
Indexing Uncertain Data∗

Pankaj K. Agarwal
Duke University
Durham, NC, USA
pankaj@cs.duke.edu

Siu-Wing Cheng
HKUST

Hong Kong, China
scheng@cse.ust.hk

Yufei Tao
CUHK

Hong Kong, China
taoyf@cse.cuhk.edu.hk

Ke Yi
HKUST

Hong Kong, China
yike@cse.ust.hk

ABSTRACT

Querying uncertain data has emerged as an important prob-
lem in data management due to the imprecise nature of
many measurement data. In this paper we study answer-
ing range queries over uncertain data. Specifically, we are
given a collection P of n points in R, each represented by
its one-dimensional probability density function (pdf). The
goal is to build an index on P such that given a query inter-
val I and a probability threshold τ , we can quickly report
all points of P that lie in I with probability at least τ . We
present various indexing schemes with linear or near-linear
space and logarithmic query time. Our schemes support
pdf’s that are either histograms or more complex ones such
as Gaussian or piecewise algebraic. They also extend to the
external memory model in which the goal is to minimize the
number of disk accesses when querying the index.

Categories and Subject Descriptors

F.2 [Analysis of algorithms and problem complexity]:
Nonnumerical algorithms and problems; H.3.1 [Information

storage and retrieval]: Content analysis and indexing—
indexing methods

General Terms

Algorithms, theory

∗P. K. Agawal is supported by NSF under grants CNS-05-40347,
CFF-06-35000, and DEB-04-25465, by ARO grants W911NF-
07-1-0376 and W911NF-08-1-0452, by the NIH grant 1P50-GM-
08183-01, and by a grant from the US-Israel Binational Science
Foundation; S.-W. Cheng is supported by HKRGC under grant
GRF 612107; Y. Tao is supported by HKRGC under grants GRF
1202/06, GRF 4161/07, and GRF 4173/08; and K. Yi is sup-
ported by Hong Kong Direct Allocation Grant (DAG07/08).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-553-6 /09/06 ...$5.00.

Keywords

Indexing, uncertain data, range query

1. INTRODUCTION
Indexing a set of points for answering range queries is one

of the most widely studied topics in spatial databases [21]
and computational geometry [3], with a wide range of appli-
cations. Most of the work to date deals with certain data,
that is, the points have exact coordinates and the goal is
to index them so that all points inside a query range can
be reported efficiently. Recent years have witnessed a dra-
matically increasing amount of attention devoted to manag-
ing uncertain data, due to the observation that many real-
world measurements are inherently accompanied with un-
certainty [7, 14, 16, 23, 24].

Depending on the application, there are two models of
data uncertainty, which we describe in the context of range
searching. In the tuple-level uncertainty model (also known
as existentially uncertain data) [7, 16, 25], a point in the data
set still has a precise position but its existence is uncertain.
Usually it is assumed that each point appears with some
probability and all the points are independent. We could
relax the independence assumption and introduce “rules” to
model the correlation between the points. In the attribute-
level uncertainty model [14, 23, 24], a point always exists
but its location is uncertain, and is modeled as a probability
distribution over space. Again we usually assume the points
are independent but it is not necessary.

The generally agreed semantics for querying uncertain
data is the thresholding approach [14, 16], i.e., for a par-
ticular threshold τ , retrieve all the tuples that appear in
the query range with probability at least τ . Under the
tuple-level uncertainty model, a d-dimensional range search-
ing problem over uncertain data simply becomes a (d + 1)-
dimensional range searching problem over certain data, by
treating the probability as another dimension. The same
observation has also been made in [25]. The independence
assumption is irrelevant since each point is considered in-
dividually. Of interests is the attribute-level uncertainty
model, where each point has a pdf, and we wish to report
all points whose probability of being inside the query range
is at least τ . This problem is nontrivial, even in one di-
mension, as it cannot be easily transformed to an instance
of range searching on certain data. The näıve approach of
examining each point one by one and computing its proba-

bility of being inside the query is obviously very expensive.
In this uncertainty model, the independence assumption is
again irrelevant with respect to range queries.

Problem definition. Let P = {p1, . . . , pn} be a set of
n uncertain points in R, where each pi is specified by its
probability density function (pdf) fi : R → R

+ ∪ {0}. We
assume that each fi is a piecewise-uniform function, i.e., a
histogram, consisting of at most s pieces for some integer
s ≥ 1. In practice, such a histogram can be used to approxi-
mate any pdf with arbitrary precision. In some applications
each point pi has a discrete pdf, namely, it could appear at
one of a few locations, each with a certain probability. This
case can also be represented by the histogram model using
infinitesimal pieces around these locations, so the histogram
model also incorporates the discrete pdf case. We will adopt
the histogram model by default throughout the paper. For
simplicity, we assume s to be a constant for most of the dis-
cussion. Some of our indexes also support more complicated
pdf’s (such as Gaussian or piecewise algebraic), and we will
explicitly say so for these indexes.

Given the set P and the associated pdf’s, the goal is to
build an index on them so that for a query interval I and a
threshold τ , all points p such that Pr[p ∈ I] ≥ τ are reported
efficiently. We also consider the version where τ is fixed in
advance. We refer to the former as the variable threshold
version and the latter as the fixed threshold version of the
problem. The latter version is useful since in many appli-
cations the threshold is always fixed at, say, 0.5. Moreover,
the user can often tolerate some error ε in the probability.
In this case we can build 1/ε fixed-threshold indexes with
τ = ε, 2ε, . . . , 1, so that a query with any threshold can be
answered with error at most ε.

Applications. The problem of range searching over uncer-
tain data was first introduced by Cheng et al. [14] and has
numerous applications in practice. For example, in a sen-
sor network, a certain measurement, say temperature, of a
location may be taken by multiple sensors. Due to various
imprecision factors, the readings of these sensors may not
be necessarily identical, in which case the temperature of
the location can be conveniently modeled as a pdf. In this
context, a query in our problem would retrieve “all the loca-
tions whose temperatures are between 100 and 120 degrees
with probability at least 50%”. It is not hard to see that
there are many similar scenarios involving uncertain data.
In fact, our problem is also important even in several tradi-
tional applications where no uncertainty seems to exist. For
instance, consider a movie rating system (such as the one at
Amazon) where each reviewer can give a rating from 1 to
10. A query of our problem would find “all the movies such
that at least 90% of the ratings it receives are at least 8”.

Previous results. Cheng et al. [14] considered the above
problem in a simpler form, namely, where each fi(x) is a
uniform distribution — a special case of our definition in
which the histogram consists of only one piece. For the
fixed-threshold version with threshold 0 < τ ≤ 1, they pro-
posed an index of O(nτ−1) size with O(τ−1 log n + k) query
time, where k is the output size. These bounds depend on
τ−1, which can be arbitrarily large. This index also does
not extend to histograms consisting of two or more pieces.
They presented heuristics for the variable threshold version
without any performance guarantees. Tao et al. [23, 24]

considered the problem in two and higher dimensions, and
presented some index structures based on space partitioning
heuristics. They prune points whose probability of being in-
side the query range is either too low or too high, but the
query procedure visits all points of P in the worst case. Fi-
nally, yet another heuristic is presented in [19], but it is still
the same as a sequential scan in the worst case.

