Random Sampling over Joins Revisited

Zhuoyue Zhao I Robert Christensen !, Feifei Li !, Xiao Hu 2 KeYi?

!'University of Utah

ABSTRACT

Joins are expensive, especially on large data and/or multiple relations.
One promising approach in mitigating their high costs is to just return
a simple random sample of the full join results, which is sufficient for
many tasks. Indeed, in as early as 1999, Chaudhuri et al. posed the
problem of sampling over joins as a fundamental challenge in large
database systems. They also pointed out a fundamental barrier for
this problem, that the sampling operator cannot be pushed through
a join, i.e., sample(R <1 S) # sample(R) >t sample(S). To overcome
this barrier, they used precomputed statistics to guide the sampling
process, but only showed how this works for two-relation joins.

This paper revisits this classic problem for both acyclic and cyclic
multi-way joins. We build upon the idea of Chaudhuri et al., but
extend it in several nontrivial directions. First, we propose a gen-
eral framework for random sampling over multi-way joins, which
includes the algorithm of Chaudhuri et al. as a special case. Second,
we explore several ways to instantiate this framework, depending
on what prior information is available about the underlying data,
and offer different tradeoffs between sample generation latency and
throughput. We analyze the properties of different instantiations
and evaluate them against the baseline methods; the results clearly
demonstrate the superiority of our new techniques.

ACM Reference Format:
Zhuoyue Zhao ! Robert Christensen !, Feifei Li !, Xiao Hu 2, Ke Yi 2 . 2018.
Random Sampling over Joins Revisited. In Proceedings of Management of
Data (SIGMOD ’18). ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Join is a fundamental operator in relational database systems. Many
queries and analytical workloads rely on join operations to link
records from two or more relations. Many queries on unstructured
or semi-structured data, such as subgraph pattern matching in graph
databases, can also be formulated as relational joins. On the other
hand, joins are expensive, especially over large amounts of data
and/or multiple relations (known as multi-way joins).

However, an important observation is that many applications
do not require the full join results. Instead, a random sample of
the join results often suffices [2, 8]. Examples include estimating

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

SIGMOD 18, June 2018, Houston, TX, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-Xxxx-X/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ZHong Kong University of Science and Technology
{zyzhao,robertc,lifeifei } @cs.utah.edu

{xhuam,yike} @cse.ust.hk

aggregates like COUNT, SUM, AVG, more sophisticated analytical
tasks like medians and quantiles, kernel density estimation, statistical
inference, clustering, regression, classification, etc. Essentially, any
analytical task that depends on the data holistically can still work
with a sample in lieu of the full data!. In fact, the entire literature
of statistics is about how to effectively make use of a sample and
quantify the accuracy of a particular sampling procedure.

Among the many sampling methods, a simple random sample
is the most widely used and studied in the statistics literature. In
a simple random sample of size k, each element in the underlying
population is picked with equal probability, and the procedure is
repeated k times independently. One can also distinguish between
sampling with replacement and without replacement. In the latter
case, a sampled element is removed from the population after it is
sampled, so that the sample must contain & distinct elements.

While simple random sampling is easy when the underlying pop-
ulation can be directly accessed (e.g., stored in an array), it becomes
highly nontrivial when it is given implicitly, such as the results of
a join. Indeed, at SIGMOD’99, two prominent papers [2, 8] simul-
taneously posed the problem of random sampling over joins as a
fundamental challenge to the community, while offering some partial
solutions. Acharya et al. [2] observed that when the join consists
of only foreign-key joins that follow a special structure, then the
join results map to just one relation, which makes the problem much
easier (more details given in Section 2.3).

A fundamental challenge for the problem, as pointed out in [8], is
that the sampling operation cannot be pushed down through a join
operator, i.e., sample(R) >t sample(S) # sample(R < S). Each joined
pair of tuples in sample(R) >< sample(S) is uniformly chosen from
the full join results, but there is strong correlation among the pairs.
In fact, the series of work on ripple join [11, 13, 14, 16] for online
aggregation exactly studies how to use a such a non-independent
sample for estimating simple aggregates like COUNT, SUM, AVG,
which is non-trivial and can be costly. Furthermore, it is still not
clear how to use non-independent samples for all the other not-so-
simple analytical tasks mentioned above. Interestingly, the recent
wander join algorithm [22] returns independent but non-uniform
samples from the join, which again, can only be used for estimating
aggregates due to non-uniformity.

Another important motivation for us to revisit this classical prob-
lem is the recent trend to combine relational operations and machine
learning into a unified system, such as Spark [5]. In addition to the
obvious benefit of avoiding data transfers between different systems,
a greater advantage of a unified system is the potential performance
improvement for both the relational processing (in particular, joins)
and the machine learning task. Recent works on learning over joins

'Notable exceptions include MAX and MIN.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SIGMOD ’18, June 2018, Houston, TX, USA

[21, 32] present a promising first step towards this direction. Their
approach is based on factorized computation, thus only applies to
specific machine learning models such as linear regression. On the
other hand, we believe that sampling over joins provides a more
general solution to this problem. Indeed, there is a well established
theory in statistical machine learning that relates the sample size
needed to train a model with the model’s inherent complexity and
expressive power (i.e., VC dimension). Thus, when the training is
to be done on the join results, which can be very large, taking a
random sample over the join and training the model with the sample
can bring great savings for both computing the join and training the
model, while incurring a small and bounded loss in accuracy. Note
that, however, this theory requires the sample to be uniform and
independent, so neither ripple join nor wander join can be used.

To obtain uniform and independent samples, Chaudhuri et al. [8]
proposed two methods. The first one, which attributes to Olken [25],
rejects samples from sample(R) >t sample(S) with appropriate prob-
abilities. The second method takes samples from R non-uniformly,
guided by the statistical information on S. However, they only con-
sidered the problem over two-relation joins; extension to joins over
3 or more relations was left as future work but was never finished.

Our contribution. This work revisits this classic yet important
problem. We design a general join sampling framework that incorpo-
rates both Chaudhuri et al.’s method and Olken’s method as special
cases, but extend their methods in nontrivial ways to handle arbitrary
multi-way joins, acyclic or cyclic, and with selection predicates. In
doing so, we leverage on new results on join size upper bounds
[6, 18, 22], which results in significant improvements in sampling
efficiency. Our sampling framework can be instantiated in various
ways, depending on what prior information is available about the
underlying data, and offers different tradeoffs between sample pro-
duction latency and throughput. Specifically, this paper makes the
following contributions:

e We design a general join sampling framework (Section 3)
that can be combined with any join size upper bound method.
Any instantiation of the framework always returns uniform
and independent samples from the full join results, as we will
show later in Theorems 3.1, 5.1, and 5.2, but may differ in
sampling efficiency.

e We show that existing algorithms on join sampling are special
cases of our framework, and present new instantiations of the
framework to process multi-way joins (Section 4).

e We show how to extend our framework to process general
multi-way joins, acyclic or cyclic, with or without selection
predicates (in Section 5).

e We perform extensive experimental evaluations using both
TPC-H benchmark and a large social graph data set to investi-
gate the performance of the proposed approach, and compare
our methods with other baselines. The results in Section 6
have clearly demonstrated the efficiency and scalability of
our approach, and its superiority over other methods.

e We present insights to various instantiations based on their
algorithmic properties and empirical performance in Section
7, and a few useful extensions (e.g., condition join, group-by,
update) and the limitations of our approach.

Section 2 provides the background of our study, Section 8 reviews
the related works, and the paper is concluded in Section 9.

Zhuoyue Zhao 1. Robert Christensen ', Feifei Li !, Xiao Hu 2, Ke Yi 2

R; An input relation.

Aj,A,B,C,... | The attributes.

dom(A) The domain of attribute A.

1,1t Tuples.

o The set of all attributes.

o (R;) The attributes of R;.

I A join query (represented as a hyper-graph).

F(I) The instance hyper-graph on instance /.

J The set of join results.

ds(v,R) Frequency of v on attribute A in R.

Mu(R) Maximum frequency of any value on A in R.

70 The root tuple that joins with all tuples in R;.

w(t) The join size of ¢ with all relations below.

w(t,R) The join size of r with R and all relations
below R.

W(t),W(t,R) | Upper bounds on w(t) and w(z,R).

w(R),W(R) Yicrw(t), XicrW(2).

Ri1 ,Ri27 . The child relations of R;.

I The skeleton query (must be acyclic).

I The residual query.

M, The largest number of tuples in /7 that can
join with any join result in .723.

Table 1: Notation used in the paper.

0

(a) A chain join.

® @Hl @ @

0 \©

(b) A star join.

(c) A cyclic join.

Figure 1: Several joins represented as hyper-graphs.

2 PRELIMINARIES
2.1 Problem definition: Join as a Hyper-Graph

Let <7 be the set of attributes in a database, and let <7 (R;) be the set
of attributes in relation R;. A multi-way join query Ry < --- <R,
can be represented as a hyper-graph ¢ = (<7, {</(R;),i=1,...n})
where each vertex represents an attribute and each hyper-edge con-
tains all the attributes of a relation. Some visual examples of hyper-
graphs for various joins are shown in Figure 1.

For each attribute A; € <7, let dom(A) be its domain from which
values are drawn. We sometimes use the notation such as R;(A, B) to
denote <7 (R;) = {A, B}. For simplicity of presentation, we assume
that any two relations join on at most one common attribute?.

Each tuple ¢ in R; assigns each attribute A € <7 (R;) to a value
a € dom(A). A join result 7 is thus any assignment of values to all
the attributes in .27, such that for each R;, there exists a tuple ¢t € R;
that is consistent with 7, i.e., T (g,) T =t. Figure 2 shows an example
of the chain join in Figure 1a on a particular instance.

2When this is not the case, a “composite” attribute can be introduced to combine
multiple attributes into one.

Random Sampling over Joins Revisited

R R, R3 R <Ry D<1R3
A|B B|C c|D A|B|C |D
12 2[18 18[101 1[2]18]101
202 5018 18[102 1|2 18102
316 6[20 26103 2 (21810l
417 631 31]104 2|2 18] 102

7|32 31626103
316 |31 104

Figure 2: Relations R, Ry, R3 with the join R| < Ry t<1 R3.

Given a particular database instance /, we can also view each
distinct attribute value as a vertex, and each tuple as a hyper-edge,
which contains all the values in this tuple. We call this (hyper-)graph
the instance (hyper-)graph, denoted 77 (I). Thus, for the case of the
3-relation chain join in Figure 2, a join result 7 corresponds to a
length-3 path in the join graph that starts from some value in dom(A)
and ends at some value in dom(D).

