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Motivation

B ldentifying frequent items is important

O network traffic monitoring
O answering iceberg queries

O association rule mining

B Also, processing uncertain data

O sensor reading

O fuzzy data integration

B This paper: find frequent items in uncertain data
(heavy hitters)
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Previous work on heavy hitters In certain data

For a parameter ¢, an item t is the ¢-heavy hitter of a bag W
if my’ > ¢-|W|.

Approximate version heavy hitters
e return all the ¢-heavy hitters
e not return those t with m;" < (¢ —¢€) - |W]

e items in between: arbitrary

Misra and Gries (Sci. Comput. Programming 1982)
Demaine et. al. (ESA 2002)

Manku & Motwani (VLDB 2002)

Karp et. al. (TODS 2003)

Cormode & Muthukrishnan (VLDB 2002)
Cormode et. al. (SIGMOD 2004)

Manjhi et. al. (ICDE 2005)

Lee & Ting (PODS 2006)

Metwally et. al. (TODS 2006)
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? heavy hitters
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The x-tuple model (proposed in the TRIO system)

Ty | {(a,p(a)), (b, p(b))}

T, {(a,p'(a))} W[ Pr[W]
. - - 0 (1 —p(a) —p(®))(1 —p'(a))
(Z))f.j:clhznudn;zrtam database, consists {a} p((al)(l _(p),(a))(b)) N
: +(1 — p(a) — "(a
W a possible world of D (b} p(b)(1 Zip/(a)l)? P
{aa} | p(a)p’(a)
{ab} | p(b)p'(a)
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The Probabilistic Model

x-tuple

D

? heavy hitters
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The x-tuple model (proposed in the TRIO system)

Ty | {(a,p(a)), (b,p(b))}
15 {(a,p'(a))}

D: the uncertain database, consists
of 11 and 15

W a possible world of D

Let R denote a random possible world =% {qq}

|R|: the number of items in R.

mfi: the frenquency of item ¢ in R.

W Pr[W]
) (1 —p(a) —p(b))(1 —p'(a))
{a} | pla)(1—p'(a))
+(1 —p(a) — p(b))p'(a)
{6} | p(b)(1 —p'(a))

ab}

p(a)p’(a)
p(b)p’(a)
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EHH and PHH

O An intuitive definition
t is a ¢-expected heavy hitter (EHH) of D if

Elmi’] > ¢ E[|R]]

59 Problems with EHH (finding 0.5-heavy hitters. )

with Pr. 0.9 R = {a, ¢}
O D1 =1{1{(a,0.9),(6,0.1)}, {(¢, 1)} }-  with Pr. 0.1 R = {b,c}
a Is not a 0.5-expected heavy hitter.

But, a has a 90% chance of being a 0.5-heavy hitter!

O Dy = {{(a70°5)}7 {(b70°5)}}'

a Is a 0.b-expected heavy hitter,
but only has a 50% chance of being a 0.5-heavy hitter.
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EHH and PHH

O An intuitive definition
t is a ¢-expected heavy hitter (EHH) of D if

Elmi’] > ¢ E[|R]]

O A more rigorous definition
t is a (¢, 7)-probabilistic heavy hitter (PHH) of D if

Pr@> (,bj}> T

Follow " probabilistic thresholding” framework
(Dalvi and Suciu VLDB 2004)
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Summary of main results

1. Give low degree polynomial-time algorithms for com-
outing the exact PHH for offline data.

2. Design both space and time-efficient algorithms to com-
oute the approximate PHH for streaming data, with the-
oretically guaranteed accuracy and space/time bounds.

3. Establish a tradeoff between the accuracy and the per-
tuple processing time of the proposed approximation
algorithms.
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Algorithm for offline data

O For a single item ¢, dynamic programming(DP).

m: the number of x-tuples, n: the number of distinct items

The running time of DP O(m?).

B Main idea: calculate Prlitem ¢ appears ¢ times and items
other than ¢t appear j times in the first k x-tuples of D]
for all 7, 7, k.

O Thus, if we do this for every item, the running time
would be O(nm?)
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Algorithm for offline data

O For a single item ¢, dynamic programming(DP).

m: the number of x-tuples, n: the number of distinct items

The running time of DP O(m?).

B Main idea: calculate Prlitem ¢ appears ¢ times and items
other than ¢t appear j times in the first k x-tuples of D]
for all 7, 7, k.

O Thus, if we do this for every item, the running time
would be O(nm?)

O However, we can reduce the running time by almost
a factor of n using the pruning lemma (next page).



The Prunning Lemma

O The following lemma gives an upper bound on
Prim? > ¢|R|| depending on E[m*]/E||R|].

Prim{* > ¢|R|] <
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The Prunning Lemma

O The following lemma gives an upper bound on
Prim? > ¢|R|| depending on E[m*]/E||R|].

Prim{* > ¢|R|] <

f = 0.1, 7 = 0.6

E mf
ok <0.02 — Primf > ¢|R[] < 0.6

since >, E(m;') = E(|R|), checking 50 items is enough!
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The Prunning Lemma

O The following lemma gives an upper bound on
Prim? > ¢|R|| depending on E[m*]/E||R|].

