
Multi-Dimensional Online Tracking∗

Ke Yi Qin Zhang

Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Hong Kong, China
{yike,qinzhang}@cse.ust.hk

Abstract

We propose and study a new class of online problems,
which we callonline tracking. Suppose anobserver, say
Alice, observes a multi-valued functionf : Z+ → Zd

over time in an online fashion, i.e., she only seesf(t) for
t ≤ tnow wheretnow is the current time. She would like
to keep atracker, say Bob, informed of the current value
of f at all times. Under this setting, Alice could send new
values off to Bob from time to time, so that the current
value off is always within a distance of∆ to the last value
received by Bob. We give competitive online algorithms
whose communication costs are compared with the opti-
mal offline algorithm that knows the entiref in advance.
We also consider variations of the problem where Alice
is allowed to send “predictions” to Bob, to further reduce
communication for well-behaved functions. These online
tracking problems have a variety of application ranging
from sensor monitoring, location-based services, to pub-
lish/subscribe systems.

1 Introduction

Let Alice be anobserverwho observes a functionf(t)
in an online fashion over time. She would like to keep
a tracker, Bob, informed of the current function value
within some predefined error. What is the best strategy
that Alice could adopt so that the total communication is
minimized? This is the general problem that we study
in this paper. For concreteness, consider the simplest
case where the function takes integer values at each time
step1 f : Z+ → Z, and we require an absolute error
of at most∆. The natural solution to the problem is to
first communicatef(0) to Bob; then every timef(t) has
changed by more than∆ since the last communication,

∗Ke Yi is supported in part by Hong Kong Direct Allocation Grant
(DAG07/08). Qin Zhang is supported by Hong Kong CERG Grant
613507.

1We useZ+ to denote the domain of all non-negative integers in this
paper.

Alice updates Bob with the currentf(t). Interestingly,
this natural algorithm for this seemingly simple problem
has an unbounded competitive ratio compared with the
optimal. Consider the case wheref(t) starts atf(0) = 0
and then oscillates between0 and2∆. Then this algorithm
will communicate an infinite number of times while the
optimal solution only needs two messages:f(0) = 0 and
f(t′) = ∆ wheret′ is the first timef reaches∆.

The example above shows that even in its simplest
instantiation, theonline tracking problem will require
some nontrivial solutions. Indeed, in Section 2 we give an
O(log ∆)-competitive algorithm for the above problem.
The competitive ratio is also tight. Formally, we define
the general problem considered in this paper as follows.
Let f : Z+ → Zd be a function observed by Alice
over time. At the current timetnow, Alice only sees all
function values forf(t), t ≤ tnow. Then she decides
if she wants to communicate to Bob, and if so, a pair
(tnow, g(tnow)) to be sent. Note thatg(tnow) is not
necessarily equal tof(tnow). The only constraint is that
at any tnow, if Alice does not communicate, then we
must have‖f(tnow) − g(tlast)‖ ≤ ∆, where tlast is
the last time Bob got informed, and∆ > 0 is some
predefined error parameter. Unless stated otherwise,‖ · ‖
denotes theℓ2 norm throughout the paper. We are mostly
interested in the total communication (also referred to as
thecost) incurred throughout time, i.e., the total number
of messages sent by the algorithm, and will analyze the
performance of an algorithm in terms of its competitive
ratio, i.e., the worst-case ratio between the cost of the
online algorithm and the cost of the best offline algorithm
that knows the entiref in advance.

Motivations. Online tracking problems naturally
arise in a variety of applications whenever the observer
and the tracker are separate entities and the communica-
tion between them is expensive. For example, wireless
sensors [23] are now widely deployed to collect many dif-
ferent kinds of measurements in the physical world, e.g.,
temperature, humidity, and oxygen level. These small and

cheap devices can be easily deployed, but face strict power
constraints. It is often costly or even impossible to replace
them, so it is essential to develop energy-efficient algo-
rithms for their prolonged functioning. It is well known
that among all the factors, wireless transmission of data
is the biggest source of battery drain [19]. Therefore,
it is very important to minimize the amount of commu-
nication back to the tracker, while guaranteeing that the
tracker always maintains an approximate measurement
monitored by the sensor. This directly corresponds to the
one-dimensional version of our problem mentioned at the
beginning of the paper.

Our study is also motivated by the increasing popular-
ity of location-based services[21]. Nowadays, many mo-
bile devices, such as cell phones and PDAs, are equipped
with GPS. It is common for the service provider to keep
track of the user’s (approximate) location, and provide
many location-based services, for instance finding the
nearest business (ATMs or restaurants), receiving traffic
alerts, etc. This case corresponds to the two-dimensional
version of our problem. Here approximation is often nec-
essary not just for reducing communication, but also due
to privacy concerns [2]. For carriers, location-based ser-
vices provide added value by enabling dynamic resource
tracking (e.g., tracking taxis and service people). Simi-
lar to sensors, power consumption is the biggest concern
for these mobile devices, and both the user the service
provider have incentives to reduce communication while
being able to track the locations dynamically.

Finally, our problem also finds applications in the so
called publish/subscribesystems [4, 11]. Traditionally,
userspoll data from service providers for information;
but this has been considered to be very communication-
inefficient. In a pub/sub system, users register their
queries at the server, and the serverpushesupdated re-
sults to the users according to their registered queries as
new data arrives. Unlike the two applications above, here
we have one observer (the server) and many trackers (the
users). Although energy is not a concern here, bad de-
cisions by the online tracking algorithm still have severe
consequences, since the messages need to be forwarded
to potentially a larger number of users, consuming a lot
of network bandwidth. Depending on the nature of the
query, the function being tracked could take values from a
high-dimensional space. For instance, a set of items from
a universeU corresponds to a{0, 1}-vector in|U | dimen-
sions.

