
Dynamic Indexability and Lower Bounds for Dynamic
One-Dimensional Range Query Indexes

Ke Yi∗

HKUST
Hong Kong, China
yike@cse.ust.hk

ABSTRACT

The B-tree is a fundamental external index structure that is
widely used for answering one-dimensional range reporting
queries. Given a set of N keys, a range query can be an-
swered in O(logB

N
M

+ K
B

) I/Os, where B is the disk block
size, K the output size, and M the size of the main mem-
ory buffer. When keys are inserted or deleted, the B-tree
is updated in O(logB N) I/Os, if we require the resulting
changes to be committed to disk right away. Otherwise,
the memory buffer can be used to buffer the recent up-
dates, and changes can be written to disk in batches, which
significantly lowers the amortized update cost. A system-
atic way of batching up updates is to use the logarithmic
method, combined with fractional cascading, resulting in a
dynamic B-tree that supports insertions in O(1

B
log N

M
) I/Os

and queries in O(log N
M

+ K
B

) I/Os. Such bounds have also
been matched by several known dynamic B-tree variants in
the database literature. Note that, however, the query cost
of these dynamic B-trees is substantially worse than the
O(logB

N
M

+ K
B

) bound of the static B-tree by a factor of
Θ(log B).

In this paper, we prove that for any dynamic one dimen-
sional range query index structure with query cost O(q +
K
B

) and amortized insertion cost O(u/B), the tradeoff q ·
log(u/q) = Ω(log B) must hold if q = O(log B). For most

reasonable values of the parameters, we have N
M

= BO(1),
in which case our query-insertion tradeoff implies that the
bounds mentioned above are already optimal. We also prove
a lower bound of u · log q = Ω(log B), which is relevant for
larger values of q. Our lower bounds hold in a dynamic ver-
sion of the indexability model, which is of independent inter-
ests. Dynamic indexability is a clean yet powerful model for
studying dynamic indexing problems, and can potentially
lead to more interesting complexity results.

∗Supported in part by Hong Kong Direct Allocation Grant
(DAG07/08).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-553-6 /09/06 ...$5.00.

Categories and Subject Descriptors

F.2.3 [Analysis of algorithms and problem complex-
ity]: Tradeoffs between complexity measures; H.3.1 [Infor-
mation storage and retrieval]: Content analysis and in-
dexing—indexing methods

General Terms

Theory

Keywords

Indexability, range query, lower bound, dynamization

1. INTRODUCTION
The B-tree [5] is a fundamental external index structure

used in nearly all database systems. It has both very good
space utilization and query performance: Assuming each
disk block can store B data records, the B-tree occupies
O(N

B
) disk blocks for N data records, and supports one-

dimensional range reporting queries in O(logB N + K
B

) I/Os
(or page accesses) where K is the output size. Due to the
large fanout of the B-tree, for most practical values of N and
B, the B-tree is very shallow and logB N is essentially a con-
stant. Very often we also have a memory buffer of size M ,
which can be used to store the top Θ(logB M) levels of the
B-tree, further lowering the effective height of the B-tree to
O(logB

N
M

), meaning that we can usually get to the desired
leaf with merely one or two I/Os, and then start pulling out
results.

If one wants to update the B-tree directly on disk, it is
also well known that it takes O(logB N) I/Os. Things be-
come much more interesting if we make use of the main
memory buffer to collect a number of updates and then per-
form the updates in batches, lowering the amortized update
cost significantly. For now let us focus on insertions only;
deletions are in general much less frequent than insertions,
and there are some generic methods for dealing with dele-
tions by converting them into insertions of “delete signals”
[2, 18]. The idea of using a buffer space to batch up in-
sertions has been well exploited in the literature, especially
for the purpose of managing historical data, where there are
much more insertions than queries. The LSM-tree [18] was
the first along this line of research, by applying the logarith-
mic method [7] to the B-tree. Fix a parameter 2 ≤ ℓ ≤ B. It
builds a collection of B-trees of sizes up to M, ℓM, ℓ2M, . . . ,
respectively, where the first one always resides in memory.
An insertion always goes to the memory-resident tree; if

the first i trees are full, they are merged together with the
(i + 1)-th tree by rebuilding. Standard analysis shows that
the amortized insertion cost is O(ℓ

B
logℓ

N
M

). A query takes

O(logB N logℓ
N
M

+ K
B

) I/Os since O(logℓ
N
M

) trees need to
be queried. Using fractional cascading [10], the query cost
can be improved to O(logℓ

N
M

+ K
B

) without affecting the
(asymptotic) size of the index and the update cost, but this
result appears to be folklore. Later Jermaine et al. [14]
proposed the Y-tree as “yet” another B-tree structure for
the purpose of lowering the insertion cost. The Y-tree is
an ℓ-ary tree, where each internal node is associated with
a bucket storing all the elements to be pushed down to its
subtree. The bucket is emptied only when it has accumu-
lated Ω(B) elements. Although [14] did not give a rigorous
analysis, it is not difficult to derive that its insertion cost
is O(ℓ

B
logℓ

N
M

) and query cost O(logℓ
N
M

+ K
B

), namely, the
same as those of the LSM-tree with fractional cascading.
Around the same time Buchsbaum et al. [9] independently
proposed the buffered repository tree in a different context,
with similar ideas and the same bounds as the Y-tree. In
order to support even faster insertions, Jagadish et al. [13]
proposed the stepped merge tree, a variant of the LSM-tree.
At each level, instead of keeping one tree of size ℓiM , they
keep up to ℓ individual trees. When there are ℓ level-i
trees, they are merged to form a level-(i + 1) tree. The
stepped merge tree has an insertion cost of O(1

B
logℓ

N
M

),
lower than that of the LSM-tree. But the query cost is
a lot worse, reaching O(ℓ logB N logℓ

N
M

+ K
B

) I/Os since ℓ
trees need to be queried at each level. Again the query cost
can be improved to O(ℓ logℓ

N
M

+ K
B

) using fractional cas-
cading. The current best known results are summarized in
Table 1. Typically ℓ is set to be a constant [13, 14, 18], at
which point all the indexes have the same asymptotic per-
formance of O(log N

M
+ K

B
) query and O(1

B
log N

M
) insertion.

Note that the amortized insertion bound of these dynamic
B-trees could be much smaller than one I/O, hence much
faster than updating the B-tree directly on disk. The query
cost is, however, substantially worse than the O(logB

N
M

)
query cost of the static B-tree by an Θ(log B) factor. As
typical values of B range from hundreds to thousands, we
are expecting a 10-fold degradation in query performance for
these dynamic B-trees. Thus the obvious question is, can we
lower the query cost while still allowing for fast insertions?

In particular, the indexes listed in Table 1 are all quite
practical, so one may wonder if there are some fancy com-
plicated theoretical structures with better bounds that have
not been found yet. For the static range query problem, it
turned out to be indeed the case. A somehow surprising re-
sult by Alstrup et al. [1] shows that it is possible to achieve
linear size and O(K) query time in the RAM model. This
results also carries over to external memory, yielding a disk-
based index with O(N

B
) blocks and O(1+ K

B
)-I/O query cost.

