shortest paths will converge toward thedost
vertices away from the boundaries. This substantiallygases the
convergence of the flow routing paths.

We implemented both the Soille et al. [27] approach, and a sim
ple shortest path approach. Figure 4 compares the two. Bnth a
proaches are implemented under the assumption that eacineftat
fits in main memory; our experience with high resolution atéwn
data indicates this is a reasonable assumption.

5 Watershed Hierarchy Extraction

Given a flow graph¥(G) in which each vertex irff(G) is aug-
mented with its flow accumulation, the final stage of our pipeel

set of experimental results that demonstrate the praitticahd
scalability of the pipeline. Again we refer the reader to][1&
more extensive experiments.

Experimental setupwe performed experiments on a Dell Pre-
cision Server 370 (3.40 GHz Pentium 4 processor) runningit.in
2.6.11. The machine had 1 GB of physical memory, though our
experiments never required more than 640 MB. All test data wa
stored on a single 400 GB SATA disk drive.

To demonstrate the scalability on a real watershed, we used a
collection of 477 million bare Earth lidar points (over 20@Braw
data) from the Neuse river basin in North Carolina as our reséh
data. This data is publicly available for download from thertk
Carolina flood mapping project [25] and covers an area of hbug
6,200 square miles (16,000 Kin The average point spacing in the
set is approximately 20 feet (6m).

Pipeline scalability. We present three experiments on the Neuse
river basin data set to illustrate the pipeline scalabilitythe first
experiment we construct a TIN DEM in the first stage of the e
while we construct 10ft and 20ft grid DEMs in the last two expe
iments. Running times for each of the pipeline stages intiheet
experiments are shown in Table 1. A visual overview of theatt
of the different stages for the 20ft grid case is shown in Fédgt

As seen in Table 1, the TIN DEM construction stage is much
faster than the grid DEM construction stage since the foroes
not involve a sophisticated interpolation routines (whsohve large



[ Format

| # of height graph vertices (millions)

| Pipeline stage

DEM Construction
Building height graph

Hydrological conditioning

Flow Modeling

Flow Routing
Flow Accumulation

Watershed extraction

| 20 ftgrid | 10 ft grid | TIN ]
397] 1590] 469 |
|

19h 56m| 27h 12m| 4h 20m
Oh 07m Oh 30m| 11h 42m
1h17m| 7h 25m| 10h O3m

1h 26m 6h 34m| 15h 08m
1h40m| 7h35m| 2h05m

2h 28m| 14h 39m| 6h 26m

| Total |

25h 54m] 63h 34m| 49h 44m|

Table 1. Running times for various pipeline stages (and sub-stages) on the Neuse river basin data set.

systems of linear equations). In fact, the DEM constructitage
is by far the most time consuming stage in the grid DEM experi-
ments; as noted in [1], more than half of the total grid carcton
stage running time is spent on performing CPU-intensiverpu-
lation. Note that the construction time for the 10ft grid DEM
not significantly longer than that of the 20ft grid, despite fact
that the latter has four times as many vertices. The reastirais
the running time of our grid construction algorithm is moeakily
influenced by the number of input points used in the interpmia
than by the number of grid vertices (output points). Funtihare,
the number of input points to the 20ft grid interpolationaithm
is actually smaller (but not 4 times smaller) than the nunddfer
input point to the 10ft grid interpolation algorithm (339chA15
million, respectively) because the construction algonittiscards
points that are close to each other relative to the grid cadl. s

After constructing a DEM from the input points, our pipeline
constructs a height graph. As seen from Table 1, this stepuehm
more costly in the TIN case than in the grid case. This is bezau
the output of the TIN construction algorithm is a set of tgkas
without any connectivity information, while the grid DEM o
struction algorithm returns a two-dimensional array (wittplicit
connectivity information).

