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Abstract Alice updates Bob with the currenft(¢). Interestingly,

We propose and study a new class of online problen"”%i,s natural algorithm for thi_s_seemi_ngly simple prqblem
which we callonline tracking Suppose anbserversay has an unbounded competitive ratio compared with the

Alice, observes a multi-valued functiofi : Z*+ — z¢ optimal. Consider the case whef¢) starts atf(0) = 0
over time in an online fashion, i.e., she only sgés) for and then oscillates betwe@and2A. Then this algorithm

t < t,,0 Wheret,,,, is the current time. She would likeWill communicate an infinite number of times while the

to keep aracker, say Bob, informed of the current valué@Ptimal solution only needs two messag¢g)) = 0 and

of f atall times. Under this setting, Alice could send nef(!") = A wheret'is the first timef reachesh.
values off to Bob from time to time, so that the current ~ The example above shows that even in its simplest
value off is always within a distance & to the last value instantiation, theonline tracking problem will require
received by Bob. We give competitive online algorithmzome nontrivial solutions. Indeed, in Section 2 we give an
whose communication costs are compared with the ogd{log A)-competitive algorithm for the above problem.
mal offline algorithm that knows the entirein advance. The competitive ratio is also tight. Formally, we define
We also consider variations of the problem where AlidB€ general problem considered in this paper as follows.
is allowed to send “predictions” to Bob, to further reducket / : Z* — 77 be a function observed by Alice
communication for well-behaved functions. These onlif/er time. At the current time,,,, Alice only sees all
tracking problems have a variety of application rangirfgnction values forf(¢),t < tn... Then she decides
from sensor monitoring, location-based services, to pubShe wants to communicate to Bob, and if so, a pair

lish/subscribe systems. (tnow, 9(tnow)) to be sent. Note thag(tnow) is not
necessarily equal t¢(t,..,). The only constraint is that
1 Introduction at any t,.., if Alice does not communicate, then we

. . - < i
Let Alice be anobserverwho observes a functioffi(t) mgsrazf\{iﬂg(glgg)gotgiﬁ%ﬁrz!d_anét{ Vlheoreiélassérfe

in an online fashion over time. She would like to kee

. . eBredefined error parameter. Unless stated otherWisg,
a tracker, Bob, informed of the current function valu denotes thé. norm throuahout the paper. We are mostl
within some predefined error. What is the best strate 2 g baper. y

that Alice could adopt so that the total communication fterested in the total communication (also referred to as

minimized? This is the general problem that we Stu(!ﬁecosb incurred throughout time, i.e., the total number

in this paper. For concreteness, consider the simplestmessages sent by the algorithm, and will analyze the

: : performance of an algorithm in terms of its competitive
case where the function takes integer values at each time "~ . .
n . ratio, i.e., the worst-case ratio between the cost of the
steg f : ZT — Z, and we require an absolute error_,. . . .
. .. online algorithm and the cost of the best offline algorithm
of at mostA. The natural solution to the problem is t

first communicatef (0) to Bob; then every tim¢g () has that knows the entirg in advance.

changed by more thai since the last communication,_ . M_otlvatlo_ns Online _tra<_:k|ng problems naturally
arise in a variety of applications whenever the observer

and the tracker are separate entities and the communica-
~*Re i is supported in part by Hong Kong Direct Allocation Gtantion between them is expensive. For example, wireless
(DAGO7/08).  Qin Zhang is supported by Hong Kong CERG Grajiensors [23] are now widely deployed to collect many dif-
613507. ferent kinds of measurements in the physical world, e.g.,

IWe useZt to denote the domain of all non-negative integers in this A
paper 9 9 iemperature, humidity, and oxygen level. These small and