Related work. Although our problem is easily stated
and finds many applications, to the best of our knowl-
edge it has not been studied before in the theory com-
munity. Some related models include online algorithms,
communication complexity, data streams, and the dis-

tributed tracking model.
Our problem generally falls in the realm of online

algorithms, and as with all online algorithms, we analyze
the performance of our algorithms in terms of competitive
ratios.

In communication complexity [22], Alice hasx and
Bob hasy, and the goal is to compute some function
f(x, y) by communicating the minimum number of bits
between them. There are two major differences between
communication complexity and online tracking: First, in
online tracking, only Alice sees the input, Bob just wants
to keep track of it. Secondly, in communication complex-
ity both inputsx andy are given in advance, and the goal
is to study the worst-case communication betweenx and
y; while in online tracking, the inputs arrive in an online
fashion, and we focus on the competitive ratio. It is easy
to see that the worst-case (total) communication bounds
for our problems are mostly trivial.

In data streams [1], the inputs arrive online, and the
goal is to track some function over the inputs received so
far. In this aspect it is similar to our problem. However,
the focus in streaming algorithms is to minimize the space
used by the algorithm, not communication. The memory
contents could change rapidly, so simply sending out the
memory contents could lead to high communication costs.

In distributed tracking [6–9, 13, 17], the inputs are
distributed among multiplesitesand arrive online. There
is a coordinator who wants to keep track of some function
over the union of the inputs received by all sites up until
tnow. So in some sense our problem is the special ver-
sion of distributed tracking where there is only one site.
However, most works in this area are heuristic-based with
two only exceptions to the best of our knowledge. Cor-
mode et al. [8] consider monotone functions and study
worst-case costs. But when the function is not monotone,
the worst-case bounds are trivial. In this paper, we allow
functions to change arbitrarily and use competitive anal-
ysis to avoid meaningless worst-case bounds. Davis et
al. [9] propose online algorithms for distributed tracking
functions at multiple sites where sitei is allowed an er-
ror of ∆i, and the total error

∑

i ∆i is fixed. However,
in their model, both the online and offline algorithms can
only communicate when the error∆i allocated to some
site i is violated, and the site can only send in the cur-
rent value of the function, i.e., exactly what the naive al-
gorithm that we described at the beginning is doing. As
such, the problem is only meaningful for two or more sites
where the online algorithm needs to decide how to allo-
cate the total error to the sites. When there is only one
site, there is nothing controlled by the algorithm. In our
problem, we allow both the online and offline algorithms
to send inany function value and atany time, as long as

β = 1 β = 1 + ǫ
problem competitive ratio running time competitive ratio running time

1-dim O(log ∆) O(1) � �

d-dim O(d2 log(d∆)) poly(d, log ∆) O(d log(d/ǫ)) poly(d, log(1/ǫ))
1-dim with prediction O(log(∆T)) poly(∆, T) � �

Table 1: Summary of results for online tracking.T is the length of the tracking period.

the error bound∆ is satisfied.
Finally, it should be noted that similar problems have

been studied in the database community [10, 13, 15, 17].
However, all the techniques proposed there are based on
heuristics with no theoretical guarantees.

Our results. In Section 2 we first give anO(log ∆)-
competitive algorithm for tracking an integer-valued func-
tion. We show that the algorithm is optimal by proving a
matching lower bound on the competitive ratio. Our lower
bound argument also implies that any real-valued func-
tion cannot be tracked with a bounded competitive ratio.
This justifies our study being confined with integer-valued
functions. In Section 3 we extend our algorithms tod di-
mensions for arbitraryd. Here we consider the more gen-
eral (α, β)-competitive algorithms. An online algorithm
is (α, β)-competitiveif its cost isα · OPT while allowing
an error ofβ · ∆, whereOPT is the cost of the optimal
offline algorithm allowing error∆. We first give a sim-
ple algorithm using theTukey medianof a set of points,
and then propose improved algorithms based onvolume-
cutting, a technique used in many convex optimization al-
gorithms. This results in algorithms with a competitive
ratio of O(d2 log(d∆)) for β = 1 andO(d log(d/ǫ)) for
β = 1+ ǫ, respectively. The algorithms also have running
times polynomial ind.

In Section 4 we further extend our model by consider-
ing tracking with predictions. More precisely, Alice tries
to predict the future trend of the functionf based on his-
tory, and then sends the “prediction” to Bob, for example
a linearly increasing trend. If the actual function values do
not deviate from the prediction by more than∆, no com-
munication is necessary. The previous tracking problem
can be seen as a special case of this more general frame-
work, in which we always “predict”f(t) to beg(tlast). In
general, we could use a familyF of prediction functions
(e.g., linear functions), which could greatly reduce the to-
tal communication whenf can be approximated well by a
small number of functions inF (note that the offline algo-
rithm also usesF to approximatef). In this paper we only
consider the most natural case of linear functions, but we
believe that our technique can be extended to more gen-
eral prediction functions (e.g. polynomial functions with
bounded degrees). Our results are summarized in Table 1.

Finally, we comment that our study in this paper

focuses only on theℓ2 metric; the online tracking problem
could in general be posed in any metric space, which
could potentially lead to other interesting techniques and
results.

2 Online Tracking in One Dimension

In this section, we consider the online tracking problem
for functions in the form off : Z+ → Z. The algorithm
for the one-dimensional case mainly serves an illustration
purpose, which lays down the general framework for the
more advanced algorithms in higher dimensions. For
simplicity we assume for now that∆ is an integer; the
assumption will be removed in later sections.