However, this structure is overly complicated, and is actually
worse than the B-tree in practice. In the dynamic case, a
recent result by Mortensen et al. [17] gives a RAM-structure
with O(log log log N + K) query time and O(log log N) up-
date time. This result, when carried over to external mem-
ory, gives us an update cost of O(log log N) I/Os. This could
be much worse than the O(1

B
log N

M
) bound obtained by the

simple dynamic B-trees mentioned earlier, for typical values
of N, M , and B. Until today no bounds better than the
ones in Table 1 are known. The O(log N

M
+ K

B
) query and

O(1
B

log N
M

) insertion bounds seem to be an inherent barrier

that has been standing since 1996. Nobody can break one
without sacrificing the other.

Lower bounds for this and related problems have also been
sought for. For lower bounds we will only consider inser-
tions; the results will also hold for the more general case
where insertions and deletions are both present. A closely
related problem to range queries is the predecessor problem,
in which the index stores a set of keys, and the query asks for
the preceding key for a query point. The predecessor prob-
lem has been extensively studied in various internal memory
models, and the bounds are now tight in almost all cases
[6]. In external memory, Brodal and Fagerberg [8] prove
that for the dynamic predecessor problem, if insertions are
handled in O(1

B
log N

M
) I/Os amortized, a predecessor query

has to take Ω(log(N/M)
log log(N/M)

) I/Os in the worst case. Their

lower bound model is a comparison based external memory
model. However, a closer look at their proof reveals that
their techniques can actually be adapted to prove the same

lower bound of Ω(log(N/M)
log log(N/M)

+ K
B

) for range queries for any

B = ω(1). More precisely, we can use their techniques to get
the following tradeoff: If an insertion takes amortized u/B
I/Os and a query takes worst-case q + O(K

B
) I/Os, then we

have

q · log(u log2 N
M

) = Ω(log N
M

), (1)

provided u ≤ B/ log3 N and N ≥ M2. In addition to (1),
a few other tradeoffs have also been obtained in [8] for the
predecessor problem, but their proofs cannot be made to
work for range queries. For the most interesting case when
we require q = O(log N

M
), (1) gives a meaningless bound of

u = Ω(1/ log2 N
M

), as u ≥ 1 trivially. In the other direction,

if u = O(log N
M

), the tradeoff (1) still leaves an Θ(log log N
M

)
gap to the known upper bound for q.

Our results. In this paper, we prove a query-insertion
tradeoff of


q · log(u/q) = Ω(log B), for q < α ln B, any constant α;
u · log q = Ω(log B), for all q.

(2)
for any dynamic range query index with a query cost of q +
O(K/B) and an amortized insertion cost of u/B, provided
N ≥ 2MB2. For most reasonable values of N, M , and B, we
may assume that N

M
= BO(1), or equivalently that the B-tree

built on N keys has constant height. In this case if we require
q = O(log N

M
) = O(log B), the first branch of (2) gives u =

Ω(log B), matching the known upper bounds in Table 1. In
the other direction, if u = O(log N

M
) = O(log B), we have

q = Ω(log B) = Ω(log N
M

), which is again tight, and closes

the Θ(log log N
M

) gap left in [8]. In fact for any 2 ≤ ℓ ≤ B, if
u = O(ℓ logℓ B), we have a tight lower bound q = Ω(logℓ B),
matching the bounds in the first row of Table 1. The second
branch of (2) is relevant for larger values of q, for which
the previous tradeoff (1) is helpless. In particular, if u =

O(logB
N
M

) = O(1), we have q = BΩ(1). This means that if
we want to support very fast insertions, the query cost has to
go from logarithmic to polynomial, an exponential blowup.
This matches the second row of Table 1. Our results show
that all the indexes listed in Table 1, which are all quite
simple and practical, are already essentially the best one
can hope for.

More interestingly, our lower bounds hold in a dynamic
version of the indexability model [11], which was originally

query insertion
LSM-tree [18] with fractional cascading

Y-tree [14] logℓ
N
M

+ K
B

ℓ
B

logℓ
N
M

buffer repository tree [9]

stepped merge tree [13] with fractional cascading ℓ logℓ
N
M

+ K
B

1
B

logℓ
N
M

Table 1. Query/insertion upper bounds of previously known B-tree indexes, for a parameter 2 ≤ ℓ ≤ B.

proposed by Hellerstein, Koutsoupias, and Papadimitriou
[12]. To date, nearly all the known lower bounds for index-
ing problems are proved in this model [3, 4, 11, 16, 19]. It
is in some sense the strongest possible model for reporting
problems. It basically assumes that the query cost is only
determined by the number of disk blocks that hold the ac-
tual query results, and ignores all the search cost that we
need to pay to find these blocks. Consequently, lower bounds
obtained in this model are also stronger than those obtained
in other models. We will give more details on this model in
Section 2. However, until today this model has been used
exclusively for studying static indexing problems and only
in two or higher dimensions. In one dimension, the model
yields trivial bounds (see Section 2 for details). In the JACM
paper [11] that summarizes most of the results on indexabil-
ity, the authors state: “However, our model also ignores the
dynamic aspect of the problem, that is, the cost of insertion
and deletion. Its consideration could be a source of added
complexity, and in a more general model the source of more
powerful lower bounds.” In this respect, another contribu-
tion of this paper is to add dynamization to the model of
indexability, making it more powerful and complete. In par-
ticular, our lower bound results suggest that, although static
indexability is only effective in two or more dimensions, dy-
namization makes it a suitable model for one-dimensional
indexing problems as well.

2. DYNAMIC INDEXABILITY

Static indexability. We first briefly review the frame-
work of indexability before introducing its dynamization.
We follow the notations from [11]. A workload W is a tu-
ple W = (D, I,Q) where D is a possibly infinite set (the
domain), I ⊆ D is a finite subset of D (the instance), and
Q is a set of subsets of I (the query set). For example, for
one-dimensional range queries, D is the real line, I is a set
of points on the line, and Q consists of all the contiguous
subsets of I . We usually use N = |I | to denote the number
of objects in the instance. An indexing scheme S = (W,B)
consists of a workload W and a set B of B-subsets of I such
that B covers I . The B-subsets of B model the data blocks of
an index structure, while any auxiliary structures connect-
ing these data blocks (such as pointers, splitting elements)
are ignored from this framework. The size of the indexing
scheme is |B|, the number of blocks. In [11], an equivalent
parameter, the redundancy r = B|B|/N is used to measure
the space complexity of the indexing scheme. The cost of a
query q ∈ Q is the minimum number of blocks whose union
covers q. Note that here we have implicitly assumed that the
query algorithm can find these blocks to cover q instantly
with no cost, essentially ignoring the “search cost”. The
access overhead A is the minimum A such that any query
q ∈ Q has a cost at most A · ⌈|q|/B⌉. Note that ⌈|q|/B⌉ is
the minimum number of blocks to report the objects in q,

so the access overhead A measures how much more we need
to access the blocks in order to retrieve q. For some prob-
lems using a single parameter for the access overhead is not
expressive enough, and we may split it into two: one that
depends on |q| and another that does not. More precisely, an
indexing scheme with access overhead (A0, A1) must answer
any query q ∈ Q with cost at most A0 +A1 · ⌈|q|/B⌉ [4]. We
can see that the indexability model is very strong. It is the
strongest possible model that one can conceive for reporting
problems. It is generally accepted that no index structure
could break indexability lower bounds, unless it somehow
“creates” objects without accessing the original ones or their
copies.