cheap devices can be easily deployed, but face strict potvasuted tracking model.
constraints. Itis often costly or even impossible toreplac  Our problem generally falls in the realm of online
them, so it is essential to develop energy-efficient algalgorithms, and as with all online algorithms, we analyze
rithms for their prolonged functioning. It is well knownthe performance of our algorithms in terms of competitive
that among all the factors, wireless transmission of datgios.
is the biggest source of battery drain [19]. Therefore, In communication complexity [22], Alice has and
it is very important to minimize the amount of commuBob hasy, and the goal is to compute some function
nication back to the tracker, while guaranteeing that ttféz, y) by communicating the minimum number of bits
tracker always maintains an approximate measurembatween them. There are two major differences between
monitored by the sensor. This directly corresponds to thbemmunication complexity and online tracking: First, in
one-dimensional version of our problem mentioned at thaline tracking, only Alice sees the input, Bob just wants
beginning of the paper. to keep track of it. Secondly, in communication complex-
Our study is also motivated by the increasing populaty both inputsz andy are given in advance, and the goal
ity of location-based servicd1]. Nowadays, many mo-is to study the worst-case communication betweemd
bile devices, such as cell phones and PDAs, are equippedvhile in online tracking, the inputs arrive in an online
with GPS. It is common for the service provider to keefashion, and we focus on the competitive ratio. It is easy
track of the user’s (approximate) location, and provide see that the worst-case (total) communication bounds
many location-based services, for instance finding tha our problems are mostly trivial.
nearest business (ATMs or restaurants), receiving traffic In data streams [1], the inputs arrive online, and the
alerts, etc. This case corresponds to the two-dimensiogadl is to track some function over the inputs received so
version of our problem. Here approximation is often netar. In this aspect it is similar to our problem. However,
essary not just for reducing communication, but also dthee focus in streaming algorithms is to minimize the space
to privacy concerns [2]. For carriers, location-based sersed by the algorithm, not communication. The memory
vices provide added value by enabling dynamic resoummentents could change rapidly, so simply sending out the
tracking (e.g., tracking taxis and service people). Simnemory contents could lead to high communication costs.
lar to sensors, power consumption is the biggest concern In distributed tracking [6-9,13,17], the inputs are
for these mobile devices, and both the user the servitistributed among multiplsitesand arrive online. There
provider have incentives to reduce communication whilea coordinator who wants to keep track of some function
being able to track the locations dynamically. over the union of the inputs received by all sites up until
Finally, our problem also finds applications in the st,,,,- S0 in some sense our problem is the special ver-
called publish/subscribesystems [4,11]. Traditionally, sion of distributed tracking where there is only one site.
userspoll data from service providers for informationHowever, most works in this area are heuristic-based with
but this has been considered to be very communicatiawo only exceptions to the best of our knowledge. Cor-
inefficient. In a pub/sub system, users register therode et al. [8] consider monotone functions and study
queries at the server, and the serpeishesupdated re- worst-case costs. But when the function is not monotone,
sults to the users according to their registered queriestlas worst-case bounds are trivial. In this paper, we allow
new data arrives. Unlike the two applications above, hdtections to change arbitrarily and use competitive anal-
we have one observer (the server) and many trackers (fisés to avoid meaningless worst-case bounds. Davis et
users). Although energy is not a concern here, bad @&-[9] propose online algorithms for distributed tracking
cisions by the online tracking algorithm still have sevefenctions at multiple sites where siids allowed an er-
consequences, since the messages need to be forwardedf A;, and the total errod _, A; is fixed. However,
to potentially a larger number of users, consuming a liwt their model, both the online and offline algorithms can
of network bandwidth. Depending on the nature of trenly communicate when the errdx; allocated to some
query, the function being tracked could take values fronsie i is violated, and the site can only send in the cur-
high-dimensional space. For instance, a set of items froemt value of the function, i.e., exactly what the naive al-
a universd/ correspondsto &0, 1}-vectorin|U| dimen- gorithm that we described at the beginning is doing. As
sions. such, the problem is only meaningful for two or more sites
Related work. Although our problem s easily statedvhere the online algorithm needs to decide how to allo-
and finds many applications, to the best of our knowdate the total error to the sites. When there is only one
edge it has not been studied before in the theory cosite, there is nothing controlled by the algorithm. In our
munity. Some related models include online algorithmgroblem, we allow both the online and offline algorithms
communication complexity, data streams, and the dis-send inanyfunction value and aanytime, as long as



6=1 b=1+c¢
problem competitive ratio| running time | competitive ratio| running time
1-dim O(log A) 0(1) J/ /
d-dim O(d?log(dA)) | poly(d,logA) | O(dlog(d/e)) | poly(d,log(1/e))
1-dim with prediction|  O(log(AT)) poly(A,T) / /

Table 1: Summary of results for online trackirif s the length of the tracking period.

the error bound\ is satisfied. focuses only on thé, metric; the online tracking problem
Finally, it should be noted that similar problems haveould in general be posed in any metric space, which
been studied in the database community [10, 13, 15, 1d9uld potentially lead to other interesting techniques and
However, all the techniques proposed there are basedresults.
heuristics with no theoretical guarantees.
Our results. In Section 2 we first give a®(log A)- 2 Online Tracking in One Dimension

competitive algorithm for tracking an integer-valued funqp, this section, we consider the online tracking problem
tion. We show that the algorithm is optimal by proving g functions in the form off : Z+ — Z. The algorithm
matching lower bound on the competitive ratio. Our lowgpy the one-dimensional case mainly serves an illustration
bound argument also implies that any real-valued funggrose, which lays down the general framework for the
tion cannot be tracked with a bounded competitive ratigyore advanced algorithms in higher dimensions. For
This justifies our study being confined with integer-valuegmplicity we assume for now thak is an integer; the
functions. In Section 3 we extend our algorithmsitdi-  55sumption will be removed in later sections.