Cheng et al. [14] also showed that the fixed-threshold ver-
sion of the problem is at least as difficult as 2D halfplane
range reporting (i.e., report all points lying in a query half-
plane), and that it can be reduced to 2D simplex queries
(report all points lying in a query triangle). However the
complexities of these two problems differ significantly: With
linear space, a halfplane range-reporting query can be an-
swered in time Θ(log n+k) [12], while the latter takes Ω(

√
n)

time [13]. So there is a significant gap between the current
upper and lower bounds for range searching over uncertain
data.

Also related is the work by Singh et al. [22], who consid-
ered the problem of indexing uncertain data that are cat-
egorical, namely, each random object takes a value from a
discrete, unordered domain. The index structures presented
there are again heuristic solutions.

Our results. In this paper, we make a significant theoret-
ical step towards understanding the complexity of indexing
uncertain data for range queries. We present linear or near-
linear size indexing schemes for both the fixed and variable
threshold versions of the problem, with logarithmic or poly-
logarithmic query times. Specifically, we obtain the follow-
ing results.

For the fixed-threshold version, we present a linear-size
index that answers a query in O(log n+ k) time (Section 2).
These bounds are clearly optimal (in the comparison model
of computation). We first show that this problem can be
reduced to a so-called segments-below-point problem: index-
ing a set of segments in R

2 so that all segments lying below
a query point can be reported quickly. Then we present an
optimal index for the segments-below-point problem — a
linear-size index with O(log n + k) query time. This result
shows that the fixed-threshold version has exactly the same
complexity as the halfplane range-reporting problem, closing
the large gap left in [14]. In Section 3 we present a simpler
index of size O(nα(n) log n) and query time O(log n + k).
This index extends to more general pdf’s, such as Gaussian
distributions or other piecewise algebraic pdf’s, and they can
also be used to approximately count the number of uncertain
points lying in the query interval.

For the variable-threshold version, we use a different re-
duction and show that it can be solved by carefully index-
ing a number of points in R

3 for answering halfspace range
queries. Combining with the very recent result of Afshani
and Chan [1] for 3D halfspace range reporting, we obtain
an index for the variable-threshold version of our problem
with O(n log2 n) space and O(log3 n + k) query time (Sec-
tion 4). Although the bounds have extra log factors in this
case, our result shows that this problem is still significantly
easier than 2D simplex queries.

Finally, we show that our indexing schemes can be dy-
namized, supporting insertions and deletions of (uncertain)
points with a slight increase in the query time. If the re-
sulting index needs to be stored on disk, the query time is
dominated by the number of I/Os (or page reads), where

x x x

f (x) F (x)

g(x)

a b c d e a b c d e a b c d e

b

c

d

e

(i)
xl xr (ii) (iii)

(xl, xr)

Figure 1. Reduction to the segments-below-point problem: (i) pdf, (ii) cdf, and (iii) threshold function.

each I/O reads a whole disk block of size B. We also show
how to externalize our index so that the queries can be an-
swered in an I/O-efficient manner.

2. FIXED-THRESHOLDRANGEQUERIES
We present an optimal index for answering range queries

on uncertain data where the probability threshold τ is fixed.
Our index uses linear space and answers a query in the opti-
mal O(log n + k) time. These bounds do not depend on the
particular value of τ . We first describe in Section 2.1 the
reduction to the segments-below-point problem. Next we
describe three indexing schemes for the latter problem, each
of which reduces a segments-below-point query to answering
halfplane range-reporting queries. The first index, based on
the segment tree, uses linear space and answers a query in
O(

√
n + k) time (Section 2.3). The second one, based on

the interval tree, uses O(n log n) space and answers a query
in O(log n + k) time (Section 2.4). We then combine them
to construct an index of linear size with O(log n + k) query
time (Section 2.5). We conclude this section by describing
how we make the index dynamic and extend it to the I/O
model.

2.1 A geometric reduction
Let p be an uncertain point in R, and let f : R → R be its

pdf. Suppose the histogram of f consists of s pieces, and let

f(x) = yi, for xi−1 ≤ x < xi, i = 1, . . . , s.

We set x0 = −∞, xs = ∞, and y1 = ys = 0; see Fig-
ure 1 (i). The cumulative distribution function (cdf) F (x) =
R x

−∞
f(t)dt is a monotone piecewise-linear function consist-

ing of s pieces; see Figure 1 (ii). Let the query range be
[xl, xr]. The probability of p falling inside [xl, xr] is F (xr)−
F (xl). We define a function g : R → R, which we refer to
as the threshold function. For a given a ∈ R, let g(a) be the
minimum value b such that F (b) − F (a) ≥ τ . If no such b
exists, g(a) is set to ∞; see Figure 1 (iii).

Lemma 1. The function g(x) is non-decreasing and piece-
wise linear consisting of at most 2s pieces.

Proof. Suppose we continuously vary x from −∞ to ∞.
For x = −∞, g(x) = min{y | F (y) = τ}; g(x) stays the
same until x reaches x1. As we increase x further, g(x)
increases linearly, with the slope depending on the pieces of
the histogram f that contain x and g(x). When either x
or g(x) passes through one of the xi’s, the slope changes.
There are at most 2(s − 1) such changes; see Figure 1.

Given the description of the pdf f , the function g can be
constructed easily. Once we have the threshold function g,

1

2

3

4

5
6 7

Figure 2. The indexing scheme for a set of lines: thick polygonal
chain is the lower envelope of S; L1(S) = {1, 2, 6}, L2(S) = {3, 7},
L3(S) = {4, 5}.

the condition Pr[p ∈ [xl, xr]] ≥ τ simply becomes checking
whether xr ≥ g(xl). Geometrically, this is equivalent to test-
ing whether the point (xl, xr) ∈ R

2 lies above the polygonal
line representing the graph of g (see Figure 1). We construct
the threshold function gp for each point p in P . Let S be
the set of at most 2ns segments in R

2 that form the pieces
of these n functions; S can be constructed in O(n) time. We
label each segment of gp with p. The problem of reporting
the points of P that lie in the interval [xl, xr] with proba-
bility at least τ becomes reporting the segments of S that
lie below the point (xl, xr) ∈ R

2: If the procedure returns a
segment labeled with p, we return the point p. Each polyg-
onal line being x-monotone, no point is reported more than
once.

We thus have the following problem at hand: Let S be
a set of n segments in R

2. Construct an index on S so
that for a query point q ∈ R

2, the set of segments in S lying
directly below q, denoted by S[q], can be reported efficiently.
For simplicity, we assume the coordinates of the endpoints
of S to be distinct; this assumption can be removed using
standard techniques. We call this problem the segments-
below-point problem.

2.2 Half-plane range reporting
We begin by describing an index for the special case when

all segments in S are full lines and we want to report the lines
of S lying below a query point. This problem is dual to the
well-known half-plane range reporting problem, for which
there is an O(n)-size index with O(log n + k)-time [12]. We
briefly describe a variant of this index (in the dual setting),
denoted by H(S), which we will use as a building block.