Except for some trivial facts, all the lower bound results
obtained under this model are expressed as a tradeoff be-
tween r and A (or (A0, A1)). For example, two-dimensional
range reporting has a tradeoff of r = Ω(log(N/B)/ log A)
[3, 11]; for the point enclosure problem, the dual of range
queries, we have the tradeoff A0A

2
1 = Ω(log(N/B)/ log r)

[4]. These results show that, even if we ignore the search
cost, we can obtain nontrivial lower bounds for these prob-
lems. These lower bounds have also been matched with cor-
responding indexes that do include the search cost for typical
values of r and A [3, 4]. This means that the inherent diffi-
culty for these indexing problems roots from how we should
layout the data objects on disk, not the search structure on
top of them. By ignoring the search component of an index,
we obtain a simple and clean model, which is still power-
ful enough to reveal the inherent complexity of indexing. It
should be commented that the indexability model is very
similar in spirit to the cell probe model of Yao [21], which
has been successfully used to derive many internal memory
lower bounds. But the two models are also different in some
fundamental ways; please see [11] for a discussion.

Nevertheless, although the indexability model is appro-
priate for two-dimensional problems, it seems to be overly
strong for the more basic one-dimensional range query prob-
lem. In one dimension, we could simply layout all the points
in order sequentially on disk, which would give us a linear-
size, constant-query access overhead index! This breaks the
Θ(logB N) bound of the good old B-tree, and suggests that
the indexability model may be too strong for studying one-
dimensional workloads. This in fact can be explained. The
Ω(logB N) lower bound holds only in some restrictive mod-
els, such as the comparison model, and the B-tree indeed
only uses comparisons to guide its search. As we men-
tioned in the introduction, if we are given more computa-
tional power (such as direct addressing), we can actually
solve the static 1D range query problem with an index of
linear size and O(⌈K/B⌉)-I/O query cost [1]. This means
that the search cost for 1D range queries can still be ignored
without changing the complexity of the problem, and the
indexability model is still appropriate, albeit it only gives a
trivial lower bound.

Dynamic indexability. In the dynamic case, the domain
D remains static, but the instance set I could change. Cor-
respondingly, the query set Q changes and the index also
updates its blocks B to cope with the changes in I . In
the static model, there is no component to model the main
memory, which is all right since the memory does not help
reduce the worst-case query cost anyway. However, in the
dynamic case, the main memory does improve the (amor-
tized) update cost significantly by buffering the recent up-
dates. So we have to include a main memory component
in the indexing scheme. More precisely, the workload W is
defined as before, but an indexing scheme is now defined as
S = (W,B,M) where M is a subset of I with size at most
M such that the blocks of B together with M cover I . The
redundancy r is defined as before, but the access overhead
A is now defined as the minimum A such that any q ∈ Q
can be covered by M and at most A · ⌈|q|/B⌉ blocks from
B.

We now define the dynamic indexing scheme. Here we
only consider insertions; deletions can be incorporated sim-
ilarly. We first define the dynamic workload.

Definition 1 A dynamic workload W is a sequence of N
workloads W1 = (D, I1,Q1), . . . , WN = (D, I2,Q2) such
that |Ii| = i and Ii ⊂ Ii+1 for i = 1, . . . , N − 1.

Essentially, we insert N objects into I one by one, resulting
in a sequence of workloads. Meanwhile, the query set Q
changes according to the problem at hand.

Definition 2 Given a dynamic workload W = (W1, . . . , WN),
a dynamic indexing scheme S is a sequence of N index-
ing schemes S1 = (W1,B1,M1), . . . ,SN = (WN ,BN ,MN).
Each Si is called a snapshot of S. S has redundancy r and
access overhead A if for all i, Si has redundancy at most r
and access overhead at most A.

A third parameter u, the update cost, is defined as follows.

Definition 3 Given a dynamic indexing scheme S, the tran-
sition cost from Si to Si+1 is |Bi − Bi+1| + |Bi+1 − Bi|, i.e.,
the number of blocks that are different in Bi and Bi+1. The
update cost S is the u such that the sum of all the transition
costs for all 1 ≤ i ≤ N − 1 is u · N/B.

Note that the update cost as defined above is the amortized
cost for handling B updates. This is mainly for convenience
so that u is always at least 1.

Our definition of the dynamic indexability model contin-
ues the same spirit as in the static case: We will only focus
on the cost associated with the changes in the blocks hold-
ing the actual data objects, while ignoring the search cost of
how to find these blocks to be changed. Under this frame-
work, the main result obtained in this paper is the following
tradeoff between u and A.

Theorem 1 Let S be any dynamic indexing scheme for dy-
namic one-dimensional range queries with access overhead
A and update cost u. Provided N ≥ 2MB2, we have


A · log(u/A) = Ω(log B), for A < α ln B, any constant α;
u · log A = Ω(log B), for all A.

Note that this lower bound does not depend on the redun-
dancy r, meaning that the index cannot do better by con-
suming more space. Interestingly, our result shows that al-
though the indexability model is basically meaningless for
static 1D range queries, it gives nontrivial and almost tight
lower bound when dynamization is considered.

To prove Theorem 1, below we first define a ball-shuffling
problem and show that any dynamic indexing scheme for 1D
range queries yields a solution to the ball-shuffling problem.
Then we prove a lower bound for the latter.

3. THEBALL-SHUFFLINGPROBLEMAND

THE REDUCTION
We now define the ball-shuffling problem, and present a

lower bound for it. There are n balls and t bins, b1, . . . , bt.
The balls come one by one. Upon the arrival of each ball,
we need to find some bin bi to put it in. Abusing notations,
we use also bi to denote the current size of the bin, i.e., the
number of balls inside. The cost of putting the ball into bi is
defined to be bi +1. Instead of directly putting a ball into a
bin, we can do so with shuffling: We first collect all the balls
from one or more bins, add the new ball to the collection,
and then arbitrarily allocate these balls into a number of
empty bins. The cost of this operation is the total number
of balls involved, i.e., if I denotes the set of indices of the
bins collected, the cost is

P

i∈I bi + 1. Note that directly
putting a ball into a bin can be seen as a special shuffle,
where we collect balls from only one bin and allocate the
balls back to one bin.

Our main result for the ball-shuffling problem is the fol-
lowing lower bound, whose proof is deferred to Section 4.

Theorem 2 The cost of any algorithm for the ball-shuffling
problem is at least

(i) Ω(n logt n) for any t; and

(ii) Ω(tn1+Ω(1/t)) for t < α ln n where α is an arbitrary
constant.

