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Motivation

Identifying frequent items is important

network traffic monitoring

answering iceberg queries

association rule mining
......

This paper: find frequent items in uncertain data

Also, processing uncertain data

sensor reading

fuzzy data integration
......

(heavy hitters)
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The Probabilistic Model
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The Probabilistic Model

The x-tuple model (proposed in the TRIO system)

T1 {(a, p(a)), (b, p(b))}
T2 {(a, p′(a))}

x-tuple

Tm

Ti

T2 T1

T3

? heavy hitters

a occurs with Pr p(a),
b occurs with Pr p(b),
nothing occurs with Pr
1 − p(a) − p(b).



4-3

The Probabilistic Model

The x-tuple model (proposed in the TRIO system)

T1 {(a, p(a)), (b, p(b))}
T2 {(a, p′(a))}

D: the uncertain database, consists
of T1 and T2

W : a possible world of D

W Pr[W ]
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{a} p(a)(1 − p′(a))
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The x-tuple model (proposed in the TRIO system)

T1 {(a, p(a)), (b, p(b))}
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D: the uncertain database, consists
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W : a possible world of D

W Pr[W ]
∅ (1 − p(a) − p(b))(1 − p′(a))
{a} p(a)(1 − p′(a))

+(1 − p(a) − p(b))p′(a)
{b} p(b)(1 − p′(a))
{aa} p(a)p′(a)
{ab} p(b)p′(a)

x-tuple

Tm

Ti

T2 T1

T3

? heavy hitters

Let R denote a random possible world
|R|: the number of items in R.
mR

t : the frenquency of item t in R.
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Ehh and Phh

An intuitive definition
t is a φ-expected heavy hitter (Ehh) of D if

E[mR
t ] > φ · E[|R|]

Problems with Ehh (finding 0.5-heavy hitters. )

D1 = { {(a, 0.9), (b, 0.1)}, {(c, 1)} }.
a is not a 0.5-expected heavy hitter.
But, a has a 90% chance of being a 0.5-heavy hitter!

with Pr. 0.9 R = {a, c}
with Pr. 0.1 R = {b, c}

D2 = {{(a, 0.5)}, {(b, 0.5)}}.
a is a 0.5-expected heavy hitter,
but only has a 50% chance of being a 0.5-heavy hitter.
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Ehh and Phh

An intuitive definition
t is a φ-expected heavy hitter (Ehh) of D if

E[mR
t ] > φ · E[|R|]

Follow ”probabilistic thresholding” framework
(Dalvi and Suciu VLDB 2004)

A more rigorous definition
t is a (φ, τ)-probabilistic heavy hitter (Phh) of D if

Pr[mR
t > φ|R|] > τ
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Summary of main results

1. Give low degree polynomial-time algorithms for com-
puting the exact PHH for offline data.

2. Design both space and time-efficient algorithms to com-
pute the approximate Phh for streaming data, with the-
oretically guaranteed accuracy and space/time bounds.

3. Establish a tradeoff between the accuracy and the per-
tuple processing time of the proposed approximation
algorithms.
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Algorithm for offline data

For a single item t, dynamic programming(DP).

The running time of DP O(m3).

Thus, if we do this for every item, the running time
would be O(nm3)

m: the number of x-tuples, n: the number of distinct items

Main idea: calculate Pr[item t appears i times and items
other than t appear j times in the first k x-tuples of D]
for all i, j, k.
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Algorithm for offline data

For a single item t, dynamic programming(DP).

The running time of DP O(m3).

However, we can reduce the running time by almost
a factor of n using the pruning lemma (next page).

Thus, if we do this for every item, the running time
would be O(nm3)

m: the number of x-tuples, n: the number of distinct items

Main idea: calculate Pr[item t appears i times and items
other than t appear j times in the first k x-tuples of D]
for all i, j, k.
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The following lemma gives an upper bound on
Pr[mR

t > φ|R|] depending on E[mR
t ]/E[|R|].

The Prunning Lemma

Pr[mR
t > φ|R|] ≤ 2

φ

E[mR
t ]

E[|R|]
+ e−

1
8
E[|R|]

(small)
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The following lemma gives an upper bound on
Pr[mR

t > φ|R|] depending on E[mR
t ]/E[|R|].

The Prunning Lemma

Pr[mR
t > φ|R|] ≤ 2

φ

E[mR
t ]

E[|R|]
+ e−

1
8
E[|R|]

(small)

If φ = 0.1, τ = 0.6

E[mR
t ]

E[|R|] < 0.02 → Pr[mR
t > φ|R|] < 0.6

since
∑

t E(mR
t ) = E(|R|), checking 50 items is enough!
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The following lemma gives an upper bound on
Pr[mR

t > φ|R|] depending on E[mR
t ]/E[|R|].

The Prunning Lemma

Pr[mR
t > φ|R|] ≤ 2

φ

E[mR
t ]

E[|R|]
+ e−

1
8
E[|R|]

(small)

Now running time is O( 1
φτ m3).

The algorithm.

a
c

b
ed

f compute E[mR
t ] +

prunning lemma

a
c

ed

g DP c
d

Phhs
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Approximation algorithms for streaming data

An item t is an approximate Phh if
Pr[mR

t > φ|R|] > τ , and not an approximate Phh if
Pr[mR

t > (φ− ε)|R|] < (1− θ)τ .

Approximation is necessary since calculating the exact fre-
quency of heavy hitters require Ω(n) memory (Alon et. al.)
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Approximation algorithms for streaming data

An item t is an approximate Phh if
Pr[mR

t > φ|R|] > τ , and not an approximate Phh if
Pr[mR

t > (φ− ε)|R|] < (1− θ)τ .