If we view each line ℓ in S as a linear function ℓ : R → R,
then the lower envelope of S is the graph of the function
ES(x) = minℓ∈S ℓ(x), i.e., it is the boundary of the un-
bounded region in the planar map induced by S that lies
below all the lines of S (see Figure 2). We represent the lower

v

v1 v2 v3 v4 v5

σ2 σ4 σ5σ1 σ3

1
ℓ

1
r

2
m

3
m

2
ℓ

3
r

2
r

σv

Figure 3. A segment tree node with fanout r = 5.

envelope as a sequence x0 = −∞, ℓ1, x1, ℓ2, . . . , ℓr, xr =
+∞, where the xi’s are the x-coordinates of the vertices
of the lower envelope, and ℓi is the line that appears on the
lower envelope in the interval [xi−1, xi]. Note that the lines
appear along the envelope in decreasing order of their slopes.
We partition S into a sequence L1(S), L2(S), . . ., of subsets,
called layers. L1(S) ⊆ S consists of the lines that appear on
the lower envelope of S. For i > 1, Li(S) is the set of lines

that appear on the lower envelope of S \ Si−1
j=1 Lj(S); see

Figure 2. For each i, we store the aforementioned represen-
tation of layer Li(S) in a list. To answer a query q = (qx, qy),
we start from L1(S) and locate the interval [xi−1, xi] that
contains qx, using binary search. Next we walk along the
envelope of L1(S) in both directions, starting from ℓi, to
report the lines lying below q, in time linear to the output
size. Then we query the rest of the layers L2(S), L3(S), . . .
in order until no lines have been reported at a certain layer.
By using fractional cascading [11] on the x-coordinates of
the envelopes of these layers, the total query time can be
improved to O(k) plus the initial binary search in L1(S).
The size of the index is linear, and it can be constructed in
O(n log n) time [12]. The statement below is slightly more
general than that appeared in [12].

Lemma 2. Let S be a set of n lines in the plane. We can
construct in O(n log n) time an index on S of linear size, so
that given a query point q ∈ R

2 and any line in L1(S) below
q, all k lines of S lying below q can be reported in O(k) time.

2.3 Segment-tree based index
This subsection describes an index for the segments-below-

point problem, based on the segment tree, that uses linear
space and answers a query in O(

√
n + k) time. We later (cf.

Section 2.5) bootstrap this index to improve the query time
to O(log n + k) while keeping the size linear.

We fix a parameter r and construct a segment tree T of
fanout r — an r-ary tree that defines an r-way hierarchical
decomposition of the plane into vertical slabs, each associ-
ated with a node of T. Let σv denote the slab corresponding
to a node v. The slabs associated with the children of v are
defined as follows. We partition σv into r vertical sub-slabs
σ1, . . . , σr, each containing roughly the same number of end-
points of segments in S. We create r children v1, . . . , vr of
v and associate σi with vi; see Figure 3. A node v is a leaf
if σv does not contain any endpoint of S in its interior.

We call any number of contiguous sub-slabs a multi-slab

at v. Let σv[i : j] = σi ∪ · · · ∪ σj denote the multi-slab
at v spanned by sub-slabs σi, . . . , σj . Obviously there are
O(r2) multi-slabs at any v. For any segment s, consider the
highest node v where it intersects two or more sub-slabs. At
v we partition s into up to three pieces: a middle piece sm

that spans the maximal multi-slab at v, a left piece sl, and
a right piece sr. More precisely, if s spans slabs σi, . . . , σj ,
then sm = s ∩ σv[i : j], and it is associated with the multi-
slab σv[i : j]. If the left endpoint of s lies in the interior
of σi−1, then sl = s ∩ σvi−1

, and if the right endpoint of
s lies in the interior of σvj+1

, then we set sr = s ∩ σvj+1
.

See Figure 3. Next, we recursively partition the left and
right pieces of s following the r-ary tree. A segment is thus
partitioned into at most three pieces at any level of the tree,
resulting in a total of O(logr n) pieces. Note that each piece
ends up with spanning a multi-slab at some node.

Let Si:j
v denote the set of segments associated with the

multi-slab σv[i : j] at v, and let Hi:j
v denote the full lines

containing these segments. We build the index on Hi:j
v de-

scribed in Section 2.2. Since
P |Si:j

v | = O(n logr n) and the
index built for each multi-slab has linear size, the size of the
overall index is also O(n logr n), and it can be constructed
in O(n logr n log n) time.

To report the segments of S lying below a query point
q, we visit all the nodes v of T such that q ∈ σv. At each
v, we query the index corresponding to all the multi-slabs
that contain q. Overall we query a total of O(r2 logr n)
multi-slabs, so the total query time is O(r2 logr n log n + k).

Choosing r = n1/4/
√

log n gives us the following.

Lemma 3. Let S be a set of segments in the plane. We
can construct in O(n log n) time an index of linear size on
S so that all segments of S lying below a query point can be
reported in O(

√
n + k) time.

Remark. The query time of the above scheme can be
improved to O(nε +k) for any small constant ε, but a query
time of O(

√
n + k) is all we need for the bootstrapping

later. By choosing r = 2, we can construct an indexing
scheme of size O(n log n) with query time O(log2 n+k). Us-
ing fractional cascading the query time can be improved to
O(log n + k).

2.4 Interval-tree based index
We now describe a different index to store S, based on

the interval tree, that uses O(n log n) space and answers a
query in time O(log n + k). An interval tree T for S is built
as follows. Let E be the set of endpoints of the segments of
S. We first choose the median of E, and vertically divide
the plane into two halves. We store this splitting line at the
root of T and then build its two subtrees for the two halves
recursively. Similar to the segment tree, the interval tree T

also hierarchically partitions the plane into O(n) canonical
vertical slabs. For a node u ∈ T, let σu be the slab associated
with u and xu the x-coordinate of the splitting line at u.
For the root u of T, σu is the entire plane. For each u with
children v and w, xu is the median of the x-coordinates of
E ∩ σv, and the line x = xu partitions σu into σv and σw.
When |E ∩ σu| = 1, we stop the partitioning and make u a
leaf. For a node u, let p(u), Sb(u), l(u), and r(u) denote the
parent, sibling, left child, and right child of u, respectively.

A segment s ∈ S is now stored at the highest node u such
that the splitting line x = xu intersects s. Let Su ⊆ S be the
set of segments stored at u. Since each segment only appears

in one Su,
P

u |Su| = O(n). Each segment s ∈ Su is split by
x = xu into a left segment s− and a right segment s+. Let
S−

u = {s− | s ∈ Su}, S+
u = {s+ | s ∈ Su}, S− =

S

u S−
u , and

S+ =
S

u S+
u . Note that for any segment s ∈ Su and for any

point q 6= xu lying above s, either s− or s+ lies below q, but
not both. Therefore it suffices to build separate indexing
schemes for S− and S+ and report S−[q] and S+[q] for a
query point q.