Algorithm 1: One round of 1D tracking

let S = [f(tnow)−∆, f(tnow) + ∆] ∩ Z;1

while S 6= ∅ do2

let g(tnow) be the median ofS;3

sendg(tnow) to Bob;4

wait until ‖f(tnow)− g(tlast)‖ > ∆;5

S ← S ∩ [f(tnow)−∆, f(tnow) + ∆];6

An O(log ∆)-competitive algorithm. Let OPT be
the cost of the optimal offline algorithm. The basic idea
of the algorithm actually originates from the motivating
example at the beginning of the paper: Whenf oscillates
within a range of2∆, thenOPT is constant. Thus, our
algorithm tries to guess what value the optimal algorithm
has sent using a binary search. Our algorithm proceeds
in rounds, and the procedure for each round is outlined in
Algorithm 1.

Algorithm 1 is correct since at anytnow, if f(t)
deviates more than∆ from g(tlast), we always updateS
so that all elements inS are within∆ of f(tnow). It is also
easy to see that Algorithm 1 can be implemented inO(1)
time per time step. Below we show that its competitive
ratio isO(log ∆).

We will proceed by showing that in each round, the
offline optimal algorithmAOPT must send at least one
message, while Algorithm 1 sendsO(log ∆) messages,
which will lead to the claimed competitive ratio. The
latter simply follows from the fact the cardinality ofS
reduces by at least half in each iteration in the while
loop, so we only argue for the former. For convenience,

we define a round to include its starting time (whenS
is initialized) and ending time (whenS = ∅). Thus, a
message sent at a joint point will be counted twice, but
that will not affect the competitive ratio by more than a
factor of 2. Suppose the last function value sent byAOPT

in the previous round isy. Note that ifAOPT has not sent
any message bytnow, then we must havey ∈ S at that
time, sinceS is a superset of

⋂

t[f(t)−∆, f(t)+∆]∩Z,
where the intersection is taken over allt up totnow in this
round. In the end,S = ∅, soAOPT must have sent a new
function value other thany.

THEOREM 2.1. There is anO(log ∆)-competitive online
algorithm to track any functionf : Z+ → Z.

Lower bound on the competitive ratio. We now
show that theO(log ∆) competitive ratio is optimal. We
will construct an adversary under which any deterministic
online algorithmASOL has to send at leastΩ(log ∆ · OPT)
messages, while the optimal offline algorithmAOPT only
needs to sendOPT messages.

The adversary (call her Carole) also divides the whole
tracking period into rounds. We will show that in each
round, Carole could manipulate the value off so that
ASOL has to communicateΩ(log ∆) times, whileAOPT just
needs one message. During each round, Carole maintains
a setS of possible values so that for anyy ∈ S, if AOPT

communicatesy at the beginning of this round, it does not
need any further communication in this round. The round
terminates whenS contains less than 3 elements. More
precisely,S is initialized to[y−∆, y +∆]∩Z wherey is
some function value at a distance of at least2∆ + 1 from
any function value used in the previous round; as time
goes on,S is maintained as

⋂

t[f(t)−∆, f(t) + ∆] ∩ Z,
where the intersection is taken over all time up totnow.
Carole uses the following strategy to change the value of
f . If ASOL announces some function value greater than
the median ofS, decreasef until ASOL sends out the next
message; otherwise increasef until ASOL sends out the
next message. Letni be the number of elements left in
S after thei-th triggering ofASOL, and initially, n0 =
2∆+1. It is not difficult to see thatni+1 ≥ ⌈(ni−3)/2⌉,
so it takesΩ(log ∆) iterations for|S| to be a constant.
WhenS contains less than 3 elements, Carole terminates
the round and starts a new one. By the definition ofS,
AOPT could send an element inS at the beginning of the
round, which is a valid approximation for all function
values in this round.

THEOREM 2.2. To track a functionf : Z+ → Z, any
online algorithm has to sendΩ(log ∆ · OPT) messages
in the worst case, whereOPT is the number of messages
needed by the optimal offline algorithm.

Remark. The argument above also implies that, if
f takes values from the domain of reals (or any dense
set), the competitive ratio is unbounded, sinceS always
contains infinitely many elements.

3 Online Tracking in d Dimensions

In this section we extend our algorithm to higher dimen-
sions, i.e., tracking functionsf : Z+ → Zd for arbitrary
d. From now on we will consider the more general(α, β)-
competitive algorithms. Our algorithm actually follows
the same framework as in the one-dimensional case. We
still divide the whole tracking period into rounds, and
show thatAOPT must communicate once in each round,
while our algorithm communicates at most, say,k times,
and then the competitive ratio would be bounded byk.
The algorithm for each round is also similar to Algo-
rithm 1. At the beginning of each round (say at time
t = tstart), we initialize a setS = S0 containing all the
possible points that might be sent byAOPT in its last com-
munication. In each iteration in the while loop, we first
pick a “median” fromS and send it to Bob. Whenf devi-
ates fromg(tlast) by more thanβ∆, we cutS asS ← S∩
Ball(f(tnow), ∆) whereBall(p, r) represents the closed
ball centered atp with radiusr in Rd. This way,S is al-

ways a superset ofS0∩
(

⋂

tstart≤t≤tnow
Ball(f(t), ∆)

)

.

When S becomes empty, we can terminate the round,
knowing thatAOPT must have sent a new message. Thus,
the only remaining issues are how to constructS0 and how
to choose the “median” so thatS will become empty after
a small number of cuts.

Note that forβ = 2, the problem is trivial since
S0 ⊂ Ball(f(tstart), ∆). The algorithm simply needs
to sendg(tstart) = f(tstart), and then the first cut
will use a ball centered at a distance of more than2∆
away fromf(tstart). So by the triangle inequality the
round always terminates after just one cut, yielding an
(O(1), 2)-competitive algorithm. Thus in the remaining
of the paper, we are only interested inβ = 1 or β = 1 + ǫ
for any smallǫ > 0.

3.1 Algorithms by Tukey medians In this section we
consider the caseβ = 1. We start by fixing the set
S0. Let Cl (2 ≤ l ≤ d + 1) be the collection of
centers of the smallest enclosing balls of everyl points in
Ball(f(tstart), 2∆)∩Zd. At the beginning of the current
round, we initializeS0 to beS0 = C2 ∪ C3 . . . ∪ Cd+1.
The following lemma justifies thatS0 is sufficient for our
purpose.