Prim;* > ¢|R[] <
O The algorithm.

compute E[mi| + DP
prunning lemma —
_
3).

1
gb m

Now running time is O(
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Approximation algorithms for streaming data

O An item t is an approximate PHH if
Prim > ¢|R|] > 7, and not an approximate PHH if
Primf > (¢ — ¢)|R|] < (1 - 0)7T.
Approximation is necessary since calculating the exact fre-
quency of heavy hitters require {2(n) memory (Alon et. al.)
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Approximation algorithms for streaming data

O An item t is an approximate PHH if

Prim > ¢|R|] > 7, and not an approximate PHH if
Primf > (¢ — ¢)|R|] < (1 - 0)7T.

Approximation is necessary since calculating the exact fre-
quency of heavy hitters require {2(n) memory (Alon et. al.)

O We propose algorithms with the following guarantees.

O finds all approximate (¢, 7)-PHH with proba-
bility at least 1 — 0.

O space  O(—- lg(aqﬁ))
O processing time:  O( 5= lo ( —)+log(1/e))
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Approximation algorithms for streaming data

O An item t is an approximate PHH if

Prim > ¢|R|] > 7, and not an approximate PHH if
Primf > (¢ — ¢)|R|] < (1 - 0)7T.

Approximation is necessary since calculating the exact fre-
quency of heavy hitters require {2(n) memory (Alon et. al.)

O We propose algorithms with the following guarantees.

O finds all approximate (¢, 7)-PHH with proba-
bility at least 1 — 0.

O space  O(—=log(x=))

€02t Yoxs
O processing time: O(ﬁlog(&;) Flog(1/€))

further improve to : O(log((sq}m))
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The basic sampling algorithm

O The idea follows from Alon et. al. (JCSS 99) Average-Median
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using Space—S_av.ing"(Met— o G (l = 2 111(1/5 ))
Wallyf_e,t,f—ai."TODS 06) ® W
Wii
Wiz

10-3



The basic sampling algorithm

O The idea follows from Alon et. al. (JCSS 99) Average-Median

Gy
°
°
°
G,
compute HH in each W, ,
using Space—S_av.ing"(Met— o G (l = 2 111(1/5 ))
Wallyf_e,t,f—ai."TODS 06) ® W
v Wi
Wiz
°
°

10-4



The basic sampling algorithm

O The idea follows from Alon et. al. (JCSS 99) Average-Median

G
°
°
°
G,
compute HH in each W, ,
using Space—S_av.ing"(Met— o G (l = 2 111(1/5 ))
Wallyf_e,t,f—ai."TODS 06) ® W
v Wii
X Wiz
o
o

10-5



The basic sampling algorithm

O The idea follows from Alon et. al. (JCSS 99) Average-Median

G
°
°
°
G,
compute HH in each W, ,
using Space—S_av.ing"(Met— o G (l = 2 111(1/5 ))
Wallyf_e,t,f—ai."TODS 06) ® W
v Wii
X Wiz
o
o

10-6



The basic sampling algorithm

O The idea follows from Alon et. al. (JCSS 99) Average-Median

Gy
°
* e
G,
compute HH in each W, ,
using Space-Saving (Met- o G (l = 2 111(1/5 ))
Wallyf_e,t,f—ai."TODS 06) ® W
v Wi
X Wi
() !
° L8
4 Wik (k += 527)

Yit — # possible worlds in WhiCh"’t is a heavy hitter /k
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The basic sampling algorithm

O The idea follows from Alon et. al. (JCSS 99) Average-Median

Gy
t
Y] °.
o
compute HH in each W, yi
using Space-Saving (Met- z
wally et.-at”" TODS 06)
v Wi
X Wi
) ;
: 8
v Wi (k # 27)

G; (1 =2In(1/4"))

Y'lt

Yit — # possible worlds in WhiCh"’t is a heavy hitter /k
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The basic sampling algorithm

O The idea follows from Alon et. al. (JCSS 99) Average-Median

G
t °
Yl ®
°
compute HH in each W, yt

using Space—S_auing”(l\/let—
wally et.-al."TODS 06)

\

v W,
X Wi
o ;
o :
v Wi (k -

1

3

021

)

G,

Finally, let Y* = Median{Y{, Y7, ..

G; (1 =2In(1/4"))

Y'lt

Y = # possible worlds in which' t is a heavy hitter /k

Y



The basic sampling algorithm

OY'>(1-6/2)r — tisa (¢,7)-PHH.
Y*<(1—-6/2)r — t is not a PHH.
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The basic sampling algorithm

OY'>(1-6/2)r — tisa (¢,7)-PHH.
Y*<(1—-6/2)r — t is not a PHH.

O Correct with probability at least 1 — ¢’ for any particular
item ¢.

O Setting ¢/ = %5 Is enough since we only need to consider

at most % candidates PHH, by the Prunning Lemma.
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The improved sampling algorithm

O Problem of the basic algorithm: the processing time

for each item is too large! O(ﬁ)
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The improved sampling algorithm

O Problem of the basic algorithm: the processing time

for each item is too large! O(ﬁ)

O Solution: reduce the sampling rate!