We describe the indexing scheme for S−; a similar scheme
works for S+. It is tempting to construct an indexing scheme
on S−

u at each node as in a standard interval tree. However,
the segments in S−

u do not span the slab σl(u), so we cannot
regard them as a set of lines and build the indexing scheme
described of Section 2.2. Instead we refine the sets S−

u and
proceed as follows.

xbxc xa

2
1

3

4
7

6 5

a

c

d

b

e

σc

σe σd

σb

Figure 4. The Φv and Suv’s for a set of 7 segments for (a portion
of) the interval tree on the right: Sab = {1, 2, 5, 7}, Sac = {1, 2, 7},
Sad = {1}, Sae = {2, 7}, Sbd = {4}, Sbe = {6}; Φc = {1, 2, 7},
Φe = {2, 6, 7}.

For a proper descendant v of a node u, we define Suv ⊆ Su

to be

Suv = {s ∈ S−
u | s’s left endpoint ∈ σv}. (1)

Note that by definition, Suv is empty if v is in the right
subtree of u. For a node v, let

Φv =
[

u

Suv, (2)

where the union is taken over all proper ancestors of p(v).
See Figure 4 for an example. For a fixed v, the sets Suv are
pairwise disjoint; while for a fixed u, the sets Suv induce a
binary hierarchical partitioning of Su. Hence,

P

u,v |Suv| =

O(n log n). A crucial observation is that if v is the left child
of its parent, then each segment in Φv spans the slab σSb(v).
Hence, a point q ∈ σSb(v) lies above a segment e of Φv if and
only if it lies above the line containing e. Let Hv be the set
of lines containing the segments in Φv . At each node v, we
construct the index on Hv described in Section 2.2.

The total size of the overall indexing scheme is O(n log n),
and it can be constructed in time O(n log2 n). The following
lemma suggests how to report the segments in S−[q] for a
query point q. Let Πq denote the path from the root to the
leaf z of T such that q ∈ σz.

Lemma 4. Let q be a query point, let z be the leaf of T

such that q ∈ σz, and let e ∈ S− be a segment that lies below
q. If the left endpoint of e does not lie in σz, i.e., e 6∈ Φz,
then there is a node v ∈ Πq such that q ∈ σr(v) and e ∈ Φl(v).

Proof. Suppose e ∈ S−
u , then e ⊆ σl(u) and the right

endpoint of e lies on the line x = xu, the splitting line of

u. Let w be the leaf of T such that p, the left endpoint of
e lies in σw. If w = z, then e ∈ Φz and there is nothing
to prove. So assume that w 6= z, and let v be the lowest
common ancestor of w and z. Then q ∈ σr(v), and p ∈ σl(v).
Since e lies below q, e intersects σr(v) and thus crosses the
line x = xv. Therefore u is a proper ancestor of v, implying
that e ∈ Sul(v) and e ∈ Φl(v). This completes the proof of
the lemma.

In view of the above lemma, we can answer a query for
a point q as follows: We visit Πq in a top-down manner.
Suppose we are at a node v. If v is leaf, we report the (at
most one) segment in Φv provided it lies below q. If v is
an internal node and r(v) ∈ Πq, then we query the index
on Hl(v) with q and report all segments of Φl(v)[q]. Since
we query the indexing scheme at O(log n) nodes, the overall
query time is O(log2 n+k) time. Again, using the fractional
cascading on the indexing schemes built at each node of T,
the query time can be reduced to O(log n + k). Hence, we
obtain the following.

Lemma 5. Let S be a set of segments in the plane. We
can construct in O(n log2 n) time an index of O(n log n) size
on S so that all segments of S lying below a query point can
be reported in O(log n + k) time.

2.5 Hybrid index
We now describe an optimal index for answering segments-

below-point queries, by combining the previous two schemes
along with additional ideas. We start with the interval-tree
based index from the previous subsection. We stop the top-
down construction of the interval tree T as soon as there are
Θ(log2 n) endpoints of S left in the slab, that is, the “atomic
slab” σz for each leaf z of T contains Θ(log2 n) endpoints of
S. For each internal node u, we define S−

u and S+
u as above,

and let S−, S+ be as defined earlier. Since we have “fat”
leaves, not all segments will be split — those with both
endpoints lying in the same atomic slab will not. For a leaf
z, let Sz be the set of segments whose both endpoints lie in
σz. We build a segment-tree based index (Lemma 3) on Sz.
Since |Sz| = O(log2 n) and

P

z |Sz| ≤ n, a segments-below-
point query on Sz can be answered in O(log n+k) time and
the total size and construction time of the index, summed
over all leaves, are linear and O(n log n), respectively.

Next we describe the index we build on S−; a similar
index is built on S+. Let Suv, Φv, and Hv be defined as
earlier. By Lemma 4, if a segment e ∈ S− lies below a point
q ∈ σz for a leaf z ∈ T, then either (i) e ∈ Φz , or (ii) there
is an internal node u such that e ∈ Φl(u) and q ∈ σr(u); in
this case a segment of Φl(u) lies below q if and only if the
line containing it lies below q. To handle (i), we build in
O(|Φz | log n) time the segment-tree based linear-size index
on Φz for each leaf z. Since the left endpoints of all segments
in Φz lie in σz,

P

z |Φz | ≤ n. Therefore the total size of the
index over all leaves is O(n), and they can be constructed in
O(n log n) time. It thus suffices to describe how we handle
case (ii), which is the more interesting case.

Let Λ be the set of pairs (u, z) such that z is a leaf and
u is proper ancestor of z. For a node v, let Λ(v) ⊆ Λ be
the set of pairs (u, z) such that z is a descendant of v and
u is a proper ancestor of p(v). Let nuz = |Suz|, and let
Huz be the set of lines of containing the segments in Suz.
For two pairs (u, z), (u′z′) ∈ Λ, Suz and Su′z′ are disjoint
because the left endpoints of all segments in Suz lie in σz and

the right endpoints lie on the splitting line x = xu. Hence,
P

(u,z)∈Λ nuz ≤ n. By (2), Φv =
S

(u,z)∈Λ(v) Suz. Therefore
a set Suz is included in Φv at all nodes v that lie on the
path from l(u) to z; see Figure 5. To reduce the size of
the index to linear, instead of building a separate index for
each Φv, we build a more global index. Namely, we build
in O(nuz log n) time a linear-size halfplane-range-reporting
index (cf. Lemma 2) on Huz, where z is a leaf. By Lemma 2,
if we know a line in L1(Huz) lying below q, we can report
Huz[q] in time proportional to its size.

Returning to the problem of reporting Φv [q] for a point q ∈
σSb(v), we now need an index that returns one representative
line of L1(Huz) lying below q (if there exists one), for each
pair (u, z) ∈ Λ(v). We can then use the index built on Huz

to report the remaining lines in Huz[q]. One possibility is to
build an index on the set

S

(u,z)∈Λ(v) L1(Huz) at each node

to find such a line, but |L1(Huz)| = |Huz| in the worst case,
so this will again lead to an index of size O(n log n). The
following observation will help us in reducing the size.

xbxc xa

1

2

3

4

5
a

c

d

b

e

f

σc

σe σd σf

σb

Figure 5. Set Sae = {1, 2, 3, 4, 5} and the strip Σae (shaded);
Sae is included in Φe (queried in slab σd) and Φc (queried in Φf);
He

ae = {1, 2, 3} and Hc
ae = {3, 4, 5}.