mensions for arbitrarg. Here we consider the more gen
eral (a, 5)-competitive algorithms. An online algorithm
is (v, 3)-competitiveif its cost isc - OPT while allowing 1 16t.S = [f(thow) — A, f(tnow) + AN Z;
an error of 3 - A, where0PT is the cost of the optimal 2 while S # () do

offline algorithm allowing errorA. We first give a sim- 3 | 1€tg(tnow) be the median of;

ple algorithm using th&ukey mediamf a set of points, 4 sendg(tnow) to Bob;

and then propose improved algorithms basedolume- 5 | wait until || f(tn0w) — g(tiase) | > A;
cutting a technique used in many convex optimizational-6 | S < S0 [f(tnow) — A, f(tnow) + Al;
gorithms. This results in algorithms with a competitive

Algorithm 1: One round of 1D tracking

ratio of O(d? log(dA)) for 3 = 1 andO(d log(d/¢)) for An O(log A)-competitive algorithm. Let OPT be
0 = 1+¢, respectively. The algorithms also have runninpe cost of the optimal offline algorithm. The basic idea
times polynomial ind. of the algorithm actually originates from the motivating

In Section 4 we further extend our model by consideexample at the beginning of the paper: Whiascillates
ing tracking with predictions. More precisely, Alice triewvithin a range of2A, then0PT is constant. Thus, our
to predict the future trend of the functighbased on his- algorithm tries to guess what value the optimal algorithm
tory, and then sends the “prediction” to Bob, for exampleas sent using a binary search. Our algorithm proceeds
alinearly increasing trend. If the actual function values dn rounds, and the procedure for each round is outlined in
not deviate from the prediction by more than no com- Algorithm 1.
munication is necessary. The previous tracking problem Algorithm 1 is correct since at an¥,o., if f(t)
can be seen as a special case of this more general fradedates more than from g(¢;,5:), we always updaté
work, in which we always “predictf (¢) to beg(t.s:). In  so that all elements i are withinA of f(¢,,0.,). Itis also
general, we could use a famil§ of prediction functions easy to see that Algorithm 1 can be implemente@in)
(e.g., linear functions), which could greatly reduce the time per time step. Below we show that its competitive
tal communication wheyfi can be approximated well by aratio isO(log A).
small number of functions itf (note that the offline algo- We will proceed by showing that in each round, the
rithm also uses to approximatef). In this paper we only offline optimal algorithmAgr must send at least one
consider the most natural case of linear functions, but weessage, while Algorithm 1 send¥(log A) messages,
believe that our technique can be extended to more gartich will lead to the claimed competitive ratio. The
eral prediction functions (e.g. polynomial functions withatter simply follows from the fact the cardinality f
bounded degrees). Our results are summarized in Tableeduces by at least half in each iteration in the while

Finally, we comment that our study in this papdoop, so we only argue for the former. For convenience,



we define a round to include its starting time (wh&n Remark. The argument above also implies that, if
is initialized) and ending time (whef = ()). Thus, a f takes values from the domain of reals (or any dense
message sent at a joint point will be counted twice, bset), the competitive ratio is unbounded, sirftalways
that will not affect the competitive ratio by more than aontains infinitely many elements.

factor of 2. Suppose the last function value sent4yy;

in the previous round ig. Note that if Agpr has not sent 3  Online Tracking in d Dimensions

any message b#,,.,, then we must havg < S at that | thjs section we extend our algorithm to higher dimen-
time, sinceS'is a superset df),[f(t) — A, f(t) + AJNZ, gjons, i.e., tracking functiong : Z*+ — Z¢ for arbitrary
where the intersection is taken overallp tot,,,, iNthiS 7 From now on we will consider the more geneal B3)-
round. In the end5’ = ), s0.Ager Must have sent a NeWeompetitive algorithms. Our algorithm actually follows
function value other thag. the same framework as in the one-dimensional case. We
still divide the whole tracking period into rounds, and
show thatAgr must communicate once in each round,
while our algorithm communicates at most, shyimes,

and then the competitive ratio would be boundediby

h L?;I]V(atrtr?gnld OE the COfT;Ft).etltIV? ra_Ltlo. :(Ve POVV\\; The algorithm for each round is also similar to Algo-
show tha (log A) competitive ratio is optimal. We trithm 1. At the beginning of each round (say at time

will construct an adversary under which any deterministic_

. ; = tsart), WE initialize a setS = S, containing all the
online algorithmAso. has to send at Ieaﬂ(l_og A - OPT) possible points that might be sent Bypr in its last com-
messages, while the optimal offline algorith#ger only

ds t aPT munication. In each iteration in the while loop, we first
needs to sen messages. . ick a “median” fromS and send it to Bob. Whefidevi-
The adversary (call her Carole) also divides the wh Sos fromy(£1.) by more tharBA, we cuts ass — SN
tracking period into rounds. We will show that in eac ast ’
round, Carole could manipulate the value pfso that all(f(tnow), &) WhereBall(p, r) represents the closed