LEMMA 3.1. If S becomes empty at some time step, then
the optimal offline algorithm must have communicated
once in the current round.

Proof: Suppose that the optimal offline algorithmAOPT

does not send any message in the current round whenS
becomes empty. Lets be the point sent byAOPT in its
last communication andq1, q2, . . . , qm be all the distinct
points taken by the functionf in the current round. It is
easy to see that ifAOPT keeps silent in the current round,
we have‖s− qi‖ ≤ ∆ for all 1 ≤ i ≤ m. If m = 1, then
ASOL just communicates at most once, so we assume that
m ≥ 2.

Let B be the smallest enclosing ball with centero
containing all theqi (1 ≤ i ≤ m). By definition, we have
o ∈ S0. Since‖s− qi‖ ≤ ∆ for all 1 ≤ i ≤ m, andB is
the smallest enclosing ball containing allqi (1 ≤ i ≤ m)
with centero, we have‖o − qi‖ ≤ ∆ for all 1 ≤ i ≤ m.
Thuso must still survive at the current time step, which
means thatS is not empty, a contradiction. �

The rest of our task is to choose a good median so that
the cardinality ofS would decrease by some fraction after
each triggering of communication. Before proceeding, we
need the following concepts.

DEFINITION 1. (Location depth)LetS be a set of points
in Rd. Thelocation depthof a pointq ∈ Rd with respect to
P is the minimum number of points ofS lying in a closed
halfspace containingq.

The following observation is a direct consequence of
Helly’s Theorem [16].

OBSERVATION 1. Given a setS in Rd, there always
exists a pointq ∈ Rd having location depth at least
|S|/(d + 1) with respect toS. The point with maximum
depth is usually called theTukey median.

The algorithm for theRd case maintains rounds sim-
ilarly as the one dimensional case. We just pick the
Tukey median to send in each triggering of communi-
cation. Since whenever‖f(tnow) − g(tnow)‖ > ∆,
Ball(f(tnow), ∆) is strictly contained in a halfspace
bounded by a hyperplane passing throughg(tlast), the
cardinality ofS decreases by a factor of at least1/(d+1).
Thus, the algorithm sendslog1+ 1

d

|S0| = O(d log |S0|)
messages in each round.

To put things together, notice that initially, the setS0

contains at most

d
∑

l=0

(

(⌊4∆⌋+ 1)d

l + 1

)

= O

(

d

(

e(⌊4∆⌋+ 1)d

d + 1

)d+1
)

points, since
∣

∣Ball(v, 2∆) ∩ Zd
∣

∣ ≤ (⌊4∆⌋+ 1)d. There-
fore, we have

THEOREM 3.1. There is anO(d3 log ∆)-competitive on-
line algorithm that tracks any functionf : Z+ → Zd.

Running time. However, to find the Tukey median
exactly requiresS to be explicitly maintained, which has
size exponential ind. Clarkson et al. [5] proposed fast
algorithms to compute an approximate Tukey median (a
point with location depthΩ(n/d2)) via random sampling,
but it seems difficult to sample fromS whenS is only
implicitly maintained. We get around this problem with
a new approach presented in the next subsection, which
also improves the competitive ratio by roughly ad factor.

3.2 Algorithms by volume-cutting In this section, we
first considerβ = 1 + ǫ, and then show that we can set
ǫ small enough to obtain an algorithm for theβ = 1
case. Before proceeding to the new algorithm, note that
anO(d2 log(d/ǫ), 1+ǫ)-competitive algorithm can be ob-
tained by slightly modifying the algorithm in the previous
section. However, as discussed earlier, this algorithm has
running time exponential ind. In this section we pro-
pose algorithms with polynomial running time (w.r.t. both
d and∆) and also improved competitive ratios. These new
algorithms use a volume-cutting technique, which shares
similar spirits as many convex optimization algorithms.

3.2.1 The case with β = 1 + ǫ

DEFINITION 2. (Directional width)For a setP of points
in Rd, and a directionµ ∈ Sd−1, the directional width
of P in direction µ is ωµ(P) = maxp∈P 〈µ, p〉 −
minp∈P 〈µ, p〉, where〈µ, p〉 is the standard inner product.

Algorithm 2: One round ofd-dimensional track-
ing via volume-cutting

let P = Ball(f(tnow), β∆);1

while (ωmax(P) ≥ ǫ∆) do2

let g(tnow) be the centroid ofP ;3

sendg(tnow) to Bob;4

wait until ‖f(tnow)− g(tlast)‖ > β∆;5

P ← P ∩ Ball(f(tnow), β∆);6

Let ωmax(P), ωmin(P) be the maximum and mini-
mum directional width ofP , respectively. Our volume-
cutting algorithm also proceeds in rounds, and the pro-
cedure for each round is outlined in Algorithm 2. There
are two differences between Algorithm 1 and 2. First, we
now do not maintain the setS, instead we maintainP as
the intersection of a collection of balls. Note thatP could
be maintained efficiently since the number of intersecting
balls is polynomial ind andlog ∆ as we will show later.
Second, instead of sending the median ofP ∩ S, we send
the centroid ofP to Bob. The correctness of the algorithm
is obvious since any point inP is within a distance ofβ∆
to f(tnow). As for the competitive ratio, it is easy to see
thatP always containsS. Thus whenP contains no point

H

P

p

q

B

Di

(a)

oB

l

q′vi

ui

o′
1

o1o2

p qp′ q′

P

Q

y

Hp HqHx Hy

x

x′ y′

(c)

Bo2

Bo1

Bo′

1

cap with diameter ≤ λo1 o2

p

q

(b)

Figure 1: The relation betweenωmin(P) andωmax(P)

in S0, we can safely terminate the round, knowing that
AOPT must have sent a message. However, we cannot sim-
ply repeat the algorithm and wait tillP is empty, since it
may never be. Instead we will stop the round when the
maximum width ofP is small enough (we will show later
how to conduct this test efficiently), and then argue that
when this happens,S must be empty.