For a node v, Φv is queried by a point q only when v is
the left child of p(v) and q ∈ σSb(v). Let V denote the set
of nodes v ∈ T such that v is left child of p(v). Let Σuz

be the strip formed by the splitting line at u and the right
boundary of σz; see Figure 5. The right endpoint of each
segment in Suz lies on the right edge of Σuz and the left
endpoint lies to the left of Σuz, so each segment spans Σuz.
Let w1, w2, . . . , wr be the nodes such that each wi is the
right child of p(wi) and p(wi) lies on the path from l(u) to
z; the (left) sibling of each wi also lies on this path. The
slabs σw1

, . . . , σwr induce a partitioning of Σuz. Suz (or
rather Huz) is queried only by the points lying in σwi , for
1 ≤ i ≤ r. For a query point q ∈ σwi , we need to report
one (representative) line of Huz lying below q. We choose
the representative lines of Huz as follows. For a node v on
the path from l(u) to z such that v ∈ V ((u, z) ∈ Λ(v) and
Sb(v) is one of the wi’s), we define Hv

uz ⊆ Huz to be the
set of lines that appear on the lower envelope of Huz within
σSb(v); set nv

uz = |Hv
uz|. If nv

uz ≥ 2, then at most one line of
Hv

uz will appear on the lower envelope of Huz on the right
side of σSb(v) (for example, only line 3 of He

ae may appear
on the lower envelope of Hae on the right side of σd). Since
r = O(log n), we have

X

v∈V,(u,z)∈Λ(v)

nv
uz = nuz + O(log n).

For a pair u, z, the sets Hv
uz can be computed in O(nuz log n)

time by constructing the lower envelope of Huz. Hv
uz is the

set of representative lines that are stored at v.
For a node v ∈ V, let Γv =

S

(u,z)∈Λ(v) Hv
uz be all the

representative lines stored at v. We build in O(|Γv | log n)
time the halfplane-range-reporting index of linear size on
Γv. For each line ℓ in Γv, we store a pointer to its copy in
Huz. Finally, we also build a fractional-cascading structure
on these indexing schemes. Summing over all nodes v ∈ T,

X

v∈V

|Γv | =
X

v∈V

X

(u,z)∈Λ(v)

nv
uz

=
X

(u,z)∈Λ

X

v∈V,(u,z)∈Λ(v)

nv
uz

=
X

(u,z)∈Λ

(nuz + O(log n))

= O(n) + O

„

n

log2 n
log n log n

«

= O(n).

This completes the description of the index we build. Putting
all the pieces together, the total size of the index is O(n),
and it can be constructed in O(n log n) time.

For a query point q, the set S[q] is reported as follows. We
first find in O(log n) time the leaf z whose slab contains q.
Next, we report in O(log n+|Sz [q]|) time the set Sz[q]. Then,
we report S−[q] using Lemma 4: We first query the index on
Φz and report in O(log n+ |Φz [q]|) time the set Φz[q]. Next,
for each node v ∈ Πq, if v is the right child of p(v), we report
the set HSb(v)[q]. We accomplish this in two stages: We first
query the index on ΓSb(v) and report in O(|ΓSb(v)[q]|) time
the set ΓSb(v)[q], i.e., the set of representative lines of HSb(v)

that lie below q. Let ℓ ∈ ΓSb(v)[q] be the line that belongs
to Huz. We then report the set Huz[q] in time proportional
to its size by querying the index built on Huz. The total
time spent at v is O(|HSb(v)[q]|). We spend an additional
O(log n) time at the root of T to search in the fractional
cascading structure built on top of Γv’s. Finally, we report
S+[q] in a similar manner. Putting everything together, the
total query time is O(log n + |S[q]|).

Theorem 6. Let S be a set of n segments in R
2. We can

build in O(n log n) time a linear-size index on S so that all
k segments of S lying below a query point can be reported in
O(log n + k) time.

Since each uncertain point produces O(s) segments in the
segments-below-point problem, we immediately have the fol-
lowing.

Corollary 7. Given a set P of n uncertain points in
R

1, each associated with a histogram having s pieces, and a
threshold parameter 0 < τ ≤ 1, we can build in O(n log n)
time a linear-size index on P so that a range query on S
with probability threshold τ can be answered in O(log n + k)
time, where k is the output size.

2.6 Extensions
Finally, we briefly describe two useful extensions of our

indexing scheme.

Externalization. It is not difficult to externalize our in-
dex under the standard two-level I/O model [6], so that the
query can be answered I/O-efficiently. Agarwal et al. [2]

developed an external index for half-plane range reporting.
Although not explicitly mentioned in [2], their structure is
amenable to fractional cascading, so that we can extend
Lemma 2 to the I/O model, namely, given any line in L1(S)
below a query point q, all the k lines in S lying below q
can be reported in O(k/B) I/Os using an index occupying
O(n/B) disk blocks.

Next we externalize the segment-tree based index. The
fanout of the segment tree is set to r = (n/B)1/4/

p

log(n/B),
and the leaf size of the tree is set to Θ(B). For each multi-
slab, we build the external half-plane range-reporting index
for its segments, as mentioned above. The height of the tree
is still O(1), and it takes O(r2+k/B) I/Os to answer a query.
So we obtain a linear-size index for S so that all segments
below a query point can be reported using O(

p

n/B +k/B)
I/Os. Equipped with these schemes, we can go through the
construction of the hybrid index, while only changing the
leaf size from Θ(log2 n) to Θ(B log2 n). Without repeating
the tedious details, we conclude with the following.

Theorem 8. Given a set P of n uncertain points in R,
their pdf ’s, each of which is a histogram of constant size, and
a parameter 0 < τ ≤ 1, we can build a linear-size external-
memory index on S such that a range query with probability
threshold τ can be answered in O(log n + k/B) I/Os.

Dynamization. Finally we briefly discuss how to make
our structure dynamic, i.e., supporting insertions and dele-
tions of uncertain points in the uncertain data set. When
an uncertain point is being inserted or deleted, we need to
insert or delete the 2s segments in the graph of its thresh-
old function (cf. Section 2.1) in our segments-below-point
index. If only insertions are to be supported, we can apply
the logarithmic method [9] to Theorem 6. Then standard
analysis gives us a semi-dynamic structure that answers a
query in O(log2 n + k) time and supports insertion/deletion
of a point in amortized O(log2 n) time. Unfortunately, it
is hard to support deletions, since our index crucially relies
on the halfplane searching structure of [12], which is inher-
ently static. The best known dynamic index for halfplane
range reporting uses O(n1+ε) space, supports insertions and
deletions in O(nε) time amortized, and answers queries in
O(log n + k) time [4], where ε is any small constant. Since
super-linear space is unavoidable, the hybrid index is not
needed any more. Instead, we can simply plug this dynamic
halfplane structure into the segment-tree based index with
fanout 2 (see the remark following Lemma 3). Omitting the
details, we conclude the following:

Theorem 9. Given a set P of n uncertain points in R

and their pdf ’s, each of which is a histogram of constant
size, and a parameter 0 < τ ≤ 1, we can build a fully dy-
namic index on P of size O(n1+ε), for any constant ε > 0,
that answers a range query with probability threshold τ in
O(log2 n + k) time, and supports insertions and deletions of
uncertain points in O(nε) time amortized.