For a general join query .77, a join result is a subgraph of .7°(I)
that contains exactly one value in each dom(4;) for all A; € <.
The problem of join sampling is to return each such subgraph with
probability 1/]J|, where J = R) > - - > R,, represents all join results.

Returning just one sampled result is usually not enough, and one
would like to generate sampled results continuously until a certain
desired sample size k is reached. Join sampling requires that these
samples are totally independent.

2.2 Sampling two-relation joins

We first review the existing algorithms for sampling two-relation
joins. Consider R (A, B) > Ry(B,C), where B is the common join
attribute of the two relations. For any value v € dom(B), let dg(v,R;)
be the frequency of v on attribute B in R;, i.e., dp(v,R;) = |t : t €
R;,mp(t) = v|. Let Mp(R;) = max, dg(v,R;).

The first algorithm was due to Olken [25]. His algorithm first
samples a tuple #; uniformly from R;, and then uniformly samples a
tuple r, from R, from all those tuples that join with ¢1, i.e., Tp(t2) =
7p(t1) = v. Finally, it outputs the join result | <7, with probability
dp(v,R2)/Mp(R;), and rejects it otherwise.

Olken’s algorithm may have a high rejection rate if Mp(R;) is
much larger than typical value frequencies in R. The observation of
Chaudhuri et al. [8] is that, if the frequency information dg(v,R;)’s
are known, then the sampling efficiency can be greatly improved
by sampling a tuple #; € R with 7g(t;) = v with probability pro-
portional to dp(v,R;). After such a tuple #; € R; is sampled, we
then simply randomly pick some #, € R; that joins with #;, and re-
turn the join result without rejection. In the case that full frequency
information is not available, they used a hybrid strategy, which han-
dles high-frequency values (for which frequencies are assumed to
be available) with their method, and handles low-frequency values
using Olken’s method.

Both Olken’s algorithm and Chaudhuri et al.’s algorithm can be
implemented if indexes are available on the join attribute B. If not, a
full scan on both relations is needed.

2.3 Sampling multi-way foreign-key joins

At the same SIGMOD conference with Chaudhuri et al.’s algorithm,
Acharya et al. [2] actually studied the problem of sampling over
multi-way joins. However, their algorithm only works for acyclic
foreign-key joins with a single source relation, where R, is called the
source relation in [2]. In the hyper-graph terminology, such a join

SIGMOD ’18, June 2018, Houston, TX, USA

must satisfy the following requirements (possibly after relabeling
the relations):

(1) for any i < j with &7 (R;) N/ (R}) # 0, their common attribute
is a primary key in R; and a foreign key in R;; and

(2) for any i < n— 1, there exists a j > i such that &/ (R;) N
(R j) #0.

A strong implication of these two requirements is that there is a
one-to-one mapping between R,, and the join results, so R, is called
the source relation. Hence, sampling from the join results reduces to
just sampling from R,,.

For example, the database instance shown in Figure 2 does not
meet these requirement, even after any relabeling of the relations.
Sampling such a join cannot be reduced to sampling any single
relation, and this will be the key challenge to tackle in this paper.

3 A JOIN SAMPLING FRAMEWORK

To tackle the problem of sampling over multi-way joins, we first give
a general join sampling framework that incorporates both Olken’s
algorithm and Chaudhuri et al.’s algorithm as special cases. In Sec-
tion 4, we show several instantiations of this framework, leveraging
the latest join size bounds developed in the literature.

We will first consider chain joins; extensions to other types of
joins are given in Section 5. To ease the presentation, we introduce
an Ry, which has only a single “root” tuple r(, and it joins with all
tuples in R;. Furthermore, for each R; and each tuple t € R;, define

w(t) = [DRy 1 DR D4 -+ DI Ry .

Thus, w(rg) is just the full join size; for any ¢ € R,,, w(t) = 1.

Let W(¢) be an upper bound on w(z). In fact, all instantiations
of this framework only differ in how the W (¢)’s are computed. The
basic idea of this sampling framework is that a tuple # should be
sampled using weight w(t). But w(¢) is often not available, so we
use W(t) as a proxy, but then have to reject the sample with an
appropriate probability. To simplify notation, we use the shorthand
Ww(R) =Y egw(t) and W(R) = Y,cg W(t), where R can be any set of
tuples. We maintain the following invariants on the W (¢)’s:

W(t) > w(t), foranyt; (1)
W) =w(t)=1, foranyt€Ry,; 2)
W(t) > W(t<Ris1), foranyteR,0<i<n—1. (3)

Note that the semi-join 7 < R;; | represents the set of all tuples in
R; that join with 7. In fact, invariants (2) and (3) imply (1), but we
prefer to keeping it for clarity. The algorithm is described below.

Below we show that each join result will be returned by Algo-
rithm 1 with equal probability, under Invariants (1-3). Thus, invoking
it multiple times will return a random sample with replacement. If
sampling without replacement is desired, we can simply reject a
sample if it has already been sampled.

THEOREM 3.1. On a chain join, Algorithm 1 returns each join
result in J with probability 1 /W (rg), where W (rg) > w(r,) = |J| is
an upper bound value on the join size before the algorithm runs.

PROOF. We will show by induction that, for any i, every partial
join result (rg,ty,...,t;) € Ry>IR| > --- < R; is sampled with prob-
ability W (¢;) /W (ro). Then, taking i = n and applying Invariant (2)
would imply the theorem.

SIGMOD ’18, June 2018, Houston, TX, USA

Algorithm 1: Sampling over a chain join
Input: Ry,---R,,W(t) forfy and any 7 € R;, i € [1,n]
Output: A tuple sampled from R < - - - I R, or reject
t < rp;
§ <+ (ro);
fori=1,...,ndo
W'(1) + W(2);
W(t) < W(t=R;);
reject with probability 1 — W (¢ < R;) /W' (¢) ;
t < arandom tuple ¢’ € (t < R;) with probability
W (") /W (t<R;);
8 addrto S;
end

10 report S;

—

DS T Y B R T 8

e

The base case i = 0 is trivial. Assuming this holds for i, and we will
show that it also holds for i+ 1. Consider any (rg,t1,...,t_1,t) €
Ro >R <1 -+ > R;. By the induction hypothesis, we know that
(ro,t1,-..,ti—1) is sampled with probability W (z;_1)/W (rp). The i-
th step of the algorithm does not reject the sample with probability
W (t;_1 =< R;)/W(t;_1). Conditioned upon not rejecting, #; is sam-
pled with probability W (#;) /W (t;—1 < R;). Thus, the probability that
(ro,t1,-..,t;) is sampled is

Weio) Wlii=<R) W) _ W)
W (ro) W(tio1) W(ii=<R) — W(ro)®

]

Note line 5 of Algorithm 1 updates W (¢), thus making Invariant (3)
tight at 7. This has no effect on the current invocation of the algorithm,
but will be helpful in future invocations when more samples are
needed.

By Theorem 3.1, the sampling efficiency (i.e., the probability
that it successfully returns a sample) is |J|/W (rg), so we want to
make W (rg) as close to |/| as possible. The algorithm is thus self-
improving in the sense that, each invocation (including those that
reject a partial sample) tightens some of the W(¢)’s. Eventually,
when Invariant (3) is tight at all tuples, we would have W (rg) = |J|,
hence 100% sampling efficiency.

Remarks. Note that instead of having all W (¢)’s, for 7y and any
t € R; (i € [1,n]), as an input to Algorithm 1, the algorithm can also
take any method that is able to derive an upper bound W (¢) for any
given tuple ¢ to initialize a W(¢) on the fly, and it does so only for
those #’s that are encountered during the sampling process. Regard-
less of the choice of W (t), Algorithm 1 always returns independent
samples as well. The reason is that an accepted sample returned by
Algorithm 1 is always uniform regardless of the history of samples.
By Bayes’ theorem and induction, the joint probability of a set of
samples is the product of their individual probabilities, which means
the samples are mutually independent.

Both Olken’s and Chaudhuri et al.’s algorithms are special cases of
Algorithm 1 when it degenerates into the case n = 2: Olken’s method
corresponds to setting W (t;) = Mp(R;) for all ; € Ry, assuming
Ry =AB and R, = BC (recall that W (¢;) must be 1 for all) € R»).
Chaudhuri et al.’s algorithm sets W (1) = w(t1) = |t; < R, | for any
t1 € Ry. Thus, it has 100% sampling efficiency, but needs the full
frequency information on the join attribute from R5.

Zhuoyue Zhao 1. Robert Christensen ', Feifei Li !, Xiao Hu 2, Ke Yi 2

4 FRAMEWORK INSTANTIATIONS

As mentioned, different instantiations of Algorithm 1 only differ in
how the join size upper bounds, namely the W (t)’s, are computed.
There is a tradeoff between latency and throughput: tighter upper
bounds are more costly to set up, but once in place, can generate
samples more efficiently. On the other hand, looser upper bounds
are easier to compute, but lead to low sampling efficiency (due to
potentially higher rejection rates). Olken’s algorithm and Chaudhuri
et al.’s algorithm actually take the two extremes on this tradeoff.
Olken’s algorithm has almost zero setup cost by requiring only the
max degree information but very low sampling efficiency. Chaudhuri
et al.’s algorithm, on the other hand, uses the tightest upper bounds
that lead to 100% sampling efficiency, but requires full frequency
information on R;.

In this section, we first show how these two extreme methods
generalize to an n-relation chain join, and then explore new methods
that strike a better tradeoff between upper bound computation and
sampling efficiency (also for n-relation chain join). We discuss how
to extend to other types of joins in Section 5.

4.1 Generalizing Olken’s algorithm

Generalizing Olken’ algorithm in our framework is straightforward.
For eachrelation R;(A;,A;+1),i=2,...,n,let My, (R;) = max, ds, (v, R;),
the maximum frequency on attribute A;. Note that these basic sta-
tistical information is often kept by the database already. Then, for

i=1,...,n—1, we set W(t)’s as follows.
n
W)= [] Ma,(R))
j=itl

for all ¢ € R;, and set W (ry) = W(R;). Essentially, we assume that
every tuple in R; joins with My, (R;11) tuples in R; . Invariants
(1-3) can be easily verified. We will later refer to the generalized
Olken’s algorithm as Extended Olken (EO) algorithm.

Note that when instantiating Algorithm 1, there is no need to
explicitly store all the W (¢)’s. In the case of Olken’s instantiation,
all tuples in one relation share the same initial value. Only when
Algorithm 1 makes improvements over some of the W (t)’s do we
need to maintain them explicitly.