The reduction. Suppose there is a dynamic indexing scheme
S = (S1, . . . ,SN) for dynamic one-dimensional range queries
with update cost u and access overhead A. Assuming N ≥
2MB2, we will show how this leads to a solution to the
ball-shuffling problem on n = B balls and t = A bins with
cost O(uB). This will immediately translate the tradeoff in
Theorem 2 to the desired tradeoff in Theorem 1.

We divide these N points into subsets of 2MB2. We will
use a separate construction for each subset of points. Since
the amortized cost for handling every B insertions of points
is u, at least one of the subsets has a total transition cost
of at most O(uMB). Let us consider one such subset of
N ′ = 2MB2 points.

We construct a dynamic workload of N ′ points as follows.
The points are divided into 2MB groups of B each. The
coordinates of all points in the j-th group are in the range
of (j, j + 1) and distinct. We perform the insertions in B
rounds; in each round, we simply add one point to each
group. The dynamic indexing scheme S correspondingly has
N ′ snapshots S1 = (W1,B1,M1), . . . ,SN′ = (WN′ ,BN′ ,MN′).
We will only consider the subsequence S

′ consisting of the
snapshots S2MB ,S2·2MB , . . . ,SN′ , i.e., the ones after every
round. The total transition cost of this subsequence is obvi-
ously no higher than that of the entire sequence. Recall that

the transition cost from a snapshot S = (W,B,M) to its suc-
ceeding snapshot S ′ = (W ′,B′,M′) is the number of blocks
that are different in B and B′. We now define the element
transition cost to be the number of elements in these different
blocks, more precisely, |{x | x ∈ b, b ∈ (B − B′)∪ (B′ −B)}|.
Since each block contains at most B elements, the element
transition cost is at most a factor O(B) larger than the
transition cost. Thus, S

′ has an element transition cost
of O(uMB2). The element transition cost can be associ-
ated with the elements involved, that is, it is the total num-
ber of times that an element has been in an updated block,
summed over all elements.

If a group G has at least one point in some Mi in S
′,

then it is said to be contaminated. Since
PB

i=1 |Mi·2MB | ≤
MB, at most MB groups are contaminated. Since the total
element transition cost of S

′ is O(uMB2), among the at least
MB uncontaminated groups, at least one has an element
transition cost of O(uB). Focusing on such a group, and let
G1, . . . , GB be the snapshots of this group after every round.
Since this group is uncontaminated, all points in Gi must be
completely covered by Bi·2MB for all i = 1, . . . , B. Since Gi

has at most B points and S has access overhead A, Gi should
always be covered by at most A blocks in Bi·2MB . For each
i, let bi,1, . . . , bi,A be the blocks of Bi·2MB that cover Gi, let

b̂i,j = bi,j∩Gi, j = 1, . . . , A. Note that these b̂i,j may overlap

and some of them may be empty. Let B̂i = {b̂i,1, . . . , b̂i,A}.

Consider the transition from B̂i to B̂i+1. We can as before
define its element transition cost as |{x | x ∈ b, b ∈ (B̂i −

B̂i+1)∪(B̂i+1−B̂i)}|. This element transition cost cannot be
higher than that from Bi·2MB to B(i+1)·2MB only counting

the elements of Gi+1, because b̂i,j 6= b̂i,j′ only if bi,j 6= bi,j′ .
Therefore, the total element transition cost of the sequence
B̂1, . . . , B̂B is at most O(uB).

Now we claim that the sequence B̂1, . . . , B̂B gives us a
solution for the ball-shuffling problem of B balls and A bins
with cost at most its element transition cost. To see this,
just treat each set in B̂i as a bin in the ball-shuffling problem.
To add the (i + 1)-th ball, we shuffle the bins in B̂i − B̂i+1

and allocate the balls according to the sizes of the sets in
B̂i+1 − B̂i. An element may have copies in B̂i+1, so there
could be more elements than balls in B̂i+1−B̂i. But this is all
right, we can still allocate balls according to B̂i+1−B̂i, while
just making sure that each bin has no more balls than their
corresponding set in B̂i+1. This way, we can ensure that
the cost of each shuffle is always no more than the element
transition cost of each transition. Therefore, we obtain a
solution to the ball-shuffling problem with cost O(uB). This
completes the reduction.

4. PROOF OF THEOREM 2

Proof of part (i). We first prove part (i) of the theo-
rem. We will take an indirect approach, proving that any
algorithm that handles the balls with an average cost of u
using t bins cannot accommodate (2t)2u balls or more. This
means that n < (2t)2u, or u > log n

2 log(2t)
, so the total cost of

the algorithm is un = Ω(n logt n).
We prove so by induction on u. When u = 1, clearly the

algorithm has to put every ball into an empty bin, so with t
bins, the algorithm can handle at most t < (2t)2 balls. We
will use a step size of 1

2
for the induction, i.e., we will assume

that the claim is true for u, and show that it is also true for

u + 1
2
. (Thus our proof works for any u that is a multiple of

1
2
; for other values of u, the bound becomes (2t)⌈2u⌉, which

does not affect our asymptotic result.) Equivalently we need
to show that to handle (2t)2u+1 balls, any algorithm using t
bins has to pay an average cost of more than u + 1

2
per ball,

or (u + 1
2
)(2t)2u+1 = (2tu + t)(2t)2u in total. We divide the

(2t)2u+1 balls into 2t batches of (2t)2u each. By the induc-
tion hypothesis, to handle the first batch, the algorithm has
to pay a total cost of more than u(2t)2u. For each of the
remaining batches, the cost is also more than u(2t)2u, plus
the cost of shuffling the existing balls from previous batches.
This amounts to a total cost of 2tu(2t)2u, and we only need
to show that shuffling the balls from previous batches costs
at least t(2t)2u in total.

If a batch has at least one ball that is never shuffled in
later batches, it is said to be a bad batch, otherwise it is a
good batch. The claim is that at most t of these 2t batches
are bad. Indeed, since each bad batch has at least one ball
that is never shuffled later, the bin that this ball resides in
cannot be touched any more. So each bad batch takes away
at least one bin from later batches and there are only t bins.
Therefore there are at least t good batches, in each of which
all the (2t)2u ball have been shuffled later. This costs at
least t(2t)2u, and the proof completes.

The merging lemma. Part (i) of the theorem is very loose
for small values of t. If t ≤ α log n where α is an arbitrary
constant, we can prove a much higher lower bound, which
later will lead to the most interesting branch in the query-
update tradeoff (2) of range queries. The rest of this section
is devoted to the proof of part (ii) of Theorem 2, and it
requires a much more careful and direct analysis.

We first prove the following lemma, which restricts the
way how the optimal algorithm might do shuffling. We call
a shuffle that allocates balls back to more than one bin a
splitting shuffle, otherwise it is a merging shuffle.

Lemma 1 There is an optimal algorithm that only uses
merging shuffles.

Proof. For a shuffle, we call the number of bins that re-
ceive balls from the shuffle its splitting number. A splitting
shuffle has a splitting number at least 2, and a merging shuf-
fle’s splitting number is 1. For an algorithm A, let π(A) be
the sequence of the splitting numbers of all the n shuffles
performed by A. Below we will show how to transform A
into another algorithm A′ whose cost is no higher than that
of A, while π(A′) is lexicographically smaller than π(A).
Since every splitting number is between 1 and t, after a fi-
nite number of such transformations, we will arrive at an
algorithm whose splitting numbers are all 1, hence proving
the lemma.