Remark. If s is not a constant, all our space and query
bounds in this section still hold by simply replacing n by
sn. Note that since the input has size Θ(sn), a structure
with size O(sn) is still linear in the input. The update time
in Theorem 9 becomes O(snε) since s segments need to be
inserted or deleted.

3. HANDLINGMORE GENERAL PDF’S
In Section 2.1, we converted the uncertain range search-

ing problem to the problem of indexing a set of x-monotone
polygonal chains so that all the chains below a query point
can be reported efficiently. In this section, we follow a com-
pletely different approach to solve this problem. It results
in an index with O(nα(n) log n) size and O(log n + k) query
time, where α(n) is the inverse Ackermann function, an ex-
tremely slow-growing function1. Although the space bound
is not as good as the structure in Theorem 6, the new in-
dex we present below is simpler and easily extends to the
case where the polygonal chains are replaced by more gen-
eral curves, such as piecewise-quadratic functions or other
algebraic curves. This will allow us to handle pdf’s that are
more general than histograms. For instance, if the pdf is a
piecewise linear function, then the same reduction of Sec-
tion 2.1 will produce threshold functions that are piecewise
quadratic.

The framework of our index is similar to that of the 3D
halfspace searching structure of Chan [10]. Let C be the set
of n polygonal chains representing the n threshold functions;
each of them consists of 2s segments. We first randomly
sample a subset R1 of n/2 chains from C. Then for i =
2, . . . , log n, we randomly sample a subset Ri of n/2i chains
from Ri−1. For each Ri, we compute its lower envelope Ei.
According to [18], Ei consists of at most O(|Ri| · α(|Ri|))
segments. From the boundary points of these segments we
shoot a ray downwards, yielding a series of trapezoids (see
Figure 6). For each trapezoid t, we find the set of all chains
in C that intersect the trapezoid, denoted Ct. We store Ct

simply as a list associated with t, and call Ct the conflict list
of t. Invoking the random-sampling framework of Clarkson
and Shor [15], we can prove that the expected size of Ct is
O(2i). Therefore, the expected total size of our structure is

O

log n
X

i

2i · |Ri|α(|Ri|)
!

= O

log n
X

i

nα(|Ri|)
!

= O(nα(n) log n).

For each Ri, we can compute its lower envelope and all the
conflict lists in expected O(n log n) time, so we can build the
index in a total of O(n log2 n) time in expectation.

The final touch-up to our structure is a fractional cascade
on the Ei’s, such that given a vertical line ℓ, we can find all
the trapezoids intersected by ℓ, one from each Ei, in O(log n)
time. The size of this fractional cascade is only O(nα(n)),
and it can be built in the same amount of time.

Now we describe how a query q is answered using the index
constructed above. First we find all the log n trapezoids in
O(log n) time that intersect the vertical line ℓ passing q, one
from each Ei. Denote by ti the trapezoid from Ei. Below
we show that for a given r, how to use our structure to
find in O(r) expected time the r lowest chains along ℓ, i.e.,
those chains whose intersections with ℓ have the r smallest y-
coordinates. Then we can try successively larger and larger
values of r = 1, 2, 4, 8, . . . , and halt as soon as at least one
of the r lowest chains is above q. When we stop we have
r/2 ≤ k < r, and we just report the k chains that are
actually below q. The total time spent will be O(log n+1+
2 + 4 + · · · + r) = O(log n + k).

1If n ≤ 2

2·
·
·
2

9

=

;

65536 twos

, then α(n) ≤ 4.

ℓ

q

pℓ

t

1

2

3

4

5

6

Figure 6. The thick chains are in the random sample Ri. The
dashed lines divide the lower envelope of Ri into trapezoids. For the
trapezoid t, its conflict list Ct consists of chains 4 and 6.

Let 0 < δ < 1 be a parameter. We first give a Monte
Carlo algorithm with running time O(r/δ2) that fails with
probability O(δ3); then we show how to convert it to a Las
Vegas algorithm that never fails and runs in expected time
O(r).

We will only consider the case r/δ < n; otherwise the
problem is trivial since we can simply scan all the n chains.
We will examine Ctρ where ρ = ⌊log(r/δ)⌋. We first check

if |Ctρ | > r/δ2. If so the algorithm immediately aborts with
a failure. Otherwise we scan the entire list Ctρ . Let pℓ be
the intersection point of ℓ and the upper boundary of the
trapezoid t (Figure 6). While scanning Ct we check if there
are at least r chains below pℓ. If so the algorithm succeeds in
finding the r lowest chains along ℓ; else the algorithm fails.

This Monte Carlo algorithm clearly runs in time O(r/δ2).
Now we analyze its failure probability. There are two cases
that the algorithm may fail: (a) |Ctρ | > r/δ2; and (b) there
are less than r chains in Ctρ below pℓ. Since E[|Ctρ |] =
O(2ρ) = O(r/δ), by Markov inequality the probability that
|Ctρ | exceeds r/δ2 is O(δ). For (b) to happen, the chain
corresponding to the upper boundary of tρ must be one of
the r lowest chains along ℓ. Since Rρ is a random sample
of size n/2ρ, this occurs with probability O(r/2ρ) = O(δ).
Thus by union bound the algorithm fails with probability
O(δ). Finally, keeping three independent data structures
will bring down the failure probability to O(δ3), with only
a constant-factor blowup in the space and query costs.

Finally, we show how to convert the Monte Carlo algo-
rithm into a Las Vegas algorithm with expected running
time O(r), which will complete the description of the query
algorithm. We invoke the algorithm above with δ = 2−1,
2−2, 2−3,. . . , stopping as soon as some invocation succeeds.
Let Xi be the indicator random variable whose value is 1
if the i-th invocation succeeds, and 0 otherwise. Then the
total expected running time is

X

i≥1

E[Xi] · O(r · 22i) =
X

i≥1

O(
1

23i
) · O(r · 22i) = O(r).

Theorem 10. Given a set P of n uncertain points in R,
their pdf ’s, each of which is a histogram of constant size, and
a parameter 0 < τ ≤ 1, we can build in O(n log2 n) time an
index of size O(nα(n) log n), where α(n) is the inverse Ack-
ermann function, such that a range query with probability
threshold τ can be answered in expected O(log n + k) time.