) A ke .
Agor has to communicat@(log A) times, whileAgpr just ball centered ap with radiusr in R¢. This way,S is al-
needs one message. During each round, Carole maint2g¥S & superset ¢ N (ﬂtstmgtﬁm Ball(f(?), A))'
a setS of possible values so that for agye S, if Ay When S becomes empty, we can terminate the round,
communicateg at the beginning of this round, it does noknowing thatAgsr must have sent a new message. Thus,
need any further communication in this round. The rouriide only remaining issues are how to constricand how
terminates wher$ contains less than 3 elements. Mort® choose the “median” so thatwill become empty after
precisely,S is initialized to[y — A,y + A]NZ wherey is @ small number of cuts.
some function value at a distance of at lea&t+ 1 from Note that for3 = 2, the problem is trivial since
any function value used in the previous round; as tirf® C Ball(f(fstart),A). The algorithm simply needs
goes on$ is maintained af), [f(t) — A, f(t) + A]NZ, to sendg(tsart) = f(tstare), and then the first cut
where the intersection is taken over all time uptig,,. Will use a ball centered at a distance of more tf2dn
Carole uses the following strategy to change the valuea@¥ay from f(ts..,+). So by the triangle inequality the
f. If Asor announces some function value greater thagund always terminates after just one cut, yielding an
the median of5, decreas¢ until Aso. sends out the next(O(1), 2)-competitive algorithm. Thus in the remaining
message; otherwise increageuntil Asq; sends out the of the paper, we are only interesteddn=1or3 =1+¢
next message. Let; be the number of elements left iffor any smalle > 0.
S after thei-th triggering of AsqL, and initially, ng =
2A + 1. Itis not difficult to see that; ; > [(n; —3)/2], 3.1 Algorithms by Tukey medians In this section we
so it takesQ(log A) iterations for|S| to be a constant. consider the cas¢ = 1. We start by fixing the set
When S contains less than 3 elements, Carole terminatés Let C; (2 < | < d + 1) be the collection of
the round and starts a new one. By the definitiorSof centers of the smallest enclosing balls of evigpgints in
Agpr could send an element ifi at the beginning of the Ball(f(tstart), 2A) NZ?. Atthe beginning of the current
round, which is a valid approximation for all functiorround, we initializeSy to beSp = C> U C3... U Cyy1.
values in this round. The following lemma justifies thaf is sufficient for our
purpose.

THEOREM2.1. Thereis ar0(log A)-competitive online
algorithm to track any functiorf : Z+ — Z.

THEOREM2.2. To track a functionf : ZT — Z, any

online algorithm has to senf(log A - OPT) messages [ emma 3.1. If S becomes empty at some time step, then

in the worst case, wher@PT is the number of messageshe optimal offline algorithm must have communicated
needed by the optimal offline algorithm. once in the current round.



Proof: Suppose that the optimal offline algorithadypr Running time. However, to find the Tukey median
does not send any message in the current round wgheexactly requiresS to be explicitly maintained, which has
becomes empty. Let be the point sent bydgpr in its size exponential ini. Clarkson et al. [5] proposed fast
last communication angh, ¢o, . . ., ¢, be all the distinct algorithms to compute an approximate Tukey median (a
points taken by the functioyi in the current round. It is point with location deptif2(n/d?)) via random sampling,
easy to see that iflgpr keeps silent in the current roundput it seems difficult to sample fror8 when S is only
we havel|s — ¢;|| < Aforall1 <i < m. If m =1, then implicitly maintained. We get around this problem with
AsoL just communicates at most once, so we assume thatew approach presented in the next subsection, which
m > 2. also improves the competitive ratio by roughly éactor.

Let B be the smallest enclosing ball with center
containing all they; (1 < ¢ < m). By definition, we have 3.2 Algorithms by volume-cutting In this section, we
o € Sp. Sincel|s — ¢;|| < Aforall1 <i <m,andBis first considers = 1 + ¢, and then show that we can set
the smallest enclosing ball containing @ll(1 < i <m) € small enough to obtain an algorithm for thie = 1
with centero, we havel|o — ¢;|| < Aforall 1 <i < m. case. Before proceeding to the new algorithm, note that
Thuso must still survive at the current time step, whicanO(d? log(d/¢), 1+¢)-competitive algorithm can be ob-
means thab' is not empty, a contradiction. 0 tained by slightly modifying the algorithm in the previous

_ ) section. However, as discussed earlier, this algorithm has
The rest of our task is to choose a good median so tha ning time exponential in. In this section we pro-

the cardinality of5' would decrease by some fraction afteg e a1gorithms with polynomial running time (w.r.t. both

each triggering ,Of communication. Before proceeding, V}QeandA) and also improved competitive ratios. These new
need the following concepts. algorithms use a volume-cutting technique, which shares
DEFINITION 1. (Location depthlet S be a set of points similar spirits as many convex optimization algorithms.

in R<. Thelocation depttof a pointg € R with respect to _

P is the minimum number of points §flying in a closed 321 Thecasewith § =1 +¢

halfspace containing. DEFINITION 2. (Directional width)For a setP of points

R?, and a directiony € S¢~!, the directional width

P in direction p is w,(P) = maxpep(i,p) —
minye p(u, p), where{y, p) is the standard inner product.