4.2 Generalizing Chaudhuri et al.’s algorithm

Chaudhuri et al.’s algorithm sets W (¢) = w(¢) for all z. In the case of
a 2-relation join, w(r) is simply the value frequency in R,. For an
n-relation chain join, each w(t) is a sub-join size. To compute all the
w(t)’s, we recall the (hyper-)graph representation of a join and the
instance graph ¢ (I). Our observation is that, for a tuple ¢ € R;, the
partial join # >IR; 1 > - - - DI Ry, is just the set of paths starting from
the edge ¢ going all the way to R;, and w(¢) is the number of such
paths.

While enumerating all the paths (i.e., computing the full join) can
be expensive, computing all the counts can be done using dynamic
programming in linear time O(|R{|+ --- +|Ry|). This dynamic pro-
gramming formulation is based on backward tracing from R, to
R using Invariants (2) and (3), except that > is replaced with = in
Invariant (3). Hence, its cost is linear to the total size of all relations.
We will later refer to the generalized Chaudhuri et al.’s algorithm as
Exact Weight (EW) algorithm.

Random Sampling over Joins Revisited

4.3 Other join size upper bounds

There is a revitalized interest in the database theory community in up-
per bounding a join size. The generality of our sampling framework
allows any of them to be used.

The most well-known result is the AGM bound [6]. On a general
query, it requires solving a linear program and we refer the readers
to [6] and the better-written survey paper [24] for details. However,
in the case of chain joins, the AGM bound is simple and we include
it here for completeness:

[TIR:l.

|Ry <t ARy, | < min
I} CLIN{L,i+1}#0,i=2,...n—2jcf

To plug the AGM bound into the sampling framework, we initial-
ize each W(t) = AGM(R;;| < --- I Ry) for all ¢ € R;. The query
decomposition lemma [24] ensures that Invariant (3) is established
using the AGM bounds to initialize the W (z)’s.

Note that the AGM bound and Olken’s bound are in general not
comparable. If the maximum frequencies are small, then the Olken’s
bound may be smaller. However, in the worst case, the maximum
frequency can be as large as the relation size, i.e., M4 (R;) = |R;|, and
Olken’s bound can be much larger (almost quadratically) than the
AGM bound. In fact, the AGM bound is the optimal bound on the
join size when only the relation sizes are given.

Based on the observation above, another natural idea is to handle
the frequent and infrequent values separately, if partial frequency
information is available. For example, the heavy hitters may have
already been collected by the database system. We illustrate this idea
on bounding the size of R|(A,A,) <1 Ry(A3,A3) > R3(A3,Ay). For
a threshold h, we say a tuple ¢ in R; is heavy if |t' : 1" € R;, w4, (') =
a, (1) > h, otherwise light. Let R{" be the set of heavy tuples in
R;, and RZ-L the set of light tuples. The join R| > Ry > R3 can be
decomposed into 4 subjoins:

Ry R){Z > Ré“,
where each X; can be either H or L. We upper bound the size of each
subjoin as follows. (1) For R| bt Ry <t Rgl (which actually includes
2 of the 4 subjoins), we use the AGM bound, i.e., [Ry|-[RY|. (2) For
Ry <R R, we bound it as |R |- |RE |- . (3) For Ry > R > RE,
we bound it as |R| -h%. (Note that we leverage the generalized
Olken’s algorithm in the latter two cases).

As a concrete example, suppose |R;| = |[R3| = |R3| = 10*. In both
R, and Rj, there is one frequent value that appears in 100 tuples,
while the rest of values each appear in less than 10 tuples. So we have
h=10,|RE| = [R¥| = 100. Then Olken’s bound is |R; |- 100- 100 =
108. The AGM bound is |R{|-|R3| = 108. The improved bound is

IRy |- |RE |+ |Ri|- |RY|-h+|Ry|- W
=10° + 107 + 10°.

4.4 Wander join as initialization

Recently, Li et al. [22] proposed a random walk based algorithm
for join size estimation. To estimate |J|, their algorithm performs
a number of random walks on J#(I) from ry to R,. These random
walks generate non-uniform but independent samples on J, and
still can be used for join size estimation. Our observation is that,
each random walk starting from rq not only can be used to estimate
|| = w(rg), but also each intermediate join size w(r) = | b<I Ry >
-+« DI R,| where t € R; is a tuple on the path of this random walk.

SIGMOD ’18, June 2018, Houston, TX, USA

To improve upon Olken’s loose bounds but also avoid the high
cost of running the full dynamic programming as in the generalized
Chaudhuri’s algorithm, we start by performing a number of random
walks starting from rg. Since the estimation on w(t) is based on the
central limit theorem, which requires a minimum sample size to
hold, these random walks will allow us to obtain estimates on w(t)
only for a subset of tuples with sufficient number of walks.

More precisely, we set a threshold of 8, and for any tuple # such
that at least 6 random walks have passed through, we compute a
confidence interval on w(t), and set W (z) to be the upper bound of
this confidence interval using the wander join estimator [22]. Since
these upper bounds are computed probabilistically, there is a small
chance that Invariant (3) may not hold for some #’s. In this case
we raise W (¢) in a bottom-up fashion, so as to restore Invariant (3)
for all the W (¢)’s. For any tuple ¢ that has not seen enough random
walks, we set W (¢t) = unknown.

Next, we start executing Algorithm 1. Whenever we reach a tuple
t such that there are some ¢’ € t < R; with W (¢') = unknown, we run
the dynamic programming algorithm to compute W (') = w(¢') for
each such ¢'. Note that here, we will run the dynamic program top-
down, computing and memorizing only those W (u)’s that are needed
for computing w(t'). Factually, they are exactly those tuples from
Rii1,--+, R, that participate in the join ¢’ b4 R; | > -+ < R, The
cost of this DP exploration is linear to the number of such tuples
(which is typically much smaller than w(t')).

Another observation is that Algorithm 1 also performs random
walks from rg to find samples, though it is guided by the W (t)’s.
Nevertheless, they still form random walks and the estimator pro-
vided in [22] can still be used over these random walks, so that as
Algorithm 1 returns samples, they can still continuously contribute
to the shrinking of the confidence intervals at all tuples that the ran-
dom walks have passed (which leads to tighter upper bounds W (¢)’s
as more samples being returned).

5 OTHER TYPES OF JOINS

5.1 Acyclic join queries

In this section, we show how to generalize our sampling algorithm
to acyclic join queries. We organize the relations in a tree structure
such that Ry is the root. As before, we also add an Ry which contains
only one tuple ry that joins with every tuple in R;. For every non-leaf
relation R;, let R} ,Riz, ... be the child relations of R;. We use the
notation R; < R; to denote that R; is an ancestor of R; in the tree.

For any R; and any tuple ¢ € R;, the definition of w() changes to

w(t) = |t > (R <R, R))|-
If R; is not a leaf relation, we define w(t,Rf»‘) for a child Rff of R;:
w(t,RE) = [t >a RE va (5.8 <k, R)I-

The basic idea in extending our sampling algorithm from chain
joins to acyclic queries is that, whenever we reach a relation that has
more than one child below (e.g., R, in Figure 1b), we branch the
sampling process into the two subtrees. This means that a tuple in
R; might have multiple children in the Rf."s, which explains why we
also need to introduce w(z,Ré‘), which is the subjoin size with ¢ but
only restricted to one of its subtrees.

Similarly, we introduce join size upper bounds W (¢) and W(t,Rff)

to assist sampling. Invariants (1-3) now become:
W(t) =2 w(), Vvt “4)

SIGMOD ’18, June 2018, Houston, TX, USA

W(t,R*) > w(t,R¥), Vi e R;, R;is anon-leaf; 6))

W(t)=1, VteR;R;isaleaf; 6)

W(t) > HW(t,RfL Vt € R;,R; is a non-leaf; (@)
k

W(t,R{'{) >W(t ><R5‘C)7 Vt € R;,R; is a non-leaf. ®)

While 4 of the 5 invariants are natural extensions from chain joins,
invariant (7) is new. Intuitively, since different branches are indepen-
dent, any join result from one branch can be combined with any join
result from another branch via ¢, resulting in the multiplication of
the join sizes from different branches.

Algorithm 2: ACYCLIC-SAMPLE(t,R;)

W (t,R;) < W(t,R;);

W(t,R;) < W(t<R;);

reject with probability 1 — W (¢=<R;)/W'(t,R;) ;
t < arandom tuple ¢’ € (t < R;) with probability
W (') /W (t<R;);

W' (t) +—W();

W) [T W (1, RY):

reject with probability 1 — (T W (t,R¥)) /W' (t);
addzto S;

if R; is a leaf then return;

10 foreach child relation Rf-‘ of R; do

1 | ACYCLIC-SAMPLE(t,RY);

12 end

—

BwW N

e % 9 o wm

Algorithm 1 now becomes a recursive algorithm as shown in
Algorithm 2, with the initial call being ACYCLIC-SAMPLE(rg,Ry). It
reports S as a sample upon termination, unless the sample is rejected.
Similar to the chain join case, line 2 and line 6 in Algorithm 2 do
not affect the correctness, but iteratively tighten the join size upper
bounds, hence improving the sampling efficiency over time. The
following theorem establishes its correctness, and its proof is found
in Appendix A.

THEOREM 5.1. On any acyclic join, Algorithm 2 returns each
Join result in J with probability 1/W (ro), where W (rg) is the value
before the algorithm runs.

To initialize the join size upper bounds, all methods discussed in
Section 4 can be carried over, though some care has to be taken. In
particular, the AGM bound for an acyclic query is not as clean as the
chain join case; please refer to [6] for details. Olken’s upper bounds
remain as the product of the maximum frequencies in each of the
relations in a subtree. Chaudhuri et al.’s instantiation requires exact
join sizes, which can still be computed using dynamic programming.
In fact, the dynamic programming recurrence is the same backward-
tracing idea as that in chain join, but now uses invariants (6-8)
(replacing < with = in (7) and (8)).

5.2 Cyclic queries

In this section, we extend our sampling algorithm to cyclic queries.
We break up all the cycles in the query hyper-graph by removing a
subset of relations so that the query becomes a connected, acyclic
query. For example, for the cyclic query in Figure 1c, one may
remove any one of R3, R4, or R5. We call the removed relations the

Zhuoyue Zhao 1. Robert Christensen ', Feifei Li !, Xiao Hu 2, Ke Yi 2

residual query, denoted 777, and the main acyclic query the skeleton
query, denoted ;. Note that for very complicated cyclic queries,
e.g., when the query graph is a complete graph with > 5 attributes
and > 10 relations, the residual query may be larger than the skeleton
query. But for most queries that arise in practice, the residual query
tends to be small. We define:

M, = v,-€I(;l[(1)?n)§A,-) |t:t € A, ma,(t) = vi,forall A; € o (JG) N A (A7),
i.e., the largest number of tuples in .7%; once their common attributes
with A have been fixed to particular values. Note that this is equiva-
lently the largest number of tuples in .7 that can join with any join
result from .7Z;. In some cases (e.g., the triangle query below), the
value of M, can be trivially obtained. Otherwise, we can evaluate the
residual query 777 in full to compute M,. The sampling algorithm
for cyclic queries is then given below.