Let A be an algorithm that uses at least one splitting
shuffle, and consider the last splitting shuffle carried out by
A. Suppose it allocates balls to k bins. A′ will do the same
as A up until its last splitting shuffle, which A′ will change to
the following shuffle. A′ will collect balls from the same bins
but will only allocate them to k − 1 bins. Among the k − 1
bins, k−2 of them receive the same number of balls as in A,
while the last bin receives all the balls in the last two bins
used in A. Observe that since the bins are indistinguishable,
the current status of the bins is only determined by their
sizes. So the only difference between A and A′ after this
shuffle is two bins, say b1, b2 of A and b′1, b

′
2 of A′. Note that

the cost of this shuffle is the same for both A and A′. After
this shuffle, suppose we have b1 = x, b2 = y, b′1 = x + y, b′2 =
0 for some x, y ≥ 1. Clearly, no matter what A′ does in the
future, π(A′) is always lexicographically smaller than π(A).

From now on A′ will mimic what A does with no higher
cost. We will look ahead at the operations that A does with
b1 and b2, and decide the corresponding actions of A′. Note
that A will do no more splitting shuffles. Consider all the
shuffles that A does until it merges b1 and b2 together, or
until the end if A never does so. For those shuffles that
touch neither b1 nor b2, A

′ will simply do the same. Each
of the rest of the shuffles involves b1 but not b2 (resp. b2 but
not b1). Since the bins are indistinguishable, for any such
merging shuffle, we may assume that all the balls are put
back to b1 (resp. b2). Suppose there are a1 shuffles involving
b1 and a2 shuffles involving b2. Assume for now that a1 ≤ a2.
A′ will do the following correspondingly. When A touches
b1, A

′ will use b′1; and when A touches b2, A
′ will use b′2.

Clearly, for any shuffle that involves neither b1 nor b2, the
cost is the same for A and A′. For a shuffle that involves
b1 but not b2, since before A merges b1 and b2, we have the
invariant that b′1 = b1+y, A′ pays a cost of y more than that
of A, for each of these a1 shuffles. For a shuffle that involves
b2 but not b1, since we have the invariant that b′2 = b2 − y,
A′ pays a cost of y less than that of A, for each of these a2

shuffles. So A′ incurs a total cost no more than that of A.
In the case a1 ≥ a2, when A touches b1, A

′ will use b′2; and
when A touches b2, A

′ will use b′1. A similar argument then
goes through. Finally, when A merges b1 and b2 together (if
it ever does so), A′ will also shuffle both b′1 and b′2. Since we
always have b1 + b2 = b′1 + b′2, the cost of this shuffle is the
same for A and A′. After this shuffle, A and A′ are in the
same status. Thus we have transformed A into A′ with no
higher cost while π(A′) is strictly lexicographically smaller
than π(A). Applying such transformations iteratively proves
the lemma.

The recurrence. Now we are ready to prove part (ii) of
Theorem 2. Our general approach is by induction on t. Let
ft(n) be the minimum cost of any algorithm for the ball-
shuffling problem with n balls and t bins. Let α be an arbi-
trary constant. The induction process consists of two phases.
In the first phase, we prove that ft(n) ≥ c1tn

1+c2/t−2tn for
all t ≤ t0 = ⌊c0 ln n⌋, where c0, c1 and c2 are some small con-
stants to be determined later. In phase two, we prove that
ft(n) ≥ c1t0n

1+c2/(t0+(t−t0)/α) − 2tn for all t0 ≤ t ≤ α ln n.
Finally we show how to choose the constants c0, c1, c2 such
that ft(n) is always at least Ω(tn1+Ω(1/t)).

The base case of the first phase t = 1 is easily established,
since the optimal algorithm is simply adding the balls to
the only bin one by one, yielding f1(n) = 1

2
n(n + 1) ≥

c1n
1+c2 − 2n, provided that we choose c1 ≤ 1/2, c2 ≤ 1.

By Lemma 1, there is an optimal algorithm A for shuffling
n balls with t + 1 bins where A only uses merging shuffles.
Since the bins are indistinguishable, we may assume w.l.o.g.
that there is a designated bin, say b1, such that whenever b1

is shuffled, all the balls are put back to b1. Suppose when
handling the last ball, we force A to shuffle all the balls to
b1, which costs n. We will later subtract this cost since A
may not actually do so in the last step.

Suppose A carries out a total of k shuffles involving b1 (in-
cluding the last enforced shuffle), and with the i-th shuffle,

b1 increases by xi ≥ 1. It is clear that
Pk

i=1 xi = n. We

claim that the total cost of A, ft+1(n), is at least

ft(x1) + ft(x2) + · · · + ft(xk)

+

„

k −
1

t

«

x1 +

„

k − 1 −
1

t

«

x2 + · · · +

„

1 −
1

t

«

xk − 2n.

(3)

Consider the i-th shuffle involving b1. This shuffle brings
xi balls to b1, including the new ball just added in this step.
Let us lower bound the cost due to these xi balls. First,
those xi − 1 old balls must not have been in b1 before, since
whenever A shuffles b1, all the balls will go back to b1. So A
must have been able to accommodate them using the other
t bins. This costs at least ft(xi − 1), even if ignoring the
cost of shuffling the other existing balls in these t bins. Then
these xi − 1 balls, plus a new ball, are shuffled to b1. This
costs xi, not counting the cost associated with the existing
balls in b1. Finally, these xi balls will be in b1 for all of the
remaining k− i shuffles involving b1, costing (k− i)xi. Thus,
we can charge a total cost of

ft(xi − 1) + xi + (k − i)xi

= ft(xi − 1) + 1 +
xi

t
+

„

k − i + 1 −
1

t

«

xi − 1

≥ ft(xi) +

„

k − i + 1 −
1

t

«

xi − 1 (4)

to these xi balls. That ft(xi − 1) + 1 + xi/t ≥ ft(xi) easily
follows from the observation that, to handle xi balls with
t bins, we can always run the optimal algorithm for xi − 1
balls with t bins, and then put the last ball into the smallest
bin, which will cost no more than 1 + (xi − 1)/t < 1 + xi/t.
Finally, summing (4) over for all i, relaxing a −k to −n, and
subtracting the cost of the enforced shuffle proves that (3)
is a lower bound on ft+1(n) for given k, x1, . . . , xk. Thus,
ft+1(n) is lower bounded by the minimum of (3), over all

possible values of k, x1, . . . , xk, subject to
Pk

i=1 xi = n.
We first use this recurrence to solve for f2(n).

f2(n) ≥ min
k,x1+···+xk=n

{f1(x1) + · · · + f1(xk)

+(k − 1)x1 + · · · + xk−1 − 2n}

= min
k,x1+···+xk=n

{
1

2
x1(x1 + 1) + · · · +

1

2
xk(xk + 1)

+(k − 1)x1 + · · · + xk−1 − 2n}

≥ min
k



1

2
k

“n

k

”2

+
1

2
(k − 1)k − 2n

ff

≥
1

4
n4/3 − 2n.

