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ABSTRACT

We study the problem of computing approximate quantiles
in large-scale sensor networks communication-efficiently, a
problem previously studied by Greenwald and Khana [12]
and Shrivastava et al. [21]. Their algorithms have a total
communication cost of O(k log2 n/ǫ) and O(k log u/ǫ), re-
spectively, where k is the number of nodes in the network,
n is the total size of the data sets held by all the nodes, u is
the universe size, and ǫ is the required approximation error.
In this paper, we present a sampling based quantile compu-
tation algorithm with O(

√
kh/ǫ) total communication (h is

the height of the routing tree), which grows sublinearly with
the network size except in the pathological case h = Θ(k).
In our experiments on both synthetic and real data sets, this
improvement translates into a 10 to 100-fold communication
reduction for achieving the same accuracy in the computed
quantiles. Meanwhile, the maximum individual node com-
munication of our algorithm is no higher than that of the
previous two algorithms.

Categories and Subject Descriptors

F.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms

Algorithms

Keywords

Sensor networks, quantiles

1. INTRODUCTION
Sensor networks are large ad-hoc networks of intercon-

nected, battery powered, wireless sensors. They are now
being widely deployed to monitor diverse physical variables,
such as temperature, sound, activities of wild life and so
forth [15, 17, 27]. As technologies mature, sensor networks
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have reached the scale of thousands of nodes [1, 2] and will
get even larger in the near future. However, power consump-
tion remains the biggest obstacle for large-scale deployment
for sensor networks as the on-board battery is still the only
power source for a sensor node. Since wireless transmission
of data is the biggest cause of battery drain [20], in-network
aggregation techniques that prevent the nodes from forward-
ing all the data to the base station are extremely useful for
energy conservation in sensor networks. The observation is
that for many monitoring tasks, we do not actually need all
the measurement data collected by all the sensors, often a
succinct aggregate suffices. Computing an aggregate could
be much more communication-efficient than transmitting all
the data to the base station, in terms of both the total com-
munication, as well as the maximum individual node com-
munication.

Simple aggregates such as max, min, sum, count can be
computed easily and efficiently [14]: The nodes first orga-
nize them into a spanning tree rooted at the base station.
Then starting from the leaves, the aggregation propagates
upwards to the root. When a node receives the aggregates
from its children, it computes the aggregate of these aggre-
gates and its own data, which equals the aggregate of all
the data in the node’s subtree, and forwards it to its parent.
Such a simple approach works due to the decomposable prop-
erty of these aggregates: for any two disjoint sets S1 and S2,
the aggregate of S1 ∪ S2 can be computed from the individ-
ual aggregates of S1 and S2. Some other aggregates such as
average can also be computed this way since it is derived
from two decomposable aggregates sum and count, though
it is not decomposable itself. Letting k be the number of
nodes in the sensor network, it is clear that a decomposable
aggregate can be computed with O(k) total communication
and O(1) maximum node communication (assuming each
node has O(1) children).

However, these simple aggregates are not expressive enough.
A quantile summary, which allows one to extract the φ-
quantile for any 0 < φ < 1 of the underlying data, much
better characterizes the data distribution. Recall that the
φ-quantile of a set S of n data values from a totally ordered
universe is the value a with rank r(a) = ⌊φn⌋ in S; the rank
of any value x, r(x), is the number of values in S smaller
than x. For ease of presentation we assume that all values
in S are distinct; such an assumption can be easily removed
by using any consistent tie-breaker. The quantiles are also
called the order statistics and equi-depth histograms, and are
very useful in a variety of data analytical tasks as they offer
a lot more insight into the underlying data than the simple,



single-valued aggregates. Because a quantile summary that
returns the accurate quantiles must contain the entire data
set, an ǫ-approximation is usually allowed: an ǫ-approximate
φ-quantile is a value with rank between (φ−ǫ)n and (φ+ǫ)n.
This additive error definition is the one that has been mostly
adopted in the literature [5, 6, 10–12, 18, 21, 26], though mul-
tiplicative errors have also been considered [7, 28]. Note that
since the error is additive, the ǫ should be set small, usually
on the order of 0.01% to 1% [6]. With an ǫ-approximation al-
lowed, an (approximate) quantile summary could just retain
the 1/ǫ values that rank at 0, ǫn, 2ǫn, 3ǫn, . . . , respectively.
Then for any φ, we return the value with the largest rank in
the summary that is no larger than φn. One can also easily
argue that Ω(1/ǫ) is the theoretical minimum size of such a
summary.

1.1 Previous results
In 2004, two back-to-back, well cited papers by Greenwald

and Khanna [12] and Shrivastava et al. [21] studied the prob-
lem of computing quantile summaries in a communication-
efficient manner in sensor networks. Both of them still follow
the “decomposable” approach described earlier. But unlike
sum or max, a quantile by itself is not decomposable (for this
reason it is also called a holistic aggregate in the literature
[5]). So the challenge was to design a decomposable sum-
mary that contains enough information so that the approx-
imate quantiles can be extracted. Their solutions only dif-
fer in the decomposable quantile summaries used. The GK
summary [12] has size O(log2 n/ǫ) where n is the total num-
ber of data values in the network, while the q-digest [21] has
size O(log u/ǫ) where u is the size of the universe from which
the data values are drawn. The two extra factors O(log2 n)
and O(log u) are not strictly comparable, but the GK sum-
mary is theoretically more general as it supports unbounded
universes (assuming, of course, any value in the universe
takes one unit of storage). The GK summary has two ad-
ditional variants with size O(h/ǫ) and O(log n log(h/ǫ)/ǫ),
respectively, where h is the height of the routing tree. They
can be better than the basic version when the routing tree
is well-balanced.

Specifically, both algorithms [12, 21] start from the leaves
and compute the GK summary (resp. q-digest) upwards.
Each node first computes a summary of its own data, and
then combines it with all the summaries it receives from
its children. This produces an aggregated summary that
incorporates all the data in the node’s subtree, which is then
forwarded to its parent. It is clear that the individual node
communication is equal to the summary size, while the total
communication is k times that.