Algorithm 3: CYCLIC-SAMPLE(J%, 74;)

1 t < a sample from J% using Algorithm 2;
2 reject with probability 1 — |t =< 52| /M,
3 return a uniform sample from 7 < J77;

THEOREM 5.2. Algorithm 3 returns each join result in J with
probability W conditioned on a uniform sample being obtained
from J&.

PROOF. Consider any join result of the whole query. Those tu-
ples in .7, using the conditionality, is sampled with probability
1/|74|. Then the algorithm decides if the sampling will continue
with probability |t < J4.|/M,, and if so, samples remaining tuples
with probability | =< 52;|. Thus, the overall sampling probability is

L 7] S U | O
[A5] My [t 2] M| 5]

An example. We illustrate the algorithm on the simplest cyclic
join, the triangle query Ry (A, B) <t Ry(B,C) > R3(A,C). We break
the query into .7 = Ry <\ Ry and /7. = R3. Note that in this case,
M, =1 trivially, assuming the relational algebra semantics that a
relation cannot contain duplicated tuples. This might not be the case
if R3 contained another attribute, say D, or bag semantics is used. If
S0, we can scan R3 once to compute M,.

For the skeleton query, if we use Chaudhuri et al.’s instantiation,
the algorithm will first sample a tuple #; in R; with probability
proportional to the number of tuples it joins in Ry, and then pick
one of these tuples in R, uniformly at random, say #,. Then, the
algorithm computes (¢,1,) <R3, and finds the only tuple #3 € Rj3 that
joins with both 7 and #,, if it exists. Since M =1 in this case, the
algorithm simply returns (1,#,,13) if 73 exists, and rejects otherwise.

Remarks. Interestingly, on a triangle query, our algorithm coin-
cides with the wedge sampling algorithm [33], which is one of the
best algorithms for sampling triangles from large graphs. Similarly,
our algorithm degenerates into the path sampling algorithm [17] on
sampling subgraph patterns with 4 vertices. Note that such a sub-
graph pattern query is a special case of the multi-way join problem,
where there are 4 attributes in total and each relation contains exactly
two attributes. Essentially, our algorithm generalizes these graph
sampling algorithms to arbitrary hyper-graphs.

Another issue is how to decompose the query into the skeleton
query and the residual query. This does not affect the correctness
of the algorithm, but decides its sampling efficiency. Theorem 5.2
suggests that we should decompose the query such that M, - |] is

Random Sampling over Joins Revisited

minimized. We can always compute M, by evaluating the residual
query, which is usually small, but computing the join size of 7 can
be expensive. However, an estimated join size of .7 is sufficient
for making a good enough decision (as in query optimization), and
we can use any existing join size estimation technique, depending
on whether indexes and/or prior statistics are available, for example,
using wander join [22].

5.3 Selection predicates

There are two ways to support selection predicates in our sampling
algorithms. First, we can simply push the predicates down to the rela-
tions. More precisely, we filter each relation with the predicates (by
scan or index probe) and feed the filtered relations to our sampling
algorithm. In fact, for highly selective predicates, this may still be
the best choice. In particular, in the version of our algorithm where
we compute W (t) = w(t) as the exact subjoin sizes using dynamic
programming, since we need to spend linear time in the input size
to set up the sampling framework, it is always beneficial to first
filter the relations to reduce their sizes before running the dynamic
program.

In other instantiations where we aim at lower setup costs, or when
the selection predicates are not very selective, it is more effective to
enforce the selection predicates during the sampling process. More
precisely, we replace every ¢ < R; with 0y (¢ =< R;) in Algorithm 1 and
2, where ¢ is the selection predicate on 27 (R;), if any. Note that
there is no need to change Algorithm 3 since the skeleton query
already includes all the attributes.

6 EXPERIMENTS

The objective of this work is to design scalable and efficient methods
to generate a simple random sample from a join. Once a simple
random sample is obtained from a dataset (in our case, the join
results), many different and useful analytical tasks can be carried out
using the set of samples obtained. It is possible to design specific
methods to approximate certain specific analytical functions without
using a simple random sample (e.g., ripple join [14] or wander
join [22] for online aggregations for SUM and COUNT), but these
methods cannot be generalized to more sophisticated tasks such
as regression and classification. A simple random sample, on the
other hand, is much more broadly applicable as shown in Section
1. Hence, the focus of our experimental evaluation is to understand
the performance of different methods in producing uniform and
independent samples from various joins, rather than how one may
use such a simple random sample for different analytical purposes,
which are well understood subjects in many different domains and
not the focus of our study.

6.1 Experimental setup

We have instantiated the proposed sampling framework with a few
alternatives as presented in the paper. In particular, we have explored
the following methods:

e Full Join (FJ): the baseline method of computing the full
join results. Since we focus on natural joins (equi-joins), we
use hash join as the underlying method (using the optimized
query plan returned by PostgreSQL). The times for full join
we report below only include the time for PostgreSQL to run

SIGMOD ’18, June 2018, Houston, TX, USA

the join to completion. We also tested FJ on a commercial
database system, and the trend is similar.

e Extended Olken (EO): the hybrid approach, that was intro-
duced in Section 4.3, which combines the AGM bound and
the generalization of the original Olken’s algorithm [25].

o Exact Weight (EW): the dynamic programming approach that
computes the exact weight w(r)’s for every tuple in a join
hyper-graph instance. This is a generalization of the original
Chaudhuri el al’s algorithm [8], as discussed in Section 4.2
for chain joins and in Section 5.1 for arbitrary joins.

e Online Exploration (OE): the combination of using the online
aggregation (e.g., via wander join) for tuples with sufficient
number of walks, and the on-demand exploration of a join
subtree rooted a tuple 7 in the join hyper-graph instance via
EW (only for that subtree), as introduced in Section 4.4.

e Reverse Sampling (RS): the method that is only useful for
multi-way foreign-key joins introduced by [2] and reviewed in
Section 2.3, which does sampling from only R, and traverse
backwards to Ry, using a sampled record from R, to produce
a sample of the join.

For all methods, we report the total running time to retrieve a
specific number of samples. The total running time does not include
the building times of all the indexes such as B-Trees, which is a
common cost of all methods, since they all require indexes on the
join attributes.

Note that even though we only discussed the online exploration
method for multi-way chain joins, since wander join works for any
join topology [22], same idea can be easily used for any join queries,
by simply using the updated version of EW as discussed in Section
5.1 to explore a join subtree on demand. Furthermore, while random
samples are continuously returned by our sampling framework, the
explored path for producing that sample can be viewed as a random
walk, which increases the counts on the number of random walks
for any tuple on that path, and improves the wander join estimates
for the subtree joins rooted at those tuples.

Lastly, as shown in Section 5.2 and Section 5.3, any method
instantiated from our join sampling framework, i.e., EO, EW, and
OE, can be made to support cyclic queries and selection predicates
easily. Note that there are many ways of “breaking” a cycle by
removing a relation and producing the skeleton query .7 and the
residual query 77 respectively. We followed the discussion at the
end of Section 5.2 to optimize our choice and select the best strategy
to cut a cycle. This optimization is included in the cost of EO, EW,
and OFE when they are applied for cyclic join queries.

We implemented all methods in C++ and performed experiments
on a machine running Ubuntu 14.04 with E5-2609 processor at
2.4GHz. All experiments were performed with data completely re-
siding in memory; disk IOs only occurred during data loading.

TPC-H Dataset. Our first data set consist of data generated using
the standard TPC-H benchmark. We modified the generator so that
it can add some skewness to the join degrees of the data, by gener-
ating the number of lineitems per order according to a Zipfian(1)
distribution. By default we use a scale factor of 10 (roughly 10GB),
but adjust the scale factor from 1 to 40 in our experiments to show
how the algorithms perform and scale with various sizes of data. We
explore three join queries over TPC-H data. Appendix B shows the
three queries in SQL.

SIGMOD ’18, June 2018, Houston, TX, USA

Zhuoyue Zhao 1. Robert Christensen ', Feifei Li !, Xiao Hu 2, Ke Yi 2

107 107
104 |[-®— Extended Olken & Online Exploration —@— Extended Olken =& Online Exploration —@— Extended Olken ¢ Online Exploration
—@- Exact Weight -ske= Full Join 106 || Exact Weight -3k= Full Join 106 ||—M Exact Weight —sk= Full Join
103 | -A— Reverse Sample . i
_ . 105| Y too expensive to complete - 10° % too expensive to complete
g 10 g, g
S 510 5 10
S 10! 3 g
L A 2103 £10°
v 10 @ o
E 10 & £102 £
102 A 10! 10*
103 A 10° . . . 0% . . .
10° 10° 10° 10° 10° 10° 10° 10° 10° 10° 10° 10°
number of samples collected number of samples collected number of samples collected
(a) Query 3. (b) Query X. (c) Query Y.

Figure 3: TPC-H sampling collection time for scale factor 10.

e Query 3 (Q3): is a multi-way foreign key chain join that joins
tables customer, orders, and lineitem on the primary and
foreign keys between them. The cardinality of this join is
exactly the size of the lineitem table.

e Query X (QX): is a general multi-way chain join which joins
nation, supplier, customer, orders, and lineitem. It is a chain-
Jjoin, but is no longer a foreign-key join, hence, the cardinality
of this chain join is much larger then any of the tables.

e Query Y (QY): is a multi-way cyclic join query that joins
supplier, customerl, ordersl, lineiteml, lineitem2, orders2,
customer2, which joins back to the supplier table. The join
size of this cyclic join query is also very large compared to
the size of the input tables.

Social graph data. The second data set is a collection of twitter
friendship links and user profiles used in [7]. The data set contains
a “celebrity” table with those twitter users with more > 10,000
followers, denoted as the popular-user, and another table with all
twitter users in the data set, denoted as the twitter-user. A record on
each table represents a friendship link that has a user id as source
and another user id as destination. We performed the following three
queries on this data set:

e Query T (QT): a triangle join between popular-user, twitter-
user, and twitter-user.

e Query S (QS): a square join between popular-user, twitter-
user, twitter-user, and twitter-user.

e Query F (QF): a snowflake join between two popular-user
tables, and two twitter-user tables, which results in a tree
topology for the underlying join hyper-graph.

The popular-user table has 165 million records in 3.1GB, and
the twitter-user table has 1 billion records in 19GB. We have also
down-sampled the twitter-user table to get different sizes of this
table for scalability tests. Appendix C shows the queries in SQL.