So if we choose c1 ≤ 1/4, c2 ≤ 2/3, we have ft(n) ≥

c1tn
1+c2/t − 2tn for t = 2.

For t ≥ 2, we relax the recurrence as

ft+1(n)

≥ min
k,x1+···+xk=n



ft(x1) + · · · + ft(xk) +

„

k −
1

2

«

x1

+

„

k − 1 −
1

2

«

x2 + · · · +
1

2
xk − 2n

ff

≥ min
k,x1+···+xk=n

{ft(x1) + · · · + ft(xk)

+
1

2
(kx1 + (k − 1)x2 + · · · + xk) − 2n}. (5)

The induction, phase one. In phase one, we have 1 ≤
t ≤ t0 − 1 for t0 = ⌊c0 ln n⌋. The base cases t = 1, 2 have
already been established. Assuming the induction hypoth-
esis ft(n) ≥ c1tn

1+c2/t − 2tn, we need to show ft+1(n) ≥

c1(t + 1)n1+c2/(t+1) − 2(t + 1)n. From (5) we have

ft+1(n) ≥ min
k,x1+···+xk=n

{c1tx
1+c2/t
1 − 2tx1 + · · ·

+ c1tx
1+c2/t
k − 2txk +

1

2
(kx1 + · · · + xk) − 2n}.

(6)

Let gk(n) be the minimum of (6) for a given k. Then clearly
ft+1(n) ≥ min1≤k≤n gk(n), and we will show that

gk(n) ≥ c1(t + 1)n1+c2/(t+1) − 2(t + 1)n (7)

for all k, hence completing the induction.
We prove so using another level of induction on k. For the

base case k = 1, we have g1(n) ≥ c1tn
1+c2/t−2tn+ 1

2
n−2n ≥

c1tn
1+c2/t − 2(t+1)n, and c1tn

1+c2/t ≥ c1(t+1)n1+c2/(t+1)

holds as long as

tn
c2
t ≥ (t + 1)n

c2
t+1 ⇔ n

c2
t(t+1) ≥ 1 +

1

t

⇔ n
c2

t+1 ≥

„

1 +
1

t

«t

⇐ n
c2

t+1 > e ⇔ t ≤ c2 ln n − 1.

So if we choose c0 < c2, then for the range of t that we
consider in phase one, (7) holds for k = 1.

Next, assuming that (7) holds for k, we will show gk+1(n) ≥

c1(t + 1)n1+c2/(t+1) − 2(t + 1)n. By definition,

gk+1(n)

= min
x1+···+xk+1=n

{c1tx
1+c2/t
1 − 2tx1 + · · · + c1tx

1+c2/t
k+1

−2txk+1 +
1

2
((k + 1)x1 + · · · + xk+1) − 2n}

= min
xk+1

{c1tx
1+c2/t
k+1 − 2txk+1 +

1

2
n

+ min
x1+···+xk=n−xk+1

{c1tx
1+c2/t
1 − 2tx1 + · · ·

+c1tx
1+c2/t
k − 2txk +

1

2
(kx1 + · · · + xk)

−2(n − xk+1)} − 2xk+1}

= min
xk+1

{c1tx
1+c2/t
k+1 − 2(t + 1)xk+1 +

1

2
n + gk(n − xk+1)}

≥ min
xk+1

{c1tx
1+c2/t
k+1 − 2(t + 1)xk+1 +

1

2
n

+c1(t + 1)(n − xk+1)
1+c2/(t+1) − 2(t + 1)(n − xk+1)}

= min
xk+1

{c1tx
1+c2/t
k+1 +

1

2
n + c1(t + 1)(n − xk+1)

1+c2/(t+1)

−2(t + 1)n}.

Setting xk+1 = λn where 0 < λ < 1, we will show that

c1t(λn)1+c2/t + c1(t + 1)((1 − λ)n)1+c2/(t+1) +
1

2
n

≥ c1(t + 1)n1+c2/(t+1) (8)

for all λ. (8) is equivalent to

t

t + 1
λ1+

c2
t n

c2
t(t+1) +(1−λ)1+

c2
t+1 +

1

2c1(t + 1)nc2/(t+1)
≥ 1.

(9)

Since (1−λ)1+
c2

t+1 ≥ (1−λ)1+
c2
t , to prove (9), it suffices to

prove

t

t + 1
n

c2
t(t+1) λ1+

c2
t + (1− λ)1+

c2
t ≥ 1−

1

2c1(t + 1)nc2/(t+1)
.

(10)
The LHS of (10) achieves its only minimum at the point

where its derivative is zero, namely when

t

t + 1
n

c2
t(t+1)

“

1 +
c2

t

”

λ
c2
t =

“

1 +
c2

t

”

(1 − λ)
c2
t ,

or

„

t

t + 1

«t/c2

n1/(t+1)λ = 1 − λ,

λ =
1

(t
t+1

)t/c2n1/(t+1) + 1
.

Plugging this λ into the LHS of (10) while letting γ =

(t
t+1

)t/c2n1/(t+1), we get

γc2/t + γ1+c2/t

(γ + 1)1+c2/t
=

γc2/t(1 + γ)

(γ + 1)1+c2/t
=

γc2/t

(γ + 1)c2/t

=

„

γ

γ + 1

«c2/t

.

Considering the RHS of (10), since nc2/(t+1) = γc2(t+1
t

)t <
eγc2 , we have

1 −
1

2c1(t + 1)nc2/(t+1)
= 1 −

1

2c1(t + 1)γc2(t+1
t

)t

< 1 −
1

2c1e(t + 1)γc2

< 1 −
1

4c1etγc2
.

Thus, to have (10), we just need to have
„

γ

γ + 1

«c2/t

≥ 1 −
1

4c1etγc2
,

or
γ

γ + 1
≥

„

1 −
1

4c1etγc2

«t/c2

=

„

1 −
1

4c1etγc2

«

4c1etγc2

4c1c2eγc2

⇐
γ

γ + 1
≥ exp

„

−
1

4c1c2eγc2

«

⇔ 1 +
1

γ
≤ exp

„

1

4c1c2eγc2

«

⇐ 1 +
1

γ
≤ 1 +

1

4c1c2eγc2
,

where the last inequality holds if γ ≥ 4c1c2eγ
c2 , or γ ≥

(4c1c2e)
1/(1−c2). Finally, since

γ = n1/(t+1)
.

(1 + 1/t)t/c2

> n1/(t+1)/e1/c2 ≥ n1/t0/e1/c2 ≥ e1/c0−1/c2 ,

as long as we choose c0 small enough depending on c1 and
c2, such that e1/c0−1/c2 ≥ (4c1c2e)

1/(1−c2), (10) will hold,

and henceforth gk+1(n) ≥ c1(t + 1)n1+c2/(t+1). This also
completes the induction on t for phase one. Finally, to en-
sure c1tn

1+c2/t−2tn = Ω(tn1+Ω(1/t)) for t ≤ t0, it suffices to

have c1n
c2/t0 = c1e

c2/c0 > 2, which again can be guaranteed
by choosing c0 small enough.