1.2 Our results
In this paper, we present a new algorithm for computing

quantile summaries in sensor networks, with an expected
total communication of O(

√
kh/ǫ). The computed quantile

summary allows one to extract an ǫ-approximate φ-quantile
with constant probability for any 0 < φ < 1. Depending on
various physical situations, the height of the tree, h, could
range from log k to k, but usually does not exceed

√
k (which

happens when the sensor nodes form a grid structure). Thus
the communication is always less than that of the previous
algorithms. More importantly, except in the pathological
case h = Θ(k), the cost of our algorithm grows sublinearly
in the size of the network, leading to excellent scalability.

total comm. max node comm.

q-digest [21] k log u/ǫ log u/ǫ
GK algorithm [12] k log2 n/ǫ log2 n/ǫ
GK algorithm v2 k log n log(h/ǫ)/ǫ log n log(h/ǫ)/ǫ
GK algorithm v3 kh/ǫ h/ǫ

new
√

kh/ǫ log(k/h)/ǫ

Table 1: The asymptotic communication costs of the
algorithms, where n is the total number of data val-
ues, u is the universe size, k is the network size, h
is the height of the routing tree, and ǫ is the error
parameter.

Meanwhile, the maximum individual node communication of
our algorithm is O(log(k/h)/ǫ), which is also strictly better
than any of the previous algorithms, as log k < h < k <
n < u. A comparison of the communication costs of these
algorithms is given in Table 1.

Note that for relatively large ǫ, say a constant, O(
√

kh/ǫ)
could be much smaller than k, which means that we can
compute the quantiles without contacting all nodes. This
may seem surprising, as even computing or approximating a
simple aggregate, like sum or count, needs Θ(k) communi-
cation. This “surprise” comes with the assumption that our
algorithm knows the values of n and k; otherwise, we need
O(k) communication to compute them first. We separated
the cost of computing n and k from that of the quantile
problem itself for the following reasons: (1) It simplifies the
bound and makes the core problem of quantile computa-
tion stand out; otherwise we should always include an ad-
ditive O(k) term. (2) Applications usually use quantiles to
track the distribution of the underlying data, so will com-
pute quantile summaries periodically. The values of n and
k from period to period are unlikely to change much, while
our algorithm actually only needs to know n and k within
a constant factor. So we can usually repeatedly execute it
without refreshing n and k. Anyways, in practice we typi-
cally have k ≪

√
kh/ǫ, and the O(k) term can be neglected.

Note that for any algorithm using decomposable sum-
maries, the total communication is always at least Ω(k/ǫ),
as any such summary must have size Ω(1/ǫ). To break this
barrier, we deviate from the decomposable framework: The
message a node sends to its parent does not necessarily con-
tain a quantile summary of the data in its subtree. Never-
theless, we will make sure that the base station in the end
will have a valid quantile summary for the entire data set. In
particular, our algorithm uses larger messages (but of size at
most O(log(k/h)/ǫ)) for nodes near the base station, while
nodes far away send small or even no messages. This is in
contrast with the previous approaches where all nodes use
essentially the same message size (ignoring polylog factors).

The improvement of our algorithm for the maximum indi-
vidual node communication is not as drastic as that for the
total communication. In fact, it is not difficult to show an
Ω(1/ǫ) lower bound on the maximum node communication
for any quantile algorithm, decomposable or not, and all the
algorithms already come close to this theoretical limit within
polylog factors, with our log factor being the smallest. Some
may say that the maximum node cost is more important [12],
but we would argue the other way round, for the following
reasons: 1) The network will not be disconnected due to a
single node exhausting its battery. A sensor network usu-
ally has enough redundancy so that rerouting is possible for



a permissible number of node failures. 2) We can install
larger batteries for sensor nodes that are expected to have
larger power consumptions, e.g. those near the base station,
or simply deploy more sensors there to increase redundancy.
When we have good provisioning, the total communication
cost, rather than the maximum individual node cost, will
become the determining factor for the longevity of the net-
work. In fact, most previous papers on data aggregation
indeed used total communication as the primary measure of
energy efficiency, e.g. [4, 16, 22]. The previous work on the
quantile problem [12, 21] did not emphasize it as much be-
cause for those algorithms, the total communication is just
k times the (fixed) message size.

Our algorithm is based on sampling. However, simply tak-
ing a random sample of the data and computing the quan-
tiles on the sample is not accurate enough, as it is well known
that to achieve an ǫ-error with constant probability, a ran-
dom sample of size Θ(1/ǫ2) needs to be drawn [23]. This
results in O(h/ǫ2) total communication and O(1/ǫ2) maxi-
mum node communication. To improve accuracy (or equiva-
lently, to reduce size), we augment the random sample with
additional information about the data, together with several
new ideas that we briefly outline in Section 1.4 and develop
in stages in later sections. In fact, the total communication
of our algorithm is O(min{

√
kh/ǫ, h/ǫ2}), i.e., it is always no

worse than simple random sampling, but we will avoid car-
rying along with the “min” throughout the paper to simplify
exposition.

Since our algorithm is based on random sampling, it pro-
vides a probabilistic guarantee, that any φ-quantile can be
extracted within error ǫ with a constant probability which
can be made arbitrarily close to 1. While the GK algo-
rithm and the q-digest provide a worst-case ǫ-error guar-
antee. However, we would be happy with a probabilistic
guarantee, since transmission errors and link failures are
common in sensor networks, a theoretical worst-case guar-
antee becomes a probabilistic one in practice anyway. Nev-
ertheless, to ensure a fair comparison, in the experiments
(Section 5) we did not simply set the required ǫ and com-
pare the communication costs. Instead, we measure the ac-
tual average and maximum error of 99 quantiles for φ =
1%, 2%, . . . , 99%, and compare all the algorithms in terms
of the communication-error trade-off curve.

1.3 Related work
Data aggregation in sensor networks has been a topic of

intensive studies for the past years. Below we only review
the most relevant work; please refer to the surveys [9, 24] for
more comprehensive results in this area.

Data aggregation techniques can be broadly classified into
two categories: tree-based approaches and multi-path ap-
proaches. In a tree-based approach, the nodes organize
themselves into a routing tree. Typically the tree is built
from the base station in a breadth-first manner: All nodes
within communication range with the base station become
level-one nodes. Then a node u that can reach a level-one
node v becomes a level-two node, with v being the parent
of u, and so on so forth. When a link fails, the child will
try to find a new parent, but at any time, a node has only
one parent and the aggregation is performed along a tree.
Most data aggregation techniques, including all the quan-
tile algorithms, are tree-based. In a multi-path approach, a
node has multiple parents and will broadcast its message to

all of them. Such an approach is more robust against link
failures, but also requires more communication, as now the
algorithm has to be designed to be insensitive to the duplica-
tion of messages. With a multi-path approach, even a simple
aggregate like count or sum cannot be computed exactly.
To obtain an ǫ-approximation of count or sum, each node
will need to send a message of size O(1/ǫ2) [4, 19]. Currently
there are no multi-path algorithms for the quantile problem.
There is also a hybrid approach [16] that combines the ben-
efits of tree-based and multi-path approaches, where it uses
tree aggregation when the link failure rate is low to gain
better communication efficiency, while adopts a multi-path
strategy when the failure rate is high.