All the remaining stages of our pipeline work on a height grap
and therefore their running time should theoretically odgpend
on the number of input vertices (and edges). In the grid case w
observe that each of the stages for the 10ft grid takes rgughr
times as long time as for (the four times smaller) 20ft gritlisTis
to be expected sinceoRT(NV) does not grow much faster than lin-
early for similarly sized inputs. However, we also obseivat the
hydrological conditioning and flow routing steps take muocbren
time for the TIN DEM than for the 20ft grid DEM of comparable
size. The reason is that, as in the construction stage, wéakan
advantage of the implicit connectivity information in thase of a
grid DEM. Finally, the flow routing stage on the TIN DEM is also
much slower than for the 20ft grid DEM. The reason is obvigusl
that we use the simple flat area detecting algorithm destribbe
Section 4 in the grid case, while we must use a more compticate
1/0-efficient connected component algorithm [3] in the Tlase.

Comparison witiTERRAFLOW. For grid DEMs, TERRAFLOW

[8] provides the same functionality as the portion of ouretipe
from building the height graph through computing flow accumu
lation, provided that we configure our hydrological coratiiing
stage to removall sinks. We therefore also compared the running
time of TERRASTREAM to the running time of ERRAFLOW on
the 20ft grid. TERRASTREAM finished in 4.5 hours, while AR-
RAFLoOw finished after 12.2 hours. The hydrological conditioning
(flooding) stage of ERRAFLOW was particular slow at 6 hours,

while TERRASTREAM needed only 1.28 hours. There are two
primary reasons for our speedup oveeRRAFLOW. First, TER-
RAFLOW uses a different algorithm that also ha®&sorT(V))

1/0 bound, but performs more scanning and sorting steps fto- co
pute the raise elevations. Second, by using edges and egrtic
of F(G) directly during flow accumulation, we have a compact
representation for vertex connectivity. In contrast, eseftex in
TERRAFLOW keeps a copy of all eight neighbors regardless of
height when computing the accumulation, effectively npl§ing

the original input size by nine.

Hydrological conditioning persistence valuess mentioned,
our hydrological conditioning stage allows us to tune aigézace
threshold in order to remove insignificant sinks. As one fihal
lustration of the features and properties of our softwapelme,
we consider the distribution of sink persistence valueséNeuse
river basin dataset.

There were 12.5 million sinks in the 20ft grid DEM, roughly 3%
of the height graph vertices. However, over 94% of thesessirad
a persistence value of less than 1ft (30cm), and 99.9% ofrddés
had a persistence value of less than 6ft. There were onlyriks si
with a persistence greater than 50ft (15m) and all but onbesde
corresponded to quarries; the last (with a persistenceevaflap-
proximately 50ft) was due to a bridge crossing a steep riaéey.
The sinks with the 100 highest persistence values had pamsis
value greater than 29.7ft. By visual inspection, we fourat thost
of these sinks were due to bridges crossing waterways. Vde als
found that the top 100 sinks for the TIN and 10ft grid had sim-
ilar, but not identical, persistence values as comparetheéd?0ft
grid. Typically the differences were less than 1ft. The I0itl had
27.3 million (about 1.7% of all height-graph vertices) sinkhile
the TIN had the most sinks at 32.8 million or 6.8% of all veztic
The number of sinks is higher in the TIN DEM because unlike the
grid DEM, no smoothing via approximation or interpolatiomsv
performed. This illustrates one advantage of the experisieepo-
lation/approximation step performed in the constructibthe grid
DEM.

Overall, we found that a persistence of 50ft resulted in d wel
connected hydrological network while preserving most iigant
sinks.

7 Future Work

In this paper we describedERRASTREAM, a pipeline of scalable
algorithms and their implementations that extract rivetwoeks
and a watershed hierarchy from a set of elevation data points

We are currently extendinggRRASTREAM in many ways: other
interpolation schemes for grid DEMs, which are not as compu-



tationally intensive as the one currently used; more sdichied
methods for removing insignificant sinks in the hydrologjimandi-
tioning stage; and building a hierarchical representatioa DEM
that preserves river networks.
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