We need the following result proved by Grun-
baum [12].

LEMMA 3.2. ([12]) For a convex setP in Rd, any halfs-
pace that contains the centroid ofP also contains at least
1/e of the volume ofP .

SinceBall(f(tnow), β∆) is contained in a halfspace
not containing the centroid ofP , every time a communi-
cation is triggered in Algorithm 2, we have

vol(P ∩ Ball(f(tnow), β∆))

vol(P)
< 1−

1

e
,

that is, the volume of the convex setP containingS will
be decreased by a constant factor.

The rest of our task is to bound the iterations in each
round. At the first glance, the number of iterations could
be endless, sinceP might be cut into thinner and thinner
slices. Fortunately, we can show that such a situation will
not happen, by making use of the fact that we are cutting
P using a series of balls with radii not too large.

LEMMA 3.3. If ωmax(P) ≥ ǫ∆, then ωmin(P) =
Ω(ǫ2∆).

Before proving Lemma 3.3, we first show the following
facts.

LEMMA 3.4. Let H be any supporting hyperplane ofP
at p ∈ ∂P , that is,H containsp andP is contained in
one of the two halfspaces bounded byH . Then there is a
ball B with radiusβ∆ such thatH is tangent toB at p
andB containsP .

Proof: It is easy to see that there is a unique ballB with
centeroB and radiusβ∆ such thatH is tangent toB atp
andB is on the same side ofH asP . We show thatP must
be contained inB. Suppose not, there must be a point
q ∈ P such thatq /∈ B. Let J be the two-dimensional
plane spanned byoB, p and q, intersectingH at line l;
Figure 1(a) shows the situation onJ . SupposeP is the
intersection ofBi, i = 1, . . . , m. Clearly, the intersection
betweenJ and anyBi is a diskDi containingp andq.
Simple planar geometry shows that∂Di must intersectl at
two points, since the radius ofDi is no more thanβ∆ and
‖oBq‖ > β∆. Let ui, vi be the two intersection points
between∂Di andl, andp′ be the projection ofp on linel.
It is also easy to see that one ofui, vi, sayvi, is different
thanp and lies at the same side ofp as q′. Therefore,
the intersection of all such disksDi (1 ≤ i ≤ m) must
contain a segmentpvj wherevj is the closest point top
among all the pointsvi, i = 1, . . . , m, which means that
P , the intersection of all theBi, must lie on both sides of
H , a contradiction. �

LEMMA 3.5. Let M be the intersection of two balls of
radius r in Rd. If ωmax(M) ≥ ǫr, thenωmin(M) =
Ω(ǫ2r).

Proof: Let B1, B2 be two balls whose intersection is
M and let o1, o2 be their centers, respectively. Let
S1, S2 be the boundary ofB1 and B2. It is clear that
the intersection ofS1 and S2 is a (d − 2)-dimensional
sphereS. Let p be an arbitrary point onS, and letJ be
the two dimensional plane passing throughp, o1, o2 and
intersectingS at another pointq. It is easy to see that‖pq‖
is equal to the maximum width ofM , andωmin(M) is
equal to2(r −

√

r2 − (‖pq‖/2)2); see Figure 1(b). Thus
if ‖pq‖ ≥ ǫr, thenωmin(M) = Ω(ǫ2r). �

Proof: (Lemma 3.3) LetQ be a polytope inscribed
in P such that the diameter of every cap formed by
the intersection ofP and a halfspace bounded by the
hyperplane containing a face of∂Q is no more thanλ; see
Figure 1(c). Letµ be the direction in which the directional
width of Q is minimized. LetHp and Hq be the two
parallel supporting hyperplanes ofQ orthogonal toµ. Let
p, q be two points onQ ∩ Hp andQ ∩ Hq respectively
so thatpq is in the direction ofµ. Such two points must
exist sinceQ is a polytope. LetHx andHy be the two
hyperplanes parallel toHp and Hq and supportP at x
andy, respectively. Suppose the linepq intersectsHx and
Hy atx′ andy′, respectively.

From Lemma 3.4 we know that there is a ballBo′

1

centered ato′1 with radiusβ∆ containingP and tangent
to Hx. Pick o1 on the linepq betweenp andq such that
‖o1x

′‖ = ‖o′1x‖. By triangle inequality it is easy to see
that the ballBo1

centered ato1 with radius(β∆ + λ)
must containBo′

1
and thereby contain the convex setP .

Similarly, there is another ballBo2
entered ato2 (o2 ∈ pq)

with radius(β∆ + λ) containingP if we considery, y′

instead ofx, x′. Let p′ = ∂Bo1
∩ pq andq′ = ∂Bo2

∩ pq.
We have

‖pq‖ ≤ ωmin(P) ≤ ‖p′q′‖.

Note that‖p′q′‖ is the minimum width ofM = Bo1
∩Bo2

.
By lemma 3.5, we know thatωmax(M) = O(‖p′q′‖/ǫ)
provided thatωmax(M) ≥ ǫ∆. Finally, if we choose
λ sufficiently small, we haveωmin(P) ≥ Ω(‖p′q′‖) ≥
Ω(ǫ · ωmax(M)) ≥ Ω(ǫ · ωmax(P)). �

The lower bound on the minimum width implies a
lower bound on the volume ofP . Formally, we have
(proof omitted from this extended abstract):

LEMMA 3.6. LetK be a convex set inRd. If ωµ(K) ≥ r
for all µ ∈ Sd−1, thenvol(K) ≥ rd/d!.