The induction, phase two. In phase two, we will prove
that ft(n) ≥ c1t0n

1+c2/(t0+c0(t−t0)/α) − 2tn for t0 ≤ t ≤
α ln n where α is any given constant. To simplify notations
we define h(t) = t0 + c0(t − t0)/α. The base case t = t0
for phase two has already been established from phase one.
Next we assume ft(n) ≥ c1t0n

1+c2/h(t) − 2tn and will prove

that ft+1(n) ≥ c1t0n
1+c2/h(t+1) − 2(t + 1)n.

From the recurrence (5) and the induction hypothesis, we
have

ft+1(n) ≥ min
k,x1+···+xk=n

{c1t0x
1+c2/h(t)
1 − 2tx1 + · · ·

+ c1t0x
1+c2/h(t)
k − 2txk +

1

2
(kx1 + · · · + xk) − 2n}.

(11)

Similarly as in phase one, let gk(n) be the minimum of (11)
for a given k. Here we need to show that

gk(n) ≥ c1t0n
1+c2/h(t+1) − 2(t + 1)n. (12)

Again we use induction on k to prove (12). The base case

is easily seen as g1(n) = c1t0n
1+c2/h(t) − 2tn + 1

2
n − 2n >

c1t0n
1+c2/h(t+1) − 2(t + 1)n. Now suppose (12) holds for k,

we will show gk+1(n) ≥ c1t0n
1+c2/h(t+1) − 2(t+1)n. By the

induction hypothesis, we have

gk+1(n)

= min
x1+···+xk+1=n

{c1t0x
1+c2/h(t)
1 − 2tx1 + · · ·

+c1t0x
1+c2/h(t)
k+1 − 2txk+1

+
1

2
((k + 1)x1 + · · · + xk+1) − 2n}

= min
xk+1

{c1t0x
1+c2/h(t)
k+1 − 2txk+1 +

1

2
n +

min
x1+···+xk=n−xk+1

{c1t0x
1+c2/h(t)
1 − 2tx1 + · · ·

+c1t0x
1+c2/h(t)
k − 2txk +

1

2
(kx1 + · · · + xk)

−2(n − xk+1)} − 2xk+1}

= min
xk+1

{c1t0x
1+c2/h(t)
k+1 − 2(t + 1)xk+1 +

1

2
n

+gk(n − xk+1)}

≥ min
xk+1

{c1t0x
1+c2/h(t)
k+1 − 2(t + 1)xk+1 +

1

2
n

+c1t0(n − xk+1)
1+c2/h(t+1) − 2(t + 1)(n − xk+1)}

= min
xk+1

{c1t0x
1+c2/h(t)
k+1 +

1

2
n

+c1t0(n − xk+1)
1+c2/h(t+1) − 2(t + 1)n}.

Setting xk+1 = λn where 0 < λ < 1, we will show

c1t0(λn)1+c2/h(t) + c1t0((1 − λ)n)1+c2/h(t+1) +
1

2
n

≥ c1t0n
1+c2/h(t+1) (13)

for all λ. (13) is equivalent to

λ1+c2/h(t)n
c2c0/α

h(t)h(t+1) +(1−λ)1+c2/h(t+1)+
1

2c1t0nc2/h(t+1)
≥ 1.

(14)

Since (1−λ)
1+

c2
h(t+1) ≥ (1−λ)

1+
c2

h(t) , to prove (14), it suffices

to prove

n
c2c0/α

h(t)h(t+1) λ
1+

c2
h(t) + (1 − λ)

1+
c2

h(t) ≥ 1 −
1

2c1t0nc2/h(t+1)
.

(15)
The LHS of (15) achieves its only minimum when

n
c2c0/α

h(t)h(t+1)

„

1 +
c2

h(t)

«

λ
c2

h(t) =

„

1 +
c2

h(t)

«

(1 − λ)
c2

h(t) ,

or n
c0/α

h(t+1) λ = 1 − λ,

λ =
1

n
c0/α

h(t+1) + 1
. (16)

Plugging (16) into (15) while letting γ = n
c0/α

h(t+1) , (15) be-
comes

„

γ

γ + 1

«c2/h(t)

≥ 1 −
1

2c1t0γc2α/c0
,

or
γ

γ + 1
≥

„

1 −
1

2c1t0γc2α/c0

«h(t)/c2

=

„

1 −
1

2c1t0γc2α/c0

«

2c1t0γc2α/c0h(t)

2c1t0γc2α/c0c2

⇐
γ

γ + 1
≥ exp

„

−
h(t)

2c1c2t0γc2α/c0

«

⇐
γ

γ + 1
≥ exp

„

−
1

2c1c2γc2α/c0

«

⇐ 1 +
1

γ
≤ 1 +

1

2c1c2γc2α/c0
,

where the last inequality holds if γ ≥ 2c1c2γ
c2α/c0 . We

will choose c2, c0 such that c2α/c0 > 1, thus this becomes

γ ≤ (1
2c1c2

)
1

c2α/c0−1 . Since γ = n
c0/α

h(t+1) < n
c0/α

c0 ln n = e1/α,

we just need to have e1/α ≤ (1
2c1c2

)
1

c2α/c0−1 to make sure

that (15) holds. This would also complete the induction on
t for phase two.

We also need to ensure that c1t0n
1+c2/h(t)−2tn ≥ c1c0/α·

tn1+c2/h(t) = Ω(tn1+Ω(1/t)) for phase two. This just requires

c1c0/α · nc2/h(t) > 2. Since c1c0/α · nc2/h(t) ≥ c1c0/α ·

n
c2

(2c0−c20/α) ln n = c1c0/α · e
c2

2c0−c20/α , we just require c1c0/α ·

e
c2

2c0−c20/α > 2.

Finally, we put together all the constraints that we have
on the constants in both phases:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

c1 ≤ 1/2, c2 ≤ 1,
c1 ≤ 1/4, c2 ≤ 2/3,
c0 < c2,

(4c1c2e)
1/(1−c2) ≤ e1/c0−1/c2 ,

2 < c1e
c2/c0 ,

e1/α ≤ (1
2c1c2

)
1

c2α/c0−1 ,

2 < c1c0/α · e
c2

2c0−c20/α .

We can first fix c1 = c2 = 1/4. This makes (4c1c2e)
1/(1−c2) <

1. Then we choose c0 small enough such that the third and
the fifth constraints are satisfied. That c0 < c2 also makes
e1/c0−1/c2 ≥ 1, satisfying the fourth constraint. Finally, we
will make c0 even smaller if necessary (depending on α), to
satisfy the last two constraints. This completes the proof of
part (ii) of Theorem 2.