The closely related heavy hitters problem has also received
a lot of attention, where the goal is to compute a summary of
a multiset of size n from which we can estimate the frequency
of any item up to an additive error of ǫn. It is well known
[6] that this problem can be reduced to the ǫ′-approximate
quantile problem for some ǫ′ = Θ(ǫ), by simply using some
tie breaker to convert the multiset into a set (say, padding
different lower-order bits), and then asking quantile queries
with φ = ǫ′, 2ǫ′, . . . . Thus the previous quantile algorithms
[12, 21], as well as our new algorithm, also solve the heavy
hitters problem. But of interest is whether the heavy hitters
problem can be solved more efficiently, as in the case of the
streaming model, where the heavy hitters problem can be
solved in O(1/ǫ) space [6] while the best quantile algorithm
needs O(log n/ǫ) space [11]. Manjhi et al. [16] proposed a de-
terministic algorithm for computing the heavy hitters with
total communication O(k/ǫ), but the bound only holds for
a class of “nice” routing trees that they define. It is still an
open question whether there are better deterministic heavy
hitter algorithms for arbitrary routing trees. For random-
ized algorithms, one can use the count-min sketch [8] in the
decomposable framework, leading to total communication
O(k/ǫ) for any routing tree. Our algorithm improves this to

O(
√

kh/ǫ).
Quantile summaries, as fundamental statistics and a use-

ful data analytical tool, have been extensively studied in
several other settings. Munro and Paterson [18] studied
how to compute an exact quantile with limited memory and
multiple passes, and also showed that approximation is nec-
essary if only one pass is allowed. The best one-pass (i.e.,
streaming) algorithm for computing approximate quantile
summaries is due to Greenwald and Khana [11], whose algo-
rithm uses O(log n/ǫ) space. Gilbert et al. [10] and Cormode
and Muthukrishnan [8] studied how to maintain a quantile
summary under both insertions and deletions using small
space. Finally, Cormode et al. [5] and Yi and Zhang [26]
studied how to track the quantile summary over distributed
data sets as they evolve.

1.4 Roadmap
We develop our algorithm in three stages. In Section 2

we first present the algorithm in the flat model, in which
all nodes are directly connected to the base station. This
algorithm has O(

√
k/ǫ) total communication and O(1/ǫ)

maximum individual node communication. Simply running
the algorithm on a spanning tree of height h would result
in O(h

√
k/ǫ) total communication; even worse, the maxi-

mum individual node communication could be as high as
O(

√
k/ǫ) since all the traffic might have to go through a sin-

gle node. In Section 3 we develop techniques that combine



the messages a node receives before it forwards its message
to its parent. This results in an O(log k/ǫ) maximum mes-
sage size. Finally in Section 4, we use a tree partitioning
technique to improve the total communication cost to the
claimed O(

√
kh/ǫ) bound.

2. THE FLAT MODEL
In this section we first describe our algorithm in the flat

model, in which each node is directly connected to the base
station. Let the set of data values at node i be Si, i =
1, . . . , k, and let n be the total number of data values.

The algorithm. The algorithm is very simple. Each node
first independently samples each of its data values with some
probability p (to be determined later). For each sampled
value a, it computes its local rank r(a, i) at node i, i.e., the
rank of a in set Si. Then it simply sends all the sampled
values and their local ranks to the base station.

We first show how a value-to-rank query can be answered
at the base station from the information it receives, namely,
given any value x, we need to estimate r(x), the rank of x
in

S

i
Si. After this, quantile (rank-to-value) queries can be

easily answered. Let pred(x, i) be the predecessor of x in the
sampled values sent from node i, namely, the largest value
no larger than x; note that pred(x, i) may not exist. We
show below that

r̂(x, i) =



r(pred(x, i), i) + 1/p, if pred(x, i) exists;
0, else

is an unbiased estimator of r(x, i), the local rank of x in Si.
Then, we can estimate the global rank of x as

r̂(x) =
X

i

r̂(x, i).

Node 1 10 33 42 68 101 132

Node 2 52 97 125

Node 3 21 74 111

Figure 1: There are 3 nodes, each of which holds a
set of integers, and the shaded integers are sampled
(the sample rate here is 1/2).

See Figure 1 for an example. Suppose we want to query
for the rank of 80. In this example, r̂(80, 1) = 2+2 = 4 since
in the sample from Node 1, the local rank of 80’s predeces-
sor, 42, is 2 and the sample probability is 1/2. Similarly,
r̂(80, 2) = 0 and r̂(80, 3) = 0 + 2 = 2, so the estimated
global rank of 80 is r̂(8) = 4 + 0 + 2 = 6, whereas its actual
global rank is 7.

Analysis. The key to showing that r̂(x) estimates the
global rank of x accurately is the following lemma.

Lemma 1. For any x, r̂(x, i) is an unbiased estimator for

r(x, i), with variance Var[r̂(x, i)] ≤ 1 − (1 − p)r(x,i)

p2
.

Proof. Consider the random variable

X =



r(x, i) − r(pred(x, i), i), if pred(x, i) exists;
r(x, i) + 1/p, else.

Note that r̂(x, i) = r(x, i) − X + 1/p. So we just need to
show that E[X] = 1/p and bound Var[X].

Starting from x and walking to smaller values, we observe
that X represents the number of values we see until the first
sampled value pred(x, i) in set Si, when it exists. When all
the r(x, i) values smaller than x are not sampled, X is set
to r(x, i)+1/p. Therefore, we have (detailed derivations are
omitted; r(x, i) is shorthanded as r)

E[X] =
r

X

ℓ=1

ℓp(1 − p)ℓ−1 + (1 − p)r(r + 1/p) = 1/p.

The variance is

Var[X] = E[X2] − E[X]2

=
r

X

ℓ=1

ℓ2p(1 − p)ℓ−1 + (1 − p)r(r + 1/p)2 − 1/p2

=
(1 − (1 − p)r)(1 − p)

p2
≤ 1 − (1 − p)r(x,i)

p2
.