By Lemma 3.3, we know that as long asωmax(P) ≥
ǫ∆, the width ofP in all directions is at leastc · ǫ2∆ for

some constantc, which means that the volume ofP is at
least(c · ǫ2∆)d/d! by Lemma 3.6. Then by Lemma 3.2,
as well as the fact that at the beginning of the round,
vol(P) ≤ (4∆)d, we know that after at most

log
(4∆)d

(c · ǫ2∆)d/d!
= O

(

d log
d

ǫ

)

(3.1)

triggerings of communication in Algorithm 2,ωmax(P)
will be less thanǫ∆. At this moment, consider theP ′

obtained by replacing all the balls in Algorithm 2 by
balls with radius∆. By triangle inequality, we know that
P ′ = ∅. Recall thatAOPT is only allowed an error of∆.
Therefore,AOPT must have already sent a message since
P ′ = ∅.

Running time. Generally, it is hard to compute the
centroid of a convex body [20]. However, Bertsimas and
Vempala [3] showed that there is a randomized algorithm
that computes an approximate centroid of a convex body
given by a separation oracle. Formally, they proved the
following.

LEMMA 3.7. ([3]) Let K be a convex body inRd given
by a separation oracle, and a point in a ball of radius∆
that containsK. If ωmin(K) ≥ r, then there is a random-
ized algorithm with running timepoly(d, log

(

∆
r

)

) that
computes, with high probability, the approximate centroid
z of a convex setK such that any halfspaces that contains
z also contains at least1/3 of the volume ofK.

In our case, sinceP is the intersection ofO(d log d
ǫ
)

balls, we can simply implement the separation oracle
by checking each of these balls one by one. Moreover,
f(tstart) could be used as the starting pointp required by
Lemma 3.7. We setr = c · ǫ2∆, thus computing approx-
imate centroid could be done in timepoly(d, log

(

1
ǫ

)

). If
the algorithm of Lemma 3.7 fails, then with high probabil-
ity, ωmax(P) < ǫ∆. This fact together with the discussion
after Lemma 3.6 provide us a way to avoid monitoring the
maximum width ofP at the beginning of each iteration
in Algorithm 2, which is expensive. More precisely, we
slightly modify Algorithm 2 as follows.

1. Line 2 → while the number of iterations in the
current round is no more than (3.1)do

2. Line 3→ compute the approximate centroid ofP
using the algorithm of Lemma 3.7 and assign it
to g(tnow); if the algorithm of Lemma 3.7 fails,
terminate the current round;

THEOREM 3.2. There is an (O(d log(d/ǫ)), 1 + ǫ)-
competitive online algorithm to track any functionf :
Z+ → Zd. The algorithm runs in timepoly(d, log 1

ǫ
)

at every time step.

3.2.2 The case with β = 1 Recall that in Section 3.1,
we have shown that consideringS0 = C2∪C3 . . .∪Cd+1

is enough. SinceS0 is the collection of points that are
centers of the smallest enclosing balls of at mostd + 1
points inZd, the following fact can be established (proof
omitted from this extended abstract).

LEMMA 3.8. For any pointss = (x1, . . . , xd) in S0,
xi (1 ≤ i ≤ d) are fractions in the form ofy

z
wherey, z

are integers and|z| ≤ d!(16∆2d)d.

By this observation, we know that the distance be-

tween any two points inS0 is at least1
/

(

d!(16∆2d)d
)2

.

Therefore, by settingǫ = 1
/

8∆
(

d!(16∆2d)d
)2

, we

know that onceωmax(P) < ǫ∆, there is at most one point
of S0 in P . The rest of our job is to find such a point if it
exists. Once the point is found, we just send it to Bob, and
the round will terminate as soon asf(tnow) gets∆ away
from this point. However, directly computing such a point
might be expensive. Instead we use an indirect way to find
the last surviving point.

We say a numberx is good if x = y

z
with y, z ∈ Z

and |z| ≤ d!(16∆2d)d. A point s is good if all of its
coordinates are good. The basic idea is that if we can
successfully compute the centroidp of P , we can snapp
to its nearest good points. If there is a points′ ∈ S0

insideP , then we must haves′ = s. Thus if s /∈ P , we
simply terminate the current round; otherwises must be
the last point ofS0 in P . The difficulty is thatωmin(P)
could be very small, so that Lemma 3.7 cannot be applied
directly. To avoid such a situation, we expandP slightly
by increasing all the balls’ radii from∆ to (1 + ǫ)∆.
Denote byP ′ the intersection of these enlarged balls. The
observation is that, by our choice ofǫ, if there is a point
s′ of S0 in P , thens′ is still the only point ofS0 in P ′.
Now we can apply the algorithm of Lemma 3.7 onP ′ with
r = c·ǫ2∆. If the algorithm fails, we know thatP must be
empty. Otherwise we obtain a pointp ∈ P ′. Finally, we
find s by rounding each coordinate ofp to its nearest good
number, and check ifs ∈ P . The rounding could be done
in polynomial time according to a theorem by Khintchine
(cf. [14, Chapter 4]).

By the choice ofǫ and Theorem 3.2, we obtain the
following:

THEOREM 3.3. There is anO(d2 log(d∆))-competitive
online algorithm to track any functionf : Z+ → Zd. The
algorithm runs in timepoly(d, log ∆) at every time step.

3.3 Online tracking a dynamic set One of the main
applications of online tracking in high dimensions is
tracking a dynamic set. Formally, we want to track the

functionf : Z+ → 2U , whereU is a finite universe con-
sisting ofd items. We can represent each setX ∈ 2U as
a {0,1}-vector inRd, and define the difference between
two setsX andY to be thel2 distance between the corre-
sponding vectors inRd (note that the Hamming distance
between two sets is just the square of theirl2 distance).
Ideally, Alice should send out subsets ofU to approximate
f(tnow), but applying our previous algorithms would send
out vectors with fractional coordinates. Unfortunately, if
we insist that Alice always sends a set, that is, a{0,1}-
vector to Bob, the competitive ratio would be exponen-
tially large in ∆, even we allow a relatively largerβ, as
shown in the next theorem.