The following observation is a direct consequence 51
Helly’s Theorem [16]. 0

OBSERVATION 1. Given a setS in R?, there always
exists a pointy € R having location depth at least Algorithm 2: One round ofd-dimensional track-
|S|/(d + 1) with respect taS. The point with maximum__ing via volume-cutting

depth is usually called théukey median 1 let P = Ball(f(tnow), BA);

2 while (wmax(P) > €A) do

let g(tnow) be the centroid of;

sendy(tnow) to Bob;

wait until || f (tnow) — 9(tiast)|| > BA;

P — PN Ball(f(thow), BA);

The algorithm for théR? case maintains rounds sim-
ilarly as the one dimensional case. We just pick the
Tukey median to send in each triggering of communi-
cation. Since whenevelf (thow) — 9(tnow)| > A,
Ball(f(tnow),A) is strictly contained in a halfspace
bounded by a hyperplane passing through.:), the
cardinality ofS decreases by a factor of at leag{d+1).
Thus, the algorithm sendsg, 1 [So| = O(dlog|So|)
messages in each round.

To put things together, notice that initially, the st
contains at most

o o b~ W

Let wimax(P), wmin(P) be the maximum and mini-
mum directional width ofP, respectively. Our volume-
cutting algorithm also proceeds in rounds, and the pro-
cedure for each round is outlined in Algorithm 2. There
are two differences between Algorithm 1 and 2. First, we
now do not maintain the s&t, instead we maintai® as

4 /(4A] +1)d e([4A] + 1)d\ the intersection of a collection of balls. Note tHatould
Z ( I1+1 > =0(d (T) be maintained efficiently since the number of intersecting
balls is polynomial ind andlog A as we will show later.
points, since}Ball(v, 2A) N Z‘i| < ([4A] +1)4. There- Second, instead of sending the mediaPafi S, we send
fore, we have the centroid ofP to Bob. The correctness of the algorithm
is obvious since any point iR is within a distance o8 A
THEOREM3.1. There is anO(d” log A)-competitive on- to f(t,,,.,). As for the competitive ratio, it is easy to see
line algorithm that tracks any functiofi: Z* — Z-. that P always contain$. Thus whenP contains no point

=0



cap with diameter < A

Figure 1: The relation between,i, (P) andwyax(P)

in Sy, we can safely terminate the round, knowing th&efore proving Lemma 3.3, we first show the following
Appr must have sent a message. However, we cannot sfaets.

ply repeat the algorithm and wait tilP is empty, since it

may never be. Instead we will stop the round when théMMA 3.4. Let H be any supporting hyperplane &f
maximum width ofP is small enough (we will show lateratp € 0P, thatis, H containsp and P is contained in
how to conduct this test efficiently), and then argue th@fe of the two halfspaces bounded/y Then there is a

when this happens must be empty. ball B with radius A such thatH is tangent toB at p
We need the following result proved by GrunandB containsp.
baum [12].

Proof: It is easy to see that there is a unique alwith
LEMMA 3.2. ([12]) For a convex seP in R?, any halfs- centeros and radius3A such that is tangent taB atp
pace that contains the centroid £falso contains at least andB is on the same side éf asP. We show thaf® must
1/e of the volume of. be contained inB. Suppose not, there must be a point
S P such thaty ¢ B. Let.J be the two-dimensional
plane spanned byg,p andq, intersectingH at line [;
Figure 1(a) shows the situation oh SupposeP is the

SinceBall(f(tnow), BA) is contained in a halfspac
not containing the centroid dP, every time a communi-
cation is triggered in Algorithm 2, we have

intersection ofB;,7 = 1,..., m. Clearly, the intersection
vol(P NBall(f(tnow), BA)) c1_ 1 betweenJ and anyB; is a diskD; containingp andgq.
vol(P) e’ Simple planar geometry shows tliab,; mustintersectat

that is, the volume of the convex sBtcontainingS will two points, since the radius @; is no more tha_r;ﬁA an_d
llosq|l > BA. Letw,;,v; be the two intersection points

be decreased by a constant factor, etweerd D; andl, andp’ be the projection of on line!.