Tightness of the bounds. Ignoring the constants in the
Big-Omega, the lower bound of Theorem 2 is tight for nearly
all values of t. Now we give some concrete strategies match-
ing the lower bounds For t ≥ 2 log n, we use the following
shuffling strategy. Let x = t/ log n ≥ 2. Divide the t bins
evenly into logx n groups of t/ logx n each. We use the first
group to accommodate the first t/ logx n balls. Then we
shuffle these balls to one bin in the second group. In gen-
eral, when all the bins in group i are occupied, we shuffle
all the balls in group i to one bin in group i + 1. The total
cost of this algorithm is obviously n logx n since each ball
has been to logx n bins, one from each group. To show that
this algorithm actually works, we need to show that all the
n balls can be indeed accommodated. Since the capacity of
each group increases by a factor of t/ logx n, the capacity of
the last group is

„

t

logx n

«logx n

=

„

xt

x logx n

«logx n

= n

„

t

x logx n

«logx n

= n

„

log n

logx n

«logx n

= n(log x)logx n ≥ n.

Thus, part (i) of Theorem 2 is tight as long as log(t/ log n) =
Ω(log t), or t = Ω(log1+ǫ n).

Part (ii) of the theorem concerns with t = O(log n). For
such a small t we need to deploy a different strategy. We
always put balls one by one to the first bin b1. When b1 has
collected n1/t balls, we shuffle all the balls to b2. Afterward,
every time b1 reaches n1/t, we merge all the balls in b1 and
b2 and put the balls back to b2. For b2, every time it has
collected n2/t balls from b1, we merge all the balls with b3. In
general, every time bi has collected ni/t balls, we move all the
balls to bi+1. Let us compute the total cost of this strategy.
For each shuffle, we charge its cost to the destination bin.
Thus, the cost charged to b1 is at most (n1/t)2 · n1−1/t =

n1+1/t, since for every group of n1/t balls, it pays a cost
of at most (n1/t)2 to add them one by one, and there are

n1−1/t such groups. In general, for any bin bi, 1 ≤ i ≤ t,
the balls arrive in batches of n(i−1)/t, the bin clears itself
for every n1/t such batches. The cost for each batch is at
most ni/t, the maximum size of bi, so the cost for all the
n1/t batches before bi clears itself is n(i+1)/t. The bin clears
itself n/ni/t = n1−i/t times, so the total cost charged to bi

is n1+1/t. Therefore, the total cost charged to all the bins is
tn1+1/t.

Combining part (i) and part (ii), our lower bound is thus
tight for all t except in the narrow range ω(log n) ≤ t ≤
o(log1+ǫ n). And in this range, the gap between the upper
and lower bounds is merely Θ(log t

log(t/ log n)
) = o(log log n).

5. FINAL REMARKS
The obvious open problem is to improve the query-update

tradeoff of Theorem 1 to A · log(u/A) = Ω(log N
M

), which
would be tight for all values of N . Note that the bounds for
the ball shuffling problem are already tight, but a smarter
construction than the one used in Section 3 could lead to a
better result. It is also interesting to extend our results to
higher dimensions.

In this paper we have only considered range reporting
queries. B-trees also support look-up queries (a.k.a. dic-
tionary queries). But if one wants to optimize for look-
up queries, a hash table should be used that supports such
queries in 1+2−Ω(B) I/Os [15]. A very recent result by Wei,

Yi, and Zhang [20] shows that in order to achieve such a fast
query time, any dictionary index has to be directly updated
on disk upon every insertion, i.e., main memory buffering is
essentially useless. This is interestingly contrasted with the
power of buffering for dynamic B-trees.

References

[1] S. Alstrup, G. Brodal, and T. Rauhe. Optimal static
range reporting in one dimension. In Proc. ACM Sym-
posium on Theory of Computation, pages 476–482,
2001.

[2] L. Arge. The buffer tree: A technique for design-
ing batched external data structures. Algorithmica,
37(1):1–24, 2003. See also WADS’95.

[3] L. Arge, V. Samoladas, and J. S. Vitter. On two-
dimensional indexability and optimal range search in-
dexing. In Proc. ACM Symposium on Principles of
Database Systems, pages 346–357, 1999.

[4] L. Arge, V. Samoladas, and K. Yi. Optimal external
memory planar point enclosure. Algorithmica, to ap-
pear. See also ESA’04.

[5] R. Bayer and E. McCreight. Organization and mainte-
nance of large ordered indexes. Acta Informatica, 1:173–
189, 1972.

[6] P. Beame and F. E. Fich. Optimal bounds for the prede-
cessor problem and related problems. Journal of Com-
puter and System Sciences, 65(1):38–72, 2002.

[7] J. L. Bentley and J. B. Saxe. Decomposable searching
problems I: Static-to-dynamic transformation. Journal
of Algorithms, 1:301–358, 1980.

[8] G. S. Brodal and R. Fagerberg. Lower bounds for ex-
ternal memory dictionaries. In Proc. ACM-SIAM Sym-
posium on Discrete Algorithms, pages 546–554, 2003.

[9] A. L. Buchsbaum, M. Goldwasser, S. Venkatasubrama-
nian, and J. R. Westbrook. On external memory graph
traversal. In Proc. ACM-SIAM Symposium on Discrete
Algorithms, pages 859–860, 2000.

[10] B. Chazelle and L. J. Guibas. Fractional cascading: I.
A data structuring technique. Algorithmica, 1:133–162,
1986.

[11] J. M. Hellerstein, E. Koutsoupias, D. Miranker, C. H.
Papadimitriou, and V. Samoladas. On a model of in-
dexability and its bounds for range queries. Journal of
the ACM, 49(1):35–55, 2002.

[12] J. M. Hellerstein, E. Koutsoupias, and C. H. Papadim-
itriou. On the analysis of indexing schemes. In Proc.
ACM Symposium on Principles of Database Systems,
pages 249–256, 1997.

[13] H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Su-
darshan, and R. Kanneganti. Incremental organization
for data recording and warehousing. In Proc. Interna-
tional Conference on Very Large Databases, pages 16–
25, 1997.

[14] C. Jermaine, A. Datta, and E. Omiecinski. A novel
index supporting high volume data waresshouse inser-
tion. In Proc. International Conference on Very Large
Databases, pages 235–246, 1999.

[15] D. E. Knuth. Sorting and Searching, volume 3 of The
Art of Computer Programming. Addison-Wesley, Read-
ing, MA, 1973.

[16] E. Koutsoupias and D. S. Taylor. Tight bounds for 2-
dimensional indexing schemes. In Proc. ACM Sympo-
sium on Principles of Database Systems, pages 52–58,
1998.

[17] C. W. Mortensen, R. Pagh, and M. Pǎtraşcu. On dy-
namic range reporting in one dimension. In Proc. ACM
Symposium on Theory of Computation, pages 104–111,
2005.

[18] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (LSM-tree). Acta Informat-
ica, 33(4):351–385, 1996.

[19] V. Samoladas and D. Miranker. A lower bound theo-
rem for indexing schemes and its application to multi-
dimensional range queries. In Proc. ACM Symposium
on Principles of Database Systems, pages 44–51, 1998.

[20] Z. Wei, K. Yi, and Q. Zhang. Dynamic external hash-
ing: The limit of buffering. Manuscript.

[21] A. Yao. Should tables be sorted? Journal of the ACM,
28(3):615–628, 1981.