THEOREM 3.4. Suppose that there is an(α, β)-
competitive algorithm for online trackingf : Z+ → 2U

and |U | > (β∆)2, if the algorithm can only send subsets
of U , thenα = 2Ω(∆2) for any constantβ < 19/18.

Proof: Without lose of generality, letH = {0, 1}d, where
d is chosen to be(β∆)2 + 1. Similar to the proof of
theorem 2.2, we just need to show that the adversary
can manipulatef(t) so that a round will have at leastα
iterations.

Let S0 be the set of possible vertices sent byAOPT

in its last communication, that is, all the vertices within
distance∆ from f(tstart). The cardinality ofS0 is

|S0| =
∆2

∑

k=1

(

d

k

)

= Ω(2∆2

).

The adversary Carole setsS = S0 at the beginning of
each round and then manipulates the value of the function
f according to the online algorithmASOL, as follows.
WheneverASOL sendsv ∈ H , Carole changesf to
u = 1 − v, that is, flipping all the coordinates ofv.
Since‖v,u‖ > β∆, ASOL has to communicate again.
Every time Carole uses a valueu for f , S is cut asS ←
S∩Ball(u, ∆). SoS loses at most (letǫ = β−1 < 1/18)

|H−Ball(u, ∆)| =
d
∑

k=∆2+1

(

d

k

)

≤

(

2∆2

3ǫ∆2

)

≤ (e/ǫ)3ǫ∆2

elements. Therefore,ASOL will communicate at least

Ω

(

2∆2

(e/ǫ)3ǫ∆2

)

= Ω(c∆2

) (c > 1 whenǫ < 1/18)

times beforeS becomes empty. �

Therefore, to avoid an exponentially large competi-
tive ratio, we have to allow the algorithm to send vectors
with fractional coordinates. We can use the previously

q0

q1

f(0) + ∆f(0) − ∆

q1 = f(t1) + ∆

q1 = f(t1) − ∆

P

(a)

g(t1)

}

∆
l

l′

(c)

t1 t2 t3 t4
q0

q1

f(0) + ∆f(0) − ∆

q1 = t1

t2
(f(t2) + ∆ − q0)

q1 = t1

t2
(f(t2) − ∆ − q0)

(b)

P

g(t1)

Q

P

g(t1)

Q

Figure 2: (a, b) Cutting in the parametric space. (c) Considering a small set of lines is enough.

developed algorithms to guarantee that thel2 distance be-
tweenf(tnow) and the fractional vectorg(tlast) sent by
our algorithm is no more than∆. If in some applications
it is unnatural to report to the client a vector with frac-
tional values when the underlying function being tracked
is a set, the tracker could convert the vector to a setY by
probabilistically rounding every coordinates ofg(tlast). It
can be easily shown that the expected distance betweenY
andf(tnow) is no more that∆.

Finally, we notice that iff is always a{0, 1}-vector
in Rd, the points inS0 must be in the form of{0, 1

2 , 1}d,
namely, the distance between any two points inS0 is
at least1/2. Applying this fact in the algorithm of
Section 3.2.2 gives us the following:

THEOREM 3.5. There is anO(d log(d))-competitive on-
line algorithm to track any dynamic setf : Z+ → 2U .

4 Online Tracking with Predictions

In this section, we further generalize our model by con-
sidering “predictions” . We assume that Alice tries to
predict the future trend of the function based on history,
and then sends the prediction to Bob. If the actual func-
tion values do not deviate from the prediction by more
than∆, no communication is necessary. One can imag-
ine that whenf is “well behaved”, using good predictions
could greatly reduce communications incurred. Indeed,
the same approach has been taken in many heuristics in
practice [6, 7, 13]. In this paper we only consider the case
where the algorithms (both the online and the offline) use
linear functions as predictions, and ford = 1; the tech-
nique can be extended to more general prediction func-
tions and high dimensions.

In one dimension, the offline problem is to approx-
imate a function by a small number of straight line seg-
ments. O’Rourke [18] gave a linear-time algorithm to
compute the optimal solution. His algorithm is “online”
but in the sense that the algorithm scansf only once, and
the partial solution computed so far is optimal for the por-

tion of f that has been scanned. However, the partial so-
lution could keep changing at each time step asf is ob-
served. While in our problem, we need to make an imme-
diate decision on what to communicate at each time step
wheneverf deviates more than∆ from the prediction pre-
viously sent.

Our algorithm with line predictions still follows the
general framework outlined in Section 2. At the beginning
of each round (assumingtstart = 0), we just sendf(0)
to Bob, and predictf to be f(0). Let t1 be the time
of the first triggering. We parameterize the lines by
q0, q1, meaning that the line(q0, q1) passes through(0, q0)
and (t1, q1). We call the(q0, q1)-space the parametric
space, thus any line sent out by the algorithm is a point
in the parametric space. LetP be the region in the
parametric space consisting of all the points that are
valid ∆-approximations off(0) and f(t1), which is a
square (Figure 2(a)). We will pick a pointg(t1) in P
and send it to Bob. Suppose at timet2, g(t1) fails to
approximatef(t2). Let Q be the region in the parametric
space consisting of all the valid∆-approximations off(0)
and f(t2), which can be shown to be a parallelogram
(Figure 2(b)). We updateP ← P ∩ Q, and then iterate
the procedure. It is easy to see that ifAOPT does not need
any further communication in the current round, its last
message must lie insideP .