Since the global rank of x is the sum of the local ranks, r̂(x) is

an unbiased estimator of r(x) with variance
Pk

i=1 Var[r̂(x, i)].
We bound Var[r̂(x, i)] in two ways. First it is clear that
Var[r̂(x, i)] ≤ 1/p2, and hence

P

i
Var[r̂(x, i)] ≤ k/p2. Thus,

by setting p = Θ(
√

k/ǫn), the variance becomes O((ǫn)2).
By Chebyshev’s inequality, this means that r̂(x) approx-
imates r(x) within an additive error of ǫn with constant
probability. This constant probability can be made arbitrar-
ily close to 1 by enlarging p by appropriate constant factors.
In this case the total communication is O(pn) = O(

√
k/ǫ).

Alternatively we can bound Var[r̂(x, i)] as

Var[r̂(x, i)] ≤ 1 − (1 − pr(x, i))

p2
=

r(x, i)

p
,

so

Var[r̂(x)] =
X

i

Var[r̂(x, i)] ≤ 1

p

X

i

r(x, i) ≤ n

p
.

This means that when p is set to Θ(1/ǫ2n), Var[r̂(x)] is also
O((ǫn)2). In this case the total communication is O(1/ǫ2),
namely the same as simple random sampling. Therefore, the
algorithm has a total communication of O(min{

√
k/ǫ, 1/ǫ2}).

In the rest of the paper, we will only consider the interesting
and typical case when

√
k/ǫ < 1/ǫ2, i.e., k < 1/ǫ2, to avoid

carrying the “min” around.

Reducing individual node communication. The algo-
rithm described above has the desired total communication
O(

√
k/ǫ), but all this traffic could be from one node, if it

dominates the entire data set. Below we show how to limit
the individual node communication to O(1/ǫ). We classify

the nodes into those with more than n/
√

k data values and

those with at most that. If a node i has |Si| ≤ n/
√

k values,
it still uses the previously determined sample probability
pi = p; if |Si| > n/

√
k, it will use a smaller sample proba-

bility pi = 1/ǫ|Si|. The estimator correspondingly becomes

r̂(x, i) =



r(pred(x, i), i) + 1/pi, if pred(x, i) exists;
0, else.

It is clear that now a node samples at most O(1/ǫ) values
in expectation. To see that the estimator is still accurate,



by Lemma 1, r̂(x) is still an unbiased estimator of r(x) with
variance

Var[r̂(x)] ≤
k

X

i=1

1/p2
i =

X

i : |Si|> n√
k

(ǫni)
2 +

X

i : |Si|≤ n√
k

(ǫn)2

k

≤

0

B

@

X

{i : |Si|> n√
k
}
(ǫni)

1

C

A

2

+ (ǫn)2 ≤ 2(ǫn)2.

Thus r̂(x) is still an ǫ-approximation of r(x) with constant
probability.

Quantile queries. We have shown how to answer value-to-
rank queries using the summary structure at the base sta-
tion. Quantile (rank-to-value) queries can also be answered
easily, as follows. For each sampled data value a received
by the base station from node i, we first estimate its global
rank r̂(a) as

r̂(a) = r(a, i) +
X

j 6=i

r̂(a, j).

Now, given a required rank r, we simply return the sam-
pled value x that has the closest estimated rank r̂(x) to r.
Below we argue that its true rank, r(x), is away from r by
at most ǫn with constant probability. Assume that r is be-
tween the estimated ranks of two consecutive values x and y
in the sample, i.e., r̂(x) ≤ r ≤ r̂(y). Consider the following
three events:

1) r̂(x) − 1

2
ǫn ≤ r(x) ≤ r̂(x) +

1

2
ǫn.

2) r̂(y) − 1

2
ǫn ≤ r(y) ≤ r̂(y) +

1

2
ǫn.

3) r(y) − r(x) ≤ ǫn.

When all three events happen, one can verify that x or y,
whoever has the closest estimated rank to r, must have its
true rank within ǫn to r.

By appropriately adjusting the constants, we can make
sure that events 1) and 2) each happen with probability 8/9
(say). Since the sample probability is at least 1/ǫ|Si| ≥ 1/ǫn,
the number of missed values between x and y is no more
than ǫn with constant probability. Again this constant can
be boosted to 8/9. Then by a union bound, all three events
happen together with probability at least 2/3.

Theorem 1. Our algorithm in the flat model has O(
√

k/ǫ)
total communication and O(1/ǫ) maximum individual node
communication, and answers an ǫ-approximate quantile query
with constant probability.

3. THE TREE MODEL
There are two challenges in extending the flat model al-

gorithm to a general routing tree. First, if each node simply
sends its message through its ancestors in the routing tree
to the base station without any data reduction, an interme-
diate node might see too much traffic going through. This
could result in an O(

√
k/ǫ) maximum individual node com-

munication. Second, in terms of total communication, sim-
ply running the flat model algorithm in the tree model would
result in O(h

√
k/ǫ) communication as a message needs O(h)

hops to reach the base station. This section will resolve the
first issue while Section 4 the second.

3.1 Basic ideas
From Theorem 1 we know that each node’s own message

has size at most O(1/ǫ). Problems arise when a node has
too many descendants whose messages need to be forwarded.
Our idea is to merge these messages in a systematic way so
as to reduce their size.

The unit of our merge operation is a sample s taken from
a ground set D(s). Let n(s) denote the size of the ground set
D(s), and we store n(s) together with s. We say s is a small

sample if n(s) < n/
√

k and a large sample if n(s) ≥ n/
√

k.
Initially, each such sample s is generated by a node i from
its own data set D(s) = Si. Recall from the previous section
that the initial samples have the following properties:

(P1) The ground sets of the samples are disjoint, and their
union is the entire data set.

(P2) Each value in D(s) has been sampled to s with some

equal probability p(s); in particular, p(s) =
√

k/ǫn if
s is a small sample and p(s) = 1/ǫn(s) if it is a large
sample.

(P3) Each sampled value a in s is associated with r(a, D(s)),
the local rank of a in D(s).

Recall that an immediate consequence of (P2) is that each
sample has size at most O(1/ǫ).

For a large sample s, we define its class number as

c(s) = ⌊log(n(s)
√

k/n)⌋.

It is clear that 0 ≤ c(s) ≤ log
√

k. When a node has received
a number of samples from its children, together with one of
its own, it will first check if the ground sets of all the small
samples have a combined size of at least n/

√
k. If so it will

merge all the small samples into a large sample. Next it
will repeatedly merge two large samples of the same class
into one in the next class, until no two large samples are in
the same class. As a result, there will be at most one large
sample per class left. During the merge operation, we will
also ensure that the three properties above are maintained.
As a result, since all the small samples, if there are any, have
their combined ground set smaller than n/

√
k, the total size

of all the small samples is O(1/ǫ), and because each large
sample has size at most O(1/ǫ), the node will eventually
send out a message of size O(log k/ǫ).