6.2 TPC-H experiments

Sampling efficiency. We run each of the algorithms over the TPC-H
data set with the default scale factor of 10 (roughly 10GB), to test
how fast they can collect 103, 104, 105, and 100 samples. For Q3
we also apply the reverse sampling method (RS), which cannot be
applied to QX and QY. The results of this experiment is shown in
Figure 3. Note that both the x-axis and y-axis are in logarithmic scale.
Since Q3 is a simple multi-way foreign-key chain join, as expected,
in this case RS has the best performance as shown in Figure 3a.
Also because that it it a simple multi-way foreign-key chain join,
FJ is fairly efficient too. Nevertheless, both EW and OE show good
performance, and EO is efficient for producing smaller number of

samples, but as the required number of samples continues to rise, its
low sampling efficiency (due to high rejection rate) leads to much
more cost than other methods.

QX is a general multi-way chain join (i.e., some join attributes
are no longer on a primary-key, foreign-key relationship), hence, the
join size is much larger than the input relation sizes. As a result, FJ
becomes too expensive to complete in a day, as shown in Figure 3b.
EO exhibits a similar pattern as that in Q3 experiment. OE and EW
in this case show a similar performance; both are able to produce
10° samples in 35 seconds.

Lastly, QY is a cyclic query and not all join conditions are on
a primary-key, foreign-key relationship, which makes FJ very ex-
pensive. EO still shows the similar patter but becomes much more
expensive when it has to return larger number of samples as indicated
in Figure 3c, due to the fact that its rejection rate is typically higher
for a cyclic query (than an acyclic query). And in this case, OE has
always outperformed EW. Since the number of relations in the join
is more than that in QX, EW has become more expensive. It takes
OE 245 seconds to produce 10° samples, while EW has to spend
381 seconds. Both OE and EW are several orders of magnitude more
efficient than FJ for both QX and QY.

10° 107
—@— Extended Olken ¢~ Online Exploration & |[~@ Extended Olken - Online Exploration
—B- Exact Weight sk Full join 10° H @ Exact weight = Full Join

10° : too expensive to complete 10° 1 too expensive to complete
@ 104
°
c
S 10°
[
2 10?
2 ot
103 £ 10
10°
) 10-1./.\/
10 ,
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
TPC-H scale factor TPC-H scale factor

time (seconds)

(a) Time to collect 10° samples. (b) Time to collect first sample.
Figure 5: TPC-H scalability tests for Query Y.

Scalability. We use QY to test the scalability of different methods,
when the database is generated with different scale factors (that
changes from 1 to 40, or roughly from 1GB to 40GB of data). We
ask each method to collect 106 samples, and the results are shown in
Figure 5a. FJ is too expensive to complete in all but the smallest case
as data becomes large. On the other hand, methods instantiated from
our framework have exhibited very good scalability. EO mostly only
depends on the join topology (AGM bound) and the max degree
information, which is relatively stable even when the data size grows
(since the data distribution is the same). Both OE and EW scale
roughly linearly to the increase of input table sizes, which is as
expected from their analysis. But EW is strictly linear to the total

Random Sampling over Joins Revisited

SIGMOD ’18, June 2018, Houston, TX, USA

10° 10°
—@— Extended Olken = Online Exploration —@— Extended Olken =& Online Exploration
- Extended Olken -~ Online Exploration 10°H - Exact Weight sk Full Join 10°H @ Exact Weight sk Full Join
5 |~ Exact Weight =sk= Full Join , - ; -
10 10 % : too expensive to complete 10 % : too expensive to complete
= % : too expensive to complete g 108 %. 106
© 6
£ 10 S 10° S 10°
I}
8 1ot <100 £ 100
£ £ 103 E 10° a
" 10? 10? -
102
10" 10"
10° 100 b . . . 10°
103 104 10° 106 10° 10° 10° 10° 103 10° 10° 10°
number of samples collected number of samples collected number of samples collected
(a) Query T. (b) Query S. (¢) Query F.

Figure 4: Social graph collection times for the full dataset.

input relation sizes, which is not necessarily the case for OE due to
its online exploration nature. Hence, OE has the best performance
and the performance gap between OE and EW enlarges as relations
get bigger. For scale factor 40, OE has outperformed EW by almost
2 times.

We also measure the time for each algorithm to report the first
sample and show the results in Figure 5b. Not surprisingly, EO is the
fastest to report the first sample due to its low initialization overhead,
whereas OE is faster than EW in reporting its first sample because
of its online exploration. EW is the slowest to report the first sample,
since it can only start reporting samples after all w(z)’s are computed
by running its dynamic programming formulation. But once EW
starts reporting samples, it enjoys the best sampling efficiency with
no rejection, whereas OE will always reject some, and EO has the
highest rejection rate. Note that the rejection rate of OE is actually
extremely low, due to the accurate upper bound estimate returned by
wander join estimators, as well as the exact weights for the subtrees
explored by EW.

—e— Extended Olken ¢ Online Exploration Extended Olken [Online Exploration

6
10%H @ Exact weight k= Full join 105 || S Exact Weight W Full Join
5 X: too expensive to complete
- 10 T4
o © 10
S . 4 5
S 10 g
) 210
GE) 103 N\.‘. g
B 102
10?
X——x— X 10
107
0% 20% 40% 60% 80% 100%
selectivity (€)

(a) One selection predicate. (b) Two selection predicates.

Figure 6: QX with selection predicates

Selection predicates. To show the effectiveness of various meth-
ods when selection predicates exist, we measure the time to collect
106 samples when 1 or 2 selection predicates are added to QX.

In the first experiment (shown in Figure 6a), we only add a selec-
tion predicate [_extendedprice > c; on table lineitem and vary the
selectivity of the query (the ratio between the number of tuples in
the query with the selection predicate and that without it). FJ is still
very expensive and cannot complete when the selectivity gets larger
than 50%. EO enjoys a better sampling efficiency when the query
becomes less selective since rejection rate is lower in that case. On
the other hand, both OE and EW adapt well to queries with different
selectivity.

In the second experiment (shown in Figure 6b), we add two
selection predicates n_nationkey > ¢, on nation and [_extendedprice
> ¢; on lineitem. We fix the selectivity at roughly 20% and measure

the time to collect 10° samples using different methods. FJ still
is several orders of magnitude more expensive than other three
sampling methods. EO, EW and OE all take shorter time to get the
samples when the predicate on nation key gets more selective. This
is because we start sample from the nation table and fewer tuples in
the first table will lead to fewer rejections. Note that in this case, OE
is consistently faster than EW due to its low initialization cost and
they both run at least one order of magnitude faster than EO.

6.3 Social graph experiments

Figures 4a, 4b and 4c¢ show the running time for different sampling
algorithms to collect 103, 10%, 10° and 10° samples from the triangle
query (QT), square query (QS) and the tree-structured query (QF)
on the full social graph dataset.

The running time of EW does not increase a lot when the total
number of samples increases because it needs to build the weights
table before it could produce samples but runs extremely fast once
that’s done. OE pays a much smaller cost during the warm up phase
before it can produce samples. When it starts producing samples, it
builds the weights on demand so its initial sampling rate is smaller
than EW but increases over time. When the total number of samples
needed is small, which of OE and EW runs faster depends on the
join structure and input sizes. Query S has 3 large tables while Query
T and F only have 2, so the dynamic programming (DP) in EW on
Query S will be much more expensive than the other two. As a result,
OE runs faster than EW on Query S. Query T is only a two-way
join after we break the cycle by removing a relation. The cost for
OE to explore a large portion of the join graph is roughly the same
as the cost for EW to perform the DP. On Query F, since the join
is acyclic and there are only 2 large tables, the DP cost of EW is
actually smaller than the exploration cost of OE, and thus DP runs
faster than OE. However, the total running time will be similar once
a sufficiently large number of samples is needed. EO has a constant
sampling rate due to its static structure but the sampling rate is much
smaller than both EW’s and OE’s and will be slower than the other
two even if only a moderate number of samples are required. The
full join never finishes on all the three queries because of the large
input and output sizes.

Figure 7a shows the time to get one million samples from the
square query (QS) on the down-sampled social graph of varying
sizes. As the data size increases, the running time of EW and OE
algorithms will increase roughly linearly while EO increases log-
arithmically. The reason for EW and OE to have linear scalability
is that the most of the time is spent on the DP for both EW and
OE (OE uses EW to explore subtrees under certain levels), which

SIGMOD ’18, June 2018, Houston, TX, USA

10°
108 —@- Extended Olken -~ Online Exploration 10° =6~ Extended Olken 3¢ Online Exploration
S —B- Exact Weight ~g= Full Join 108L|-m Exact Weight g Full join
_ 10"} ¥: too expensive to complete 107} %: too expensive to complete
0 106 e w 6
g 107t o bl 10
S10° g 10°
\sj 104 ;3’ 10:
o o 10
E10° £ 102
=1 102 S 10
10!
1
10 10° —
10° 0!

0% 20% 40% 60% 100% ! 0%

Scale of data

80% 20% 40% 60% 80%

Scale of data

100%

(a) Time to collect 10° samples. (b) Time to collect first sample.
Figure 7: Social graph scalability tests for query S.

scales linearly. The time of EO increases logarithmically because of
the increase in the index size. However, EO is still at least 3 orders
of magnitude slower than the other two due to its extremely high
rejection rate. The full join still fails to run to complete even on the
smallest scale of data.

Figure 7b shows the time to get the first sample. EO algorithm
gets the first sample much faster than EW and OE because it does
not need to pay the cost of building weights or warming up. But as
long as the number of samples needed is sufficiently large, the total
running time of EO is much longer than EW and OE.

10°

BHE joinorder 1 A\ join order 3
[96-9¢ join order 2 @@ join order 4
105 1.0
— == expected
% 0.8 — experimental
< 10* '
8
(0] 0.6
0 A
~ 103 2
g A 0.4
5 102 A
0.2
10!
10° 107 10° 10° 0.0

0 11

number of samples collected join results

Figure 8: Time to get 10° sample Figure 9: KS test of QX.
in different join orders for QS.

Figure 8 shows the time for OE to collect different number of
samples using different join orders for QS, and it shows that the time
using join order 1 is the smallest, because join order 1 has the small-
est number of join results, which is picked up by our optimization.

6.4 Kolmogorov-Smirnov (KS) test

Recall that our sampling framework guarantees to return a true
simple random sample as long as the upper bounds W (t)’s used are
indeed upper bounds for subtrees rooted at tuples t encountered in
the sampling process, which is the case in all of our instantiations
for different join topology, with the only exception that wander join
may return an estimate that’s smaller than the actually join size for
a subtree with very small probability. This only happens in theory
with literally negligible probability since we use the upper limit of a
wander join estimate (i.e., its estimate + its confidence interval). In
practice, this never occurred in all our experiments.