The major task is to choose the initial setS = S0

at the beginning of the round. After that, the algorithm is
similar to that in Section 3.1, that is, at every triggering we
updateS ← S ∩ P and send the Tukey median ofS. The
analysis also follows the same line. LetM = {(t, y) | t ∈
[T], y ∈ {Z+∆}∪{Z−∆}}, where{Z+∆} denotes the
set{x | x = y + ∆, y ∈ Z}, and similarly{Z−∆}. Let
L be the collection of lines passing through two points in
M . LetX be the collection of intersection points between
line t = 0 and lines inL, andY be the collection of
intersection points between linet = t1 and lines inL.
We chooseS0 to be{(q0, q1) | q0 ∈ X, q1 ∈ Y } ∩ P (P
is the first square we get).

We argue that only considering the points (lines) in
S0 is sufficient for our purpose. In particular, we can show
that if AOPT keeps silent in the current round, there must
be some surviving point (line) inS0. Consider the original
function space (Figure 2(c)). Letl be the line chosen
by AOPT in its last communication. Suppose thatAOPT

has not made any communication in the current round,
l must intersect with all the line segments((t, f(t) −
∆), (t, f(t) + ∆)), for tstart ≤ t ≤ tnow. We can always
rotate and translatel so that it passes through two points
in M , and it still intersects with all lines segments (line
l′ in Figure 2(c)). Therefore,l′ must still surviveat the
current time.

Finally we bound the cardinality ofS0 (proof omitted
from this extended abstract).

LEMMA 4.1. |S0| = O(∆2T 6).

Therefore, S will become empty after at most
O(log(∆T)) iterations.

THEOREM 4.1. There is anO(log(∆T))-competitive on-
line algorithm to track any functionf : Z+ → Z with line
predictions, whereT is the length of the tracking period.

The algorithm above assumes thatT is given in
advance in order to initializeS0. If T is not known, we can
use the following squaring trick to keep the competitive
ratio. We start withT being set to∆. Whenevertnow

reachesT and the current round has not finished yet, we
restart the round withT ← ∆T 2. It can be easily shown
that the number of iterations in a round is still at most
O(log(∆T)).

5 Open Problems

As mentioned in the related work, the problem studied
in this paper is a special case of the distributed tracking
framework where there is only one site. It would be nice
to generalize our techniques to multiple sites. Secondly,
in the d-dimensional case, if we consider the number of
bits (instead of number of messages) the algorithms has
sent, the competitive ratios of our current algorithms will
increase by roughly a factor ofd. Thus we want to ask
whether we can do better by a subset of the coordinates
instead of a whole vector inRd. Finally, it is also
interesting to consider online tracking problems in other
metric spaces.

Acknowledgment We would like to thank Siu-Wing
Cheng, Mordecai Golin, Jiongxin Jin, and Yajun Wang for
fruitful discussions on various aspects of this problem.

References

[1] N. Alon, Y. Matias, and M. Szegedy. The space complex-
ity of approximating the frequency moments.Journal of
Computer and System Sciences, 58:137–147, 1999.

[2] A. Beresford and F. Stajano. Location privacy in pervasive
computing.Pervasive Computing, IEEE, 2003.

[3] D. Bertsimas and S. Vempala. Solving convex programs
by random walks.Journal of the ACM, 2004.

[4] B. Chandramouli, J. M. Phillips, and J. Yang. Valuebased
notication conditions in largescale publish/subscribe sys-
tems. InVLDB, 2007.

[5] K. L. Clarkson, D. Eppstein, G. L. Miller, C. Sturtivant,
and S. Teng. Approximating center points with iterated
radon points. InSoCG, 1993.

[6] G. Cormode and M. Garofalakis. Sketching streams
through the net: Distributed approximate query tracking.
In VLDB, 2005.

[7] G. Cormode, M. Garofalakis, S. Muthukrishnan, and
R. Rastogi. Holistic aggregates in a networked world: Dis-
tributed tracking of approximate quantiles. InSIGMOD,
2005.

[8] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for
distributed functional monitoring. InSODA, 2008.

[9] S. Davis, J. Edmonds, and R. Impagliazzo1. Online
algorithms to minimize resource reallocations and network
communication. InAPPROX and RANDOM, 2006.

[10] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Heller-
stein, and W. Hong. Model-driven data acquisition in sen-
sor networks. InVLDB, 2004.

[11] Y. Diao, S. Rizvi, and M. J. Franklin. Towards an internet-
scale xml dissemination service. InVLDB, 2004.

[12] B. Grunbaum. Partitions of mass-distributions and of
convex bodies by hyperplanes.Pacific J. Math, 1960.

[13] R. Keralapura, G. Cormode, and J. Ramamirtham.
Communication-efficient distributed monitoring of thresh-
olded counts. InSIGMOD, 2006.

[14] B. Korte and J. Vygen. Combinatorial Optimization:
Theory and Algorithms. Springer-Verlag, 4th edition,
2007.

[15] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
TinyDB: an acquisitional query processing system for sen-
sor networks. ACM Transactions on Database Systems,
30(1):122–173, 2005.

[16] J. Matousek.Lectures on Discrete Geometry. Springer-
Verlag New York, Inc., 2002.

[17] C. Olston, B. T. Loo, and J. Widom. Adaptive precision
setting for cached approximate values. InSIGMOD, 2001.

[18] J. O’Rourke. An on-line algorithm for fitting straight lines
between data ranges.Communications of the ACM, 24(9),
1981.

[19] G. Pottie and W. Kaiser. Wireless integrated network
sensors.Communications of the ACM, 43(5):51–58, 2000.

[20] L. A. Rademacher. Approximating the centroid is hard. In
SoCG, 2007.

[21] J. H. Schiller and A. Voisard.Location-based services.
Morgan Kaufmann Publishers, 2004.

[22] A. C. Yao. Some complexity questions related to distribu-
tive computing. InSTOC, 1979.

[23] Y. Yao and J. Gehrke. Query processing for sensor
networks. InCIDR, 2003.