As commented earlier, this index easily extends to more
general pdf’s. All the algorithms remain the same, except
that the complexity of Ei may vary. In the analysis above,
the threshold functions are a collection of piecewise linear

functions, and the complexity of the lower envelope of any n
such functions is O(nα(n)) [18]. With other families of pdf’s,
the threshold functions will have different forms. Interest-
ingly, the complexity of their lower envelope only depends on
how many times two pieces of two different threshold func-
tions could intersect. If two pieces intersect at no more than
c points (c = 1 in the case of histogram pdfs), then the com-
plexity of the lower envelope of n such functions is λc+2(n),
the maximum length of any (n, c + 2) Davenport-Schinzel
sequence [17]. If each threshold function consists of a single
unbounded curve (e.g., in the case of pdfs being Gaussian
distribution), then the complexity of the envelope is λc(n).
Thus Theorem 10 still holds, with the space bound changing
to O(λc+2(n) log n) and O(λc(n) log n), respectively.

Sharp bounds for λc(n) are known for any fixed c: λ1(n) =

n, λ2(n) = 2n − 1, λ3(n) = Θ(nα(n)), λ4(n) = Θ(n2α(n))

and λ2t+2(n) = n2(1/t!)αt(n)+Θ(αt−1(n)). These bounds are
very close to linear due to the extremely slow growth of
α(n); see the survey by Agarwal and Sharir [5] for a com-
plete treatment of Davenport-Schinzel sequences and their
applications and the recent paper [20] for slightly improved
bounds.

For most common pdf’s, c is a small constant. In general,
if the pdf is a piecewise polynomial function with degree d,
its threshold function is a piecewise polynomial with degree
d+1, and the space bound becomes O(λd+3(n) log n) corre-
spondingly. If the pdf is a Gaussian distribution, then c = 2
and the size of our index is O(n log n).

Theorem 11. Let P be a set of n uncertain points in R,
their pdf ’s, each having s pieces and any two pieces inter-
secting in at most c points, and let 0 < τ ≤ 1 be a parameter.
We can build an index on P of size O(λc+2(n) log n), where
λt(n) is the maximum length of an (n, t) Davenport-Schinzel
sequence, so that a range query with probability threshold τ
can be answered in expected O(log n + k) time.

Remarks. We first remark that this index can be ex-
tended to external memory, following a similar framework
described in [2]. We omit the technical details from this ab-
stract. Secondly, the index can be easily made to support
approximate counting queries with relative error at most ε
following a similar procedure as in [8]. The query time is
O(log n) and the size of the index is O(1/ε · λc+2(n) log n).
We omit the details.

4. VARIABLE-THRESHOLD QUERIES
The geometric reduction in Section 2.1 does not work if

τ , the probability threshold parameter, is part of a query.
This section shows how to decompose the variable-threshold
version of the problem into answering a few 3D halfspace
range-reporting queries, which yields an index with O(n ·
polylog(n)) size and O(polylog(n) + k) query time.

In the 3D halfspace searching problem, we want to index
a set of points in R

3 such that all points below a given a
query plane can be reported efficiently. By duality, this is
equivalent to indexing a set of planes in R

3, such that for a
query point p, all planes below p are reported. It had been
a long open problem whether 3D halfspace searching can
be solved in linear space and O(log n + k) query time, but
recently Afshani and Chan presented such a solution [1].

Consider a particular point p and its pdf fp(x). As in
Section 2 suppose that the histogram fp(x) consists of s

pieces:

fp(x) = yi, for xi−1 ≤ x < xi, i = 1, . . . , s,

where x0 = −∞, xs = ∞ and y1 = ys = 0. For a query
range I = [xl, xr], let us consider Pr[p ∈ [xl, xr]] as a thresh-
old function of xl and xr, denoted by gp(xl, xr). If xl ∈
[xi−1, xi] and xr ∈ [xj−1, xj] for some i ≤ j, then gp(xl, xr)
increases linearly in xl, with yi as the slope, and also in-
creases linearly in xr, with yj as the slope, implying that
gp(xl, xr) is a bivariate linear function in the rectangle [xi−1,
xi]×[xj−1, xj]. Thus gp(xl, xr) is a bivariate piecewise-linear
function consisting of s2 pieces; each piece spans a rectan-
gle of the form [xi−1, xi] × [xj−1, xj], for some i ≤ j, in the
xlxr-plane; see Figure 7. Given the function fp, the thresh-
old function gp can be computed easily.

xl

xr

0

1

gp

Figure 7. Pr[p ∈ [xl, xr]] is a bivariate piecewise linear function in xl
and xr. It consists of s2 pieces and each piece covers a rectangular
region in the xlxr-plane.

The point p lies in an interval [xl, xr] with probability at
least τ if gp(xl, xr) ≥ τ . Let U = 〈b1 < . . . < bu〉, u ≤ sn,
be the set of breakpoints in the pdfs of the point set P . Let
R = {r1, . . . , rt}, t = O(s2n), be the set of rectangles in
the xy-projections of the threshold functions gp, for p ∈ P ;
vertices of R belong to the set U × U . For each rectangle
ri ∈ R, which is the projection of a rectangular piece of gp,
let ϕi be the plane that contains that rectangular piece of
gp; we associate the point p with the rectangle ri and the
plane ϕi. Given a query interval [xl, xr] and a probability
τ , among all the rectangles ri of R that contain the point
(xl, xr), we wish to report those for which the plane ϕi lies
above the point (xl, xr, τ) ∈ R

3. If a rectangle ri is reported,
then the point of P associated with ri is returned. We build
an index on R as follows.

We cover the interval [b1, bu] by a family I of O(n) canon-
ical intervals, by building a minimum-height binary search
tree on U , so that any interval [bi, bj] can be partitioned in
O(log n) canonical intervals; a point b ∈ R lies in O(log n)
canonical intervals. Set C = I × I to be a set of O(n2)
canonical rectangles in the xlxr-plane; C is not constructed
explicitly. A rectangle ri ∈ R can be partitioned into a set
C[ri] of O(log2 n) canonical rectangles. For each rectangle
C ∈ C, let ΦC = {ϕi | C ∈ C[ri], ri ∈ R}. By construction,
P

C |ΦC | = O(n log2 n). For each C ∈ C such that ΦC 6= ∅,
we build the index by Afshani and Chan [1] on ΦC for an-
swering halfspace range-reporting queries. Since this index

has linear size, the total size over all of the canonical rect-
angles is O(n log2 n), and it takes O(n log3 n) expected time
to build them.

Given a query interval [a, b] and a probability threshold τ ,
we first find the sets Ia, Ib ⊂ I, O(log n) canonical intervals
each, that contain a, b, respectively. Ia × Ib ⊂ C is the set of
canonical rectangles that contain the point (a, b) ∈ R

2. For
each such canonical rectangle C, we query the index built
on C to report all planes of ΦC that lies above the point
(a, b, τ). If a plane is reported, then we return the point of
P associated with it. By construction, each point is reported
only once. The total time spent in reporting all k points is
O(log3 n + k). Hence, we conclude the following.

Theorem 12. Given a set P of n uncertain points in R,
each associated with a histogram having at most s pieces,
we can build in expected O(n log3 n) time an index of size
O(n log2 n) on P , so that for a query interval I and a prob-
ability τ , it can report in O(log3 n + k) time all k points of
P that lie in I with probability at least τ .