The rest of our task is to bound the iterations in each. e
. . . is also easy to see that onewf v;, saywv;, is different
round. At the first glance, the number of iterations cou . : p

anp and lies at the same side pfasq’. Therefore,

be endless, sinc2 might be cut into thinner and thinner,, . . . .
; . . the intersection of all such diskd; (1 < ¢ < m) must
slices. Fortunately, we can show that such a situation will” . . .
contain a segmerv; wherew; is the closest point tp

?DOEI ;c';ppae gegg snl)afllgglglsuv?/iethoietzﬁ :]?;ttgﬁgveeare Cumgﬁ‘long all the points;,i = 1,..., m, which means that
9 ge. P, the intersection of all thés;, must lie on both sides of
LEMMA 3.3. If wpax(P) > €A, then wnin(P) = H,acontradiction. O

Q(e2A).



LEMMA 3.5. Let M be the intersection of two balls ofsome constant, which means that the volume &f is at
radius 7 in RL. If wypa(M) > er, thenwy, (M) = least(c- ¢2A)?/d! by Lemma 3.6. Then by Lemma 3.2,
Q(e3r). as well as the fact that at the beginning of the round,

) _.vol(P) < (4A)?, we know that after at most
Proof: Let By, B> be two balls whose intersection is
4A)? d
log # =0 (dlog —)
€

M and leto1,0, be their centers, respectively. Le%3 1)

S1, 52 be the boundary oB; and B,. It is clear that ‘™ (c-€2A)d/d!

the intersection ofS; and S, is a (d — 2)-dimensional ) S .

sphereS. Letp be an arbitrary point or$, and let.J be triggerings of communication in Algorithm 2yyax(P)
the two dimensional plane passing throygh:, 0, and will t_>e less thaneA._ At this moment., conS|d.er the’
intersectings at another poing. Itis easy to see thipg| ©Ptained by replacing all the balls in Algorithm 2 by
is equal to the maximum width o/, andwmin (M) is balls with radiusA. By triangle inequality, we know that

equal to2(r — /72 — (|[pq|l/2)2); see Figure 1(b). ThusP’ = 0. Recall thatAgpr is only allowed an error of\.
if ||pgl| > er, thenwmm (M) = Q(e2r). 1 Therefore, Ager must have already sent a message since

P =0.

Proof: (Lemma 3.3) LetQ be a polytope inscribed Running time. Generally, it is hard to compute the
in P such that the diameter of every cap formed hyentroid of a convex body [20]. However, Bertsimas and
the intersection ofP and a halfspace bounded by th&empala [3] showed that there is a randomized algorithm
hyperplane containing a face 8€) is no more thark; see that computes an approximate centroid of a convex body
Figure 1(c). Lef be the direction in which the directionalgiven by a separation oracle. Formally, they proved the
width of @ is minimized. LetH, and H, be the two following.
parallel supporting hyperplanes @forthogonal tq:. Let _ )
p.q be two points onQ N H, andQ N H, respectively LEMMA 3.7. ([3]) Let K be a convex body if” given
so thatpq is in the direction of.. Such two points must PY & separation oracle, and a point in a ball of radits
exist sinceQ is a polytope. LetH, and H, be the two thatcontainsk’. If wy,in(K) > r, then there is irandom-
hyperplanes parallel té7, and H, and support? at = 1zéd algorithm with running timeoly (d, log (£)) that
andy, respectively. Suppose the lipg intersectsf, and Computes, with high probability, the approximate centroid
H, atz’ andy’, respectively. z of a convex sek such that any halfspaces that contains

" From Lemma 3.4 we know that there is a ball, 2 also contains at least/3 of the volume of’.
centered ab} with radiusA containingP and tangent
to H,. Picko; on the linepg betweerp andq such that
[[or2’]] = ||ojz||. By triangle inequality it is easy to se
that the ballB,, centered ab; with radius (A + \)
must containB,, and thereby contain the convex get
Similarly, there is another baB,, entered ab (02 € pq)
with radius(8A + X) containingP if we considery, y’
instead ofr, 2’. Letp’ = 0B,, Npg andq¢’ = 9B,, NDq.
We have

In our case, sinc@ is the intersection of)(d log g)
balls, we can simply implement the separation oracle
eoy checking each of these balls one by one. Moreover,
f(tstart) could be used as the starting papntequired by
Lemma 3.7. We set = ¢ - €2A, thus computing approx-
imate centroid could be done in timely (d,log (2)). If
the algorithm of Lemma 3.7 fails, then with high probabil-
ity, wmax(P) < €A. This fact together with the discussion
;. after Lemma 3.6 provide us a way to avoid monitoring the

Ipall < wiin(P) < IP'¢'ll- maximum width of P at the beginning of each iteration

Note that|p’¢’|| is the minimum width of\/ = B,,NB,,. in Algorithm 2, which is expensive. More precisely, we
By lemma 3.5, we know thaby,.x (M) = O(||p’d’||/€) slightly modify Algorithm 2 as follows.
provided thatwy,.«(M) > eA. Finally, if we choose

X sufficiently small, we haves,in(P) > Q([lp'¢|) > 1. Line 2 — while the number of iterations in the
Qe - waman (M) > é(e.w ' (;53‘ - 0 current round is no more than (3.49