Nevertheless, we use the well-known KS test to verify that the
samples returned by each method based on our sampling framework
are indeed uniform (clearly they are independent samples from the
construction of our sampling methods). To do so, we collected 1
million samples from QX, an acyclic query, and the twitter triangle

Zhuoyue Zhao 1. Robert Christensen ', Feifei Li !, Xiao Hu 2, Ke Yi 2

Table 2: K-S values, where n = 1 million.

Sampling Algorithm | Experimental d
Extended Olken 0.0003276
Query X | Exact Weight 0.000774
Online Exploration | 0.000357
Extended Olken 0.00130
Query T | Exact Weight 0.00131
Online Exploration | 0.00155

query QT, a cyclic query, and tested that the cumulative distribution
of the samples returned followed the expected uniform distribution
using the Kolmogorov-Smirnov test (K-S test).

For each query, we collected 1 million samples from the join
results, and assigned the sampled tuples to a collection M. We sort
M = (my,ma,...,my) in the same order that the full join algorithm
would order the tuples in J = (1,1, .. 7[\1\)‘ Let O;(m;) = k, where
tr = m;, then M is sorted such that O;(m;) > Oy (my) for all k > i.

If the samples reported from our algorithms are uniform, given
any m; € M the proportion i will be approximately equal to the

o
[M]
0, (mj)

proportion =T By comparing the progression of these propor-
tions as a cumulative probability distribution while analyzing the
entirety of M, we can compare how close our samples match with
the expected uniform distribution.

The largest difference between these the expected cumulative dis-
tribution and the experimental cumulative distribution is d, the K-S
score. The smaller the value of d the closer the experimental results
match with the expected results (the uniform distribution). Further-
more, we calculated that when n = 1 million, we can accept the
hypothesis that the distribution is uniform at the o = 0.01 significant
level if d < 0.00163.

We have generated a plot showing the experimental results along
with the expected uniform distribution when samples are collected
from QX using the OE in Figure 9.

The experimental value of d from the two queries with each of
the sampling algorithms is shown in Table 2. All experiments pass
the K-S test at the o = 0.01 significance level.

6.5 Where to break a cycle

An important consideration when sampling from cyclic queries is
how effective different ways of breaking the cycle are. We imple-
mented the algorithm as described in Section 5.2, but to see the
effectiveness of this strategy we manually configured different ways
to cut the cycle and measured the sample rate for different ways to
cut the cycle. Two ways exist to break cycles: one is to break by
changing one join condition to a selection condition; the other is
to remove a relation and check if the appropriate edge exists in the
removed relation using a compound index. While the second option
is better, it can not always be used, as described in Section 5.2.

We use our optimization algorithm based on wander join to esti-
mate the size of each of the different ways to order a cycle join as an
acyclic join. A table of the join estimation for orientation is shown in
table 3 for Query Y. Clearly, some of the orientations are enormously
different then other orientations, and the optimal strategy is to cut
the cycle that leads to the smallest intermediate join size for the
resulting acyclic query. Our optimization strategy as presented in
Section 5.2 is always able to pick up the optimal cut.

Random Sampling over Joins Revisited

Table 3: |J| of different options to break a cycle.

option | |J| adding condition | |J| breaking relation
1 5.853%x 1017 1.53x10™
2 4.532x10'8 1.45%x 10
3 4.765x10"7 4.27x101
4 7.127x 1012 7.57x1010
5 1.133x10"3 — invalid —
6 4.534x10"7 9.24x1010
7 4.534x10!8 —same as 1 —
100 @Z==Z=1 OE Sampling Time - 0.78
mEmm OF Training & Testing Time)
EZ==N FJ Sampling Time ©0.77
S BN Fj Training & Testing Time =
510 $0.76
Eel N N o
S c 0.75
§ 10* 5 0.74
o Bo
.§ 10° go.n
7! Bon
102 0.70 3 6 9 12 15 18 21

1 2 5 7 10 15 20 e :
number of training samples (x10*) number of training samples (x107)

Figure 10: Time to run SVM Figure 11: Accuracy with dif-
on sampled data ferent sample sizes

6.6 Sampling joins for machine learning

As mentioned in Section 1, one useful application enabled by do-
ing random sampling over joins is to combine join processing and
machine learning in a unified way while improving on both. Recent
works on learning over joins [21, 32] only apply to gradient descent
with the linear regression model. They cannot be applied to more
general models such as SVM. On the other hand, classical statistical
learning theory states that the sample size needed to train a model
up to a (8, €)-error is @(W), where D is the VC-dimension
of the model [34]. This holds for any classification model, thus
sampling over join provides a more general solution to the problem.

In this subsection, we conduct a case study to train a SVM binary
classifier to predict the return status field in the join results of 7 TPC-
H tables. We modified the TPC-H generator so that each customer
has a higher item return rate if the item is shipped to them during a
randomly selected half of the whole period of time. The item return
rate is also higher for those items with price in the top 1%. The full
join results of this join have around 17 trillion records, from which
14 features have been selected to train the model. The details of the
TPC-H data generator and the join query are provided in Appendix
D. We sample the join with sample sizes ranging from 10K to 200K
and train the SVM model using the sample . We also independently
sampled 100K tuples to use as the test dataset.

Figure 11 shows how the accuracy changes when the sample size
changes. As sample sizes increase, the accuracy first has a sharp
increase and then converges to a constant value when the sample
size is big enough. In this particular case, the accuracy converges to
about 76%. This agrees well with the VC theory, which states that
the sample size is proportional to 1/¢€. Note that the remaining 24%
error is the inherent error of the model itself (as indicated by the
dashed red line in Figure 11), i.e., even it is trained on all data. The
€ in VC the theory denotes the additional error introduced by the
sampling, which is already very close to O when the sample size has
reached around 60K.

SIGMOD ’18, June 2018, Houston, TX, USA

In terms of efficiency, we run the Online Exploration instantiation
of our sampling framework to retrieve samples of varying sizes. In
comparison, we also run the full join and directly sample from the
full join results. Figure 10 shows the comparison of the two methods
in terms of sampling, training and testing time. Online Exploration
runs at least 2 orders of magnitude faster than the full join approach.
Note that this is only due to the difference in sampling time; the
training & testing time is the same for the two methods on the same
sample size (but look differently due to the log scale of the figure,
and almost invisible for the full join method).

7 REMARKS AND EXTENSIONS

The experimental results have clearly demonstrated the effectiveness,
the efficiency, the scalability, and the extensibility of the proposed
join sampling framework. Given that many join queries are extremely
expensive, as shown in our experiments, supporting random sam-
pling over arbitrary join queries is extremely important.

Among the three instantiations of our sampling framework, EO
enjoys the least overhead in terms of initialization since it only needs
the AGM bound (which depends on only the join topology and
relations’ sizes) and the max degree information (or the heavy hitter
frequency threshold). Hence, it is the fastest to produce samples. But
it has the worst sampling efficiency, due to loose upper bounds on
join size estimation that lead to high rejection rates.

EW is effective when relations in the join have small or moderate
sizes, since it uses a dynamic programming formulation to calculate
all w(t)’s exactly, which has a linear cost to the sum of the sizes
of all relations from the join. But this becomes expensive if one or
more relations have a large table size. Furthermore, it’s the slowest
to start producing samples (but once that starts, it enjoys the best
sampling efficiency due to zero rejection rate).

OE in most cases is an improvement to EW, since it’s a hybrid
method that combines online aggregation estimates (on the join size
of any join subtree) and the on-demand exploration of w(t)’s for
some join subtrees using EW. Hence, it enjoys a low rejection rate
and a fairly quick response rate to start producing samples. It also
enjoys good scalability as the sizes of some relations in the join
start to increase, due to its property of doing online, on-demand EW
explorations for only a small fraction of join subtrees.

Both EW and OE have easily outperformed FJ and EO in all cases,
especially when the join size is much larger than input relations,
and/or the join topology is complex.

Extensions and limitations. There are a few extensions and lim-
itations of our proposed join sampling framework. First, it supports
natural join or equi-join with selection conditions, it can be extended
to support 0-joins by treating 6-join conditions as additional selec-
tion predicates, but the extension is non-trivial in some cases and
deserves a full investigation.

Second, group-by and projection without de-duplication can be
easily supported by adding the group-by and projection operators on
top of the sampling operator. For a group-by query, we can perform
group-by on the samples. When a group contains a small number
of records, there could be few samples in that group. In such a case,
we can convert the group-by clause to a selection predicate and sam-
ple independently in each group. Projection without de-duplication,
which is the default in SQL, can be done by performing the projec-
tion on the samples. However, projection with de-duplication could

SIGMOD ’18, June 2018, Houston, TX, USA

change the cardinality of join results, and thus cannot be performed
on the sample directly, which requires further investigation.

Third, as with most random sampling techniques, our random
sampling framework relies on efficient random access to the under-
lying data. Hence, we do require index on the join attribute when
going from one relation to another. This means that our framework
is mostly useful for an in-memory database where index structures
are often built and maintained for join attributes.

When some of these indexes are missing, i.e., no index on a join
attribute A in some relation R, our sampling framework can build an
index over A before initiate the sampling process. This adds only a
linear cost only to the size of R, and the overall sampling cost will
still be much smaller than computing the full join.

For disk-resident data, sampling efficiency will drop significantly
due to its random access. However, in that case, the full join also
becomes much more expensive.

Lastly, our sampling framework can handle updates. In particu-
lar, AGM bound is not affected by data updates; max degree and
heavy hitters can be efficiently maintained under updates. Hence,
the EO method needs no change. It will be expensive to re-calculate
all w(r)’s in EW using a full dynamic programming whenever data
receive updates, but the observation is that we only need to update
the weights (w(z)’s), using the same backward propagation in our
dynamic programming formulation, for tuples along the subtree af-
fected by an update. Hence, EW only needs some minor adjustments
to cope with updates. For the OE method, since it relies on EW and
online aggregation technique like wander join, we only need to adapt
wander join to support updates. This is possible by remembering
the number of successful and failed walks passing through a tuple #,
and adjusting these numbers when an update happens to #’s children
in the join hyper graph instance. Nevertheless, supporting updates
is still non-trivial and we leave the exploration of this topic as an
interesting future work.

Note that previous results on sampling over join by Chaudhuri et
al. [8] (EW is a generalization of it) and using the Olken’s method
[25] (EO is an extension of it) also suffer from the same limitations.