When merging two samples s1 and s2 and producing a
merged sample on the ground set D(s1)∪ D(s2), properties
(P1) and (P2) are relatively easy to maintain, by appropri-
ately subsampling the values in s1 and s2 based on p(s1)
and p(s2). However, (P3) is difficult to guarantee. In fact,
because we only have a sample s2 from D(s2), for any value
a subsampled to the merged sample from s1, we cannot re-
ally compute its exact rank in D(s2), and vice versa. So we
will instead estimate its rank in D(s2) based on s2. Thus,
we will relax property 3) to the following:

(P3′) Each sampled value a in s is associated with r̂(a, D(s)),
which is an unbiased estimator of r(a, D(s)), the local
rank of a in D(s).

Now we need to be careful since the errors in these esti-
mated ranks will propagate as more merges are performed,
and we need to make sure that when the samples reach the
base station, the accumulated error should not exceed ǫn.
Below we first present the relatively simple merging algo-
rithm, and defer the more complicated analysis to later.



3.2 The merging algorithm
As described above, if all the small samples have their

combined ground set smaller than n/
√

k, we will not do any
merges since their total sample size is O(1/ǫ). Otherwise,
we use the following merge-small operation to merge them
into a large sample.

merge-small: Let s1, s2, . . . , sm be all the small samples,
such that

P

i
n(s) ≥ n/

√
k. Let s be the merged sample, and

let n(s) =
P

i n(si) be the size of the combined ground set.
Note that s will be a large sample, so its sample probability
should be p(s) = 1/ǫn(s). To form the sample, we can sim-
ply subsample each data value in all the si’s with probability
p(s)

p(si)
=

n

n(s)
√

k
. For each a thus sampled, if it is from si,

we estimate its local rank in the combined ground set as

r̂(a, D(s)) = r(a, i) +
X

j 6=i

r̂(a, D(sj)),

where

r̂(a, D(sj)) =

8

<

:

r(pred(a, sj), D(sj)) + 1/p(sj),
if pred(a, sj) exists;

0, else.

As before, here pred(a, sj) denotes the predecessor of a in
the sample sj .

It is easy to see that merge-small maintains properties
(P1), (P2), and (P3′) since by Lemma 1, r̂(a, D(sj)) is an
unbiased estimator of r(a, D(sj)).

After executing merge-small, we will repeatedly execute
merge-large to merge the large samples. Unlike merge-
small, we apply merge-large only on pairs of large sam-
ples of the same class, one pair at a time, progressively from
the low classes to high. More precisely, starting from class
c = 0, as long as there are at least two large samples in this
class, we merge them with merge-large, to form a sam-
ple in class c + 1. When there is one or no sample left in
class c, we move on to class c + 1. This idea is similar to
that in [12], but because of our way of sampling and the
fact that we deviate from the decomposable framework, the
total size of our merged samples is smaller than that of [12]
by a logarithmic factor.

merge-large: Let s1 and s2 be two large samples to be
merged. Let s be the merged sample, and set n(s) = n(s1)+
n(s2). As s has a sample probability p(s) = 1/ǫn(s), we sub-
sample each data value in s1 with probability p(s)/p(s1) =
n(s1)/n(s) and subsample each data value in s2 with prob-
ability p(s)/p(s2) = n(s2)/n(s). For each subsampled value
a, if it is from s1, we estimate its rank in D(s) as

r̂(a,D(s)) = r̂(a, D(s1)) + r̂(a, D(s2)),

where r̂(a, D(s1)) is the rank (either exact or approximate)
that a carries from s1, and r̂(a, D(s2)) is computed from s2

similarly as before

r̂(a, D(s2)) =

8

<

:

r̂(pred(a, s2), D(s2)) + 1/p(s2),
if pred(a, s2) exists;

0, else,

except that r̂(pred(a, s2), D(S2)) could now also be an es-
timate rather than the exact rank of pred(a, s2) in D(S2).
The case where a is from s2 is handled symmetrically.

Let us see an example of merging two messages. Sup-
pose n/

√
k = 100, and the two messages contain summaries

{s1, s2, s3} and {t1, t2, t3}, with ground set sizes 80, 400,
800, and 60, 400, 3200 respectively. So s1 and t1 are small
samples, and we merge them into s′1 using merge-small.
The resulting merged sample has class number 0. We then
find that s2 and t2 are both in class 2, and merge them to-
gether into a new summary with class number 3. It is further
merged with s3, getting a summary s′2 with class number 4.
Now we are done, since the summaries left are {s′1, s′2, t3},
all of which have different class numbers.

When all the samples have been sent to the base station,
we can use exactly the same query algorithms as in the flat
model to answer value-to-rank and rank-to-value queries us-
ing these samples, just that now the local ranks for the sam-
pled values are estimates of the actual local ranks in the
respective ground sets.

3.3 Error analysis
It easily follows from the merging algorithm that proper-

ties (P1), (P2), and (P3′) are all maintained, but it remains
to show that when the base station has received all the sam-
ples, an ǫ-approximate quantile query can still be answered
with constant probability.

Lemma 2. For any large sample s resulted from merge-
small, the estimated local rank r̂(a, D(s)) has variance at
most m(ǫn)2/k, where m is the number of merged small sam-
ples.

Proof. Because each small sample is an initial sample
with sample probability p =

√
k/ǫn, the lemma directly fol-

lows from Lemma 1.

Lemma 3. Let s be any large sample of class c(s). For
any data value a ∈ s, its estimated rank r̂(a,D(s)) has vari-

ance at most m(ǫn)2/k + (ǫ2c(s)+1n)2/k, where m is the
number of small samples whose ground sets are included in
D(s).

Proof. We will prove by induction on c(s). The base
case c(s) = 0 is easy to verify: For any large sample of class
0, it is either an initial sample or one produced from merge-
small. The variance of r̂(a,D(s)) is 0 in first case, and at
most m(ǫn)2/k in the second case by Lemma 2.

Now we assume the lemma holds for all large samples
of class i and proceed to prove it for class i + 1. A large
sample s with c(s) = i + 1 could be produced from merge-
small, or merged from two large samples s1 and s2 with
c(s1) = c(s2) = i. In the first case, again by Lemma 2, the
variance is at most m(ǫn)2/k; in the second case, by the
induction hypothesis, we have

Var[r̂(a, D(sj))] ≤ mj(ǫn)2/k + (ǫ2i+1n)2/k,

for any a ∈ sj , where mj is the number of small samples
whose ground sets are included in D(sj), j = 1, 2.