Approximation is necessary since calculating the exact fre-
quency of heavy hitters require Ω(n) memory (Alon et. al.)

finds all approximate (φ, τ)-Phh with proba-
bility at least 1− δ.

space O( 1
εθ2τ log( 1

δφτ ))

processing time: O( 1
θ2τ log( 1

δφτ )+log(1/ε))

We propose algorithms with the following guarantees.
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Approximation algorithms for streaming data

An item t is an approximate Phh if
Pr[mR

t > φ|R|] > τ , and not an approximate Phh if
Pr[mR

t > (φ− ε)|R|] < (1− θ)τ .

Approximation is necessary since calculating the exact fre-
quency of heavy hitters require Ω(n) memory (Alon et. al.)

finds all approximate (φ, τ)-Phh with proba-
bility at least 1− δ.

space O( 1
εθ2τ log( 1

δφτ ))

processing time: O( 1
θ2τ log( 1

δφτ )+log(1/ε))

further improve to : O(log( 1
δφτε ))

We propose algorithms with the following guarantees.
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The basic sampling algorithm

The idea follows from Alon et. al. (JCSS 99) Average-Median

G1

Gi

Gl (l = 2 ln(1/δ′))
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The basic sampling algorithm

The idea follows from Alon et. al. (JCSS 99) Average-Median

G1

Gi

Gl (l = 2 ln(1/δ′))

Wi1

Wi2

Wik (k = 8
θ2τ )

compute HH in each Wij

using Space-Saving (Met-
wally et. al. TODS 06)

Y t
i = # possible worlds in which t is a heavy hitter /k

Y t
1

Y t
i

Y t
l

Finally, let Y t = Median{Y t
1 , Y t

2 , . . . Y t
l }.
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The basic sampling algorithm

Y t > (1− θ/2)τ −→ t is a (φ, τ)-Phh.
Y t ≤ (1− θ/2)τ −→ t is not a Phh.
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The basic sampling algorithm

Y t > (1− θ/2)τ −→ t is a (φ, τ)-Phh.
Y t ≤ (1− θ/2)τ −→ t is not a Phh.

Correct with probability at least 1 − δ′ for any particular
item t.
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The basic sampling algorithm

Y t > (1− θ/2)τ −→ t is a (φ, τ)-Phh.
Y t ≤ (1− θ/2)τ −→ t is not a Phh.

Correct with probability at least 1 − δ′ for any particular
item t.

Setting δ′ = φτ
4 δ is enough since we only need to consider

at most 3
φτ candidates Phh, by the Prunning Lemma.
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The improved sampling algorithm

Problem of the basic algorithm: the processing time
for each item is too large! Õ( 1

θ2τ )
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The improved sampling algorithm

Problem of the basic algorithm: the processing time
for each item is too large! Õ( 1

θ2τ )

Solution: reduce the sampling rate!

Wi1

Wik

Wi2

With Pr. 1/k2

t

t

t
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The improved sampling algorithm

Problem of the basic algorithm: the processing time
for each item is too large! Õ( 1

θ2τ )

Solution: reduce the sampling rate!

Wi1

Wik

Wi2

With Pr. (k − 1)/k2

don’t send
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The improved sampling algorithm

Problem of the basic algorithm: the processing time
for each item is too large! Õ( 1

θ2τ )

Solution: reduce the sampling rate!

Wi1

Wik
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The rest

t

select a Wij

uniformly at
random
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The improved sampling algorithm

Problem of the basic algorithm: the processing time
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The improved sampling algorithm

Problem of the basic algorithm: the processing time
for each item is too large! Õ( 1

θ2τ )

Solution: reduce the sampling rate!

Wi1

Wik

Wi2

The rest

t

select a Wij

uniformly at
random

Now processing time per x-tuple: O(log( 1
δφτε )).

pairwise in-
dependent
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Experiments - the data sets

Data sets.

movie from the MystiQ project; has a total of ap-
proximately 100, 000 x-tuples, most of which have
only one alternative, but some have a few.

It contains probabilistic movie records reflecting the
matching probability as a result of data integration
from multiple sources.

wcday46
zipfu1.60
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Experiments - the power of prunning

Effectiveness of the pruning lemma, where for skewed data
sets, more than 90% of the items are pruned.
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Experiments - basic, improved streaming algorithm
Varying m: φ = 0.01, τ = 0.8, δ = 0.05, θ = 0.05, ε = 0.001.

running time
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Experiments - basic, improved streaming algorithm
Varying m: φ = 0.01, τ = 0.8, δ = 0.05, θ = 0.05, ε = 0.001.

memory usage
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Conclusion

We have

• formalized the notion of probabilistic heavy hit-
ters following the commonly adopted possible
world query semantics in uncertain databases.

• presented efficient algorithms with theoretical
guarantees for both offline and streaming data,
under the widely adopted x-relation model.

Future work includes handling distributed data, and
more interestingly, supporting other uncertain data
models.
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The End

T HANK YOU
Q and A
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Experiments - basic, improved streaming algorithm
Varying m: φ = 0.01, τ = 0.8, δ = 0.05, θ = 0.05, ε = 0.001.

recall
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Experiments - basic, improved streaming algorithm
Varying m: φ = 0.01, τ = 0.8, δ = 0.05, θ = 0.05, ε = 0.001.

precision
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Experiments - generalized algorithm

Tradeoff in cost/accuracy, varying s, δ = 0.05, θ = 0.05,
φ = 0.01, τ = 0.8, ε = 0.001.

For s/k as small as 0.05, its accuracy is already very close
to perfect. 20-fold speedup from the basic scheme!