8 RELATED WORK

Join sampling is a fundamental yet challenging problem that was
explored in the pioneer work by Chaudhuri et al. in SIGMOD 1999
[8]. A special case of sampling from a foreign-key join was also
studied in the same conference by [2]. Before that, random sampling
from a single database table was studied by Olken and others in a
series of work that were summarized by Olken’s PhD thesis [25].
In fact, Olken’s technique was explored by Chaudhuri et al. in their
study. We have reviewed these works in Section 2, and they do not
support random sampling over arbitrary multi-way joins that may
or may not be cyclic. Some recent studies use stratified sampling to
solve this problem [19] by pushing down sampling through a join
operator, but no longer guarantees to always return random samples.

Our join sampling framework leverages the recent developments
on deriving upper bound of the join size for a join query. To that end,
AGM bound is a recent result that yields a upper bound for arbitrary
joins [6] which we have used in one of the instantiations of our join
sampling framework. We have also used the max degree of a table
to help derive a tighter upper bound than the AGM bound, where the
degree of a tuple from a table is defined as the frequency of its join

Zhuoyue Zhao 1. Robert Christensen ', Feifei Li !, Xiao Hu 2, Ke Yi 2

attribute value in that table. Similar principle was also explored by
[18] to get better estimates for a join size given degree (frequency)
information, albeit in a more theoretical setting.

Another approach to obtain a join size upper bound is to use
the idea of online aggregation [15, 22, 26, 28, 38]. In particular,
we can use online aggregation over joins [14, 22, 23] to estimate a
confidence interval for the join size (by using count(*) in the join
query); taking the upper bound of this confidence interval provide an
upper bound for the join size with high probability. There are many
other works concerning join size cardinality estimation [4, 6, 12, 29,
31, 36, 41]; our join sampling framework may employ any of such
techniques to instantiate a new method as long as it can efficiently
generate an upper bound of a join size for any partial join from the
join hyper graph with high probability.

Note that various sampling techniques are used to develop online
and approximate aggregations [10, 14, 22, 27, 37, 39], however,
in the context of join queries, represented by ripple join [14] and
wander join [22], they generate either uniform but non-independent
or independent but non-uniform samples respectively. But random
sampling requires uniform and independent samples.

Sampling is an useful construct towards building interactive and
approximate systems, e.g., Aqua [1], DBO [30], BlinkDB [3], Quickr
[20], G-OLA [42], ABS [43], and many others. But none of these
systems are able to support random sampling over joins.

There are also a revitalized interest in designing worst-case opti-
mal join algorithms in various settings [9, 35], but typically the join
size can be very large except for foreign-key key joins and random
sampling will be much more efficient and effective than computing
full joins, as shown in our experimental evaluations.

Lastly, random sampling is a fundamental machinery that is useful
towards numerous analytical tasks, such as sophisticated statistics
like medians, quantiles, inference, clustering, classification, kernel
density estimate, etc. Many of these require independent and uniform
samples in order to construct a good and scalable approximation or
enable a rigorous and principal analysis to bound the performance.
Random sampling is also useful towards query optimization [40].

9 CONCLUSION

This paper revisits the classic and important problem of join sam-
pling. A general join sampling framework is proposed that incor-
porates existing studies as a special case, and can be instantiated
with different methods that produce an upper bound on a join size.
‘We show that the proposed framework is very flexible and general
which can handle arbitrary multi-way acyclic and cyclic queries with
or without selection predicates. Extensive experiments have demon-
strated the efficiency and effectiveness of the proposed methods.
Interesting future work directions include integrating the proposed
work into a database engine, and extending our study and results
to work with more complex queries such as 6-joins and joins that
involve nested query blocks.

10 ACKNOWLEDGMENTS

Feifei Li, Zhuoyue Zhao and Robert Christensen are supported in
part by NSF grants 1251019, 1302663, 1443046, 1619287 and NSFC
grant 61729202. Xiao Hu and Ke Yi are supported by HKRGC under
grants GRF-16211614, GRF-16200415, and GRF-16202317. The
authors greatly appreciate the valuable feedback provided by the
anonymous SIGMOD reviewers.

Random Sampling over Joins Revisited

REFERENCES

[1]

[2]

[3]

[4]

[5

[6

[7

[8

[9

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]
[18]
[19]

[20]

[21]
[22]

(23]

[24]
[25]

[26]

[27]

(28]

Swarup Acharya, Phillip B. Gibbons, and Viswanath Poosala. 1999. Aqua: A
Fast Decision Support Systems Using Approximate Query Answers. In VLDB.
754-757.

Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ramaswamy.
1999. Join Synopses for Approximate Query Answering. In SIGMOD 1999,
Proceedings ACM SIGMOD International Conference on Management of Data,
June 1-3, 1999, Philadelphia, Pennsylvania, USA. 275-286.

Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,
and Ion Stoica. 2013. BlinkDB: queries with bounded errors and bounded response
times on very large data. In EuroSys. 29—42.

Noga Alon, Phillip B. Gibbons, Yossi Matias, and Mario Szegedy. 1999. Tracking
join and self-join sizes in limited storage. In Proceedings of the eighteenth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS
’99). ACM, New York, NY, USA, 10-20. https://doi.org/10.1145/303976.303978
Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and
Matei Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In Proc.
ACM SIGMOD International Conference on Management of Data.

Albert Attsertia, Martin Grohe, and Daniel Marx. 2013. Size bounds and query
plans for relational joins. SIAM J. Comput. 42, 4 (2013), 1737-1767.

Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and P. Krishna Gummadi.
2010. Measuring User Influence in Twitter: The Million Follower Fallacy. In
ICWSM.

Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. 1999. On Random
Sampling over Joins. In Proc. ACM SIGMOD International Conference on Man-
agement of Data.

Shumo Chu, Magdalena Balazinska, and Dan Suciu. 2015. From Theory to Prac-
tice: Efficient Join Query Evaluation in a Parallel Database System. In SIGMOD.
63-78.

Bolin Ding, Silu Huang, Surajit Chaudhuri, Kaushik Chakrabarti, and Chi Wang.
2016. Sample + Seek: Approximating Aggregates with Distribution Precision
Guarantee. In SIGMOD. 679-694.

Alin Dobra, Chris Jermaine, Florin Rusu, and Fei Xu. 2009. Turbo Charging
Estimate Convergence in DBO. In Proc. International Conference on Very Large
Data Bases.

Sumit Ganguly, Phillip B. Gibbons, Yossi Matias, and Abraham Silberschatz.
1996. Bifocal Sampling for Skew-Resistant Join Size Estimation. In SIGMOD.
271-281.

P. J. Haas. 1997. Large-Sample and Deterministic Confidence Intervals for On-
line Aggregation. In Proc. Ninth Intl. Conf. Scientific and Statistical Database
Management.

P.J. Haas and J. M. Hellerstein. 1999. Ripple Joins for Online Aggregation. In
Proc. ACM SIGMOD International Conference on Management of Data. 287-298.

J. M. Hellerstein, P. J. Haas, and H. J. Wang. 1997. Online Aggregation. In Proc.
ACM SIGMOD International Conference on Management of Data.

Christopher Jermaine, Subramanian Arumugam, Abhijit Pol, and Alin Dobra.
2007. Scalable Approximate Query Processing With The DBO Engine. In Proc.
ACM SIGMOD International Conference on Management of Data.

Madhav Jha, C. Seshadhri, and Ali Pinar. 2015. Path Sampling: A Fast and
Provable Method for Estimating 4-Vertex Subgraph Counts. In WWW.

Manas Joglekar and Christopher Re. 2016. It’s all a matter of degree: Using degree
information to optimize multiway joins. In /CDT.

Niranjan Kamat and Arnab Nandi. 2016. Perfect and Maximum Randomness in
Stratified Sampling over Joins. CoRR abs/1601.05118 (2016).

Srikanth Kandula, Anil Shanbhag, Aleksandar Vitorovic, Matthaios Olma, Robert
Grandl, Surajit Chaudhuri, and Bolin Ding. 2016. Quickr: Lazily Approximating
Complex AdHoc Queries in BigData Clusters. In SIGMOD. 631-646.

Arun Kumar, Jeffrey Naughton, and Jignesh M. Patel. 2015. Learning Generalized
Linear Models Over Normalized Data. In SIGMOD.

Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander Join: Online Aggre-
gation via Random Walks. In SIGMOD. 615-629.

Gang Luo, Curt J. Ellmann, Peter J. Haas, and Jeffrey F. Naughton. 2002. A
Scalable Hash Ripple Join Algorithm. In Proc. ACM SIGMOD International
Conference on Management of Data.

Hung Q Ngo, Christopher Ré, and Atri Rudra. 2013. Skew Strikes Back: New
Developments in the Theory of Join Algorithms. (2013). arXiv:1310.3314v2

F. Olken. 1993. Random Sampling from Databases. Ph.D. Dissertation. University
of California at Berkeley.

Niketan Pansare, Vinayak R. Borkar, Chris Jermaine, and Tyson Condie. 2011.
Online Aggregation for Large MapReduce Jobs. In Proceedings of the VLDB
Endowment, Vol. 4.

Chengjie Qin and Florin Rusu. 2013. Sampling Estimators for Parallel Online
Aggregation. In BNCOD. 204-217.

Chengjie Qin and Florin Rusu. 2014. PF-OLA: a high-performance framework
for parallel online aggregation. Distributed and Parallel Databases 32, 3 (2014),
337-375.

SIGMOD ’18, June 2018, Houston, TX, USA

[29] Florin Rusu and Alin Dobra. 2008. Sketches for size of join estimation. ACM
TODS 33, 3 (2008).

Florin Rusu, Fei Xu, Luis Leopoldo Perez, Mingxi Wu, Ravi Jampani, Chris
Jermaine, and Alin Dobra. 2008. The DBO database system. In SIGMOD. 1223—
1226.

Florin Rusu, Zixuan Zhuang, Mingxi Wu, and Chris Jermaine. 2015. Workload-
Driven Antijoin Cardinality Estimation. ACM Trans. Database Syst. 40, 3 (2015),
16.

Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. 2016. Learning Linear
Regression Models over Factorized Joins. In Proceedings of the 2016 International
Conference on Management of Data (SIGMOD).

C Seshadhri, Ali Pinar, and Tamara G Kolda. 2013. Triadic measures on graphs:
the power of wedge sampling. In SDM.

V. N. Vapnik and A. Y. Chervonenkis. 1971. On the uniform convergence of
relative frequencies of events to their probabilities. Theory of Probability and its
Applications 16 (1971), 264-280.

Todd L. Veldhuizen. 2012. Leapfrog Triejoin: a worst-case optimal join algorithm.
CoRR abs/1210.0481 (2012).

David Vengerov, Andre Cavalheiro Menck, and Mohamed Zait. 2015. Join Size
Estimation Subject to Filter Conditions. In Proc. International Conference on Very
Large Data Bases.