With Pr. 1/k2

T
t Wis
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The improved sampling algorithm

O Problem of the basic algorithm: the processing time

for each item is too large! O(ﬁ)

O Solution: reduce the sampling rate!

With Pr. (k —1)/k?

don't send
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The improved sampling algorithm

O Problem of the basic algorithm: the processing time
for each item is too large!  O(5-)

O Solution: reduce the sampling rate!

The rest
Wi
% t Wio
B o
select a W, o
®

uniformly at
random Wi




The improved sampling algorithm

O Problem of the basic algorithm: the processing time
for each item is too large!  O(5-)

O Solution: reduce the sampling rate!

The rest
Wi
N t Wiz
; . . . .
select a W, ° palrwise In-
uniformly at ° dependent

random Wi
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The improved sampling algorithm

O Problem of the basic algorithm: the processing time
for each item is too large!  O(5-)

O Solution: reduce the sampling rate!

The rest
Wi
*"I ® . . .
select a W, ° palrwise In-
uniformly at ° dependent
random Wi

5 Now processing time per x-tuple: O(log(&blm)).
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Experiments - the data sets

O Data sets.

movie from the MystiQ project; has a total of ap-
proximately 100,000 x-tuples, most of which have
only one alternative, but some have a few.

It contains probabilistic movie records reflecting the
matching probability as a result of data integration
from multiple sources.

wcday46
zipful.60
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Experiments - the power of prunning

Effectiveness of the pruning lemma, where for skewed data
sets, more than 90% of the items are pruned.

< 107 —with pruning ---'-no pruning

——-movie
| —-e-wcday46
—&-zipfu1.60

-

(6)]

(87}
5

N W 5
T T T

running time in seconds x 10*

) -
- -
i i
| - i -
- | -
- y - -

i

500 1000 1500 2000
m: num of xtuples

O
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Experiments - basic, improved streaming algorithm
Varying m: ¢ = 0.01, 7 = 0.8, 0 = 0.05, 8 = 0.05, ¢ = 0.001.

—improved scheme - - -basic scheme

10
@==—""" %’;.‘.‘.‘.2.‘_‘.‘_‘.‘_‘.‘- -
% e -
c
o
O
@
w
= o
@ —_E
E
o)
=
—
s a
= —B-movie
-©-wcday46
" —8-zipfu1.60|
10 1 | | 1 I
10000 30000 50000 70000 90000

m: num of xtuples

running time
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Experiments - basic, improved streaming algorithm
Varying m: ¢ = 0.01, 7 = 0.8, 0 = 0.05, 8 = 0.05, ¢ = 0.001.

—improved scheme -~ basic scheme

120 ——
—>-movie
| ©-wcday46
100 :
g —&-zipfu1.60
- Q.O._._G._,_ .0_._._._._._.9_._,_ _._,_G_-_,_.__-_.-.G)
= 80r ]
o) @ ol o e R
@ g0l @ o
> i
é 40._: ’I‘—I#E*’
c P -
S . '
)
>

fese8—=
10000

30000 50000 70000 90000
m: num of xtuples

memory usage
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Conclusion

O We have

e formalized the notion of probabilistic heavy hit-
ters following the commonly adopted possible
world query semantics in uncertain databases.

e presented efficient algorithms with theoretical
guarantees for both offline and streaming data,
under the widely adopted x-relation model.

O Future work includes handling distributed data, and

more interestingly, supporting other uncertain data
models.



The End

THANK YOU

Q and A



Experiments - basic, improved streaming algorithm
Varying m: ¢ = 0.01, 7 = 0.8, 0 = 0.05, 8 = 0.05, ¢ = 0.001.

—improved scheme -~ basic scheme

—>-movie
-©-wcday46
—&-zipfu1.60

30000 50000 70000 90000
m: num of xtuples

10000

recall
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Experiments - basic, improved streaming algorithm
Varying m: ¢ = 0.01, 7 = 0.8, 0 = 0.05, 8 = 0.05, ¢ = 0.001.
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—improved scheme - - basic scheme
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>
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2
a rr

§ -t
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m: num of xtuples

precision

0.8 :
c o
C" ] ’
‘D U.
O
o &
S 0 4]
d
ul i
0.2 —>-movie
-©-wcday46
—&-zipfu1.60
l =t = . . L
0000 30000 50000 70000 90000
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Experiments - generalized algorithm

Tradeoff in cost/accuracy, varying s, 6 = 0.05, 8 = 0.05,
¢ =0.01, 7 =0.8, e = 0.001.

For s/k as small as 0.05, its accuracy is already very close
to perfect. 20-fold speedup from the basic scheme!

&l 1

I / ®
0.9¢ o—o
) 0.95}
0.7+
= 0.6+ S
S 2 o9}
Q o.5¢ @
Q.
0.4}
0.3l ] 0.85
0.2 ~-m=5000 : ~-m=5000
-=-m=10000 -=-m=10000
°18 0.02 0.04 0.06 0.08 0.1 % 0.02 0.04 0.06 0.08 0.1
s/k: fraction of worlds updated

s/k: fraction of worlds updated