Externalization. To extend our index to external mem-
ory, we employ the external structure of Agarwal et al. [2]
for 3D halfspace searching structure. This structure has an
expected size of O(n

B
log n

B
) blocks and answers a query us-

ing O(logB n + k/B) expected I/Os. Using this structure
for each nonempty canonical vertical strip, we obtain the
following result.

Theorem 13. Given a set P of n uncertain points in R,
each associated with a histogram having s pieces, we can
build an external memory index on disk occupying expected
O(n

B
log3 n

B
) blocks, so that for a query interval I and a

probability τ , it can report using expected O(log2 n
B

logB
n
B

+
k/B) I/Os all k points of P that lie in I with probability at
least τ .

Dynamization. Similar to Section 2.3, we can make this
indexing scheme semi-dynamic by applying the logarithmic
method. Insertions can be supported in expected O(log3 n)
amortized time. The query bound increases to O(log4 n+k).
We omit the rather uninteresting details.

To make our index fully dynamic, we replace the static
3D halfspace searching structure of [1] with the dynamic
structure of [4]. The same as the 2D case, this structure uses
O(n1+ε) space, supports insertions and deletions in O(nε)
time amortized, and answers queries in O(log n + k) time
[4], where ε is any small constant. By using this structure
for each nonempty canonical vertical strip, we obtain the
following:

Theorem 14. Given a set of n uncertain point, each as-
sociated with a histogram having s pieces, we can build a fully
dynamic index of size O(n1+ε) such that a range query with
any probability threshold can be answered in O(log3 n + k)
time. This index supports insertions and deletions of uncer-
tain points in O(nε) time amortized.

Remark. If s is not a constant, all our space and query
bounds in this section still hold by simply replacing n by
s2n, since each uncertain point generates a piecewise linear
function with s2 pieces. The update time of Theorem 14
becomes O(s2nε).

5. CONCLUSION
In this paper we have studied the problem of indexing

uncertain data to support range queries efficiently. Our
indexing schemes have linear or near-linear sizes and sup-
port range queries in logarithmic (or polylogarithmic) time.
These results significantly improve upon the previous ones
on this problem. Although our results are mostly theoreti-
cal in nature, we believe that some of the indexes, such as
the one in Section 3, are simple enough to be of practical
interests. For the other more complicated ones, some of the
ideas (such as the geometric reductions) could be borrowed
to devise more practical indexes.

References

[1] P. Afshani and T. M. Chan, Optimal halfspace range
reporting in three dimensions, Proc. 20th Annual ACM-
SIAM Symposium on Discrete Algorithms, 2009, pp.
180–186.

[2] P. K. Agarwal, L. Arge, J. Erickson, P. Franciosa, and
J. Vitter, Efficient searching with linear constraints,
Journal of Computer and System Sciences, 61 (2000),
194–216.

[3] P. K. Agarwal and J. Erickson, Geometric range search-
ing and its relatives, in: Advances in Discrete and
Computational Geometry (B. Chazelle, J. E. Goodman,
and R. Pollack, eds.), American Mathematical Society,
Providence, RI, 1999, pp. 1–56.

[4] P. K. Agarwal and J. Matoušek, Dynamic half-space
range reporting and its applications, Algorithmica,
13 (1995), 325–345.

[5] P. K. Agarwal and M. Sharir, Davenport-Schinzel se-
quences and their geometric applications, in: Handbook
of Computational Geometry (J.-R. Sack and J. Urrutia,
eds.), Elsevier Science Publishers, Amsterdam, 2000,
pp. 1–47.

[6] A. Aggarwal and J. S. Vitter, The input/output com-
plexity of sorting and related problems, Communica-
tions of the ACM, 31 (1988), 1116–1127.

[7] P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth,
S. Nabar, T. Sugihara, and J. Widom, Trio: A system
for data, uncertainty, and lineage, Proc. International
Conference on Very Large Databases, 2006, pp. 1151–
1154.

[8] B. Aronov, S. Har-Peled, and M. Sharir, On approx-
imate halfspace range counting and relative epsilon-
approximations, Proc. 23rd Annual Symposium on
Computational Geometry, 2007, pp. 327–336.

[9] J. L. Bentley and J. B. Saxe, Decomposable searching
problems I: Static-to-dynamic transformation, Journal
of Algorithms, 1 (1980), 301–358.

[10] T. M. Chan, Random sampling, halfspace range report-
ing, and construction of (≤k)-levels in three dimensions,
SIAM Journal on Computing, 30 (2000), 561–575.

[11] B. Chazelle and L. J. Guibas, Fractional cascading: I.
A data structuring technique, Algorithmica, 1 (1986),
133–162.

[12] B. Chazelle, L. J. Guibas, and D. T. Lee, The power of
geometric duality, BIT, 25 (1985), 76–90.

[13] B. Chazelle and B. Rosenberg, Simplex range reporting
on a pointer machine, Computational Geometry: The-
ory and Applications, 5 (1996), 237–247.

[14] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vit-
ter, Efficient indexing methods for probabilistic thresh-
old queries over uncertain data, Proc. International
Conference on Very Large Databases, 2004, pp. 876–
887.

[15] K. L. Clarkson and P. W. Shor, Applications of ran-
dom sampling in computational geometry, II, Discrete
Computational Geometry, 4 (1989), 387–421.

[16] N. Dalvi and D. Suciu, Efficient query evaluation on
probabilistic databases, Proc. International Conference
on Very Large Databases, 2004, pp. 864–875.

[17] H. Davenport and A. Schinzel, A combinatorial problem
connected with differential equations, American Jour-
nal of Mathematics, 87 (1965), 684–689.

[18] S. Hart and M. Sharir, Nonlinearity of Davenport-
Schinzel sequences and of generalized path compression
schemes, Combinatorica, 6 (1986), 151–177.

[19] V. Ljosa and A. K. Singh, APLA: Indexing arbi-
trary probability distributions, Proc. IEEE Interna-
tional Conference on Data Engineering, 2007, pp. 946–
955.

[20] G. Nivasch, Improved bounds and new techniques
for Davenport-Schinzel sequences and their generaliza-
tions, Proc. 20th Annual ACM-SIAM Symposium on
Discrete Algorithms, 2009, pp. 1–10.

[21] H. Samet, Foundations of Multidimensional and Metric
Data Structures, Morgan Kaufmann, 2006.

[22] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and
S. Hambrusch, Indexing uncertain categorical data,
Proc. IEEE International Conference on Data Engi-
neering, 2007, pp. 616–625.

[23] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and
S. Prabhakar, Indexing multi-dimensional uncertain
data with arbitrary probability density functions, Proc.
International Conference on Very Large Databases,
2005, pp. 922–933.

[24] Y. Tao, X. Xiao, and R. Cheng, Range search on mul-
tidimensional uncertain data, ACM Transactions on
Database Systems, 32 (2007), 15.

[25] M. L. Yiu, N. Mamoulis, X. Dai, Y. Tao, and M. Vaitis,
Efficient evaluation of probabilistic advanced spatial
queries on existentially uncertain data, IEEE Transac-
tions on Knowledge and Data Engineering, 21 (2009),
108–122.