Consider a data value a ∈ s. W.l.o.g., assume that it is
subsampled from s1. The rank of a in D(s) is estimated as

r̂(a, D(s)) = r̂(a, D(s1)) + r̂(a,D(s2)).

The variance of r̂(a,D(s1)), by the induction hypothesis, is
at most

m1(ǫn)2/k + (ǫ2i+1n)2/k. (1)



The variance of r̂(a,D(s2)), if the local ranks in s2 were
accurate, by Lemma 1 is at most

1/p(s2)
2 = (ǫn(s2))

2 ≤ (ǫ2i+1n)2/k. (2)

Since now we only have an estimate for the rank of pred(a, s2)
with variance

m2(ǫn)2/k + (ǫ2i+1n)2/k, (3)

by the law of total variance, Var[r̂(a, s)] is the sum of (1),
(2) and (3). Thus

Var[r̂(a, s)] ≤ (m1 + m2)(ǫn)2/k + 3(ǫ2i+1n)2/k

≤ m(ǫn)2/k + (ǫ2i+2n)2/k,

which completes the induction.

Theorem 2. Our algorithm in the tree model has O(h
√

k/ǫ)
total communication and O(log k/ǫ) maximum individual node
communication, and answers an ǫ-approximate quantile query
with constant probability.

Proof. The communication bounds follow directly from
the algorithm description, so we only prove correctness here.
Below we only focus on a value-to-rank query, i.e., estimat-
ing the rank r(x) of any given value x within error ǫn; after
that, a quantile query can be answered in the same way as
in Section 2.

Recall that we use the same algorithm as in the flat model
to estimate r(x) from a number of small samples and at most
one large sample per class. The total variance from all the
small samples is at most O((ǫn)2) according to the analy-
sis in Section 2, since they are the initial samples without
merging.

Let s0, s1, . . . , slog
√

k be the large samples for each of the
classes. The estimated local ranks of x in these samples have
two sources of variance: the variance due to the sampling,
which is 1/p(si)

2 as in Lemma 1, and the variance of the esti-
mated local rank r̂(pred(x, s), D(s)), which can be bounded
by Lemma 3. The total variance from the first source is at
most

log
√

k
X

i=0

1

p(si)2
≤

log
√

k
X

i=0

(ǫ2i+1n)2/k = O((ǫn)2).

The total variance from the second source, by Lemma 3,
is at most

log
√

k
X

i=0

(mi(ǫn)2/k + (ǫ2i+1n)2/k)

≤ k(ǫn)2/k +

log
√

k
X

i=0

(ǫ2i+1n)2/k = O((ǫn)2).

Again, the constant in the big-Oh can be made arbitrarily
small by enlarging the sample probabilities by constant fac-
tors. This means that we can estimate r(x) within ǫn error
with a constant probability.

4. TREE PARTITIONING
In this section we describe our final improvement of the

algorithm, reducing the total communication by another
O(

√
h) factor to O(

√
kh/ǫ), which is sublinear in k for all

h = o(k). The idea is to partition the routing tree into t con-
nected components, each of which contains O(k/t) nodes.

Then we conceptually shrink each component into a “super
node”. These t super nodes form a tree of size t but whose
height still could be h. Now, if we apply our algorithm of
Section 3 on these super nodes, the total communication
would be O(h

√
t/ǫ). This seems to suggest a t that is as

small as possible. However, since a super node is not really
one node, but O(k/t) nodes that are connected. To pro-
duce an initial sample for a super node and compute the
local ranks for the sampled values within the super node,
we have to send messages among the O(k/t) nodes. It turns
out preparing the initial samples now takes communication
O(k/ǫ

√
t). Thus, setting t = k/h balances these two terms

and yields the desired O(
√

kh/ǫ) bound. We next elaborate
on this idea in the rest of this section.

4.1 Tree partitioning
We first partition the routing tree into O(t) = O(k/h)

components, each of which has O(h) nodes. To ensure that
each component is connected, we may introduce a few virtual
nodes, by cloning the actual nodes. A virtual node has no
data. It sits inside the actual node but logically operates on
its own. Note that the tree partitioning phase depends only
on the topology of the routing tree, so we can separate it
from the actual quantile algorithm and only run it when the
tree topology changes.

Below we present a distributed algorithm that does the
partitioning in O(k) total communication. We assume that
each node is aware of its subtree size; if not this information
can be obtained easily using a bottom-up computation with
O(k) communication. Each node u maintains a weight w(u)
which is initially set to u’s subtree size; during the algorithm
w(u) will represent the number of unpartitioned nodes in u’s
subtree. The partitioning algorithm starts by calling parti-
tion(root of the tree), and proceeds recursively, as outlined
in Algorithm 1.

Algorithm 1: partition(u)

foreach child v of u do1

if w(v) ≥ h then partition(v);2

set w(u) :=
P

v w(v) + 1 for all children v of u;3

while w(u) > h do4

if u has children v1, . . . , vl s.t. h/2 ≤ P

i
w(vi) ≤ h5

then
put all the unpartitioned nodes in the subtrees6

of v1, . . . , vl into one component;
mark all these nodes as “partitioned”;7

if l ≥ 2, create a virtual node at u as the root of8

this component;
set w(u) := w(u) − w(v1) − · · · − w(vl);9

set w(vi) := 0 for i = 1, . . . , l;10

Note that when partition(root) returns, the root might
still have at most h unpartitioned nodes below. Then we
simply allocate these nodes into the last component. An
example of the partitioning obtained by this algorithm is
shown in Figure 2.

Lemma 4. The partitioning algorithm partitions an arbi-
trary routing tree into O(k/h) connected components, each
of size O(h). At most one virtual node is created for each
component.
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Figure 2: An example of the tree partition algorithm
when k = 12 and h = 4. The whole tree is partitioned
into 3 components. Node b′ is a virtual node added
by the algorithm, and in real life its role can be
played by node b.

Proof. It is clear that the algorithm only produces com-
ponents of size between h/2 and h, and at most one com-
ponent (the last one) of size between 1 and h + 1. But we
still need to argue that all nodes must have been partitioned
eventually. To do so, we show that when partition(u) fin-
ishes, u has at most h unpartitioned nodes in its subtree.