Lu Wang, Robert Christensen, Feifei Li, and Ke Yi. 2016. Spatial Online Sampling
and Aggregation. In Proc. International Conference on Very Large Data Bases.
Sai Wu, Shouxu Jiang, Beng Chin Ooi, and Kian-Lee Tan. 2009. Distributed
Online Aggregation. PVLDB 2, 1 (2009), 443-454.

Sai Wu, Beng Chin Ooi, and Kian-Lee Tan. 2010. Continuous sampling for online
aggregation over multiple queries. In SIGMOD. 651-662.

Wentao Wu, Jeffrey F. Naughton, and Harneet Singh. 2016. Sampling-Based
Query Re-Optimization. In SIGMOD. 1721-1736.

Feng Yu, Wen-Chi Hou, Cheng Luo, Dunren Che, and Mengxia Zhu. 2013. CS2:
a new database synopsis for query estimation. In SIGMOD. 469-480.

Kai Zeng, Sameer Agarwal, Ankur Dave, Michael Armbrust, and Ion Stoica. 2015.
G-OLA: Generalized On-Line Aggregation for Interactive Analysis on Big Data.
In SIGMOD. 913-918.

Kai Zeng, Shi Gao, Jiaqi Gu, Barzan Mozafari, and Carlo Zaniolo. 2014. ABS: a
system for scalable approximate queries with accuracy guarantees. In SIGMOD.
1067-1070.

A PROOF OF THEOREM 2

PROOF. A partial tree P is a subset of the relations defined recur-
sively as follows:

(1) {Ro} is a partial tree.

(2) For any partial tree P and any R; € P, PU {R{c for all k} is
a partial tree. Let dP be the boundary of P, i.e., it consists of all
relations in P whose children (if there are any) do not belong to P.

A set of tuples T'(P) (resp. T(dP)) are called the partial join
result of P (resp. dP) if T(P) (resp. T(dP)) contains exactly one
tuple from each R; € P (resp. dP).

We will show that for any partial tree P, any of its partial join
results 7' (P) is sampled by the algorithm with probability
(H,eT(aP)w(t)) /W (rg). Then taking P to be the whole tree and
applying Invariant (6) prove the theorem.

The proof is by induction on the size of P. The base case when P
contains only Ry is trivial. Now assume that the claim holds for any
partial tree strictly contained in P. We remove all the children of one
relation, say R;, from P to obtain a smaller partial tree P’ . By the
induction hypothesis, we know that the tuples in 7 (P’) have been
sampled with probability (IT,er(apy w(t)) /W (ro).

To go from T(P') to T(P), the algorithm must succeed in ob-
taining the corresponding tuple in each R;‘ . Let #; € R; be the tuple
sampled in R; and t{‘ € Rff the tuple sampled in Rf.‘. The algorithm
first decides if it should move onto the children of R; with prob-
ability (Hk W(t,-,Rf-‘)) /W () in line 7. If so, it makes a recursive
call with ACYCLIC—SAMPLE(t,-,Rf-‘) for each R{-‘. Inside this call, the
algorithm first decides whether to sample from R{»‘ with probability
W (t; < R{-‘) / W(t,-,Rf.‘) in line 3, and then samples tl.k with probability
W(t{‘)/ W (t; fo?) in line 4. Thus, the probability that 7'(P) are all

[30]

[31]

[32]

[33]

[34]

[35

[36]

[37]
[38]
[39]
[40]
[41]

[42]

[43]

https://doi.org/10.1145/303976.303978
http://arxiv.org/abs/1310.3314v2

SIGMOD ’18, June 2018, Houston, TX, USA

sampled is
ier@rmW @) Tk W (1;,RY)
W (ro) W ()

W (<R W)
I}(W (1;, RY) 'W<ti><R§-<)>
=HzeT(aP')W(’) ‘ LWk
W (ro) W (1)
ZHzET(BP)W(t)
W(ro)

B TPC-H QUERIES

Q3 - Lineitems joined with the orders they associated with and the
customers who placed the orders:

SELECT c_custkey, o_orderkey, 1_linenumber
FROM customer, orders, lineitem
WHERE c_custkey = o_custkey

AND 1_orderkey = o_orderkey;

QX - Suppliers and customers in the same nations with the pur-
chase history of the customers.

SELECT nationkey, s_suppkey, c_custkey,
o_orderkey, 1_linenumber
FROM nation, supplier, customer,
orders, lineitem
WHERE n_nationkey = s_nationkey
AND s_nationkey = c_nationkey
AND c_custkey = o_custkey
AND o_orderkey = 1_orderkey;

QY - Suppliers that are in the same nation as a pair of customers
in the same nation that has once ordered the same items:

SELECT 11.1_linenumber, ol.o_orderkey, c1.c_custkey,
12.1_linenumber, o02.o_orderkey, s_suppkey,
c2.c_custkey

FROM lineitem 11, orders ol, customer ci,

lineitem 12, orders o2, customer c2, supplier s

WHERE 11.1_orderkey = ol.o_orderkey

AND o1.o_custkey = c1.c_custkey
AND 11.1_partkey = 12.1_partkey
AND 12.1_orderkey = 02.o0_orderkey
AND 02.o_custkey = c2.c_custkey
AND c1.c_nationkey = s.s_nationkey
AND s.s_nationkey = c2.c_nationkey;

C SOCIAL GRAPH QUERIES

QT - Triangles in a twitter follower graph:

SELECT * FROM
popuar-user A, twitter-user B, twitter-user C

WHERE A.dst = B.src
AND B.dst = C.src
AND C.dst = A.src;
QS - Squares in a twitter follower graph:
SELECT =

FROM popuar-user A, twitter-user B,
twitter-user C, twitter-user D

WHERE A.dst = B.src
AND B.dst = C.src
AND C.dst = D.src
AND D.dst = A.src;

Zhuoyue Zhao 1. Robert Christensen ', Feifei Li !, Xiao Hu 2, Ke Yi 2

QF - Two users followed by a popular user and another user who
is followed by a popular user followed by the first popular user:

SELECT =*
FROM popular-user A, twitter-user B,
twitter-user C, popular-user D

WHERE A.src = B.src
AND C.dst = A.src
AND C.src = D.src;

D TRAINING DATA GENERATOR AND JOIN
QUERY FOR THE LEARNING
EXPERIMENTS

The training data used in Section 6.6 is generated by a modified
TPC-H data generator. In the lineitem table of TPC-H benchmark,
there is a return_flag field which indicates whether a delivered item
has been returned by the customer who placed the order. In the
original benchmark, this field follows a uniform distribution if the
item has been delivered. We modified the distribution of the return
flag as follows so that it is related to customer, shipping date and the
price of the item.

First, all items have a 10% probability to be returned. Then, we
split the whole period of shipping dates into 13 200-day windows
(0-12) with the last one being shorter than 200 days (because of
the range of the date values). Each customer chooses the set of the
odd-numbered shipping date windows with probability 1/2 and the
other half with probability 1/2. If the item is shipped within the
chosen windows, they are returned with an additional 50% chance.
This is to simulate the case that often time a customer’s return rate
exhibits strong degree of temporal locality.

Finally, if the price after discount for an item is among roughly
the top 1% of all the items (1_extendedprice * (1 - I_discount) / 1000
>= 85), it is returned with additional 30% chance. This is to simulate
the scenario that expensive orders experience a higher rate of return.

The query for extracting features to train the SVM model is shown
below. In order to predict the return_flag of an item ¢; shipped to a
customer ¢, we want to look at another item ¢, shipped to the same
customer ¢ and include the return_flag of ¢, as a feature. We also
include the difference between the shipping dates of the two items
(¢1 and ¢,), as well as the quantity and price after discount of both
items. In addition, we include the region of the supplier of the item,
the supplier’s account balance, the total price and the priority of the
order as the features.

Note that a machine learning algorithm has no way of know-
ing what features are important for making an effective prediction.
Hence, it cannot “magically” choose only those features that will
influence the return_flag values used in our generator (i.e., difference
of shipping dates and item price). Rather, it has to make use of a set
of seemingly useful features as shown in our query to train its model
(e.g., it is possible that customers from certain region have a higher
return rate that others; it is also possible that return rate is correlated
with order quantity.

SELECT
11.1_returnflag, n_regionkey, s_acctbal,
11.1_quantity, 11.1_extendedprice, 11.1_discount,
11.1_shipdate, ol.o_totalprice, ol.o_orderpriority,
12.1_quantity, 12.1_extendedprice, 12.1_discount,
12.1_returnflag, 12.1_shipdate

Random Sampling over Joins Revisited

FROM nation, supplier, lineitem 11, orders o1,
customer, orders 02, lineitem 12

WHERE

s_nationkey = n_nationkey

AND s_suppkey = 11.1_suppkey
AND 11.1_orderkey = ol.o_orderkey
AND o1.o_custkey = c_custkey
AND c_custkey = 02.0_custkey
AND 02.o_orderkey = 12.1_orderkey;

E ADDITIONAL EXPERIMENTS

Table 4: Random sampling acceptance rate comparison

Exact Weight | Online Exploration | Extended Olken
Q3 | 1.00 1.00 0.0092
QX | 1.00 1.00 0.0084
QY | 0.071 0.071 0.00033
QT | 0.15 0.15 0.00078
QS | 0.13 0.0076 0.000043
QF | 1.00 1.00 0.000031

Table 4 shows the acceptance rate of the three instantiations of
our sampling framework on all the six queries. As shown in the table,
Exact Weight and Online Exploration have the highest acceptance
rates since the upper bounds are quite tight. Extended Olken, on the
other hand, usually has an acceptance rate of 1 or 2 magnitude lower
because of the loose upper bounds set by the smaller one of AGM

bound and the product of maximum degrees in each table.

SIGMOD ’18, June 2018, Houston, TX, USA

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem definition: Join as a Hyper-Graph
	2.2 Sampling two-relation joins
	2.3 Sampling multi-way foreign-key joins

	3 A Join Sampling Framework
	4 Framework Instantiations
	4.1 Generalizing Olken's algorithm
	4.2 Generalizing Chaudhuri et al.'s algorithm
	4.3 Other join size upper bounds
	4.4 Wander join as initialization

	5 Other Types of Joins
	5.1 Acyclic join queries
	5.2 Cyclic queries
	5.3 Selection predicates

	6 Experiments
	6.1 Experimental setup
	6.2 TPC-H experiments
	6.3 Social graph experiments
	6.4 Kolmogorov-Smirnov (KS) test
	6.5 Where to break a cycle
	6.6 Sampling joins for machine learning

	7 Remarks and Extensions
	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References
	A Proof of Theorem 2
	B TPC-H Queries
	C Social Graph Queries
	D Training Data Generator and Join Query for the Learning Experiments
	E Additional Experiments