2. Line 3 — compute the approximate centroid &f
using the algorithm of Lemma 3.7 and assign it
to g(tnow); If the algorithm of Lemma 3.7 fails,
terminate the current round;

The lower bound on the minimum width implies a
lower bound on the volume of. Formally, we have
(proof omitted from this extended abstract):

LEMMA 3.6. Let K be a convex set iR<. If wu(K) >r .
forall ji € S9-1, thenvol(K) > r?/d.. THEOREM3.2. There is an (O(dlog(d/e)),1 + ¢)-

competitive online algorithm to track any functigh :
By Lemma 3.3, we know that as long @s,..(P) > Z7 — Z_‘i- The algorithm runs in timgoly(d, log 1)
e/, the width of P in all directions is at least - ¢2A for atevery time step.



3.2.2 Thecasewith 3 = 1 Recall that in Section 3.1,function f : ZT — 2V, whereU is a finite universe con-
we have shown that considerisg = Co UC5...UCy,1  sisting ofd items. We can represent each Setc 2V as

is enough. Since is the collection of points that area {0,1}-vector inR9, and define the difference between
centers of the smallest enclosing balls of at mbst 1 two setsX andY to be thel; distance between the corre-
points inZ<, the following fact can be established (procgponding vectors ifiR? (note that the Hamming distance

omitted from this extended abstract). between two sets is just the square of tHeidistance).
Ideally, Alice should send out subsetd 6fo approximate
LEMMA 3.8. For any pointss = (z1,...,24) in Sy, f(tnow), Dutapplying our previous algorithms would send
z; (1 <4 < d) are fractions in the form of wherey, z out vectors with fractional coordinates. Unfortunatety, i
are integers andz| < d!(16A2d)“. we insist that Alice always sends a set, that i§0al}-

vector to Bob, the competitive ratio would be exponen-
By this observation, we know that the distance bé&ally large in A, even we allow a relatively large?, as

tween any two points it§, is at leastl /(d!(lGA?d)d)2 . shownin the next theorem.

Therefore, by setting = 1/8A(d!(16A2d)d)2, we THEOREM3.4. Suppose that there is an(a,f3)-

know that oncevnax(P) < €A, there is at most one IOOintcompetitive algori_thm for onl_ine tracking : Z+ — 2V
of Sy in P. The rest of our job is to find such a point if i@"d|U| > (BA)?, |f2the algorithm can only send subsets
exists. Once the pointis found, we just send it to Bob, afiU, thena: = 247 for any constant < 19/18.
the round will terminate as soon g$t,,.,) getsA away
from this point. However, directly computing such a poi
might be expensive. Instead we use an indirect way to fi
the last surviving point.

We say a number is goodif = = £ with y,z € Z :
and |z| < dI(16A2d)%. A point s is goodif all of its 'terations. . .
coordinates are good. The basic idea is that if we can Let Sp be the set of possible vertices sent Mypr

successfully compute the centrqgicbf P, we can snap Idn Its Iaztﬁcicommunlcatlon_,r:‘hat |sc,j_all IFhe grt_mes within
to its nearest good point If there is a points’ € Sy istanceA from f(tstart). The cardinality ofSo is

fzroof: Without lose of generality, let = {0, 1}4, where

ds chosen to bé3A)? + 1. Similar to the proof of
theorem 2.2, we just need to show that the adversary
can manipulatef (t) so that a round will have at leasat

inside P, then we must have’ = s. Thusifs ¢ P, we AZ
simply terminate the current round; otherwisenust be 1S0| = Z (d) _ Q(2A2).
the last point ofSy in P. The difficulty is thatwy, (P) P k

could be very small, so that Lemma 3.7 cannot be applied

directly. To avoid such a situation, we expaRdslightly The adversary Carole sets = S, at the beginning of

by increasing all the balls’ radii fron\ to (1 + €)A. €achround and then manipulates the value of the function

Denote byP’ the intersection of these enlarged balls. Thé according to the online algorithmlse.,, as follows.

observation is that, by our choice afif there is a point WheneverAsy, sendsv € H, Carole changey to

s' of Sy in P, thens' is still the only point ofSy in P/. u = 1 — v, that is, flipping all the coordinates of.