We prove it by induction. When u is a leaf, partition(u)
does nothing and the claim is certainly correct. Now con-
sider an internal node u. By the induction hypothesis when
lines 1–2 are done, each of u’s children v has at most h un-
partitioned nodes below, namely, w(v) ≤ h. Thus, as long
as the sum of their weights is at least h, line 5 will always
evaluates to true. In fact, we can first check if there is any
v with h/2 ≤ w(v) ≤ h. If there is one that already satisfies
the condition. Otherwise all of them have w(v) < h/2. We
can then simply collect them one by one until the sum falls
between h/2 and h. Therefore, we can continue producing
components of size between h/2 and h until w(u) ≤ h. This
finishes the induction and hence the proof.

4.2 Quantile algorithm on the partitioned tree
On the partitioned tree, we run our tree model algorithm

of Section 3 by treating each component as a super node.
Recall that there are only t = O(k/h) super nodes. Let Si

be the set of data values in the i-th super node. The previous
analysis suggests a sampling rate of p =

√
t/ǫn for a super

node with less than n/
√

t data values, and p = 1/ǫ|Si| if
|Si| ≥ n/

√
t. After the sample is drawn, we also needed to

compute the local ranks of the sampled values in Si.
However, now Si does not reside on one single node, but

distributed among O(h) nodes in the component, so we have
to pay communication to compute the local ranks. Specifi-
cally, each node in a super node first samples its own data,
and then the sampled values to the root of the component.
The root of the component, after receiving all the samples,
broadcasts them to everyone in the component. Now every
node in the components has a copy of the sample drawn from
the whole component, and thus can compute their ranks
within its own data set. Finally we aggregate these local
ranks in a bottom-up fashion to the root of the component,
which is actually the same as performing multiple sum ag-
gregations within the component, one per sampled value.

After the root of each component has prepared its initial
sample and the associated local ranks, we can simply run our
previous tree model algorithm on these initial samples. More
precisely, starting from these component roots, we send the
samples hop by hop to the base station. As before, when an
intermediate node has received multiple samples, it tries to
merge them before propagating them upwards.

Theorem 3. Our quantile algorithm, when running on
a partitioned tree, has O(

√
kh/ǫ) total communication and

O(log(k/h)/ǫ) maximum individual node communication.

Proof. Since we sample the data values with probability
at most

√
t/ǫn, where t = O(k/h), the total sample size is

O(
p

k/h/ǫ) (in expectation). In the first phase of the algo-
rithm, all the sampled data values are sent to the component
roots, then broadcast to all nodes in the component, and fi-
nally aggregated back to the component roots to compute
their local ranks. Thus each sampled data value could travel
to all the O(h) nodes in a component in the worst case. This

results in O(
p

k/h/ǫ · h) = O(
√

kh/ǫ) communication in to-
tal.

In the second phase, the component roots send their ini-
tial samples to the base station. Even if we do not do
any merging of the samples, the cost would be at most
O(

p

k/h/ǫ·h) = O(
√

kh/ǫ), since each sample takes at most
h hops to reach the base station. Thus the total communi-
cation cost is O(

√
kh/ǫ).

In terms of maximum individual node communication, we
still use the same algorithm in Section 3, except that a sam-
ple is said to be large if its ground set is of size at least n/

√
t.

This results in O(log
√

t) = O(log(k/h)) classes. So the
maximum individual node communication is O(log(k/h)/ǫ)
(expected) according to the analysis in Section 3.

Remarks. The partitioning approach well fits the case
where the sensor network already uses a clustered structure,
as in LEACH [13] and COUGAR [25]. In this case a cluster
naturally corresponds to a connected component. Note that
we set the size of the component to O(h) and the number of
component to O(k/h) just for optimizing the communication
cost. The correctness of the algorithm and its probabilistic
guarantees on the returned quantiles do not depend on these
parameters. When the cluster sizes deviate from O(h), the
total communication cost might be affected slightly but not
the quality of the computed quantile summary.

However, when the sensor network does not deploy a clus-
tered structure, the algorithm on the partitioned tree might
introduce additional overhead since it is no longer a one-
round algorithm as in [12, 14, 21]: It needs 3 rounds of com-
munication within each component plus one final round from
the component roots to the base station.

5. EXPERIMENTS
In this section we evaluate our algorithm experimentally,

comparing with the two previous algorithms: the q-digest
[21] and the GK algorithm v2 [12] (See Table 1). We denote
our Sampling Based algorithms as SB-1 (for the one-round
version in Section 3) and SB-p (for the improved version
based on tree partitioning in Section 4).

5.1 Experiment setup
We built a simulator which simulates a sensor network and

implemented all four algorithms on top of the same plat-
form. The network topology is generated in the same way
as in [21], i.e., sensors are distributed over a certain area
uniformly at random. Sensors are assumed to have a fixed
radio range, and two sensors may communicate with each
other if and only if they are within range of each other. The
root of the network is chosen from the sensors randomly, af-
ter that a routing tree is generated by a breadth-first search
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Figure 3: Error-Communication trade-offs on the synthetic data set with k = 16384.

starting from the root. Since our main goal is to improve
the scalability of the algorithms in terms of network size,
the experiments are done on relatively large networks, with
k = 1024, 2048, 4096, 8192, 16384 nodes, respectively.

We used both synthetic and real data to test the perfor-
mance of the algorithms. For the synthetic data sets, we first
generated a total of n = 1 billion values from a Gaussian dis-
tribution with mean 0 and variance 1, and then scaled them
to the range [0, 232 − 1] and round them to integers, since
q-digest cannot handle floating-point numbers, though the
other algorithms can. Next, we deployed the sensors over a
unit square area, and randomly distributed these n integers
to the sensors. For the real data set, we used a terrain data
for the Neuse River Basin, available at [3]. This data set
contains roughly 0.5 billion LIDAR points which measure
the elevation of the terrain. In this case we randomly de-
ploy the sensors on the terrain, and assume that each sensor
collects the elevation data nearby. We adjusted the radius of
the area from which a sensor collects data such that the to-
tal size of data set, i.e., n, is around 1 billion. Note that this
data set is highly correlated, since close sensors will observe
similar elevations.

To perform a quantile computation, we set some ǫ and run
all four algorithms. However, as mentioned earlier this may
not be a fair comparison, since our algorithms give an ǫ error
with a constant probability, while the previous algorithms
guarantee a worst-case error of ǫ. The actually observed er-

rors for both q-digest and the GK algorithm could be much
smaller than the required ǫ. So, we measured the actual er-
rors and plotted the error-communication trade-off, as ǫ is
varied from 1 to 0.0001. Specifically, for each ǫ we measured
both the actual maximum and the average error of 99 quan-
tiles for φ = 1%, 2%, . . . , 99%. Recall that the error in an
estimated φ-quantile is defined as |φ − φ′|, if the returned
quantile is actually a φ′-quantile of the data set.

We measured the communication cost in terms of the num-
ber of bytes transmitted. We measured both the total com-
munication cost, as well as the maximum individual node
communication cost. Thus combined with the maximum er-
ror or the average error, we in total have four combinations
for the error-communication trade-off.

5.2 Error-communication trade-offs
The four error-communication trade-offs on the largest

network k = 16384 with the synthetic data set are shown
in Figure 3. Note that we use log scale on both axes. As
we decrease ǫ, naturally all algorithms get more accurate
but more expensive. Our first observation from the exper-
iments is that the actual errors for q-digest and GK are
indeed smaller than the ǫ we set. Especially for q-digest,
the average error of the 99 quantiles is only ǫ/20; even the
maximum error is only about ǫ/10. This explains why the
curves for q-digest are all shifted to the left, and shows that
the worst-case error does not occur, at least on this data
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Figure 4: Error-Communication trade-offs on the terrain data set with k = 16384.

set. GK behaves roughly as required, with the average er-
ror at ǫ/2 and the maximum error very close to ǫ. On the
other hand, the average error for our algorithms is roughly
equal to ǫ, exactly because we designed our algorithms to
achieve a standard deviation of ǫ; while the maximum error
is roughly 2ǫ.

Nevertheless, although the actual errors of q-digest and
GK are smaller than the set ǫ, they are still 100 times larger
than the actual errors of our algorithms, compared at the
same total communication cost (see the two plots on the
right in Figure 3). Alternatively speaking, to achieve the
same actual (average or maximum) error, our algorithms are
roughly 100 times more communication-efficient than both
q-digest and GK. The gap is slightly smaller when consider-
ing the maximum error. On the other hand, the advantage
of our algorithm in terms of the maximum node communica-
tion is much less impressive, and they are roughly 10 times
better than GK, and almost the same as that of q-digest (the
two plots on the left in Figure 3). Unfortunately, we believe
that the maximum node communication cannot be further
improved significantly, if possible at all, since the maximum
communication always occurs at a node near the base sta-
tion, which inevitably has to summarize a large amount of
data.

Comparing q-digest and GK, the results suggest that q-
digest is better in terms of maximum node communication
while they behave almost the same way when considering

the total communication. This is because q-digest almost
always uses messages of a fixed size, while GK could still use
messages smaller than the stated O(log n log(h/ǫ)/ǫ) bound.

Another interesting observation from the results is that
the error-communication curves of our algorithms take a
sharp turn on the large ǫ’s close to 1. This is because when
ǫ is large, our algorithms essentially degenerate into simple
random sampling, which has communication cost propor-
tional to 1/ǫ2. Recall that our algorithms’ cost is actually

O(min{
√

kh/ǫ, h/ǫ2}). Thus, on a log-log plot, it becomes
two line segments with different slopes.

Finally, we do not see a significant difference between SB-
1 and SB-p, with SB-p performing slightly better (within a
factor of 2). Thus we would recommend the simpler SB-1
for sensor networks that do not have a clustered structure.
If the network is naturally clustered, then SB-p offers better
performance for free.

The experimental results on the terrain data set are shown
in Figure 4, which do not show major differences from those
on the random data set. The only observable difference that
q-digest seems to perform slightly worse than it does on
the random data set. On the terrain data set, q-digest is
worse than GK in terms of total communication, but still
better in terms of maximum node communication. On the
other hand, there is no perceptible change in the behaviors
of our algorithms. This is expected, as the analysis of our
algorithms does not depend on the data characteristics.
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Figure 5: Error-Communication trade-offs on the synthetic data set with k = 1024.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1e-05  0.0001  0.001  0.01  0.1  1

M
a
x
im

u
m

 n
o
d
e
 c

o
m

m
u
n
ic

a
ti
o
n

Maximum error of queries

q-digest
GK

SB-p
SB-1

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

 1e-05  0.0001  0.001  0.01  0.1  1

T
o
ta

l 
c
o
m

m
u
n
ic

a
ti
o
n

Maximum error of queries

q-digest
GK

SB-p
SB-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1e-05  0.0001  0.001  0.01  0.1  1

M
a
x
im

u
m

 n
o
d
e
 c

o
m

m
u
n
ic

a
ti
o
n

Average error of queries

q-digest
GK

SB-p
SB-1

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

 1e-05  0.0001  0.001  0.01  0.1  1

T
o
ta

l 
c
o
m

m
u
n
ic

a
ti
o
n

Average error of queries

q-digest
GK

SB-p
SB-1

Figure 6: Error-Communication trade-offs on the synthetic data set with k = 2048.

5.3 Varying network size
The experimental results for the other network sizes (us-

ing synthetic data) are shown in Figure 5–8. The general
conclusion is the same as before, that is, our algorithms
perform much better than the previous two algorithms in
terms of total communication costs. With our algorithms,
the total communication cost (for achieving the same actual
error) can be reduced to 1/10 – 1/100 of that of previous
algorithms, as k goes from 1024 to 16384. On the other
hand, all algorithms have roughly the same maximum node
communication. This is in line with our theoretical analysis.

From the experiments we also observe that q-digest in
some cases exhibits a “zigzag” behavior: the actual error
sometimes suddenly goes down even when the set ǫ gets
larger. But this strange behavior starts to fade out as the
network size gets larger. We do not have a good explana-
tion of this phenomenon, but it could relate to our earlier
observation that for q-digest, the actual error could be much
smaller than ǫ. It may happen so that in some cases, the ac-
tual error gets really small. On the other hand, both GK and
our algorithms are quite stable across all the experiments we
have done.

Finally, we observe that our algorithms also run much
faster than the previous algorithms. This is not surprising,
since all algorithms’ running times are proportional (modulo
polylog factors) to the total size of all the messages they
handle. Thus a small communication cost also implies a
faster running time.

6. CONCLUSION
In this paper we have designed new sampling based algo-

rithms for quantile computation in sensor networks, improv-
ing the previous algorithms by one to two orders of magni-
tude in terms of the total communication cost. The key
is to deviate from the standard decomposable framework,
which has been followed by all previous data aggregation al-
gorithms for sensor networks. Our result has demonstrated
that, although the decomposable framework works well for

simple aggregates, it may not be the best solution for com-
plex summaries like quantiles. We believe our ideas may also
lead to more communication-efficient algorithms for comput-
ing other complex data summaries in sensor networks, such
as histograms and wavelets.
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Figure 7: Error-Communication trade-offs on the synthetic data set with k = 4096.
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Figure 8: Error-Communication trade-offs on the synthetic data set with k = 8192.
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