Now we can apply the algorithm of Lemma 3.7 Bhwith  Since |[v,ul| > BA, Asq. has to communicate again.

r = c-€2A. Ifthe algorithm fails, we know tha? mustbe Every time Carole uses a valuefor f, S'is cut asS «

empty. Otherwise we obtain a poipte P’. Finally, we SMBall(u,A). SoS losesatmost(let= -1 < 1/18)

find s by rounding each coordinate pto its nearest good J ; N

number, and check i € P. The rounding could be done . 3eA2

in polynomial time according to a theorem by Khintching{_Ball(u’ Al = Z (k) - (3€A2) < (e/e)

(cf. [14, Chapter 4]).
By the choice of and Theorem 3.2, we obtain theslements. Thereforedsy. will communicate at least

following:

k=A241

P K
THEOREM3.3. There is anO(d? log(dA))-competitive {2 (W) =Q(c™) (¢>1whene <1/18)
online algorithm to track any functiofi : Z+ — Z?. The

algorithm runs in timepoly (d, log A) at every time step. times beforeS becomes empty. 0O

3.3 Online tracking a dynamic set One of the main Therefore, to avoid an exponentially large competi-
applications of online tracking in high dimensions isve ratio, we have to allow the algorithm to send vectors
tracking a dynamic set. Formally, we want to track theith fractional coordinates. We can use the previously
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Figure 2: (a, b) Cutting in the parametric space. (c) Congidea small set of lines is enough.

developed algorithms to guarantee thatihdistance be- tion of f that has been scanned. However, the partial so-

tween f(t,0.,) and the fractional vectaj(;.s:) sent by lution could keep changing at each time stepfds ob-

our algorithm is no more thad. If in some applications served. While in our problem, we need to make an imme-

it is unnatural to report to the client a vector with fraceliate decision on what to communicate at each time step

tional values when the underlying function being trackegheneverf deviates more thai from the prediction pre-

is a set, the tracker could convert the vector to a¥sély viously sent.

probabilistically rounding every coordinatesg;qs: ). It Our algorithm with line predictions still follows the

can be easily shown that the expected distance betWeegeneral framework outlined in Section 2. At the beginning

and f(t,ow ) IS NO More that\. of each round (assuming;.,» = 0), we just sendf(0)
Finally, we notice that iff is always a{0, 1}-vector to Bob, and predictf to be f(0). Let¢; be the time

in R9, the points inSy must be in the form of 0, %, 1}4, of the first triggering. We parameterize the lines by

namely, the distance between any two pointsSinis ¢o, g1, meaning that the lingyo, ¢1) passes througtt, ¢o)

at least1/2. Applying this fact in the algorithm of and (¢;,¢1). We call the(qo, ¢1)-Space the parametric

Section 3.2.2 gives us the following: space, thus any line sent out by the algorithm is a point

in the parametric space. Ld&? be the region in the

THEOREM3.5. There is anD(d log(d))-competitive on- parametric space consisting of all the points that are

line algorithm to track any dynamic s¢t: Z+ — 2U. valid A-approximations off(0) and f(¢1), which is a
square (Figure 2(a)). We will pick a point(t;) in P
4 Online Tracking with Predictions and send it to Bob. Suppose at timg ¢(¢1) fails to

approximatef (t2). Let Q be the region in the parametric
pace consisting of all the valiN-approximations of (0)
nd f(t2), which can be shown to be a parallelogram

In this section, we further generalize our model by co
sidering “predictions” . We assume that Alice tries t
predict the future trend of the function based on history. :

. re 2(b)). We updat® — P N @, and then iterate
and then sends the prediction to Bob. If the actual fuq lgure 2(b)) up (_ @ !

. . . e procedure. It is easy to see thatlif; does not need
tion values do not qlewgte _from the prediction by _morgny further communication in the current round, its last
than A, no communication is necessary. One can im

. . : N IM3Gie ssage must lie inside.
ine that whery is “well behaved”, using good predictions The major task is to choose the initial s&t= S,

could greatly reduce communications incurred. Indee 'the beginning of the round. After that, the algorithm is

the same approach has been taken in many heu”s“cgi#-ﬂnar tothatin Section 3.1, that is, at every triggering w

practice [6, 7, 13]. In this paper we only consider the Cas€ jateS S N P and send the Tukey median §f The

where the algorithms (both the online and the offline) ug alysis also follows the same line. Lt = {(t, y) | ¢ €

Iirlear functions as predictions, and fér= 1; th_e 'Fech- T],y € {Z+AYU{Z—A}}, where{Z + A} denotes the
nigue can be extended to more general prediction fu %t{x |2 =y + A,y e 2}, and similarly{Z — A}. Let

t'onslnag(:]:'gggrjgﬁ'otﬂ: offline problem is to a roxﬁ be the collection of lines passing through two points in
. . ' P ) aPPIOXy; ) et X be the collection of intersection points between
imate a function by a small number of straight line se

ts. O'Rourke [18 i i lqorith t%’ne t = 0 and lines inL, andY be the collection of
ments. ourke [18] gave a linear-time algorithm ﬁ'ltersection points between line= ¢; and lines inL.

compute the optimal solution. His algorithm is “onlineW
. . e choose5, to be{(qo,q1) | g0 € X,q¢1 € Y} NP (P
but in the sense that the algorithm scgnsnly once, and is the first square we get).

the partial solution computed so far is optimal for the por-
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